
p-ADIC CONTINUITY

Berkeley Math Circle class with Masha Vlasenko. April 3, 2019.

Notation.
N = {1, 2, 3, . . .} (natural numbers)

∩
Z (integers)

∩
Q (rational numbers)

∩
R (real numbers)

∩
C (complex numbers)

a ≡ b mod m or m|(a− b) means that m divides a− b
Z/mZ = {0, 1, . . . ,m− 1} is the set of remainders modulo m
p ∈ {2, 3, 5, 7, 11, . . .} is a prime number
B denotes an exercise
F are harder exercises; they usually require a few steps and you might need an extra

sheet (or a notebook) to solve them

1. Algebra with p-adic numbers

1.1. Definition, operations, examples. The set of p-adic integers is defined as

Zp =
{
x = (x1, x2, . . .)

∣∣∣ xn ∈ Z/pnZ , xn+1 ≡ xn mod pn
}
.

Compare this to thinking about real numbers as being approximated by sequences of
decimal fractions, e.g.

π = (3, 3.1, 3.14, 3.141, 3.1415, . . .)

Remark. The following question is still a mystery for number theorists: what is the
p-adic analogue of π? If you follow our discussion to the very end, you will learn some
tools for thinking about this problem.

Observe:

• For each n the component xn defines all preceding components: x1 = xn mod p,
x2 = xn mod p2, and so on up to xn−1 = xn mod pn−1.
• For each n, if one knows xn then there are p choices for xn+1.
• One can add, subtract and multiply p-adic numbers:

x± y = (x1 ± y1, x2 ± y2, . . .)
x · y = (x1 · y1, x2 · y2, . . .)

• p-adic integers contain the usual integers:

Z ⊂ Zp
m ∈ Z 7→ x = (x1, x2, . . .) with xn = m mod pn
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• An equivalent way to write a p-adic number x = (x1, x2, . . .) ∈ Zp is its p-adic expansion

x = z0 + z1p+ z2p
2 + z3p

3 + . . .

where z0, z1, z2, . . . ∈ {0, . . . , p− 1} and xn = z0 + z1p+ . . .+ zn−1p
n−1. Note that

a p-adic integer whose expansion is finite is a non-negative integer.

B Write the p-adic expansion of −1.

B Give an example of a p-adic integer which is not an integer, that is x ∈ Zp \ Z.

B Show that p-integral fractions

Z(p) =
{m
n

∣∣∣ p 6 |n} ⊂ Q

are contained in Zp.

B Give an example of a p-adic integer which is not a p-integral fraction, that is x ∈
Zp \ Z(p).

Hint: look at the next section.

1.2. Hensel’s lemma: Let P (x) = amx
m + am−1x

m−1 + . . .+ a1x+ a0 be a polynomial
with am, . . . , a0 ∈ Z (or even Zp). Suppose that z0 ∈ Z/pZ is such that P (z0) ≡ 0 mod p
but P ′(z0) 6≡ 0 mod p. Then there is a unique x ∈ Zp such that P (x) = 0 and x ≡ z0
mod p.

This is a tool to construct more interesting p-adic numbers!

(p = 7)
√

2 = 3 + 1 · 7 + 2 · 72 + 6 · 73 + 1 · 74 + 2 · 75 + . . .

or 4 + 5 · 7 + 4 · 72 + 0 · 73 + 5 · 74 + 4 · 75 + . . .

B Explain why there are no
√

2 in Z3,Z5. Is there
√

2 in Z2?

The next p for which
√

2 ∈ Zp are p = 17 and p = 23, e.g.

(p = 23)
√

2 = 5 + 16 · 23 + 22 · 232 + 8 · 233 + . . .

or 18 + 6 · 23 + 0 · 232 + 14 · 233 + . . .

B Show that Zp contains p− 1 different numbers x such that xp−1 = 1.
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(p = 5) 1

2 + 1 · 5 + 2 · 52 + 53 + . . .

3 + 3 · 5 + 2 · 52 + 3 · 53 + . . .

−1 =4 + 4 · 5 + 4 · 52 + 4 · 53 + . . .

