# 1000-1M19WFM Introduction to Modular Forms <br> Tutorial 5 - April 5 

Written assignment: exercises marked with (H), due on April 12.
(H)1. Let $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ be a subgroup of finite index such that $-1 \in \Gamma$. Cusps of $\Gamma$ are defined as orbits of the $\Gamma$-action on $\mathbb{P}^{1}(\mathbb{Q})$. For any $\alpha \in \mathbb{P}^{1}(\mathbb{Q})$ the index

$$
h_{\alpha}=\left[I_{\mathrm{SL}_{2}(\mathbb{Z})}(\alpha): I_{\Gamma}(\alpha)\right]
$$

depends only on the $\Gamma$-orbit of $\alpha$ (see Ex. 2 of Assignment 4.) This number is called the width of the respective cusp $[\alpha]:=\Gamma \alpha$.
a) Show that the number of cusps of $\Gamma$ is finite.
b) Show that the width of a cusp is finite.
c) Denote $d=\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma\right]$ and choose any set $\left\{\gamma_{i}: 1 \leq i \leq d\right\}$ of representatives of right cosets, so that $\mathrm{SL}_{2}(\mathbb{Z})=\cup_{i=1}^{d} \Gamma \gamma_{i}$. Prove that

$$
h_{\alpha}=\#\left\{1 \leq i \leq d: \gamma_{i}(\infty) \in[\alpha]\right\} .
$$

d) Conclude that the sum of widths of all cusps of $\Gamma$ equals $d$ :

$$
\sum_{[\alpha] \in \Gamma \backslash \mathbb{P}^{1}(\mathbb{Q})} h_{\alpha}=d .
$$

(See also the question after Ex. 3 b) in Assignment 4.)
(H)2. Show that if $\Gamma \subset \mathrm{SL}_{2}(\mathbb{Z})$ is a normal subgroup then all cusps have equal width.
3. Let $p$ be a prime, let $X_{0}(p):=X\left(\Gamma_{0}(p)\right)$.
a) Show that

$$
\gamma_{j}=\left(\begin{array}{ll}
1 & 0 \\
j & 1
\end{array}\right) \text { for } j=0, \ldots, p-1, \quad \gamma_{\infty}=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

is a set of right coset representatives for $\Gamma_{0}(p)$ in $\mathrm{SL}_{2}(\mathbb{Z})$.
b) Show that $X_{0}(p)$ has exactly two cusps.
c) Show that $g \gamma_{j}(i)=\gamma_{j}(i)$ for some $g \in \Gamma_{0}(p)$ of order 4 if and only if $j^{2}+1 \equiv 0 \bmod p$. Thus the number of elliptic points of order 2 in $X_{0}(p)$ equals

$$
\varepsilon_{2}=\left\{\begin{array}{lll}
2, & p \equiv 1 \quad \bmod 4 \\
0, & p \equiv 3 & \bmod 4 \\
1, & p=2
\end{array}\right.
$$

d) Show that $g \gamma_{j}(\rho)=\gamma_{j}(\rho)$ for some $g \in \Gamma_{0}(p)$ of order 6 if and only if $j^{2}-j+1 \equiv 0 \bmod p$. Thus the number of
elliptic points of order 3 in $X_{0}(p)$ equals

$$
\varepsilon_{3}=\left\{\begin{array}{lll}
2, & p \equiv 1 & \bmod 3 \\
0, & p \equiv 2 & \bmod 3 \\
1, & p=3
\end{array}\right.
$$

Along with part c), this shows that the number of elliptic points is determined by $p \bmod 12$. In particular, $p=13$ is the smallest prime such that all four possible elliptic points exist.
e) Conclude that the genus of $X_{0}(p)$ is equal to

$$
g=\left\{\begin{array}{lc}
\left\lfloor\frac{p+1}{12}\right\rfloor-1, & p \equiv 1 \quad \bmod 12 \\
\left\lfloor\frac{p+1}{12}\right\rfloor, & \text { otherwise }
\end{array}\right.
$$

MAGMA is a computer algebra system which is convenient for computations with modular forms. Its online calculator can be found at http : //magma.maths.usyd.edu.au/calc/ Here is a sample code to enter:
G:=Gamma0(11);
Index (G) ;
Cusps(G);
EllipticPoints(G);
Genus(G);

