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§Sequences of constant terms of powers

g(x) =
∑

u gux
u ∈ Z[x±1

1 , . . . , x±1
n ]

supp(g) = {u ∈ Zn : gu 6= 0}

∆ ⊂ Rn Newton polytope of g = convex hull of supp(g)

ck = coefficient of x0 (constant term) in g(x)k , k = 0, 1, 2, . . .

Example.

g(x) = x1 + x2 +
1

x1x2

ck =

{
0, 3 - k

k!
(k/3)!3 , 3|k
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Lucas’ congruence

ck = constant term in g(x)k , k = 0, 1, 2, . . .

∆ = Newton polytope of g(x)

Assume that 0 ∈ ∆ is the only internal
integral point. Then for any prime p we have

ck ≡ ck0ck1 . . . ck` mod p, ∀ k

where 0 ≤ ki ≤ p − 1 are the digits in the p-adic expansion of k:

k = k0 + k1p + k2p
2 + . . .+ k`p

`.
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Generalization mod ps : Dwork’s congruences

γ(t) =
∞∑
k=0

ckt
k ∈ ZJtK, ck = constant term of g(x)k

= 1
(2πi)n

∮
. . .

∮
1

1− t g(x)

dx1

x1
. . .

dxn
xn

γm(t) =
m−1∑
k=0

ckt
k truncations

Theorem 1 (Mellit-V, 2013). Assume that 0 ∈ ∆ is the only
internal integral point in the Newton polytope of g(x). Then for
any prime p and any integer s ≥ 1

γ(t)

γ(tp)
≡ γps (t)

γps−1(tp)
mod ps .

Theorem 2 (Beukers-V, 2019). In the conditions of Theorem 1
one has γ(t)/γ(tp) ∈ p-adic completion of Z[t, 1/γp(t)].
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§Formal expansions of rational functions

f (x) =
∑

fuxu ∈ Z[x±1
1 , . . . , x±1

n ], ∆ ⊂ Rn its Newton polytope

h(x) ∈ Z[x±1
1 , . . . , x±1

n ], m ≥ 1

pick a vertex b ∈ ∆

↓
h(x)

f (x)m
=

h(x)

f mb xmb(1 + `(x))m

=
h(x)x−mb

f mb

∑
s≥0

(
−m
s

)
`(x)s

=
∑
v∈Zn

avx
v

Note: if supp(h) ⊂ m∆, then the formal
expansion is supported in the cone C (∆− b)
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Gauss’ congruences

f (x) =
∑

fux
u with Newton polytope ∆

h(x)

f (x)
=
∑

avx
v formal expansion at a vertex b ∈ ∆

Theorem (Beukers-Houben-Straub, 2018) Assume that
supp(h) ⊂ ∆ and ∆ ∩ Zn = {vertices}. Then for any prime p such
that p - fu for all u and any v ∈ C (∆− b) one has

av ≡ av/p mod pordp(v)
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§Cohomology and congruences
f (x) ∈ R[x±1

1 , . . . , x±1
n ], R is a ring of char 0

Xf = {f (x) = 0} ⊂ Tn, ∆ ⊂ Rn Newton polytope of f (x)

Ωf =

{
(m − 1)!

h(x)

f (x)m

∣∣∣ m ≥ 1, h ∈ R[x±1
1 , . . . , x±1

n ]

supp(h) ⊂ m∆

}
R-module

∪

dΩf = R-module generated by xi
∂ν

∂xi
, ν ∈ Ωf , i = 1, . . . , n

Ωf /dΩf
∼= Hn

DR(Tn \ Xf ) (Griffiths, Batyrev)1

Ωf 3
h(x)

f (x)m
7→ h(x)

f (x)m
dx1

x1
. . .

dxn
xn

dΩf ↔ exact forms

Ωf (·) = {m ≤ ·} ↔ Hodge filtration

1when f is ∆-regular and R is a field
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p-adic Cartier operation
fix p prime and assume that ∩s≥1p

sR = {0}

Cp :
h(x)

f (x)m
=

∑
u∈C(∆−b)

aux
u 7→

∑
u∈∈C(∆−b)

apux
u 6∈ Ωf

Def. A Frobenius lift σ : R → R is a ring endomorphism such
that σ(r)− rp ∈ pR for all r ∈ R.
Examples:
I R = Z with σ = id
I R = Z[t] with σ(r(t)) = r(tp)

Lemma. For h(x)
f (x)m =

∑
auxu, the series

∑
apuxu can be

approximated p-adically by rational functions with powers of f σ(x)
in the denominator.

