1000-1M19WFM Introduction to Modular Forms
 Tutorial 8 - May 10

Written assignment: exercises marked with (H), due on May 17.

1. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index containing -1 . Let $f \in M_{k}(\Gamma)$ be a non-zero modular form. Prove that

$$
\sum_{z \in \Gamma \backslash \mathcal{H}} \frac{\nu_{z}(f)}{e_{z}}+\sum_{\alpha \in{ }_{\Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})}} \nu_{\alpha}(f)=\frac{k}{12}\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right],
$$

where $e_{z}=\# I_{\Gamma /\{ \pm 1\}}(z)$ is the order of stabilizer of z in $\Gamma /\{ \pm 1\}$.

Remark: for $\Gamma=\mathrm{SL}_{2}(\mathbb{Z})$ we proved this formula in Lecture 2. Hints for this exercise will be given in a separate document.
(H)2. a) Let $\theta(z)=\sum_{n \in \mathbb{Z}} q^{n^{2}}=1+2 q^{2}+2 q^{4}+\ldots$ be the Jacobi theta function (Lecture 8). Express $\theta^{4} \in M_{2}\left(\Gamma_{0}(4)\right)$ as a linear combination of the following basis elements of this space:

$$
f_{1}=E_{2}(z)-2 E_{2}(2 z), f_{2}=E_{2}(2 z)-2 E_{2}(4 z)
$$

(see Exercise 5 of Assignment 7). Comparing the coefficients near q^{n}, find the formula for the number of representations of n as a sum of four squares.
b) Prove the theorem of Lagrange: every positive integer is a sum of four squares.
(H)3. Use the Theorem of Hecke and Schoenberg to show that

$$
\Theta(z)=\sum_{m, n \in \mathbb{Z}} q^{m^{2}+m n+n^{2}} \in M_{1}\left(\Gamma_{0}(3), \chi_{-3}\right)
$$

where

$$
\chi_{-3}(n)=\left(\frac{-3}{n}\right)=\left\{\begin{array}{l}
0,3 \mid n \\
1, n \equiv 1 \quad \bmod 3 \\
-1, n \equiv 2 \quad \bmod 3
\end{array}\right.
$$

is the nontrivial Dirichlet charater modulo 3.
(H)4. We continue with the notation of Exercise 3. In the same space we have the Eisenstein series

$$
G_{1, \chi}=\frac{1}{6}+\sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-3}(d) q^{n} \in M_{1}\left(\Gamma_{0}(3), \chi_{-3}\right)
$$

(see Appendex 3). Use the fact that $\operatorname{dim} M_{1}\left(\Gamma_{0}(3), \chi_{-3}\right)=1$ to find the number of integer solutions $(m, n) \in \mathbb{Z}^{2}$ to the equation

$$
m^{2}+m n+n^{2}=147 .
$$

5. Describe all spherical homogeneous polynomials $P(x, y)$ of degree 2 with respect to the quadratic form $Q(m, n)=m^{2}+m n+$ n^{2}. Write

$$
\Theta_{P}(z)=\sum_{m, n \in \mathbb{Z}} P(m, n) q^{m^{2}+m n+n^{2}}
$$

in terms of the basis

$$
\begin{aligned}
G_{3, \chi-3} & =-\frac{1}{9}+\sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-3}(d) d^{2} q^{n} \\
G_{3, \chi}^{\prime} & =\sum_{n=1}^{\infty} \sum_{d \mid n} \chi_{-3}(d)\left(\frac{n}{d}\right)^{2} q^{n}
\end{aligned}
$$

of the space $M_{3}\left(\Gamma_{0}(3), \chi_{-3}\right)$.
Remark: it turns out that all $\Theta_{P}(z)$ in the last exercise vanish. Can you prove it directly?

