Lecture 1: Cohomology and congruences

Masha Vlasenko (IMPAN, Warsaw)

joint work with Frits Beukers

Bhaskaracharya Pratishthana, Pune

July 26, 2022

§Sequences of constant terms of powers

$g(\mathbf{x})=\sum_{\mathbf{u}} g_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right]$
$\operatorname{supp}(g)=\left\{\mathbf{u} \in \mathbb{Z}^{n}: g_{\mathbf{u}} \neq 0\right\}$
$\Delta \subset \mathbb{R}^{n} \quad$ Newton polytope of $g=$ convex hull of $\operatorname{supp}(g)$
$c_{k}=$ coefficient of $\mathbf{x}^{0}($ constant term $)$ in $g(\mathbf{x})^{k}, k=0,1,2, \ldots$

Example.

$$
\begin{aligned}
& g(\mathbf{x})=x_{1}+x_{2}+\frac{1}{x_{1} x_{2}} \\
& c_{k}= \begin{cases}0, & 3 \nmid k \\
\frac{k!}{(k / 3)!^{3}}, & 3 \mid k\end{cases}
\end{aligned}
$$

Lucas' congruence

$$
\begin{aligned}
& c_{k}=\text { constant term in } g(\mathbf{x})^{k}, k=0,1,2, \ldots \\
& \Delta=\text { Newton polytope of } g(\mathbf{x})
\end{aligned}
$$

Assume that $\mathbf{0} \in \Delta$ is the only internal integral point. Then for any prime p we have

$$
c_{k} \equiv c_{k_{0}} c_{k_{1}} \ldots c_{k_{\ell}} \quad \bmod p, \quad \forall k
$$

where $0 \leq k_{i} \leq p-1$ are the digits in the p-adic expansion of k :

$$
k=k_{0}+k_{1} p+k_{2} p^{2}+\ldots+k_{\ell} p^{\ell} .
$$

Generalization $\bmod p^{\text {s }}$: Dwork's congruences

$$
\begin{aligned}
\gamma(t) & =\sum_{k=0}^{\infty} c_{k} t^{k} \in \mathbb{Z} \llbracket t \rrbracket, \quad c_{k}=\text { constant term of } g(\mathbf{x})^{k} \\
& =\frac{1}{(2 \pi i)^{n}} \oint \cdots \oint \frac{1}{1-\operatorname{tg}(\mathbf{x})} \frac{d x_{1}}{x_{1}} \cdots \frac{d x_{n}}{x_{n}} \\
\gamma_{m}(t) & =\sum_{k=0}^{m-1} c_{k} t^{k} \quad \quad \quad \text { truncations }
\end{aligned}
$$

Theorem 1 (Mellit-V, 2013). Assume that $\mathbf{0} \in \Delta$ is the only internal integral point in the Newton polytope of $g(\mathbf{x})$. Then for any prime p and any integer $s \geq 1$

$$
\frac{\gamma(t)}{\gamma\left(t^{p}\right)} \equiv \frac{\gamma_{p^{s}}(t)}{\gamma_{p^{s-1}}\left(t^{p}\right)} \quad \bmod p^{s} .
$$

Theorem 2 (Beukers-V, 2019). In the conditions of Theorem 1 one has $\gamma(t) / \gamma\left(t^{p}\right) \in p$-adic completion of $\mathbb{Z}\left[t, 1 / \gamma_{p}(t)\right]$.

§Formal expansions of rational functions

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{\mathrm{u}} f_{\mathrm{u}} \mathbf{x}^{\mathbf{u}} \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], \Delta \subset \mathbb{R}^{n} \text { its Newton polytope } \\
& h(\mathbf{x}) \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], m \geq 1
\end{aligned}
$$

pick a vertex $\mathbf{b} \in \Delta$

$$
\begin{aligned}
\frac{\downarrow}{\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}}} & =\frac{h(\mathbf{x})}{f_{\mathbf{b}}^{m} \mathbf{x}^{m \mathbf{b}}(1+\ell(\mathbf{x}))^{m}} \\
& =\frac{h(\mathbf{x}) \mathbf{x}^{-m \mathbf{b}}}{f_{\mathbf{b}}^{m}} \sum_{s \geq 0}\binom{-m}{s} \ell(\mathbf{x})^{s} \\
& =\sum_{\mathbf{v} \in \mathbb{Z}^{n}} a_{\mathbf{v}} \mathbf{x}^{\mathbf{v}}
\end{aligned}
$$

