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§Sequences of constant terms of powers

g(x) =Y, ux" € Zpq ... xE
supp(g) = {u € Z": g, #0}
A CR" Newton polytope of g = convex hull of supp(g)

cx = coefficient of x? (constant term) in g(x)X, k =0,1,2, ...

Example.
/'f\
g(x) = X1 + X2 + f‘ \\
X1X2 // & 22
0, 3tk /
Ck i
w3k
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Lucas' congruence

Cx = constant term in g(x)k, k=0,1,2,...
A = Newton polytope of g(x)

Assume that 0 € A is the only internal
integral point. Then for any prime p we have

Ck = CkyCy - - - Ck, mod p, vV k

where 0 < k; < p — 1 are the digits in the p-adic expansion of k:

k=ko+ kip+ kop® + ... + kep'.
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Generalization mod p*: Dwork's congruences

o0
~y(t) = Z cth € Z[t], cx = constant term of g(x)*
k=0
1 % y{ 1 dxi dxp
B AN vy~ iroakiie
m—1
Tm(t) = cit” truncations
k=0
Theorem 1 (Mellit-V, 2013). Assume that 0 € A is the only

internal integral point in the Newton polytope of g(x). Then for
any prime p and any integer s > 1

1) _ () s

Y(tP)  Yps—1(tP)

Theorem 2 (Beukers-V, 2019). In the conditions of Theorem 1
one has y(t)/v(tP) € p-adic completion of Z[t,1/~,(t)].
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§Formal expansions of rational functions

f(x) =3 fux¥ € Z[xF, ..., xF!], A € R its Newton polytope
h(x) € Z[x, .. xF ], m>1

pick a vertex b € A

. /A @V h(x) _ h(x)
// \ F(x)™  £mxmb(1 4 £(x))"

\\'0 /?/ _ h(xi}mb 3 (_S’”> 0(x)°

s>0

= E ayx"

veZn

Note: if supp(h) C mA, then the formal
expansion is supported in the cone C(A — b)
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Gauss' congruences

f(x) = Z fux" with Newton polytope A
(x)

m = Z ayx¥ formal expansion at a vertex b € A
Theorem (Beukers-Houben-Straub, 2018) Assume that
supp(h) C A and ANZ" = {vertices}. Then for any prime p such

that p 1 f, for all u and any v € C(A — b) one has

>

ay =a,/p mod porde(v)
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§Cohomology and congruences

f(x) € R[x,...,xF], Ris a ring of char 0
Xr = {f(x) =0} C T", A C R" Newton polytope of f(x)

h >1,he R, ... xH
Q= 4 (m_1p )| m= bq % R-module
f(x)™ | supp(h) € mA

U

dQf = R-module generated by x,-gl/,l/ eQri=1,...,n
Xi
Qr/dQs =2 HRR(T" \ X¢)  (Griffiths, Batyrev)?
h(x) h(x) dx1  dx,
f(x)m f(x)™ xq Xn
dQr <+ exact forms
Qf(-) = {m < -} <> Hodge filtration

Qf >

Ywhen f is A-regular and R is a field
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p-adic Cartier operation
fix p prime and assume that Ns>1p°R = {0}

h
Cp: f(f();l’ = Z aux" — Z apux" & Qf

ucC(A—b) uccC(A—b)

Def. A Frobenius lift 0 : R — R is a ring endomorphism such
that o(r) — rP € pR for all r € R.
Examples:

» R=7 with o =id

> R = Z[t] with o(r(t)) = r(tP)

Lemma. For f/ES;?" =Y ayx", the series > ap,x" can be

approximated p-adically by rational functions with powers of 7 (x)
in the denominator.