If you solved the last exercise, you should know that for every z0 ∈ Z/pZ, z0 6= 0 there
is a solution to xp−1 = 1 such that x ≡ z0 mod p. These p-adic numbers are called
Teichmüller units. They are (p − 1)st roots of unity, similarly to the complex numbers

e
2πi
p−1 , e

4πi
p−1 , . . . , e

2(p−1)πi
p−1 = 1 ∈ C.

F Are there other roots of unity in Zp? Prove that if x ∈ Zp satisfies xm = 1 for some
m ≥ 1 then x is one of the the Teichmüller units, that is, it satisfies xp−1 = 1.

1.3. p-adic numbers and division. A number x ∈ Zp is called a p-adic unit if there is
y ∈ Zp such that x · y = 1. The set of p-adic units is denoted Z×p .

B Show that 2 ∈ Z×p for p 6= 2.

B Prove that x ∈ Z×p if and only if x 6≡ 0 mod p.

We conclude that Zp = Z×p ∪ pZp. Every non-zero p-adic integer x ∈ Zp, x 6= 0 can be

uniquely written as x = pk · y with y ∈ Z×p and k ≥ 0:

Zp = {0} ∪ Z×p ∪ pZ×p ∪ p2Z×p ∪ . . .
Zp \ {0} = ∪

k≥0
pkZ×p

The minimal set that contains p-adic integers and the fraction 1
p
, and such that we can

add and multiply within this set, is called p-adic numbers:

Qp = Zp
[

1

p

]
= Zp ∪ p−1Z×p ∪ p−2Z×p ∪ . . .

Qp \ {0} = ∪
k∈Z

pkZ×p

Now p-adic expansions may contain negative powers of p:

(p = 5)
1

50
= 5−2 · 1

2
= 5−2 · (3 + 2 · 5 + 2 · 52 + 2 · 53 + . . .)

= 3 · 5−2 + 2 · 5−1 + 2 + 2 · 5 + 2 · 52 + 2 · 53 . . .

Observe that if x ∈ Qp, x 6= 0 we have 1
x
∈ Qp. This property is the same as for the

usual rational numbers: if x ∈ Q, x 6= 0 we have 1
x
∈ Q.

B Observe that Q ⊂ Qp.
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2. p-adic distance and continuous functions

Warm-up:
we are back in the usual world of real numbers.
B Compute limn→∞

3n+5
9−7n =

F Compute limn→∞
fn+1

fn
=

where {fn} = {1, 1, 2, 3, 5, 8, . . .} is the sequence of Fibonacci numbers (it is generated
by the rule fn = fn−1 + fn−2).

The notation

lim
n→∞

an = α or an → α as n→∞

(in words: the limit of the sequence {an} is equal to α, or an converge to α as n grows)
means that the distance |α− an| tends to 0 as n increases. Here is the formal definition:
for every ε > 0 there exists N such that |an − α| < ε for all n ≥ N .
B Give an example of a sequence which does not converge to any number.

A sequence {an} is called convergent if there exists an α such that an → α as n→∞.
One can detect convergence (without knowing the limit value α) as follows: for every
ε > 0 there exists N such that |an − am| < ε for all n,m ≥ N .

With this definition in hand, one can view real numbers R as the set of possible limits
of convergent sequences of rational numbers. This procedure is called completion: R is
the completion of Q.

2.1. p-adic distance. For x ∈ Z, x 6= 0 we denote

ordp(x) = integer m such that pm|x but pm+1 6 |x

(we say: p-adic order of x). This the exact power of p that divides x.
B Compute ord3(54), ord3(−45), ord5(12).

The p-adic absolute value is defined as follows. Fix any real number 0 < ν < 1 and
define

|x|p =

{
νordp(x), if x 6= 0,

0, if x = 0.