Note: if $\operatorname{supp}(h) \subset m \Delta$, then the formal expansion is supported in the cone $C(\Delta-\mathbf{b})$

Gauss' congruences

$$
\begin{aligned}
& f(\mathbf{x})=\sum f_{\mathbf{u}} \mathrm{x}^{\mathbf{u}} \quad \text { with Newton polytope } \quad \Delta \\
& \frac{h(\mathbf{x})}{f(\mathbf{x})}=\sum a_{\mathbf{v}} \mathbf{x}^{\mathbf{v}} \quad \text { formal expansion at a vertex } \mathbf{b} \in \Delta
\end{aligned}
$$

Theorem (Beukers-Houben-Straub, 2018) Assume that $\operatorname{supp}(h) \subset \Delta$ and $\Delta \cap \mathbb{Z}^{n}=\{$ vertices $\}$. Then for any prime p such that $p \nmid f_{\mathbf{u}}$ for all \mathbf{u} and any $\mathbf{v} \in C(\Delta-\mathbf{b})$ one has

$$
a_{\mathbf{v}} \equiv a_{\mathbf{v} / p} \quad \bmod p^{\operatorname{ord}_{p}(\mathbf{v})}
$$

§Cohomology and congruences

$f(\mathbf{x}) \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], R$ is a ring of char 0
$X_{f}=\{f(\mathbf{x})=0\} \subset \mathbb{T}^{n}, \Delta \subset \mathbb{R}^{n}$ Newton polytope of $f(\mathbf{x})$
$\Omega_{f}=\left\{\begin{array}{l|l}(m-1)!\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} & \begin{array}{l}m \geq 1, h \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \\ \operatorname{supp}(h) \subset m \Delta\end{array}\end{array}\right\} \quad R$-module
$d \Omega_{f}=R$-module generated by $x_{i} \frac{\partial \nu}{\partial x_{i}}, \nu \in \Omega_{f}, i=1, \ldots, n$

$$
\begin{aligned}
\Omega_{f} / d \Omega_{f} & \cong H_{D R}^{n}\left(\mathbb{T}^{n} \backslash X_{f}\right) \quad(\text { Griffiths, Batyrev })^{1} \\
\Omega_{f} \ni \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} & \mapsto \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{n}}{x_{n}} \\
d \Omega_{f} & \leftrightarrow \text { exact forms } \\
\Omega_{f}(\cdot)=\{m \leq \cdot\} & \leftrightarrow \text { Hodge filtration }
\end{aligned}
$$

p-adic Cartier operation

fix p prime and assume that $\cap_{s \geq 1} p^{s} R=\{0\}$

$$
\mathcal{C}_{p}: \frac{h(\mathbf{x})}{f(\mathbf{x})^{m}}=\sum_{\mathbf{u} \in C(\Delta-\mathbf{b})} a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \mapsto \sum_{\mathbf{u} \in \in C(\Delta-\mathbf{b})} a_{p \mathbf{u}} \mathbf{x}^{\mathbf{u}} \notin \Omega_{f}
$$

Def. A Frobenius lift $\sigma: R \rightarrow R$ is a ring endomorphism such that $\sigma(r)-r^{p} \in p R$ for all $r \in R$.
Examples:

- $R=\mathbb{Z}$ with $\sigma=i d$
- $R=\mathbb{Z}[t]$ with $\sigma(r(t))=r\left(t^{p}\right)$

Lemma. For $\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}}=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}}$, the series $\sum a_{p \mathbf{u}} \mathbf{x}^{\mathbf{u}}$ can be approximated p-adically by rational functions with powers of $f^{\sigma}(\mathbf{x})$ in the denominator.

