1000-1M19WFM Introduction to Modular Forms
Tutorial 1 — March &

Written assignment: exercises marked with (H), due on March 15.

1.

Show that formula
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defines a left group action of SLy(R) in the upper halfplane H = {z € C : Im(z) > 0}.

. Let k > 0 be an integer and V = {f : H — C} be the space of holomorphic functions

in the upper halfplane. Show that formula

(f’k@ Z>><Z) = <czid>kf(ifi§)

defines a right group action of SLy(R) in V.

. (Poisson summation on the real line) Let g : R — C be a differentiable function of

rapid decay, that is |g(z)| = O(|z|7¢) and |¢'(z)| = O(|z|~¢) when # — oo for some
¢ > 1. Its Fourier transform is defined as
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. Use previous exercise to prove the Lipshitz formula
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for integer £ > 2 and z € H.

. Use the Lipshitz formula to compute the Fourier coefficients of the Eisenstein series
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(k > 4, even).
. The Bernoulli numbers By, By, ... are defined by the generating function
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Prove Euler’s formula for the values
B By (27r7l)k
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of the Riemann zeta function ((s) = >~ n~* at even integers k = 2,4,6, . ..

Make a conclusion about rationality of Fourier coefficients of the (renormalized)

Eisenstein series
Ey(2) = Gi(2) /¢ (k).



