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These notes have been prepared for a seminar on Tates thesis at MPIM Bonn.
Their aim is to give a short introduction to the Riemann-Roch theorem as well
as to explain the connection with the Poisson summation formula as it appears
in Tates thesis.

There is no doubt that the Riemann-Roch theory is of utmost importance in
Mathematics and plays a central role not only in Algebraic Geomerty. It seems
only logical that its importance reflects in the fact that the inital observations by
Riemann about the existence of functions on Riemann surfaces having prescribed
poles or zero opened the door to a huge theory generalizing the results by Riemann
and Roch.

Unfortunately, it is impossible for me to cover in one session any of the in-
teresting results going significantly further than the ideas carried by the initial
Riemann-Roch theorem for complex curves as e.g. the work of Hirzebruch, Gro-
thendieck, Faltings, Atiyah and Singer. My appologies for that.

I will omit citations in the rest of these notes. It has been made extensive use
of the following sources: The proof of the Riemann-Roch theorem is taken from
[Serre88] chapter 1, where one can find the case that k is algebraically closed. For
the proof of the Serre-duality theorem in the non-closed case using residues the
very nice article [Tate68] can be recommended. The proof over finite fields using
Poisson summation is from [Rama99] chapter 7.2.

1. Riemann-Roch

Let X be an algebraic curve over a field k. By an algebraic curve we mean a re-
gular, smooth, geometrically connected projective algebraic variety of dimension
1 over a field k, i.e. X is a one dimensional variety admitting an embedding into
P3

k such that the topological space X ⊗k k̄ is reduced, the local rings are regular
and the sheaf of differentials is locally free of rank 1.

A divisor D of X is an element of the free Abelian group on the points of X,
i.e.

D =
∑
P∈X

nP P.

To each function f ∈ k(X) we associate the divisor (f) :=
∑

P∈X vP (f)P . Such
divisors are called principal and we say two divisors D and D′ are linearly equiva-
lent if they differ by a principal divisor. The Riemann Roch theorem provides us
with information about the dimensions of the spaces of functions having prescri-
bed zeros and poles by a divisor in the following sense. For a Divisor D =

∑
nP P

of X denote by L(D) the sheaf of functions having poles no worse than these of
D, i.e.:

L(D)(U) := {f ∈ k(X) | ∀P ∈ X ∩ U : vx(f) ≥ −nP}
1
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We are interested in the dimension of the global sections dimk L(D)(X). Clear-
ly, if D = D′+(f) for f ∈ k(X) then multiplication with f defines an isomorphism
between L(D) and L(D′) and whence dimk L([D])(X) can be defined for divisor
classes [D].

For instance, consider X = P1
k. Here a divisor D =

∑
npP is equivalent to

deg(D)∞ where

deg(D) :=
∑
P∈X

nP [κ(P ) : k]

denotes the degree of a Divisor D and κ(P ) denotes the residue field of X at P .
Clearly, here dimk L(D)(X) depends only on deg(D). In fact, one obtains

dimk L(D)(P1
k) = deg(D) + 1

for a divisor of deg(D) ≥ 0. However, for a curve whose Picard group, i.e. the
group of divisors modulo linear equivalence, is not isomorphic to Z, things get
more complicated. Here the Riemann-Roch theorem will help.

We introduce the Euler-charateristic χ of a Divisor D by

χ(D) := l(D)− i(D) := dimk H0(X,L(D))− dimk H1(X,L(D))

and call

g := dimk H1(X,O)

the genus g of X. With this terminlogy we can state a first version of the Riemann-
Roch theorem:

Theorem 1. Let D be a divisor on X. Then χ(D) as well as g is finite and one
has:

χ(D) = deg(D) + χ(0) = deg(D) + 1− g

Proof. The proof consists of two steps: First we establish the results for a parti-
cular divisor D = 0 and than we will use algebraic induction to finish the proof.

The sheaf L(0) is the structure sheaf O of X and therefore one has

l(0) = dimk H0(X,L(0)) = dimk H0(X,O) = 1

and

i(0) = dimk H1(X,L(0)) = dimk H1(X,O) < ∞.