Here f^{σ} is f with σ applied to its coefficients. We thus have

$$
\mathcal{C}_{p}\left(\Omega_{f}\right) \subset \widehat{\Omega}_{f^{\sigma}}=p \text {-adic completion of } \Omega_{f^{\sigma}}
$$

Properties of the p-adic Cartier operation

The R-linear operation

$$
\mathcal{C}_{p}: \widehat{\Omega}_{f} \rightarrow \hat{\Omega}_{f}, \quad \sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \mapsto \sum a_{p \mathbf{u}} \mathrm{x}^{\mathbf{u}}
$$

- (surprisingly) is independent of the choice of vertex $\mathbf{b} \in \Delta$ at which the formal expansion is done
- descends to cohomology:

$$
\begin{aligned}
& \mathcal{C}_{p} \circ x_{i} \frac{\partial}{\partial x_{i}}=p x_{i} \frac{\partial}{\partial x_{i}} \circ \mathcal{C}_{p} \Rightarrow \quad \mathcal{C}_{p}\left(d \widehat{\Omega}_{f}\right) \subset d \widehat{\Omega}_{f^{\sigma}} \\
& \mathcal{C}_{p}: \widehat{\Omega}_{f} / d \widehat{\Omega}_{f} \rightarrow \widehat{\Omega}_{f^{\sigma}} / d \widehat{\Omega}_{f^{\sigma}}
\end{aligned}
$$

- when $R=\mathbb{Z}_{p}$, trace of \mathcal{C}_{p}^{s} counts points on $\mathbb{T}^{n} \backslash X_{f}$ over $\mathbb{F}_{p^{s}}$ for $s \geq 1$

Key theorem 1

$\left(\beta_{p}\right)_{\mathbf{u}, \mathbf{v} \in \Delta}=$ coefficient of $\mathbf{x}^{p \mathbf{v}-\mathbf{u}}$ in $f(\mathbf{x})^{p-1} \in R^{h \times h}, h=\#\left(\Delta \cap \mathbb{Z}^{n}\right)$
Theorem (Beukers-V, Dwork crystals I). Assume R is p-adically complete and the Hasse-Witt matrix β_{p} is invertible. Then

$\widehat{\Omega}_{f} /\{$ formal derivatives $\}$

is a free R-module of rank h where $\frac{\mathrm{x}^{\mathrm{u}}}{f(\mathrm{x})}, \mathbf{u} \in \Delta \cap \mathbb{Z}^{n}$ is a basis.
Here formal derivaties denotes the submodule

$$
\begin{aligned}
\mathcal{F} & =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \mid \forall \mathbf{u} \quad a_{\mathbf{u}} \in \text { g.c.d. }\left(u_{1}, \ldots, u_{n}\right) R\right\} \\
& =\widehat{\Omega}_{f} \cap R \text {-module generated by } x_{i} \frac{\partial}{\partial x_{i}} \sum b_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \\
& =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \mid \forall s \geq 1 \quad \mathcal{C}_{p}^{s}(\omega) \in p^{s} \widehat{\Omega}_{f \sigma^{s}}\right\} .
\end{aligned}
$$

We note that $\mathcal{C}_{p}(\mathcal{F}) \subset p \mathcal{F}$ and so the Cartier operation descends to the free quotients $\mathcal{C}_{p}: \widehat{\Omega}_{f} / \mathcal{F} \rightarrow \widehat{\Omega}_{f \sigma} / \mathcal{F}$. Can we determine its matrix?

Congruences

Let $\Lambda \in R^{h \times h}$ be the matrix of $\mathcal{C}_{p}: \widehat{\Omega}_{f} / \mathcal{F} \rightarrow \widehat{\Omega}_{f^{\sigma}} / \mathcal{F}$:

$$
\mathcal{C}_{p}\left(\frac{\mathbf{x}^{\mathbf{u}}}{f(\mathbf{x})}\right)=\sum_{\mathbf{v} \in \Delta} \Lambda_{\mathbf{u v}} \frac{\mathbf{x}^{\mathbf{v}}}{f^{\sigma}(\mathbf{x})} \quad \bmod p \mathcal{F}
$$

Pick $\mathbf{w} \in C(\Delta-\mathbf{b}), s \geq 1$ and read expansion coefficients at $p^{s-1} \mathbf{w}$ in the above identity: vectors

$$
\left(\alpha_{s}\right)_{\mathbf{v} \in \Delta}=\text { coefficient at } \mathbf{x}^{\rho^{s} \mathbf{w}} \text { in } \frac{\mathbf{x}^{\mathbf{v}}}{f(\mathbf{x})}
$$

satisfy ${ }^{2}$

$$
\alpha_{s} \equiv \Lambda \alpha_{s-1}^{\sigma} \quad \bmod p^{s}
$$

[^0]
Application: Gauss' congruences

$$
\begin{aligned}
& f(\mathbf{x})=\sum_{\mathrm{x}} f_{\mathrm{v}} \mathrm{x}^{v} \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], \quad \Delta \cap \mathbb{Z}^{n}=\{\text { vertices }\} \\
& p \nmid f_{\mathrm{v}} \quad \forall \mathbf{v}
\end{aligned}
$$

