1000-1M19WFM Introduction to Modular Forms Projects

1. For $n \geq 1$ we denote by $p(n)$ the number of partitions of n into a sum of positive integers. For example, the list of partitions of $n=5$ is given by:

$$
\begin{aligned}
& 5=5 \\
& 5=4+1 \\
& 5=3+2 \\
& 5=3+1+1 \\
& 5=2+2+1 \\
& 5=2+1+1+1 \\
& 5=1+1+1+1+1
\end{aligned}
$$

and therefore $p(5)=7$. Start with proving the following identity for the generating function of these numbers:

$$
\sum_{n=0} p(n) q^{n}=1+q+2 q^{2}+3 q^{3}+5 q^{4}+7 q^{5}+\ldots=\prod_{m=1}^{\infty} \frac{1}{1-q^{m}}
$$

Prove Ramanujan's congruences:

$$
\begin{array}{rll}
p(5 k+4) & \equiv 0 & \\
\bmod 5 \\
p(7 k+5) & \equiv 0 & \\
\bmod 7 \\
p(11 k+6) & \equiv 0 & \\
\bmod 11
\end{array}
$$

The best moment to start working on this project is after you are done with the third assignment.
2. Consider the elliptic curve given by the equation

$$
E: y^{2}=x^{3}+x
$$

and the q-series given by

$$
f(q)=\sum_{\substack{m, n \in \mathbb{Z} \\ m \equiv 1 \bmod 4}} m q^{m^{2}+4 n^{2}}=: \sum_{n=1}^{\infty} a_{n} q^{n} .
$$

(i) Prove that for every prime $p \neq 2$ we have $a_{p}=p-\# E\left(\mathbb{F}_{p}\right)$, where $\# E\left(\mathbb{F}_{p}\right)=$ $\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}=x^{3}+x\right\}$ is the number of points on E over the finite field \mathbb{F}_{p}.
(ii) Prove that $f(q)$ is a modular form of weight 2 on a congruence subgroup $\Gamma \subset$ $\mathrm{SL}_{2}(\mathbb{Z})$. (This task of course involves identifying Γ.)

The formula in part (i) goes back to Gauss; you could work on it at any time. Attempt part (ii) after we do theta functions in class.
3. Consider the elliptic curve given by the equation

$$
E: y^{2}+y=x^{3}-x^{2}
$$

(i) We will see in Part III of this course that the set of complex points of E can be turned into a compact Riemann surface by adding one point 'at infinity'. The compactified curve can be given by the homogeneous equation

$$
\left\{[X: Y: Z] \in \mathbb{P}^{2}(\mathbb{C}) \mid Y^{2} Z+Y Z^{2}=X^{3}-X^{2} Z\right\}
$$

Prove that this compact Riemann surface is isomorphic to $X_{0}(11)=X\left(\Gamma_{0}(11)\right)$.
(ii) Show that

$$
f(q)=q \prod_{m=1}^{\infty}\left(1-q^{m}\right)^{2}\left(1-q^{11 m}\right)^{2}=: \sum_{n=1}^{\infty} a_{n} q^{n}
$$

is a modular form of weight 2 on $\Gamma_{0}(11)$.
(iii*) Prove that for every prime $p \neq 11$ we have $a_{p}=p-\# E\left(\mathbb{F}_{p}\right)$, where $\# E\left(\mathbb{F}_{p}\right)=$ $\left\{(x, y) \in \mathbb{F}_{p}^{2}: y^{2}+y=x^{3}-x^{2}\right\}$ is the number of points on E over the finite field \mathbb{F}_{p}.

The essential difference between the elliptic curve considered here and the one in Project 2 is that the curve $y^{2}=x^{3}+x$ has more automorphisms than a generic elliptic curve. Such curves are said to have complex multiplication. That particular curve has an automorphism $(x, y) \mapsto(-x, i y)$, which makes it possible to compute its points over finite fields explicitly. In contrast to part (i) of Project 2, part (iii) of Project 3 might be difficult.