Since, moreover, deg(0) = 0 it is clear that the statement is true for D = 0.
Therefore, in the second step it remains to show that for every point P ∈ X

the assertions are true for D + P if and only if they are true for D, since one can
by definition write any divisor as a finite sum of

∑
(−1)εiPi with εi ∈ {0, 1}.

But this follows directly from the long exact cohomology sequence associated
to the short exact sequence

0 → L(D) → L(D + P ) → Q→ 0
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Namely, one sees that the quotient sheaf Q is the skyscraper sheaf at P with
QP

∼= κ(P ) whose cohomology on X can easly be computed via a Čech reso-
lution to be H0(X,Q) = κ(P ) and H1(X,Q) = 0. And whence the long exact
cohomology sequence shows that

0 → L(D) → L(D + P ) → κ(P ) → H1(X,L(D)) → H1(X,L(D + P )) → 0

is exact and therefore establishes the formulae

0 ≤ l(D + P )− l(D) ≤ [κ(P ) : k]

0 ≤ i(D)− i(D + P ) ≤ [κ(P ) : k]

χ(D + P ) = χ(D) + [κ(P ) : k]

where the last formula follows in case one has shown that χ(D) and χ(D + P )
is well defined, i.e. in case i(D) < ∞ or l(D) < ∞ and i(D + P ) < ∞ or
l(D + P ) < ∞. Whence these formulas do now in turn imply

l(D), i(D) < ∞∧ χ(D) = deg(D) + χ(0)

⇔ l(D + P ), i(D + P ) < ∞∧ χ(D + P ) = deg(D + P ) + χ(0)

¤
This formula, however, still does not give us the insight in the dimension of

the space of meromorphic functions with prescibed poles in the way the classical
Riemann-Roch does. To obtain the classical Riemann-Roch theorem we need to
apply Serre duality. Namely, in the next chapter we will show how to identifiy
the dual of H1(X,L(D)) with Ω(D) and therefore prove l(D) = dim Ω(D), since
multiplication by ω for some ω ∈ Ω defines an isomorphism of the OX modules
L(div(ω)−D) and Ω(D), one finaly obtains the classical Riemann Roch theorem.

2. Adèles, differential Forms, Residues and Duality

In what follows we introduce a version of Serre duality setting stage for the
classical formulation of the Riemann-Roch theorem.

Let us start in reformulating H1(X,L(D)) using the adèlic language introduced
by Weil: The language of rèpartitions. For this we define

R := {{rP}P∈X | ∀P : rP ∈ k(X), f.a.a. P : rP ∈ OP}
R(D) := {{rP} ∈ R | ∀P : vP (rP ) ≥ −vP (D)}

Now one has the injection of k(X) onto the diagonal inside R and we hence-
forth will identify k(X) with its image inside R. The link to H1(X,L(D)) is the
following:

Proposition 1. For every Divisor D on X there is a canonical isomorphism
H1(X,L(D)) →̃R/(R(D) + k(X)).
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Proof. This follows directly from the investigation of the long exact cohomology
sequence associated to the short exact sequence

0 → L(D) → k(X) → k(X)/L(D) → 0.

Namely, since one can easily compute the cohomology of the constant sheaf
k(X) via Čech cohomology to be H0(X, k(X)) = k(X) and H1(X, k(X)) = 0,
one obtains the exact sequence

k(X) → H0(X, k(X)/L(D)) → H1(X,L(D)) → 0

and therfore

H1(X,L(D)) ∼= ⊕(k(X)/L(D))P

k(X)
∼= R

R(D) + k(X)
.

Here we made use of the fact that for the sheaf k(X)/L(D) the canonical injection

i : H0(X, k(X)/L(D)) ↪→ ⊕(k(X)/L(D))P

is an isomorphism. For this we have to show that for every point P ∈ X

(k(X)/L(D))P ⊆ i(H0(X, k(X)/L(D))).

This is true since for every tP ∈ (k(X)/L(D))P = (U 7→ k(X)/(L(D)(U)))P there
exists an open neighborhood U ⊆ X of P and a section s ∈ k(X)/(L(D)(U)) such
that sP = tP and s|U−P = 0. Now s defines a section in (k(X)/L(D))(U) which we
can extend by zero outside U since s|U−P = 0 to a section s̃ ∈ (k(X)/L(D))(X)
to obtain i(s̃)P = tP and i(s̃)Q = 0 for Q 6= P . ¤

Now, we are left investigating the k-vector space R/(R(D)+k(X)) or to be pre-
cise dimk R/(R(D)+k(X)). We might as well investigate its dual Homk(R/(R(D)+
k(X)), k). We will see shortly that this dual is isomorphic to the vector space of
differentials of X having a certain prescribed behaviour related to D. For this
first let us recall the notion of differentials.