In this case $\Lambda=I d$, that is \mathcal{C}_{p} is identity on $\widehat{\Omega}_{f} / \mathcal{F}$. Therefore for any $h(\mathbf{x})$ with $\operatorname{supp}(h) \subset \Delta$ the expansion coefficints

$$
\frac{\mathbf{x}^{\mathbf{v}}}{f(\mathbf{x})}=\sum_{\mathbf{w} \in C(\Delta-\mathbf{b})} a_{w} x^{\mathbf{w}}
$$

satisfy

$$
a_{\mathbf{w}} \equiv a_{\mathbf{w} / p} \quad \bmod p^{\circ \operatorname{ord}_{p}(\mathbf{w})} .
$$

A version

$\mu \subset \Delta$ is called open if $\Delta \backslash \mu$ is a union of faces

Then the Cartier operation preserves submodules

$$
\Omega_{f}(\mu)=\left\{\begin{array}{l|l}
\frac{h(\mathbf{x})}{f(\mathbf{x})^{m}} & \begin{array}{l}
m \geq 1, h \in R\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right] \\
\operatorname{supp}(h) \subset m \mu
\end{array}
\end{array}\right\}
$$

that is $\mathcal{C}_{p}: \hat{\Omega}_{f}(\mu) \rightarrow \widehat{\Omega}_{f^{\sigma}}(\mu)$. If the Hasse-Witt submatrix $\beta_{p}(\mu) \subset \beta_{p}$ is invertible, one has

$$
\widehat{\Omega}_{f}(\mu) /\{\text { formal derivatives }\} \equiv \oplus_{\mathbf{u} \in \mu \cap \mathbb{Z}^{n}} R \frac{\mathbf{x}^{\mathbf{u}}}{f(\mathbf{x})}
$$

Application: Dwork's congruences

$$
\begin{aligned}
& g \in \mathbb{Z}\left[x_{1}^{ \pm 1}, \ldots, x_{n}^{ \pm 1}\right], \quad \Delta^{\circ} \cap \mathbb{Z}^{n}=\{\mathbf{0}\} \\
& \gamma(t)=\sum_{k=0}^{\infty} c_{k} t^{k}, \quad c_{k}=\text { const. term of } g(\mathbf{x})^{k}
\end{aligned}
$$

Take $f(\mathbf{x})=1-t g(\mathbf{x}), \mu=\Delta^{\circ}$.
The 1×1 Hasse-Witt submatrix is
$\beta_{p}(t)=$ const. term of $(1-\operatorname{tg}(\mathbf{x}))^{p-1}=\sum_{k=0}^{p-1}(-1)^{k}\binom{p-1}{k} c_{k} t^{k}$.
Take $R=\mathbb{Z}\left[t, \beta_{p}(t)^{-1}\right]^{\wedge}$. Here $\widehat{\Omega}_{f}(\mu) / \mathcal{F}$ is of rank 1, and the respective Cartier matrix is given by

$$
\Lambda=\frac{\gamma(t)}{\gamma\left(t^{\sigma}\right)} \in R .
$$

Note: $\beta_{p}(t) \equiv \gamma_{p}(t) \bmod p$, so $R=\mathbb{Z}\left[t, \gamma_{p}(t)^{-1}\right]^{\text {个 }}$.

