1000–1M19WFM Introduction to Modular Forms Tutorial 12 – June 7

Written assignment: exercises marked with (H), due on June 14.

- (H)1. Let $k \ge 4$ be even and let $E_k \in M_k(\mathrm{SL}_2(\mathbb{Z}))$ be the Eisenstein series of weight k. By $\langle \cdot, \cdot \rangle$ we denote the Petersson inner product on $M_k(\mathrm{SL}_2(\mathbb{Z}))$.
 - a) Prove that $\langle E_k, g \rangle = 0$ for every cusp form $g \in S_k$.
 - b) Show that E_k is a Hecke eigenform and find the respective engenvalues $\{\lambda_n = \lambda_n(E_k); n \ge 1\}$:

$$\mathbb{T}_n E_k = \lambda_n E_k$$

c) Let $G_k = const \cdot E_k$ be the respective normalized Hecke eigenform. Show that

$$L(G_k, s) = \zeta(s)\zeta(s - k + 1)$$

where $\zeta(s)$ is the Riemann zeta function given for $\operatorname{Re}(s) > 1$ by the Dirichlet series

$$\zeta(s) = \sum_{n=1}^{\infty} \frac{1}{n^s}.$$
 (*)

- d) Write down the Euler product for $L(G_k, s)$.
- (H)2. a) Prove that the Dirichlet series (*) converges when $\operatorname{Re}(s) > 1$.
 - b) Let $\theta(z) = \sum_{n \in \mathbb{Z}} q^{n^2}$ be the Jacobi theta function. Compute the Mellin transform of the restriction of θ to the imaginary axis

$$\phi(s) = \int_0^\infty t^{s-1} (\theta(it) - 1) dt \,. \tag{**}$$

c) A while ago we proved in class that

$$\theta(it) = \frac{1}{\sqrt{2t}} \theta\left(\frac{i}{4t}\right). \qquad (***)$$

Use this modular property of θ to construct the analytic continuation of $\zeta(s)$ to the entire complex plane, show that the only pole of $\zeta(s)$ is at s = 1 and prove the functional equation

$$\widehat{\zeta}(s) = \widehat{\zeta}(1-s),$$

where $\widehat{\zeta}(s) = \frac{\Gamma(s/2)}{\pi^{s/2}} \zeta(s).$

d) Use the functional equation given in part c) to evaluate $\zeta(k)$ for $k \in \mathbb{Z}_{\leq 0}$.

Hint for part c): The problematic point in the integral (**) is t = 0. The same integral taken from some $c \in \mathbb{R}_{>0}$ to ∞ would converge for any $s \in \mathbb{C}$, thus defining an entire function. Break (**) at the symmetry point c for $\theta(it)$ and use (***) to transform integration along \int_0^c into integration along \int_c^∞ .

If you do part d) correctly, you should see that the following folklore 'identities' make some sense:

$$1 + 1 + 1 + 1 + 1 + 1 + \dots = -\frac{1}{2}$$

1 + 2 + 3 + 4 + 5 + 6 + \dots = -\frac{1}{12}