The module of differentials of a k-algebra R is defined to be the R-module

ΩR/k := (
⊕
r∈R

drR)/ < d(r+r′)−dr−dr′, d(rr′)−rdr′−r′dr, dk | r ∈ R, k ∈ K > .

For any multiplicatively closed subset S ⊂ R one has

S−1R⊗R ΩR/k
∼= ΩS−1R/k.

Whence
Ω(U) := ΩO(U)/k

defines a coherent sheaf on X whose stalks are given by

ΩP = ΩOP /k.

Furthermore, tensoring with rational functions gives differentials with rational
coefficients, i.e.:

ΩOP /k ⊗OP
k(X) = Ωk(X)/k (?)
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Now Ω is a subsheaf of the constant sheaf Ωk(X)/k and since our curve X is non-
singular, Ω is a locally free O module of rank 1: If t ∈ OP is a local uniformizer at
P ∈ X then dt ∈ ΩP is a basis for the OP -module ΩP and (?) implies that dt⊗ 1
is a basis for the k(X)-vector space Ωk(X)/k. Next, of course, we have to relate
the differentials to a divisor D. For this we define for each P ∈ X a valution νP

in the following way: We choose an OP -module isomorphism i : OP →̃ ΩP and
use it to transfer the valution vP on k(X) to Ωk(X)/k, i.e. we set for ω ∈ Ωk(X)/k:

νP (ω) := vP (f)

where ω = fi(1). This definition is independent of the choosen OP -isomorphism.
In fact, if j : OP →̃ ΩP denotes another isomorphism, we have ∀n ∈ N : i((P n) =
j(P n) and whence the valuations do agree. We also define the divisor of a diffe-
rential ω to be

(ω) :=
∑
P∈X

νP (ω)P

and write Ω(D) for the vector space of the differentials such that (ω) ≥ −D
together with 0.

We want to obtain a pairing between répartitions and differential forms. For
this we define a second invariant, the residue resP (ω) of a differential ω in the
following way: We choose a local uniformizer t at P and if κ(P )| k is seperable
we define

resP : Ωk(X)/k
l⊗1−−→ κ(P )[[T ]]⊗OP

k(X) = κ(P )((T ))
π−1−−→ κ(P )

tr−→ k

where

l : ΩP ˜−−−→
dt 7→1

OP ↪→ ÔP ˜−−→
t7→T

κ[[T ]]

and π−1 the k-homomorphism sending
∑∞

i=−∞ aiT
i ∈ k((T )) to a−1, i.e. resP

is defined to be resP (ω) := trκ(P )| k(a−1) where one writes ω ∈ ΩP in the form
ω = (

∑∞
i=−∞ ait

i) dt. If κ(P )| k is not a seperable extension we choose a field
extension k′| k such that all points Q ∈ X ⊗k k′ lying over P have a seperable
residue field extension κ(Q)| k′ and define resk

P (ω) :=
∑

Q7→P resk′
Q(ω). Now, of

course, we need:

Proposition 2. The above definition of resP is independent of the choosen uni-
formizer and, in the non-closed case, as well independent of the choosen field
extension. Furthermore, one has for all ω ∈ Ωk(X)| k :

∑
resP (ω) = 0.

Proof. If k = C, i.e. in the Riemann surface case, one has resP (ω) = 1
2πi

∮
P

ω
and Stokes formula gives

∑
resP = 0. A proof of the residue formula for X = P1

in the case that for all P κ(P )| k is a separable extension can be found in the
Appendix. This gives a proof for a general curve if one uses the forumla

resQ(tr(f)dt) = resP (trκ(Q)|κ(P )(f)dt),
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which e.g. is proven in [Serre88, Chapter 1, Lemma 5]. The general case is a
little intricate, the most conceptual exposition I am aware of can be found in
[Tate68]. ¤

Now we can define a parinig between differentials and répartitions by

〈ω, r〉 :=
∑
P∈X

resP (rP ω)

to obtain the k(X)-homomorphism

θ : Ωk(X)/k −→ (R/k(X))? := lim
D

(R/(R(D) + k(X)))?

sending ω to θ(ω) := 〈ω, · 〉 where the k(X) action on (R/(R(D) + k(X)))? is
defined by r〈α, ·〉 := 〈α, r·〉.
Theorem 2. θ induces an isomorphism

Ω(−D) → (R/(R(D) + k(X))?.

