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Mirror theorem

enumerative geometry on X solving differential equation
nd = # of rational curves for period integrals on X ′

of degree d on X

Gromov–Witten invariants instanton numbers

e.g. X ⊂ P4 generic quintic Y (q) =
∑

d≥0 ndd
3 qd

1−qd
n1 = 2875 (H.Schubert,1886)
n2 = 609250 (S.Katz,1986)

Theorem (Givental, Lian–Liu–Yau, mid 90’s) nd(A) = nd(B).
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Beginnings of mirror symmetry

P. Candelas, X. de la Ossa, P. Green, L. Parkes, An exactly soluble
superconformal theory from a mirror pair of Calabi–Yau manifolds,
Phys. Lett. B 258 (1991), no.1–2, 118–126

L = θ4 − 55t
(
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) (
θ + 2
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θ + 4
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)
, θ = t d

dt

The differential equation Ly = 0 has solutions

y0(t) =
∞∑
n=0

(5n)!

n!5
tn = 1 + 120t + 113400t2 + . . . =: f0(t) ∈ ZJtK

and

y1(t) = f0(t) log(t) + f1(t), f1(t) :=
∞∑
n=1

(5n)!

n!5

 5n∑
j=1

5

j

 tn ∈ tQJtK

Observation: q(t) := exp
(
y1(t)
y0(t)

)
= t exp

(
f1(t)
f0(t)

)
∈ tZJtK

(proved by B.-H.Lian and S.-T.Yau in 1996)
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Canonical coordinate and Yukawa coupling
q(t) = exp (y1(t)/y0(t)) = t + 770t2 + 1014275t3+
is called the canonical coordinate. The mirror map is the inverse
series t(q) ∈ q + q2QJqK.

Solutions to Ly = 0:

y0(t) = f0, y1(t) = f0 log(t) + f1,

y2(t) = f0
log(t)2

2!
+ f1 log(t) + f2, f2 ∈ tQJtK

Express the ratios yi/y0 in terms of q = q(t):

y0
y0

= 1,
y1
y0

= log(q),

y2
y0

=
1

2
log(q)2 + 575q +

975375

4
q2 +

1712915000

9
q3 + . . .

Y (q) :=
(
q d
dq

)2
y2
y0

= 1 + 575q + 975375q2 + . . .

is called the Yukawa coupling.
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Physics wins!

Y (q) =

(
q
d

dq

)2 y2
y0

= 1 + 575q + . . . =
1

5

∑
d≥0

ndd
3 qd

1− qd

n0 = 5, n1 = 2875, n2 = 609250,

n3 = 317206375, n4 = 242467530000, ...

are called instanton numbers.

Observation / prediction: The numbers nd coincide with the
numbers of degree d rational curves that lie on a generic threefold
of degree 5 in P4.

Only the first two numbers were known at that time! In 1993
G.Ellingsrud and S.Strømme computed the number of cubic curves
on the quintic threefold. Their result served as a crucial
cross-check for the above physicists’ prediction.
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Integrality of instanton numbers

L = θ4 − 55t
(
θ + 1

5

) (
θ + 2

5

) (
θ + 3

5

) (
θ + 4

5

)
, θ = t d

dt

y0 = f0, y1 = f0 log(t) + f1, y2 = f0
log(t)2

2! + f1 log(t) + f2

q = exp(y1/y0), Y (q) =
(
q d
dq

)2
(y2/y0) =

1

5

∑
d≥0

ndd
3 qd

1−qd

Observation / prediction: nd ∈ Z for every d .

Theorem (MV–Frits Beukers, 2020)1 For the quintic case, the
denominators of instanton numbers nd can only have prime divisors
2, 3, 5.

1Our proof is essentially elementary, we will stay on B-side. An alternative
proof is possible on A-side, via the mirror theorem. Around 1998 R.Gopakumar
and C.Vafa introduced the BPS-numbers for Calabi–Yau threefolds, which
include the Gromov–Witten invariants as g = 0 case. E.N. Ionel and T.H.
Parker proved that BPS-numbers are integers by using methods from
symplectic topology in The Gopakumar –Vafa formula for symplectic manifolds,
Annals of Math. 187 (2018), 1–64.
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Calabi–Yau differential operators
In 2003 Gert Almkvist wrote to Duco van Straten asking if he knows
more operators like the one for the quintic.2 In subsequent years many
similar examples were constructed by Gert Almkvist, Christian van
Enckevort, Duco van Straten and Wadim Zudulin.