Here f? is f with o applied to its coefficients. We thus have

Co(Q2f) C Qf- = p-adic completion of Qfe.
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Properties of the p-adic Cartier operation

The R-linear operation

Cp . Qf — va, Z aux" — Z apux“

» (surprisingly) is independent of the choice of vertex b € A at
which the formal expansion is done

» descends to cohomology:
C ox-i— x-ioC = Cp(dQy) C dQ
p '8x,- =p ’8x,- p p f fo,
Cp : ﬁf/dﬁf — ﬁfcr/dﬁfo‘.

> when R = Z,, trace of Cj counts points on T" \ X over Fps
fors>1
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Key theorem 1

(Bp)uwea = coefficient of xP*~" in f(x)P~t € R h = #(ANZ")

Theorem (Beukers-V, Dwork crystals I). Assume R is p-adically
complete and the Hasse-Witt matrix (3, is invertible. Then

fAZf/{formaI derivatives}

is a free R-module of rank h where % uc ANZ"is a basis.

Here formal derivaties denotes the submodule
F = {w = Z aux" € ﬁf ’ Yu a, € g.cd(u,..., un)R}
~ 0
= Q¢ N R-module generated by x,-a—Xi Z byx"
= {w = Zaux” € Qy ’ Vs>1 Cp(w) e psﬁfas}.

We note that C,(F) C pF and so the Cartier operation descends to the

free quotients Cp, : ﬁ,c/]-" — ﬁfﬂ /F. Can we determine its matrix?
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Congruences

Let A € R" " be the matrix of C, : ﬁ,c/]-' — ﬁfo/f:

v

C, <f’(‘x)) = Z/\uvf:i(x) mod pF.

veA

Pick w € C(A —b), s > 1 and read expansion coefficients at
p°~!w in the above identity: vectors

v

- sw . X
(as)ven = coefficient at xP™" in m

satisfy 2
as=Nal_; mod p°.

2This result is a version of N. Katz's Internal reconstruction of unit-root

F-crystals via expansion coefficients (1985).
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Application: Gauss' congruences

f(x) = Z fux¥ € Z[Xlﬂ, ... ,X,:,tl , ANZ" = {vertices}
pff Vv

In this case A = Id, that is C, is identity on Q¢ /F. Therefore for
any h(x) with supp(h) C A the expansion coefficints

X
= Z awx?
F) weC(A—b)
satisfy
aw = ay/p mod porde(w).
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A version

p C Ais called open if A\ p is a union of faces

Then the Cartier operation preserves submodules

] h(x) m>1,he :’:\’[xfcl,...,x,jf1
) = {f(x)m | supoth) }

that is C, : ﬁf(u) — ﬁfa(u). If the Hasse-Witt submatrix
Bp(p) C Bp is invertible, one has

~ u
Q¢ ()/{formal derivatives} = @yepunzn R%.
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Application: Dwork'’s congruences

g e Zlxtt, .. xEFY, A°nz"={0}

r'n

o0
A(t) = Z ckth, ¢ = const. term of g(x)*
k=0

Take f(x) =1 —tg(x), p = A°.
The 1 x 1 Hasse-Witt submatrix is

Bo(t) = const. term of (1—tg(x))P ™! = i(—l)k (p; 1) cth.

k=0

Take R = Z[t, B,(t)!]". Here Q¢(n)/F
is of rank 1, and the respective Cartier matrix is given by

A=) g

v(t7)

Note: B,(t) = v,(t) mod p, so R =Z[t,v,(t) ]~
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§Supercongruences

Theorem (Beukers-V, Dwork crystals I11)3 Let 1 < k < p. Assume
that R is p-adically complete and the k'th Hasse-W/itt condition is
satisfied. Then R

Qf = Qr(k) & Fi,

where

Q¢(k) = free R-module generated by %:)k, uec kANZ"

{ — Zaux“ € ﬁf ‘ Yu a, €g.c.d(u,..., u,,)kR}
= {w = Zaux” € Q ‘ Vs >1 Cp(w) e pksﬁfgs}

~ 0 0
= Qr N R-module generated by x,-la—Xi1 .. .x;ka—Xik Z byx"

is the submodule of formal kth partial derivatives.