(The standard choice in textbooks would be ν = p−1, but in fact it dos not matter.) Let
us try to think of this number as the distance between x and 0! Note that since ν < 0,
the bigger ordp(x) is the smaller is |x|p. So we now think of an integer as being small
when it is divisible by a big power of p.
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Though |x|p seems weird, it satisfies the following properties of the usual absolute value
for real (and complex) numbers:

|x · y|p = |x|p · |y|p
|x|p = 0⇔ x = 0

|x+ y|p ≤ |x|p + |yp| (triangle inequality)

The triangle inequality becomes even sharper:
B Show that |x+ y|p ≤ max(|x|p, |y|p).

B Show that |x+ y|p = max(|x|p, |y|p) if |x|p 6= |y|p.

If |x|p is (our new) distance between 0 and x, then one should also think of |x − y|p
as the distance between integers x, y ∈ Z. So, now x and y are close to each other when
their difference is divisible by a large power of p.

2.2. Limits. Now we should rethink the idea of limits. The definitions are just as in the
warm-up, but with | · |p in place of | · |:
B Compute limn→∞(pn − 1) =
B Compute limn→∞(1 + p+ . . .+ pn) =

A sequence of integer numpbers {an} is convergent p-adically (or in p-adic distance)
if for every real ε > 0 there is an index N such that |an − am|p < ε for all m,n ≥ N .
Now, the limits are naturally p-adic integers: Zp is the completion of Z with respect to
the p-adic absolute value. To explain this rigorously, let us do two exercises:

B Define ordp(x) for x ∈ Zp, x 6= 0 (so that it takes the same values on x ∈ Z ⊂ Zp).

One can extend the absolute value: |x|p = νordp(x) if x ∈ Zp, x 6= 0.
B Let {an} be a p-adically convergent sequence of integer numbers. Construct α ∈ Zp

such that |α− an|p → 0 as n→∞.

Now we are done. One interesting computational exercise at the end:
B Take some integer a ∈ Z. Show that the sequence an = ap

n
is p-adically convergent

and compute its limit.
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Remark. The notion of p-adic order ordp(x) can be defined for x ∈ Q and x ∈ Qp.
Namely, for a fraction n

m
∈ Q one has ordp(

n
m

) = ordp(n) − ordp(m). If x ∈ Qp, x 6= 0

one can uniquely write this number as x = pky with k ∈ Z and y ∈ Z×p . We then put
ordp(x) = k. B As an exercise, you could check that on Q ⊂ Qp this agrees with the
definition for fractions given in the previous sentence. Since we have ordp(·), we have the
p-adic absolute value |·|p on Qp. B Another exercise: show that for x ∈ Qp the statements
|x|p ≤ 1 and x ∈ Zp are equivalent; also, |x|p = 1 if and only if x ∈ Z×p . Finally, let us
say that Qp is the completion of Q with respect to | · |p, just as R is the completion of Q
with respect to the usual absolute value | · |.

2.3. Continuous functions. A function f : R → R is called continuous if for every
convergent sequence of arguments xn → x the values of the function also converge:
f(xn)→ f(x).

Equivalently, one can say that if the two arguments x, y are close, then the values
f(x), f(y) are close.

Most functions that you know (polynomials, ex, sin(x), ...) are continuous.
B Give an example of a function, which is not continuous.

Of course, the same definition can be given for f : Zp → Zp or f : Qp → Qp. But what
is it useful for, if we can’t even draw their graphs?

Let us call a function f : N→ Z or f : Z→ Z continuous p-adically if for every integer

M > 0 there exists an integer N > 0 such that pN |(x− y) implies pM |(f(x)− f(y)).
B Show that the sum of continuous functions is continuous.

B Show that polynomials are continuous.

F Let a ∈ N. Prove that f(n) = an is p-adically continuous if and only if a ≡ 1
mod p.

Here is a curious fact about such functions. Suppose you have a p-adically continuous
f : N→ Z. This is just a sequence of integers {f(n)}, but due to continuity our function
can be evaluated at any x ∈ Zp. To see this,

B Observe that any x ∈ Zp is a p-adic limit of a sequence of natural numbers.