A 4th order differential operator

L = θ4 +
4∑

j=1

aj(t)θ4−j , θ = t
d

dt
, aj ∈ Q(t), 1 ≤ j ≤ 4

is called a Calabi–Yau operator if:

I its singularities are regular

I t = 0 is a point of maximally unipotent monodromy (MUM), that is
aj(0) = 0, 1 ≤ j ≤ 4

I it is self-dual

I it satisfies the integrality conditions:

- the holomorphic solution y0(t) ∈ ZJtK
- the canonical coordinate q = exp(y1/y0) ∈ ZJtK
- the instanton numbers nd ∈ Z

2D. van Straten, Calabi–Yau operators in Adv. Lect. Math. 42 (2018), p. 7
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Calabi–Yau differential operators

If one allows N-integrality instead of integrality, about 500 such
operators were found experimentally in Tables of Calabi–Yau
operators by G. Almkvist, C. van Enckevort, D. van Straten, W.
Zudilin, ( arXiv:math/0507430) “AESZ tables” (2010).

In some cases the power series solution to L can be written as a
period function of a family of toric hypersurfaces3:

y0(t) =
1

(2πi)n

∮
. . .

∮
1

1− tg(x)

dx1
x1

. . .
dxn
xn

for a Laurent polynomial g(x) ∈ Z[x±11 , . . . , x±1n ]. This fact then
explains integrality of the analytic solution y0(t) =

∑∞
k=0 ckt

k

where ck is the constant term of g(x)k .

3When the Newton polytope ∆ of g(x) is reflexive then the hypersurfaces
1 − tg(x) = 0 can be compactified to Calabi–Yau hypersurfaces (V. Batyrev).
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Calabi–Yau differential operators

AESZ#1 L = θ4 − 55t5(θ + 1)(θ + 2)(θ + 4)(θ + 5)

g(x) = x1 + x2 + x3 + x4 +
1

x1x2x3x4

AESZ#8 L = θ4 − 1082t6(θ + 1)(θ + 2)(θ + 4)(θ + 5)

g(x) = x1 + x2 + x3 + x4 +
1

x21 x2x3x4

(operators up to AESZ#14 are hypergeometric)

AESZ#15 L = θ4 − 33t3(θ + 1)(θ + 2)(7θ2 + 21θ + 18)

+ 183t6(θ + 1)(θ + 2)(θ + 4)(θ + 5)

g(x) = x1 + x2 + x3 + x4 +
1

x1x2
+

1

x3x4

AESZ#16 L = (1024t4 − 80t2 + 1)θ4 + 64(128t4 − 5t2)θ3

+ 16(1472t4 − 33t2)θ2 + 32(896t4 − 13t2)θ + 128(96t4 − t2)

g(x) = x1 +
1

x1
+ x2 +

1

x2
+ x3 +

1

x3
+ x4 +

1

x4
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Towards the proof of integrality of instanton numbers

Lemma. For a power series Y (q) ∈ QJqK, consider the Lambert
expansion

Y (q) =
∑
d≥0

ad
qd

1− qd
.

Take a prime number p. Suppose ∃ φ ∈ ZpJqK such that

Y (qp)− Y (q) =

(
q
d

dq

)s

φ(q).

Then ad/d
s ∈ Zp for all d ≥ 1.
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Towards the proof of integrality of instanton numbers
Take s = 3 and write the respective φ ∈ QJqK explicitly:∑

d≥1
ndd

3 qd

1− qd
=

(
q
d

dq

)3

Z , Z (q) =
∑
d≥1

ndLi3(qd) ∈ QJqK

Li3(x) =
∑
m≥1

xm

m3
,

(
x
d

dx

)3

Li3(x) =
x

1− x

φ := p−3Z (qp)− Z (q)
??
∈ ZpJqK

J. Stienstra, Ordinary Calabi–Yau–3 Crystals, Fields Inst. Commun., 38
(2003): one can prove p-integrality of φ by relating it to a matrix
coefficient of the p-adic Frobenius structure for the differential operator L

M. Kontsevich, A. Schwarz, V. Vologodsky, Integrality of instanton
numbers and p-adic B-model, Phys. Lett. B 637 (2006), no. 1–2

V. Vologodsky, On the N-integrality of instanton numbers,

arXiv:0707.4617
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Frobenius structure (after Dwork)
A p-adic Frobenius structure is an equivalence between the
differential system corresponding to L and its pullback under the

change of variable t 7→ tp, over the field Ep = Q̂(t) of p-adic
analytic functions.