Proof. First, note that θ−1((R/(R(D)+k(X)))?) ⊆ Ω(−D). Indeed if ω /∈ Ω(−D)
we can find a répartition r such that resP (rP ω) 6= 0 but for Q 6= P one has
rQω ∈ ΩP and yet for all P : −vP (rP ) ≤ vP (−D), i.e. vP (rP ) ≥ vP (D). But then
〈ω, r〉 6= 0 and whence θ(ω) /∈ (R/(R(D) + k(X)))?.

This immediately implies that θ must be injective, since θ(ω) = 0 shows that
ω ∈ Ω(D) holds for all D and therefore ω = 0. Also, since θ is a non-trivial k(X)-
homomorphism from the one-dimensional space Ωk(X)/k to (R/(R(D) + k(X)))?

it has to be surjective, if one can show that the dimension of this space over k(X)
is at most 1. On the other hand an ω ∈ Ωk(X)/k such that θ(ω) vanishes on R(D)
has to be in Ω(−D) after what has just been said. It therefore suffices to show
that dimk(X)(R/(R(D) + k(X)))? ≤ 1 to finish the proof.

As for this we assume there does exist two in Ωk(X)/k linearly independent
α, α′ ∈ Ω(D) for some D. Observe that this gives rise to an injection

L(∆n)(X)2 ↪→ (R/(R(D −∆n) + k(X)))?

for every divisor ∆n by sending (f, h) to fα+hα′. This, in particular, shows that

2l(∆n) ≤ i(D −∆n).

Now, let ∆n be a divisor of degree n, then by the version of Riemann-Roch
stated above we obtain for large n:

2(n + 1− g) ≤ n + 1− g − deg(D).

Letting n go to ∞ leads a contradiction.
¤

After having established this duality result we finally arrived at the classical
formulation of Riemann-Roch.
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3. classical Riemann-Roch

To each function f ∈ k(X) we associate the divisor (f) :=
∑

P∈X vP (f)P .
Such divisors are called principal and we say two divisors D and D′ are linearly
equivalent if they differ by a principal divisor.

Now, since Ωk(X)/k has dimension 1 all divisors (ω) for ω ∈ Ωk(X)/k are linearly
equivalent and choosing an ω 6= 0 gives us an O-module isomorphism

L(K −D) →̃ Ω(−D)

by sending 1 to ω, resp. 0 to 0 if L(K −D) = 0.
We call K := [(ω)] the canonical divisor class. After what has been said in the

previous paragraph we now obtain

i(D) = dimk H1(X,L(D))? = dimk Ω(D) = dimk H0(X,L(K −D)) = l(K −D).

Combining this with the version of Riemann-Roch as stated in the first paragraph
yields

Theorem 3. For every divisor D one has

χ(D) = l(D)− l(K −D) = deg(D) + 1− g.

Putting D = K gives us the degree of the cannonical divisor

deg(K) = 2g − 2

and whence if ∆n denotes a divisor of degree n ≥ 2g − 1 one obtains

l(∆n) = n + 1− g.

since for any f ∈ k(X) one has deg((f)) = 0. Whence, in particular, if X = P1
k

we have g = dimk H1(X,O) = 0 and obtain the formula

dimk L(D)(P1
k) = deg(D) + 1

as established in the first paragraph. So things worked out well.

4. Poisson summation and Riemann-Roch over finite fields

Here we want to obtain a second proof for the Riemann-Roch theorem under
the assumption that k is a finite field. In this case we will see that the theorem
is implied by the Poisson summation formula illustrating the strength of this
formula. First we have to establish the Poisson summation for function fields.

