1000–1M19WFM Introduction to Modular Forms Hints for Exercise 1 in Assignment 8

Exercise. Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index containing -1. Let $f \in M_k(\Gamma)$ be a non-zero modular form. Prove that

(1)
$$\sum_{z \in \Gamma \setminus \mathcal{H}} \frac{\nu_z(f)}{e_z} + \sum_{\alpha \in \Gamma \setminus \mathbb{P}^1(\mathbb{Q})} \nu_\alpha(f) = \frac{k}{12} [\operatorname{SL}_2(\mathbb{Z}) : \Gamma],$$

where $e_z = \#I_{\Gamma/\{\pm 1\}}(z)$ is the order of stabilizer of z in $\Gamma/\{\pm 1\}$.

Note that for $\Gamma = \operatorname{SL}_2(\mathbb{Z})$ we proved formula (1) in Lecture 2 by doing integration of df/f along a contour which tends to the boundary of the fundamental domain. That proof was already quite elaborate, and we would like to avoid performing it again for general subgroups Γ .

Approach 1. Note that k is even because the condition $-1 \in \Gamma$ implies that there are no non-zero modular forms of odd weight. In Lecture 7 we defined $\omega_f \in \Omega^{k/2}(X(\Gamma))$, a meromorphic (k/2)-form on the compact Riemann surface $X = X(\Gamma)$ which corresponds to f, and computed its orders of vanishing $\nu_P(\omega_f)$ for $P \in X$ in terms of $\nu_Q(f)$ for $Q \in \mathcal{H}$. Combine that computation with the fact that

$$\deg(div(\omega_f)) = \sum_{P \in X} \nu_P(\omega_f) = (2g - 2)\frac{k}{2}$$

(see Exercise 2 of Assignment 7).

Approach 2. Denote $d = [\operatorname{SL}_2(\mathbb{Z}) : \Gamma]$. Choose some set of rightcoset representatives $\operatorname{SL}_2(\mathbb{Z}) = \bigcup_{j=1}^d \Gamma g_j$ and consider

$$F(z) = \prod_{j=1}^d (f|_k g_j)(z).$$

Note that $F \in M_{dk}(SL_2(\mathbb{Z}))$ and apply (1) for F, which was proved in Lecture 2.