L = θ4 +
4∑

j=1

aj(t)θ4−j with MUM point at t = 0

y0 = f0, y1 = f0 log(t) + f1, y2 = f0
log(t)2

2!
+ f1 log(t) + f2

y3 = f0
log(t)3

3! + f1
log(t)2

2! + f2 log(t) + f3, fi ∈ QJtK

U =
(
θiyj
)3
i ,j=0

fundamental solution matrix

Are there constants α0, α1, α2, α3 ∈ Qp such that

Φ(t) = U(t)

α0 pα1 p2α2 p3α3

0 pα0 p2α1 p3α2

0 0 p2α0 p3α1

0 0 0 p3α0

U(tp)−1 ∈ E 4×4
p ?
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Frobenius structure: definition adapted to our problem

U =
(
θiyj
)3
i,j=0

fundamental solution matrix for L

Φ(t) = U(t)


α0 pα1 p2α2 p3α3

0 pα0 p2α1 p3α2

0 0 p2α0 p3α1

0 0 0 p3α0

U(tp)−1 ∈ QJtK4×4

Definition. We say that L has a p-adic Frobenius structure if
there exist p-adic constants α0 = 1, α1, α2, α3 ∈ Zp such that

Φij ∈ pjZpJtK, 0 ≤ i , j ≤ 3.

Conjecture. 4 Calabi-Yau differential operators have p-adic
Frobenius structure for almost all p. Moreover, α1 = α2 = 0 and
α3 = rζp(3), where r ∈ Q is independent of p and can be
expressed via geometric invariants of the mirror manifold.

4P. Candelas, X. de la Ossa, D. van Straten, Local Zeta Functions From
Calabi-Yau Differential Equations, arXiv:2104.07816 [hep-th], §4.4

13 / 22



p-Integrality of instanton numbers

L = θ4 + a1(t)θ3 + a2(t)θ2 + a3(t)θ + a4(t)
ai (0) = 0, i = 1, . . . , 4 (MUM point at t = 0)

Theorem (MV-Frits Beukers, 2020). Suppose that a p-adic
Frobenius structure exists for L. Then

- the analytic solution is p-integral: y0 ∈ ZpJtK
- the canonical coordinate is p-integral: q = exp(y1/y0) ∈ ZpJtK
- if in addition L is self-dual and α1 = 0, then the instanton

numbers of L are p-integral: nd ∈ Zp for all d ≥ 1

In the latter case, the series φ such that Y (qp)− Y (q) = (q d
dq )3φ

is basically given by the top right Frobenius matrix entry:
φ ≈ p−3Φ03.
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The hard part: existence of Φ with required properties
Given L = θr + . . ., we would like to construct the Frobenius
structure matrix Φ and show that α1 = 0. We need a geometric
model, a family of hypersurfaces whose periods are solutions of L.
I Find g(x) ∈ Z[x±11 , . . . , x±1n ] such that

y0(t) =
1

(2πi)n

∮
. . .

∮
1

1− tg(x)

dx1
x1

. . .
dxn
xn

e.g. n = 4, g(x) = x1 + x2 + x3 + x4 + 1
x1x2x3x4

L = θ4 − (5t)5 (θ + 1) (θ + 2) (θ + 3) (θ + 4)

More generally, consider a Laurent polynomial f (x) with
coefficients in Z[t] and let Xf = {f (x) = 0} ⊂ Tn be the toric
hypersurface of its zeroes. Assume that the cohomology class

ω =
1

f (x)

dx1
x1

. . .
dxn
xn
∈ Hn(Tn \ Xf )

is annihilated by L.
I In the above example, take f (x) = 1− tg(x).
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Cohomology and differential forms
f (x) ∈ R[x±11 , . . . , x±1n ], R is a localization of Z[t],
Xf = {f (x) = 0} ⊂ Tn, ∆ ⊂ Rn Newton polytope of f (x)

Ωf =

{
h(x)

f (x)m

∣∣∣ m ≥ 1, h ∈ R[x±11 , . . . , x±1n ]

supp(h) ⊂ m∆

}
R-module

∪

dΩf = R-module generated by xi
∂ν

∂xi
, ν ∈ Ωf , i = 1, . . . , n

Ωf /dΩf
∼= Hn

DR(Tn \ Xf ) (Griffiths, Batyrev)

Ωf 3
h(x)

f (x)m
7→ h(x)

f (x)m
dx1
x1

. . .
dxn
xn

dΩf ↔ exact forms

Ωf (·) = {m ≤ ·} ↔ Hodge filtration
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p-adic Cartier operation
fix p prime

Cp :
h(x)

f (x)m
=
∑
u∈Zn

au(t)xu 7→
∑
u∈Zn

apu(t)xu 6∈ Ωf

↑

formal expansion, e.g.
1

1− tg(x)
=
∑
k≥0

tkg(x)k =
∑
u∈Zn

au(t)xu

Lemma. For h(x)
f (x)m =

∑
au(t)xu, the series

∑
apu(t)xu can be

approximated p-adically by rational functions with powers of f σ(x)
in the denominator.

