1000–1M19WFM Introduction to Modular Forms Tutorial 4 – March 29

Written assignment: exercises marked with (H), due on April 5.

- 1. Let $f(z) \in \mathbb{C}(z)$ be a non-constant rational function. Regard it as a holomorphic map of the Riemann sphere to itself f: $\mathbb{P}^1(\mathbb{C}) \to \mathbb{P}^1(\mathbb{C})$. What is the degree of this map? What does the Riemann-Hurwitz formula say?
- (H)2. Let $\Gamma \subset SL_2(\mathbb{Z})$ be a subgroup of finite index such that $-1 \in \Gamma$. We denote $PSL_2(\mathbb{Z}) = SL_2(\mathbb{Z})/\{\pm 1\}$, $\widetilde{\Gamma} = \Gamma/\{\pm 1\}$. Consider the action of $PSL_2(\mathbb{Z})$ on $\mathbb{P}^1(\mathbb{Q}) = \mathbb{Q} \cup \{\infty\}$ by linear fractional transformations.

For a group G acting on a set X, for any $x \in X$ we denote by $I_G(x) = \{g \in G : gx = x\}$, the stabilizer of x in G. It is clear that $I_G(x) \subset G$ is a subgroup.

a) Show that $I_{\text{PSL}_2(\mathbb{Z})}(\infty)$ is $\langle T \rangle$, the subgroup generated by $T = \pm \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$. (This subgroup is then isomorphic to the

additive group \mathbb{Z} via the map $T^m \mapsto m$.)

b) For any $\alpha \in \mathbb{P}^1(\mathbb{Q})$, check that there exists $g \in \mathrm{PSL}_2(\mathbb{Z})$ such that $g(\infty) = \alpha$. Check that $g^{-1}I_{\widetilde{\Gamma}}(\alpha)g \subseteq I_{\mathrm{PSL}_2(\mathbb{Z})}(\infty)$ and show that the index

$$h = \left[I_{\text{PSL}_2(\mathbb{Z})}(\infty) : g^{-1} I_{\widetilde{\Gamma}}(\alpha) g \right]$$

depends only on the orbit $\Gamma \alpha$.

The orbits $_{\Gamma} \setminus \mathbb{P}^1(\mathbb{Q})$ are called *cusps* of Γ , and the above number *h* is called the *width* of the respective cusp $\Gamma \alpha$.

- (H)3. Consider $\Gamma = \Gamma_0(4)$. By Ex. 5 of Assignment 3 we know that $[PSL_2(\mathbb{Z}) : \widetilde{\Gamma}] = [SL_2(\mathbb{Z}), \Gamma] = 6.$
 - a) Describe a connected fundamental domain for the action of Γ in the upper halfplane \mathcal{H} . (It should consist of 6 images of the fundamental domain \mathcal{D} for $SL_2(\mathbb{Z})$.)
 - b) Show that Γ has 3 cusps and find their widths. Can you see the width of a cusp on a sketch of a fundamental domain?
 - c) Note that the quotient $X = {}_{\Gamma} \backslash \mathcal{H}$ can be turned into a compact surface \overline{X} by adding 3 points corresponding to the cusps. Compute the genus of \overline{X} .

You could use the triangulation from part a) and the formula 2-2g = V - E + F, see Lecture 4.