So, let k be a finite field with q elements and X be a smooth, projective curve
over k. Let Ak(X) denote the adèles of the global field k(X). This is a locally
compact group. In what follows we will fix character ψ of the adèles which is
trivial on k(X) but non-trivial on any P -component. We then have the topological
isomorphism

Ak(X) −̃→ Âk(X)

defined by α 7→ ψ(α ·). A construction of such a character is given in the appendix.
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Henceforth we will identify Âk(X) with the adèles themselves via this isomor-
phism. Furthermore, for any haar measure µ on Ak(X) we will use this identifi-
cation to obtain a haar measure, also called µ on the character group. Next, we
define the Fourier transform of a function f ∈ L1(Ak(X)) to be the function

f̂ :=

∫

Ak(X)

f(η)ψ(η ·)dη

Now, we know by the theory of Fourier Analysis on locally compact groups that
there does exist a constant c ∈ R? such that for every function f ∈ L1(Ak(X))

satisfying f̂ ∈ L1(Ak(X)) on has
ˆ̂
f = cf . In order to compute c consider f = 1C

for the compact set C :=
∏

P ÔP :

f̂(ξ) =

∫

C

ψ(ξη)dη = 1ψ(ξC)=1(ξ) µ(C) = 1D(ξ) µ(C)

where D := ψ−1(1) denotes the conductor of ψ. Furthermore, we obtain:

cf(x) =
ˆ̂
f(x) =

∫

D

µ(C)ψ(xξ)dξ = 1ψ(xD)=1(x)µ(C)µ(D) = µ(C)µ(D)f(x)

Therefore, we will choose µ relative to ψ to be the haar measure such that µ(C) =

µ(D)−1 so that we obtain f =
ˆ̂
f . For the rest of these notes ψ and µ will be fixed

according to these choices. We compute

µ(C)−1 = µ(D) = µ(C)N(D)

and whence µ(C) = N(D)−1/2.
Now we are set to establish the Poisson summation formula:

Theorem 4. Let f ∈ L1(Ak(X)) such that
∑

ξ∈ k(X) |f(x + ξ)| is uniformly con-

vergent on compact subsets and
∑

ξ∈ k(X) |f̂(ξ)| is convergent. Then
∑

ξ∈ k(X)

f(ξ) =
∑

ξ∈ k(X)

f̂(ξ).

Proof. In order to apply Theorem 1 (the general Poisson summation formula) of
Mariya’s notes from the last talk we need to find a fundamental domain F ⊂ Ak(X)

for the subgroup Γ := k(X), show that Γ is discrete and F relatively compact.
Furthermore, we need to show that under the isomorphism

i : Ak(X) −̃→ Âk(X)

defined by α 7→ ψ(α ·) the subgroup k(X) maps onto ̂Ak(X)/k(X) = k(X)⊥.
This just follows as in Theorem 2 from last talk: One has i(k(X)) ⊂ k(X)⊥,
which is discrete, since Ak(X)/k(X) is compact. Therefore k(X)⊥/i(k(X)) ⊂
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Ak(X)/i(k(X)) is discrete and compact, whence finite. But k⊥ is now an i(k(X))-
vectorspace which has finite index as a group over i(k(X)). Whence i(k(X)) = k⊥.

As for the existence of a relatively compact fundamental domain F one first
observes that for X = P1 the compact set

∏ ÔP must allready contain such a
domain: For any adèle a ∈ Ak(t) let S denote the set consiting of the finitely
many finite places such that vP (a) < 0. One chooses an f ∈ k[t] such that for all
finite places vP (fa) ≥ 0 and then an α ∈ k[t] such that for all P ∈ S one has
vP (fa−α) = vP (f) and such that its degree is minimal with this property. Then
one obtains for all places vP (a − α/f) ≥ 0 as one computes easily for the place
at ∞. Alternatively, one does not care about the degree of α and substracts the
polynomial part of a∞ − α/f in a second step to obtain the result. Now, for a
general function field k(X) one obtains that every adèle a ∈ Ak(X) can be written
as a = f + aF with f ∈ k(X) and tr(aF ) ∈ F . Whence one obtains that the
compact set tr−1(F ) contains already a fundamental domain.