Here f σ is f with t substituted by tp, e.g. for f (x) = 1− tg(x)
one has f σ(x) = 1− tpg(x). We thus have

Cp(Ωf ) ⊂ Ω̂f σ = p-adic completion of Ωf σ
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From Cartier operation to Frobenius structure
The R-linear operation

Cp : Ω̂f → Ω̂f σ ,
∑

au(t)xu 7→
∑

apu(t)xu

I descends to cohomology:

Cp ◦ xi
∂

∂xi
= p xi

∂

∂xi
◦ Cp ⇒ Cp(dΩ̂f ) ⊂ dΩ̂f σ ,

Cp : Ω̂f /dΩ̂f → Ω̂f σ/dΩ̂f σ ,

I commutes with derivations θ : R → R, e.g. θ = t d
dt ,

Cp ◦ θ = θ ◦ Cp.

Matrix of Cp on the cyclic submodule generated by ω = 1/f (x)
yields the Frobenius structure for the differential operator L:

Cp(1/f ) =
r−1∑
j=0

Φ0j(t)

(
θj

1

f

)σ
mod dΩ̂f σ .

18 / 22



Supercongruences
Theorem (MV-Frits Beukers, Dwork crystals III).5 Let 1 ≤ k < p.
Assume that R is p-adically complete and the k ’th Hasse–Witt
condition is satisfied. Then

Ω̂f = Ωf (k)⊕Fk ,

where

Ωf (k) = free R-module generated by xu

f (x)k
, u ∈ k∆ ∩ Zn

and

Fk =
{
ω =

∑
auxu ∈ Ω̂f

∣∣∣ ∀u au ∈ g .c.d .(u1, . . . , un)kR
}

=
{
ω =

∑
auxu ∈ Ω̂f

∣∣∣ ∀s ≥ 1 Csp(ω) ∈ pksΩ̂f σs

}
= Ω̂f ∩ R-module generated by xi1

∂

∂xi1
. . . xik

∂

∂xik

∑
buxu

is the submodule of formal kth partial derivatives.

5For k = 1 this result is a version of N. Katz’s Internal reconstruction of
unit-root F-crystals via expansion coefficients (1985).
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Supercongruences and vanishing of Φ01(0) = pα1

Ωf (∆◦) =

{
h(x)

f (x)m

∣∣∣ m ≥ 1, supp(h) ⊂ m∆◦
}

G ⊂ GLn(Z) group of symmetries of f (x)

M = Ωf (∆◦)G/dΩf
∼= ⊕3

j=0R θj(1/f ), Cp : M → Mσ

dΩf = { partial derivatives } ⊂ F1 = { formal partial derivatives }
∪
F2 = { formal 2nd partial derivatives }

In the quintic case and several other cases which have geometric
models with sufficiently large symmetry group G , one has

{ partial derivatives } ∩ Ωf (∆◦)G ⊂ F2.
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Supercongruences and vanishing of Φ01(0) = pα1

M = Ωf (∆◦)G/dΩf
∼= ⊕3

j=0R θj(1/f ), Cp : M → Mσ

dΩf ∩ Ωf (∆◦)G ⊂ F2, M/F2 = R 1/f + R θ(1/f )

 

Cp(1/f ) =
3∑

j=0

Φ0j(t)θj(1/f )σ mod dΩ̂f σ

= µ0(t)1/f σ + µ1(t)θ(1/f )σ mod F2

µ0(0) = Φ00(0), µ1(0) = Φ01(0)

For the expansion coefficients 1
f (x) =

∑
au(t)xu this yields

congruences

aps+1u(t) ≡ µ0(t)apsu(tp) + µ1(t)(θapsu)(tp) mod p2s .

These explicit congruences allow us to check the vanishing of
µ1(0) = pα1, which is the crusial step in establishing integrality of
instanton numbers.
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F. Beukers, M. Vlasenko, On p-integrality of instanton numbers,
Pure and Applied Mathematics Quarterly, vol. ?

Work in progress:

M = Ωf (∆◦)G/dΩf
∼= ⊕3

j=0R θj(1/f ), Cp : M → Mσ

Cp(1/f ) =
3∑

j=0

Φ0j(t)θj(1/f )σ mod dΩ̂f σ

Considering this identity modulo F3, we can solve the respective
supercongruences to check the vanishing of Φ02(0) = p2α2.
Similarly, working modulo F4 we can compute the value of α3 and
check the conjecture of Candelas, de la Ossa and van Straten.

Thank you!

22 / 22


