Written assignment: exercises marked with (H), due on March 15.

1. Show that formula

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) z=\frac{a z+b}{c z+d}
$$

defines a left group action of $\mathrm{SL}_{2}(\mathbb{R})$ in the upper halfplane $\mathcal{H}=\{z \in \mathbb{C}: \operatorname{Im}(z)>0\}$.
2. Let $k \geq 0$ be an integer and $V=\{f: \mathcal{H} \rightarrow \mathbb{C}\}$ be the space of holomorphic functions in the upper halfplane. Show that formula

$$
\left(\left.f\right|_{k}\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\right)(z)=\frac{1}{(c z+d)^{k}} f\left(\frac{a z+b}{c z+d}\right)
$$

defines a right group action of $\mathrm{SL}_{2}(\mathbb{R})$ in $V$.
(H)3. (Poisson summation on the real line) Let $g: \mathbb{R} \rightarrow \mathbb{C}$ be a differentiable function of rapid decay, that is $|g(x)|=O\left(|x|^{-c}\right)$ and $\left|g^{\prime}(x)\right|=O\left(|x|^{-c}\right)$ when $x \rightarrow \infty$ for some $c>1$. Its Fourier transform is defined as

$$
\hat{g}(y)=\int_{-\infty}^{+\infty} g(x) e^{-2 \pi i x y} d x
$$

Prove that

$$
\sum_{n \in \mathbb{Z}} \hat{g}(n)=\sum_{n \in \mathbb{Z}} g(n) .
$$

(H)4. Use previous exercise to prove the Lipshitz formula

$$
\sum_{n \in \mathbb{Z}} \frac{1}{(z+n)^{k}}=\frac{(-2 \pi i)^{k}}{(k-1)!} \sum_{r=1}^{\infty} r^{k-1} e^{2 \pi i r z}
$$

for integer $k \geq 2$ and $z \in \mathcal{H}$.
(H)5. Use the Lipshitz formula to compute the Fourier coefficients of the Eisenstein series

$$
G_{k}(z)=\frac{1}{2} \sum_{\substack{m, n \in \mathbb{Z} \\(m, n) \neq(0,0)}} \frac{1}{(m z+n)^{k}}
$$

( $k \geq 4$, even).
6. The Bernoulli numbers $B_{0}, B_{1}, \ldots$ are defined by the generating function

$$
\frac{x}{e^{x}-1}=\sum_{k=0}^{\infty} B_{k} \frac{x^{k}}{k!}
$$

Prove Euler's formula for the values

$$
\zeta(k)=-\frac{B_{k}(2 \pi i)^{k}}{2 k!}
$$

of the Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} n^{-s}$ at even integers $k=2,4,6, \ldots$
Make a conclusion about rationality of Fourier coefficients of the (renormalized) Eisenstein series

$$
E_{k}(z)=G_{k}(z) / \zeta(k) .
$$