Here f σ is f with σ applied to its coefficients. We thus have

Cp(Ωf ) ⊂ Ω̂f σ = p-adic completion of Ωf σ .
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Properties of the p-adic Cartier operation

The R-linear operation

Cp : Ω̂f → Ω̂f σ ,
∑

aux
u 7→

∑
apux

u

I (surprisingly) is independent of the choice of vertex b ∈ ∆ at
which the formal expansion is done

I descends to cohomology:

Cp ◦ xi
∂

∂xi
= p xi

∂

∂xi
◦ Cp ⇒ Cp(dΩ̂f ) ⊂ dΩ̂f σ ,

Cp : Ω̂f /dΩ̂f → Ω̂f σ/dΩ̂f σ .

I when R = Zp, trace of Csp counts points on Tn \ Xf over Fps

for s ≥ 1
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Key theorem 1

(βp)u,v∈∆ = coefficient of xpv−u in f (x)p−1 ∈ Rh×h, h = #(∆∩Zn)

Theorem (Beukers-V, Dwork crystals I). Assume R is p-adically
complete and the Hasse–Witt matrix βp is invertible. Then

Ω̂f /{formal derivatives}

is a free R-module of rank h where xu

f (x) , u ∈ ∆ ∩ Zn is a basis.

Here formal derivaties denotes the submodule

F =
{
ω =

∑
aux

u ∈ Ω̂f

∣∣∣ ∀u au ∈ g .c .d .(u1, . . . , un)R
}

= Ω̂f ∩ R-module generated by xi
∂

∂xi

∑
bux

u

=
{
ω =

∑
aux

u ∈ Ω̂f

∣∣∣ ∀s ≥ 1 Csp(ω) ∈ psΩ̂f σs

}
.

We note that Cp(F) ⊂ pF and so the Cartier operation descends to the

free quotients Cp : Ω̂f /F → Ω̂f σ/F . Can we determine its matrix?
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Congruences

Let Λ ∈ Rh×h be the matrix of Cp : Ω̂f /F → Ω̂f σ/F :

Cp
(

xu

f (x)

)
=
∑
v∈∆

Λuv
xv

f σ(x)
mod pF .

Pick w ∈ C (∆− b), s ≥ 1 and read expansion coefficients at
ps−1w in the above identity: vectors

(αs)v∈∆ = coefficient at xp
sw in

xv

f (x)

satisfy 2

αs ≡ Λασs−1 mod ps .

2This result is a version of N. Katz’s Internal reconstruction of unit-root
F-crystals via expansion coefficients (1985).
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Application: Gauss’ congruences

f (x) =
∑

fvx
v ∈ Z[x±1

1 , . . . , x±1
n ], ∆ ∩ Zn = {vertices}

p - fv ∀v

In this case Λ = Id , that is Cp is identity on Ω̂f /F . Therefore for
any h(x) with supp(h) ⊂ ∆ the expansion coefficints

xv

f (x)
=

∑
w∈C(∆−b)

awx
w

satisfy
aw ≡ aw/p mod pordp(w).
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A version

µ ⊂ ∆ is called open if ∆ \ µ is a union of faces

Then the Cartier operation preserves submodules

Ωf (µ) =

{
h(x)

f (x)m

∣∣∣ m ≥ 1, h ∈ R[x±1
1 , . . . , x±1

n ]

supp(h) ⊂ mµ

}
,

that is Cp : Ω̂f (µ)→ Ω̂f σ(µ). If the Hasse-Witt submatrix
βp(µ) ⊂ βp is invertible, one has

Ω̂f (µ)/{formal derivatives} ≡ ⊕u∈µ∩Zn R
xu

f (x)
.
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Application: Dwork’s congruences

g ∈ Z[x±1
1 , . . . , x±1

n ], ∆◦ ∩ Zn = {0}

γ(t) =
∞∑
k=0

ckt
k , ck = const. term of g(x)k

Take f (x) = 1− t g(x), µ = ∆◦.
The 1× 1 Hasse–Witt submatrix is

βp(t) = const. term of (1−tg(x))p−1 =

p−1∑
k=0

(−1)k
(
p − 1

k

)
ckt

k .

Take R = Z[t, βp(t)−1]̂. Here Ω̂f (µ)/F
is of rank 1, and the respective Cartier matrix is given by

Λ =
γ(t)

γ(tσ)
∈ R.

Note: βp(t) ≡ γp(t) mod p, so R = Z[t, γp(t)−1] .̂
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§Supercongruences
Theorem (Beukers-V, Dwork crystals III)3 Let 1 ≤ k < p. Assume
that R is p-adically complete and the k’th Hasse–Witt condition is
satisfied. Then

Ω̂f = Ωf (k)⊕Fk ,

where

Ωf (k) = free R-module generated by xu

f (x)k
, u ∈ k∆ ∩ Zn

and

Fk =
{
ω =

∑
aux

u ∈ Ω̂f

∣∣∣ ∀u au ∈ g .c.d .(u1, . . . , un)kR
}

=
{
ω =

∑
aux

u ∈ Ω̂f

∣∣∣ ∀s ≥ 1 Csp(ω) ∈ pksΩ̂f σs

}
= Ω̂f ∩ R-module generated by xi1

∂

∂xi1
. . . xik

∂

∂xik

∑
bux

u

is the submodule of formal kth partial derivatives.