3There is a version for ;1 C A as well.
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A simple example

fx)=(1—x1)(1 —x2) —txixe, R=Z[t,1/t]"

Co(1/f)=1/f° mod pFy

Co(1/F) =1/ + Iog< ) 0(1/f)° mod p*F,

d
0=t—
dt
Note: the Frobenius lift t = tP is special in the sense that it turns
1/f into an “eigenvector” of C, modulo F>. After Dwork, we call

such Frobenius lifts excellent.

For the excellent Frobenius lift expansion coefficients of
1/f = Z"ezéo ay(t)x" satisfy supercongruences
av(t) = ay/p(t") mod p2orde(v),
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Another example: Dwork's families

fx)=1-1 <X1+...x,+ 1 )

X1 ... Xr

pt2(r+1) 3o, A1 € Zp[t] such that
Co(L/F) = Ao(E)L/F7 + Ai(6)0(L/F)7 mod p°Tp, O — t%
T T

depend on ¢

Goal: determine excellent Frobenius lifts. That is, find t7 € Z,[t]
for which A\;(t) = 0.
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Excellent lifts for Dwork’'s families

1 d
0=t—
X1...X,)7 dt

L=60"—((r+1)t)"" (0+1)...(047r), L1/f)edQf
Picard—Fuchs differential operator
Qr(A°)/dQs = @ 5RO(1/F), R=2Z[t,(r+1)7 (1 - (r+1)t)7"]

fx)=1—1t <x1+...x,+

Solutions to Ly = 0:

r+1)nm! 1 1 dx: dx,
yo(t)—;](((m)rll) ) 7(27” 7{ % 1"' Xy

yi(t) = log(t)yo(t) + G(t) with unique G(t) € tQ[¢]

0o (29) ~ o (€0 . i

yo(t)
is called the canonical coordinate

18/21



Excellent lifts for Dwork’'s families

1 d
=1- CXr , 0=t
flx) =1 t<X1+ X+X1...X,> dt
_l’_
(

L=60"—((r+ 1)) (0+1)...(047r), L1/f)edQf
)/o(t)zz( €+1)
n>0

SR (6) = log(e)a(t) + (1)
)

G(t) : .
e t exp canonical coordinate

yo(t)

Theorem(Beukers-V, 2021) Assume that p{2(r +1). Then
(i) a(t) e t+2Zp[t] (= Zp[t] = Zp[a]).

(ii) the excellent Frobenius lift o is given by g — g®,

(iii) t7 = t(qP) € Zp[t] belongs to Z[t,1/hw;(t),1/hwy(t)],

where polynomials hw;(t), hwy(t) are the 1st and 2nd
Hasse-Witt determinants.

19/21



Modular excellent lifts
1
Eg. r=2f(x)=1—-1t (xl +xo + )
X1 X2
t(q) = g — 5g* +32q" — 198¢*° + ... modular function of level 3

In §7 of 'p-adic cycles’, Dwork shows that for the modular j-function
1
Jj(q) = q + 744 4196884 q + . ..

if one expresses j(g”) = F(j(q)) then function F is a p-adic analytic
function on C, \ {f1,..., B} where J; are representatives of the
j-invariants of supersingular elliptic curves in characteristic p. He calls
this fact Deligne's theorem and proves it using the algebraic relation of
degree p + 1 between modular functions j(q) and j(g”). He gives a
simlar proof to the modulus \(q) = 16q — 128¢> 4 704q3 + ... of the
Legendre family of elliptic curves y? = x(x — 1)(x — A).

In our setting the roots of the 1st Hasse-Witt polynomial hws(t) modulo
p correspond to supersingular fibres of the family f(x) = 0. Part (jii) of
our theorem shows that a similar result holds for non-modular families
(when r > 4) but in general one also needs to exclude the roots of the

second Hasse-Witt polynomial hw,(t).
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Thank you!
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