In particular, there are well defined values f(−1), f(−2), . . . at negative integers and
values f(m/n) at rational numbers without p in the denominator (remember, Z(p) ⊂ Zp).
Well, this perspective does not sound exciting for polynomial functions. But what if
f(n) = n! was p-adically continuous? This is not quite true, but in the next section we
will make a modification of the factorial which works.
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2.4. p-adic factorial. The following exercise might be difficult, it requires a few steps:
F Prove that function f : N→ Z given by

f(n) = (−1)n+1
∏

1≤m≤n,p 6|m

m = (−1)n+1 n!

bn
p
c! pb

n
p
c

is p-adically continuous. More precisely, pN |(n− k) implies pN |(f(n)− f(k)).

A proof can be found in books on p-adic analysis such as “p-adic numbers, p-adic
analysis and zeta functions” by Neal Koblitz (this is a truly great book!) or in my notes.
We shall discuss it in class if there is time left.

One should think of f(n) as the p-adic analogue of n!
B Let p = 3. Compute f(2), f(3), f(10).

B Observe that f(n) is not divisible by p.

Due to the last observation, we obtain a continuous function f : Zp → Z×p . We make
a shift in the argument and define the p-adic gamma function as

Γp(x) = f(x− 1).

This is again a continuous function Γp : Zp → Z×p satisfying

ordp(Γp(x)− Γp(y)) ≥ ordp(x− y)

and

Γp(n) = f(n− 1) = (1)n
∏

1≤m<n, p 6|m

m for all n ∈ N .

(The shift in the argument is just a convention. It is motivated by the analogy with the
classical gamma function, see the remark below.)

Here are a few useful properties of the p-adic gamma function:

• For any x ∈ Zp one has

Γp(x+ 1)

Γp(x)
=

{
−x, x ∈ Z×p ,
−1, x ∈ pZp.

• If x ∈ Zp, write x = x0 + px1 where x0 ∈ {1, 2, . . . , p} is the first digit in the
expansion of x unless x ∈ pZp, in which case x0 = p rather than 0. Then

Γp(s)Γp(1− s) = (−1)s0 .

• Let m ∈ N is not divisible by p. Then

Γp(
x
m

)Γp(
x+1
m

) . . .Γp(
x+m−1

m
)

Γp(x)Γp(
1
m

) . . .Γp(
m−1
m

)
= m1−x0 · (m−(p−1))x1

with x0 and x1 defined for x ∈ Zp in the previous property.

https://www.imath.kiev.ua/~mariyka/publ/padic.pdf
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B Explain why the right-hand side in the last property is written in this weird way.
(Recall our exercise on p-adic continuity of n 7→ an.)

B Compute Γp(0), Γp(−1), Γp(
1
2
).

Remark. Let us go back to the world of real numbers. The classical gamma function is
a function Γ : R>0 → R>0 defined by the integral

Γ(x) =

∫ ∞
0

tx−1e−tdt.

Let us list some of its properties:

• Show that Γ(x+ 1) = xΓ(x). Conclude that Γ(n) = (n− 1)! for n ∈ N.

• For 0 < x < 1 one has Γ(x)Γ(1− x) = π
sin(πx)

.

• For m ∈ N we have

Γ( x
m

)Γ(x+1
m

) . . .Γ(x+m−1
m

)

Γ(x)
= (2π)

m−1
2 m

1
2
−x.

Proofs can be found in Wikipedia. Now you can see this as a motivation for proving
similar properties for p-adic gamma functions. As another exercise, you could
B rewrite the last property with the left-hand side being the same as in the p-adic case,

that is
Γ( x

m
)Γ(x+1

m
) . . .Γ(x+m−1

m
)

Γ(x)Γ( 1
m

) . . .Γ(m−1
m

)
=

Finally, compute

Γ

(
1

2

)
=

https://en.wikipedia.org/wiki/Gamma_function

	Notation
	1. Algebra with p-adic numbers 
	1.1. Definition, operations, examples.
	1.2. Hensel's lemma:
	1.3. p-adic numbers and division.

	2. p-adic distance and continuous functions
	2.1. p-adic distance
	2.2. Limits.
	Remark
	2.3. Continuous functions
	2.4. p-adic factorial.
	Remark


