1000-1M19WFM Introduction to Modular Forms Tutorial 2 - March 15

Written assignment: exercises marked with (H), due on March 22.
In Exercises 1-3 we follow some ideas due to Erich Hecke to construct the Eisenstein series of weight 2 and prove its transformation properties under $\mathrm{SL}_{2}(\mathbb{Z})$, which are close to those of a modular form of weight 2 but with a correction term.

1. Show that the series

$$
G_{2}(z)=\zeta(2)-4 \pi^{2} \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

is convergent for $|q|<1$.

Remark: since the Lipschitz formula (Ex. 4, assignment 1) holds for $k=2$, we still have

$$
G_{2}(z)=\frac{1}{2} \sum_{n \neq 0} \frac{1}{n^{2}}+\sum_{m=1}^{\infty} \sum_{n \in \mathbb{Z}} \frac{1}{(m z+n)^{2}},
$$

if we agree to carry the summation over n first and then over m. However, because of the non-absolute convergence of the double series, we can no longer interchange the order of summation to get the transformation formula $G_{2}\left(-\frac{1}{z}\right)=$ $z^{2} G_{2}(z)$. (The equation $G_{2}(z+1)=G_{2}(z)$, of course, still holds.)
2. Define

$$
G_{2, \epsilon}(z)=\frac{1}{2} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{2}|m z+n|^{2 \epsilon}}
$$

for $\epsilon>0$ and $z \in \mathcal{H}$. This series converges absolutely due to the argument which was given in class for the convergence of Eisenstein series. Show that

$$
G_{2, \epsilon}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2}|c z+d|^{2 \epsilon} G_{2, \epsilon}(z) .
$$

(Here and below $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z})$.)
(H)3. It is proved in [1-2-3] in Section 2.3 (p.20) that

$$
\lim _{\epsilon \rightarrow 0} G_{2, \epsilon}(z)=G_{2}(z)-\frac{\pi}{2 \operatorname{Im}(z)} .
$$

a) Use this formula and the previous exercise to show that the non-holomorphic function in the right-hand side transforms like a modular form of weight 2 .
b) Next, deduce the transformation formula

$$
G_{2}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} G_{2}(z)-\pi i c(c z+d) .
$$

(H)4. Let $f(z)$ be a modular form of weight k, let $f^{\prime}(z)=\frac{d}{d z} f(z)$. Find out the missing term in the formula

$$
f^{\prime}\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{k+2} f^{\prime}(z)+? ? .
$$

Write a transformation formula for the logarithmic derivative $g(z)=\frac{f^{\prime}(z)}{f(z)}$:

$$
g\left(\frac{a z+b}{c z+d}\right)=(c z+d)^{2} g(z)+? ?
$$

In Exercises 5-6 we prove that $\Delta(z)=q \prod_{n=1}^{\infty}\left(1-q^{n}\right)^{24}$ is a modular form. We define $E_{2}(z)=G_{2}(z) / \zeta(2)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}$.
(H)5. Prove that $\frac{1}{2 \pi i} \frac{\Delta^{\prime}(z)}{\Delta(z)}=E_{2}(z)$.

Hint: Observe that $\frac{\Delta^{\prime}(z)}{\Delta(z)}=\frac{d}{d z} \log \Delta(z)$. Use multiplicativity of the logarithm function and expansion $\log (1-$ $x)=-\sum_{m=1}^{\infty} \frac{x^{m}}{m}$.
6. Use the result of the previous exercise to show that

$$
\frac{d}{d z} \log \left(\frac{\Delta\left(\frac{a z+b}{c z+d}\right)}{(c z+d)^{12} \Delta(z)}\right)=0 .
$$

Prove that $\Delta(z)$ is a modular form of weight 12 .
7. Using the fact that $\operatorname{dim} M_{12}=2$, prove the identity

$$
1728 \Delta=E_{4}^{3}-E_{6}^{2} .
$$

References

[1-2-3] Don Zagier, Elliptic modular forms and their applications, in The 1-2-3 of Modular Forms