Furthermore k(X) is discrete inside Ak(X), since the functions satisfying for all
places vP (f) ≥ 0 are the constants by the product formula for the norm in global

fields and whence the only function in the open set
∏ ÔP × qÔQ for some place

Q is the zero function.
¤

As in the case of differential forms we will define the divisor associated to a
character ψ which vanishes on k(X) by (ψ) :=

∑
P∈X −nP P where nP = νP (ψ)

is the order of vanishing of ψ at P , i.e. ψP (pnp) = 1 and ψP (pnp−1) 6= 1. Again if
ψ′ is another character vanishing on k(X) then ψ′ = ψ(α·) for some α ∈ k(X)?

and whence the class is independent of the choosen character and we will write
K = [(ψ)]. That the sum is actually finite is clear by examining the character
constructed in the Appendix and the fact that all other characters differ just by
an element in k(X).

Next let f = ⊗P 1OP
be the function on the adèles whose components are the

characteristic functions of OP . For every divisor D let x(D) be an idèle such
that for all P one has vP (x(D)P ) = nP . Then f(· x(D))| k(X) = 1L(D)(X). Since
our haar meassure is adjusted such that the inversion formula holds the ring of
integers OP volume pn/2 and we therefore obtain

f̂P = q[κ(P ): k]νP (ψ)/2 · 1pνP (ψ)

where p is the prime ideal associated to P . Putting h(y) := f(yx(D)) Poisson
summation shows that

∑

y∈ k(X)

f(yx) =
∑

y∈ k(X)

ĥ(y) =
1

|x(D)|
∑

y∈ k(X)

f̂(yx(D)−1)

since

ĥ(y) =

∫

Ak(X)

f(zx)ψ(yz)dz =
1

|x(D)|
∫

Ak(X)

f(z)ψ(yzx−1)dz =
1

|x(D)| f̂(yx−1)
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Now we just have to compute the two sums
∑

y∈ k(X)

f(yx(D)) =
∑

x∈L(D)(X)

1 = ql(D)

∑

y∈ k(X)

f̂(yx(D)−1) =
∑

P∈L(K−D)

q
P

[κ(P ): k] νP (ψ)/2 = ql(K−D)qdeg(ψ)/2

and observe that
1

|x(D)| =
∏
P∈X

q[κ(P ): k]vP (D) = qdeg D

to obtain

l(D)− l(K −D) = deg(D) + deg(ψ)/2 =: deg(D) + 1− g.

5. Appendix

For the whole theory of fourier analysis on the adèles it is cruzial to identify the
adèles with their Pontryagin dual in such a way that k(X)⊥=̃k(X). For this, as we
have shown, it is neccesary to establish the existence of a non-trivial character on
the adèles which is trivial on k(X). In the case of number fields such a character
has already been explicitely constructed. We will do this in what follows for
function fields.

For this we will construct an obviously non-trivial character χ = χAk(X)
on

Ak(X) for X = P1
Fp(t) and show that it is trivial on k(X). Then for an arbitrary

curve Y we can define

χAk(Y )
: Ak(Y )

tr−→ Ak(X)

χAk(X)−−−−→ C

where the trace map tr on the adèles is defined by

tr((rQ)Q∈Y ) = (
∑

Q|P
trk(Y )Q| k(X)P

(rQ))P∈X .

In this way since k(Y )| k(X) is per assumption separable one gets a non-trivial
character on the adèles of k(Y ) which, moreover, is trivial on k(Y ), as is clear
from the fact that for all P ∈ X we have:

trk(Y )| k(X)(f) =
∑

σ∈Gal(k(Y )| k(X))

σ(f) =
∑

Q|P

∑

σ∈Gal(Q|P )

σ(f) =
∑

Q|P
trk(Y )Q| k(X)P

(f)

So what is left is to construct a non-trivial character on AFp(t) which is trivial
on Fp(t). For this we will use the isomorphism

ΩFp(t)/Fp −̃→ (AFp(t)/Fp(t))
?

established in the second paragraph which sends ω to ((rP ) 7→ ∑
P resP (rP ω)).

Recall that we defined resP (
∑

aiπ
idπ) := trκ(P )| k(a−1) where π is a local unifor-

mizer at P .
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Using the residue formula as established in the second paragraph this yields
what we want. Since we did not give a proof for the residue theorem, we will
prove what is needed here.

