1000-1M19WFM Introduction to Modular Forms
 Tutorial 3

Written assignment: exercises marked with (H), due on March 29.

1. In Exercise 6 of Assignment 1 we discovered that the Eisenstein series can be normalized to have rational Fourier coefficients:

$$
E_{k}(z)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} .
$$

Here $q=e^{2 \pi i z}, \sigma_{s}(n)=\sum_{m \mid n} m^{s}$ and $B_{k} \in \mathbb{Q}$ are the Bernoulli numbers defined by $\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} \frac{B_{k}}{k!} x^{k}$. Note that the q-series E_{4} and E_{6} have coefficients in \mathbb{Z}. Using elementary arguments (e.g. Fermat's Little Theorem), show that the coefficients of $E_{4}^{3}-E_{6}^{2}$ are divisible by 1728 .
(H)2. Consider the coefficients in the expansion of the following cusp form of weight 12 :

$$
\Delta=\frac{E_{4}^{3}-E_{6}^{2}}{1728}=\sum_{n=1}^{\infty} \tau(n) q^{n} .
$$

By the previous exercise, we have $\tau(n) \in \mathbb{Z}$. The function $\tau: \mathbb{N} \rightarrow \mathbb{Z}$ is called the Ramanujan tau function after the Indian mathematician Srinivasa Ramanujan, who experimented a lot with it. In 1916 he conjectured that

$$
\begin{aligned}
& \tau(m n)=\tau(m) \tau(n) \text { when } m, n \text { are coprime } \\
& \tau\left(p^{r+1}\right)-\tau(p) \tau\left(p^{r}\right)+p^{11} \tau\left(p^{r-1}\right)=0 \text { for every } r \geq 1 \text { and } p \text { prime. }
\end{aligned}
$$

We will prove this later, using Hecke operators. Ramanujan also discovered several congruence properties one of which is the subject of this exercise.

Prove that

$$
\tau(n) \equiv \sigma_{11}(n) \quad \bmod 691
$$

Hint: Notice that $B_{12}=-\frac{691}{2730}$, so $E_{12}=1+\frac{65520}{691} \sum_{n=1}^{\infty} \sigma_{11}(n) q^{n}$.
(H)3. Let $E_{2}(z)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$ be the Eisenstein series of weight 2. In Assignment 2 we have seen that the transformation properties of this function are close to those of a modular form of weight 2 .

Show that if $f \in M_{k}$ and δ denotes the derivation $q \frac{d}{d q}=\frac{1}{2 \pi i} \frac{d}{d z}$, then

$$
\delta f-\frac{k}{12} E_{2} f \in M_{k+2}
$$

(This modular form is sometimes called the Serre derivative of f.)
(H)4. Show that the ring $\mathbb{C}\left[E_{2}, E_{4}, E_{6}\right]$ is closed under derivation $\frac{d}{d z}$. More specifically, prove that

$$
\delta E_{2}=\frac{E_{2}^{2}-E_{4}}{12}, \quad \delta E_{4}=\frac{E_{2} E_{4}-E_{6}}{3}, \quad \delta E_{6}=\frac{E_{2} E_{6}-E_{4}^{2}}{2} .
$$

These identities were first observed by Ramanujan, who used them to prove some curious congruence properties of the partition function $p(n)$ (see our Project 1).

Elements of the ring $\widetilde{M}=\mathbb{C}\left[E_{2}, E_{4}, E_{6}\right]$ are called quasimodular forms. See $\S 5.3$ of [1-2-3] for their intrinsic definition.

Congruence subgroups

5. For an integer $N>1$ we want to compute the indices of the following group inclusions:

$$
\begin{aligned}
& S L_{2}(\mathbb{Z})=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): a, b, c, d \in \mathbb{Z}, a d-b c=1\right\} \\
& \cup \\
& \Gamma_{0}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \ldots, c \equiv 0 \quad \bmod N\right\} \\
& \cup \\
& \Gamma_{1}(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \ldots, c \equiv 0, a, d \equiv 1 \quad \bmod N\right\} \\
& \cup \\
& \Gamma(N)=\left\{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right): \ldots, b, c \equiv 0, a, d \equiv 1 \quad \bmod N\right\}
\end{aligned}
$$

The index is mutiplicative: for $H_{1} \subset H_{2} \subset G$, one has $\left[G: H_{1}\right]=\left[G: H_{2}\right] \cdot\left[H_{2}: H_{1}\right]$.
Since $\Gamma(N)=\operatorname{Ker}\left(\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})\right), \Gamma(N)$ is a normal subgroup and $\left[\mathrm{SL}_{2}(\mathbb{Z})\right.$: $\Gamma(N)]=\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})$.
a) Let p be a prime and let e be a positive integer. Show that $\# \mathrm{SL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)=$ $p^{3 e}\left(1-1 / p^{2}\right)$.
Hint: For $e=1, \# \mathrm{GL}_{2}\left(\mathbb{F}_{p}\right)$ is the number of bases of \mathbb{F}_{p}^{2}, and $\mathrm{SL}_{2}\left(\mathbb{F}_{p}\right)$ is the kernel of the surjective determinant map to \mathbb{F}_{p}^{\times}. For the induction, count $\operatorname{Ker}\left(\mathrm{SL}_{2}\left(\mathbb{Z} / p^{e+1} \mathbb{Z}\right) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)\right)$. This map surjects since $\mathrm{SL}_{2}(\mathbb{Z}) \rightarrow \mathrm{SL}_{2}\left(\mathbb{Z} / p^{e} \mathbb{Z}\right)$ does.
b) Show that $\# \mathrm{SL}_{2}(\mathbb{Z} / N \mathbb{Z})=N^{3} \prod_{p \mid N}\left(1-1 / p^{2}\right)$.
c) Show that the map $\Gamma_{1}(N) \rightarrow \mathbb{Z} / N \mathbb{Z}$ given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto b \quad \bmod N
$$

surjects and has kernel $\Gamma(N)$. Compute $\left[\Gamma_{1}(N): \Gamma(N)\right]$.
d) Show that the map $\Gamma_{0}(N) \rightarrow(\mathbb{Z} / N \mathbb{Z})^{\times}$given by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto d \quad \bmod N
$$

surjects and has kernel $\Gamma_{1}(N)$. Compute $\left[\Gamma_{0}(N): \Gamma_{1}(N)\right]$.
e) Show that $\left[\mathrm{SL}_{2}(\mathbb{Z}): \Gamma_{0}(N)\right]=N \prod_{p \mid N}(1+1 / p)$.