§Supercongruences

Theorem (Beukers-V, Dwork crystals III) $)^{3}$ Let $1 \leq k<p$. Assume that R is p-adically complete and the k 'th Hasse-Witt condition is satisfied. Then

$$
\hat{\Omega}_{f}=\Omega_{f}(k) \oplus \mathcal{F}_{k},
$$

where

$$
\Omega_{f}(k)=\text { free } R \text {-module generated by } \frac{x^{u}}{f(\mathbf{x})^{k}}, \mathbf{u} \in k \Delta \cap \mathbb{Z}^{n}
$$

and

$$
\left.\begin{array}{rl}
\mathcal{F}_{k} & =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \left\lvert\, \begin{array}{ll}
\forall \mathbf{u} & a_{\mathbf{u}} \in g . c . d .\left(u_{1}, \ldots, u_{n}\right)^{k} R
\end{array}\right.\right\} \\
& =\left\{\omega=\sum a_{\mathbf{u}} \mathbf{x}^{\mathbf{u}} \in \widehat{\Omega}_{f} \mid \forall s \geq 1 \quad \mathcal{C}_{p}^{s}(\omega) \in p^{k s} \widehat{\Omega}_{f^{\sigma}}\right\}
\end{array}\right\}
$$

is the submodule of formal k th partial derivatives.

[^1]
A simple example

$$
\begin{aligned}
& f(\mathbf{x})=\left(1-x_{1}\right)\left(1-x_{2}\right)-t x_{1} x_{2}, \quad R=\mathbb{Z}[t, 1 / t]^{\wedge} \\
& \mathcal{C}_{p}(1 / f)=1 / f^{\sigma} \bmod p \mathcal{F}_{1} \\
& \mathcal{C}_{p}(1 / f)=1 / f^{\sigma}+\log \left(\frac{t^{\sigma}}{t^{p}}\right) \theta(1 / f)^{\sigma} \quad \bmod p^{2} \mathcal{F}_{2} \\
& \theta=t \frac{d}{d t}
\end{aligned}
$$

Note: the Frobenius lift $t^{\sigma}=t^{p}$ is special in the sense that it turns $1 / f$ into an "eigenvector" of \mathcal{C}_{p} modulo \mathcal{F}_{2}. After Dwork, we call such Frobenius lifts excellent.

For the excellent Frobenius lift expansion coefficients of $1 / f=\sum_{\mathbf{v} \in \mathbb{Z}_{\geq 0}^{2}} a_{\mathbf{v}}(t) \mathbf{x}^{\mathbf{v}}$ satisfy supercongruences

$$
a_{\mathbf{v}}(t) \equiv a_{\mathbf{v} / p}\left(t^{p}\right) \quad \bmod p^{20 r d_{\rho}(\mathbf{v})} .
$$

Another example: Dwork's families

$$
\begin{aligned}
& f(\mathbf{x})=1-t\left(x_{1}+\ldots x_{r}+\frac{1}{x_{1} \ldots x_{r}}\right) \\
& p \nmid 2(r+1) \quad \exists \lambda_{0}, \lambda_{1} \in \mathbb{Z}_{p} \llbracket t \rrbracket \quad \text { such that } \\
& \mathcal{C}_{p}(1 / f)=\lambda_{0}(t) 1 / f^{\sigma}+\lambda_{1}(t) \theta(1 / f)^{\sigma} \quad \bmod p^{2} \mathcal{F}_{2}, \quad \theta=t \frac{d}{d t} \\
& \uparrow \quad \uparrow \\
& \text { depend on } \sigma
\end{aligned}
$$

Goal: determine excellent Frobenius lifts. That is, find $t^{\sigma} \in \mathbb{Z}_{p} \llbracket t \rrbracket$ for which $\lambda_{1}(t) \equiv 0$.

Excellent lifts for Dwork's families

$$
\begin{aligned}
& f(\mathbf{x})=1-t\left(x_{1}+\ldots x_{r}+\frac{1}{x_{1} \ldots x_{r}}\right), \quad \theta=t \frac{d}{d t} \\
& L=\theta^{r}-((r+1) t)^{r+1}(\theta+1) \ldots(\theta+r), \quad L(1 / f) \in d \Omega_{f}
\end{aligned}
$$