Therefore, choosing the differential ω = dt and choosing for each finite place
P the canonical uniformizer πP ∈ k[t] which is an irreducible, monic polynomial
as well as the uniformizer π∞ := 1/t at ∞ we define our character

χ((rP )) := e2πiΛ(·)

with

Λ((rP )) :=
1

p

∑
P

trκ(P )| k(aP,−1) ∈ Q/Z,

where for each P we write:

rP dt =
rP

π′
dπ =

∑
aP,i π

i
P dπP

With this definition we obtain:

Proposition 3. χ is a non-trivial, continous, unitary charcater on AFp(t) which
is trivial on Fp(t).

Proof. It is clear that the sum actually is finite and that Λ is a non-trivial group
homomorphism. Furthermore Λ is continous, since for every adèle (rP ) the set

U :=
∏

P :rP∈ÔP

ÔP ×
∏

P :rP /∈ÔP

{
∑

aiπ
i
P ∈ κ((t)) | a−1 = aP,−1}

is open, contains (rP ) and satisfies Λ(U) = Λ((rP )). It therefore remains to show,
that Λ is trivial on Fp(t).

First, note that each f ∈ Fp(t) can be written as a finite sum

f = p +
∑

1≤i≤N

ai
tmi

pni
i

with p, pi ∈ Fp[t], ai ∈ Fp, mi < deg(pi) and where the pi are monic and irredu-
cible. To see this, first observe that Fp[t] is a principal ideal domain and whence
one can write f =

∑
ri/l

ni
i where the li are irreducible. Then using the Euclidean

algorithm one archives the desired shape.
Now by additivity and Fp-linearity of Λ what is left is to show that the sum of

the resiudes of a differential of the form tm/pn dt is 0 with p monic, irreducible
and m < deg(p) or with p = 1. As for the second case, i.e. ω = tmdt it is clear
that the residues at all finite places P are zero, since we have tmdt = tm/π′P dπP

with tm/π′P ∈ OP and so is the residue at ∞ since we have tmdt = −tm+2dπ∞ =
−π−m−2

∞ dπ∞. Similarly, for p an irreducible polynomial, we find that the residue
at all finite places P with (πP , p) = Fp[t] is zero, since we have ω = tm/pn dt =
tm/(pnπ′P ) dπP with tm/(pnπ′P ) ∈ OP .
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It remains to show that resP (tm/pn dt) = − res∞(tm/pn dt) where P is the
place defined by p. Whence we write pn = tk + ak−1t

k−1 + · · · + a0 and using
dπ∞ = −π2

∞dt we compute:

res∞(
tm

pn
dt) = res∞(−π−m−2

∞ (π−k
∞ + ak−1π

k−1
∞ + · · ·+ a0)

−1 dπ∞)

= res∞(−πk−m−2
∞ (1 + ak−1π∞ + · · ·+ a0π

k
∞)−1 dπ∞) = −1

if m = k − 1 = deg p − 1 and 0 otherwise, since m < deg p. Next, we compute
that

resP (
tm

pn
dt) = resP (

tm

pnp′
dπP ) = 1n=11m=deg p−1

completing the proof, where the computation of the trace of tm/p′ follows from
the computation of the dual basis of the k((π))-basis (ti) of κ((π)) with respect
to tr and minimal polynomial p(X)−π as it can be found in the next proposition.
Namely we obtain trκ((π))| k((π))(t

m/p′) = 1m=deg(p)−1. ¤
Proposition 4. Let k be a field and t be separable algebraic over k with minimal
polynomial p(X) of degree n and p(X)/(X − t) = bn−1X

n−1 + · · ·+ b0. Then the
dual basis to ti with respect to tr : k(t)× k(t) → k is given by bi/(p

′(t)), i.e. one
has tr(tibj/(p

′(t))) = δij.

Proof. Observe that for all 0 ≤ i ≤ n− 1 the polynomial

X i −
∑

σ∈Gal(k(t)|k)

p(X)

X − σ(t)

σ(t)i

p′(σ(t))

has degree at most n− 1 and at least the n distinct roots σ(t). Whence it must
be the 0 polynomial and we obtain:

trk(t)|k(bn−1
ti

p′(t)
)Xn−1 + · · ·+ trk(t)|k(b0

ti

p′(t)
) = trk(t)|k(

p(X)

X − t

ti

p′(t)
) = X i

Comparing the coefficients gives the result. ¤
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