3There is a version for µ ⊂ ∆ as well.
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A simple example

f (x) = (1− x1)(1− x2)− t x1x2, R = Z[t, 1/t]̂
Cp(1/f ) = 1/f σ mod pF1

Cp(1/f ) = 1/f σ + log

(
tσ

tp

)
θ(1/f )σ mod p2F2

θ = t
d

dt

Note: the Frobenius lift tσ = tp is special in the sense that it turns
1/f into an “eigenvector” of Cp modulo F2. After Dwork, we call
such Frobenius lifts excellent.

For the excellent Frobenius lift expansion coefficients of
1/f =

∑
v∈Z2

≥0
av(t)xv satisfy supercongruences

av(t) ≡ av/p(tp) mod p2ordp(v).
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Another example: Dwork’s families

f (x) = 1− t

(
x1 + . . . xr +

1

x1 . . . xr

)

p - 2(r + 1) ∃λ0, λ1 ∈ ZpJtK such that

Cp(1/f ) = λ0(t)1/f σ + λ1(t) θ(1/f )σ mod p2F2, θ = t
d

dt
↑ ↑

depend on σ

Goal: determine excellent Frobenius lifts. That is, find tσ ∈ ZpJtK
for which λ1(t) ≡ 0.
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Excellent lifts for Dwork’s families

f (x) = 1− t

(
x1 + . . . xr +

1

x1 . . . xr

)
, θ = t

d

dt

L = θr − ((r + 1)t)r+1 (θ + 1) . . . (θ + r), L(1/f ) ∈ dΩf

Picard–Fuchs differential operator

Ωf (∆◦)/dΩf
∼= ⊕r−1

i=0R θ
i (1/f ), R = Z[t, (r + 1)−1(1− (r + 1)t)−1]

Solutions to Ly = 0:

y0(t) =
∑
n≥0

((r + 1)n)!

(n!)r+1
t(r+1)n =

1

(2πi)r

∮
. . .

∮
1

f (x)

dx1

x1
. . .

dxr
xr

y1(t) = log(t)y0(t) + G (t) with unique G (t) ∈ tQJtK
. . .

q(t) = exp

(
y1(t)

y0(t)

)
= t exp

(
G (t)

y0(t)

)
∈ t + t2QJtK

is called the canonical coordinate
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Excellent lifts for Dwork’s families

f (x) = 1− t

(
x1 + . . . xr +

1

x1 . . . xr

)
, θ = t

d

dt

L = θr − ((r + 1)t)r+1 (θ + 1) . . . (θ + r), L(1/f ) ∈ dΩf

y0(t) =
∑
n≥0

((r + 1)n)!

(n!)r+1
t(r+1)n, y1(t) = log(t)y0(t) + G (t)

q(t) = exp

(
y1(t)

y0(t)

)
= t exp

(
G (t)

y0(t)

)
canonical coordinate

Theorem(Beukers-V, 2021) Assume that p - 2(r + 1). Then

(i) q(t) ∈ t + t2ZpJtK (⇒ ZpJtK = ZpJqK),

(ii) the excellent Frobenius lift σ is given by q 7→ qp,

(iii) tσ = t(qp) ∈ ZpJtK belongs to Z [t, 1/hw1(t), 1/hw2(t)] ,̂
where polynomials hw1(t), hw2(t) are the 1st and 2nd
Hasse–Witt determinants.
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Modular excellent lifts
E.g. r = 2, f (x) = 1− t

(
x1 + x2 +

1

x1x2

)
t(q) = q − 5q4 + 32q7 − 198q10 + . . . modular function of level 3

In §7 of ’p-adic cycles’, Dwork shows that for the modular j-function

j(q) =
1

q
+ 744 + 196884 q + . . .

if one expresses j(qp) = F (j(q)) then function F is a p-adic analytic
function on Cp \ {β1, . . . , βr} where βi are representatives of the
j-invariants of supersingular elliptic curves in characteristic p. He calls
this fact Deligne’s theorem and proves it using the algebraic relation of
degree p + 1 between modular functions j(q) and j(qp). He gives a
simlar proof to the modulus λ(q) = 16q − 128q2 + 704q3 + . . . of the
Legendre family of elliptic curves y2 = x(x − 1)(x − λ).

In our setting the roots of the 1st Hasse-Witt polynomial hw1(t) modulo
p correspond to supersingular fibres of the family f (x) = 0. Part (iii) of
our theorem shows that a similar result holds for non-modular families
(when r ≥ 4) but in general one also needs to exclude the roots of the
second Hasse–Witt polynomial hw2(t).
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Thank you!
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