Picard-Fuchs differential operator
$\Omega_{f}\left(\Delta^{\circ}\right) / d \Omega_{f} \cong \oplus_{i=0}^{r-1} R \theta^{i}(1 / f), \quad R=\mathbb{Z}\left[t,(r+1)^{-1}(1-(r+1) t)^{-1}\right]$
Solutions to $L y=0$:

$$
y_{0}(t)=\sum_{n \geq 0} \frac{((r+1) n)!}{(n!)^{r+1}} t^{(r+1) n}=\frac{1}{(2 \pi i)^{r}} \oint \ldots \oint \frac{1}{f(\mathbf{x})} \frac{d x_{1}}{x_{1}} \ldots \frac{d x_{r}}{x_{r}}
$$

$$
y_{1}(t)=\log (t) y_{0}(t)+G(t) \quad \text { with unique } G(t) \in t \mathbb{Q} \llbracket t \rrbracket
$$

$$
q(t)=\exp \left(\frac{y_{1}(t)}{y_{0}(t)}\right)=t \exp \left(\frac{G(t)}{y_{0}(t)}\right) \in t+t^{2} \mathbb{Q} \llbracket t \rrbracket
$$

is called the canonical coordinate

Excellent lifts for Dwork's families

$$
\begin{aligned}
& f(\mathbf{x})=1-t\left(x_{1}+\ldots x_{r}+\frac{1}{x_{1} \ldots x_{r}}\right), \quad \theta=t \frac{d}{d t} \\
& L=\theta^{r}-((r+1) t)^{r+1}(\theta+1) \ldots(\theta+r), \quad L(1 / f) \in d \Omega_{f} \\
& y_{0}(t)=\sum_{n \geq 0} \frac{((r+1) n)!}{(n!)^{r+1}} t^{(r+1) n}, \quad y_{1}(t)=\log (t) y_{0}(t)+G(t) \\
& q(t)=\exp \left(\frac{y_{1}(t)}{y_{0}(t)}\right)=t \exp \left(\frac{G(t)}{y_{0}(t)}\right) \quad \text { canonical coordinate }
\end{aligned}
$$

Theorem(Beukers-V, 2021) Assume that $p \nmid 2(r+1)$. Then
(i) $q(t) \in t+t^{2} \mathbb{Z}_{p} \llbracket t \rrbracket \quad\left(\Rightarrow \mathbb{Z}_{p} \llbracket t \rrbracket=\mathbb{Z}_{p} \llbracket q \rrbracket\right)$,
(ii) the excellent Frobenius lift σ is given by $q \mapsto q^{p}$,
(iii) $t^{\sigma}=t\left(q^{p}\right) \in \mathbb{Z}_{p} \llbracket t \rrbracket$ belongs to $\mathbb{Z}\left[t, 1 / h w_{1}(t), 1 / h w_{2}(t)\right]^{\wedge}$, where polynomials $h w_{1}(t), h w_{2}(t)$ are the 1st and 2nd Hasse-Witt determinants.

Modular excellent lifts

E.g. $r=2, f(\mathbf{x})=1-t\left(x_{1}+x_{2}+\frac{1}{x_{1} x_{2}}\right)$
$t(q)=q-5 q^{4}+32 q^{7}-198 q^{10}+\ldots$ modular function of level 3
In §7 of 'p-adic cycles', Dwork shows that for the modular j-function

$$
j(q)=\frac{1}{q}+744+196884 q+\ldots
$$

if one expresses $j\left(q^{p}\right)=F(j(q))$ then function F is a p-adic analytic function on $\mathbb{C}_{p} \backslash\left\{\beta_{1}, \ldots, \beta_{r}\right\}$ where β_{i} are representatives of the j-invariants of supersingular elliptic curves in characteristic p. He calls this fact Deligne's theorem and proves it using the algebraic relation of degree $p+1$ between modular functions $j(q)$ and $j\left(q^{p}\right)$. He gives a simlar proof to the modulus $\lambda(q)=16 q-128 q^{2}+704 q^{3}+\ldots$ of the Legendre family of elliptic curves $y^{2}=x(x-1)(x-\lambda)$.

In our setting the roots of the 1st Hasse-Witt polynomial $h w_{1}(t)$ modulo p correspond to supersingular fibres of the family $f(\mathbf{x})=0$. Part (iii) of our theorem shows that a similar result holds for non-modular families (when $r \geq 4$) but in general one also needs to exclude the roots of the second Hasse-Witt polynomial $h w_{2}(t)$.

Thank you!

[^0]: ${ }^{2}$ This result is a version of N . Katz's Internal reconstruction of unit-root F-crystals via expansion coefficients (1985).

[^1]: ${ }^{3}$ There is a version for $\mu \subset \Delta$ as well.

