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Abstract

In this lecture we will try to give some examples that will allow us to get closer to
the concept of modular form and to understand why they are so important in modern
mathematics. We will start off with basic definitions in that area, like a modular group
and its fundemental area.

1 First Steps
The following example is significant in both projective geometry and conformal field theory.
Let f be a meromorphic function in a domain D in C. The Schwarz derivative of f is usually
defined as follows [25]:

{f, z} := (ln f ′)′ − 1

2
((ln f ′)′)

2
=

f ′′′

f ′ − 3

2

(
f ′′

f ′

)2

. (1)

It turns out to have a remarkable connection with Fuchsian differential equations [6]

y′′ +
R(z)

2
y = 0. (2)

More precisely, if y1 and y2 are two linearly independent solutions of (2), then the function
f := y1/y2 turns out to be a solution of the Schwarz equation,

{f, z} = R(z). (3)

The converse statement is also true, so if f(z) is locally univalent [8] and satisfies (3), then
the functions

y1 =
f√
f ′ and y2 =

1

f ′

are solutions of (2).
When Schwarz was alive, it was a very popular problem to study classes of equations

whose solutions are algebraic. The initial impetus was the hyperbolic equation

u′′ +
γ − (α + β + 1)x

x(1− x)
u′ − αβ

x(1− x)
u = 0, (4)
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where α, β, γ are some real parameters satisfying α+β+γ = π, for which the sought solution
u(x) should be algebraic. Following the framework, one should write the corresponding
Schwarz equation, which in our case takes the form:

{z, x} =
1− λ2

4x2
+

1− µ2

4(1− x)2
+

1 + ν2 − λ2 − µ2

4x2
, (5)

λ = 1− γ, µ = γ − α− β, ν = α− β,

where z := u2/u1 is the ratio of two independent solutions of equation (4). But then the
Wronskian

W = u2u
′
1 − u1u

′
2 ∼ exp

(
−
∫

γ − (α + β + 1)x

x(1− x)
dx

)
= x−γ(1− x)γ−α−β−1

implies that u1 and u2 are algebraic if γ, α + β ∈ Q. Moreover, it can be shown that
α, β, γ ∈ Q.

We are rather interested in relations between different systems of ODE’s. For example, a
natural question arises: when some systems are strongly equivalent, in other words, equivalent
under the non-degenerate changes ui 7→

∑
j aijui of dependent variables? For the simplest

case of the general second-order ODE

u′′ + pu′ + qu = 0 (6)

a substitution u = kv, where k is a nonzero function depending on x, gives the following
equation:

v′′ +

(
p+ 2

k′

k

)
v′ +

(
q + p

k′

k
+

k′′

k

)
v = 0.

Choose k in order for the coefficient at v′ to vanish. ♣In that way we obtain an invariant
of this equivalence relation, namely the coefficient at v, which turns out to be the Schwarz
derivative:

R(x) = q + p
k′

k
+

k′′

k
= q − p2

4
− p′

2
⇒ {z, x} = 2

(
q − p2

4
− p′

2

)
,

where u1 and u2 are linearly independent solutions of (6) and z := u2/u1. Hence we obtain
a significant simplification: instead of solving the nonlinear equation involving the Schwarz
derivative, it suffices to consider its linear counterpart

u′′ + qu = 0.

This framework has nice geometric interpretation. Consider the map

s : x → z(x) =
u2

u1

,

whose domain is the upper half-plane Im(x) > 0 and range is the interior of the Schwarz
triangle, that is a curvilinear polygon with three angles given via parameters α, β and γ
in the hyperbolic equation. The values of the three parameters are entirely independent of
each other, that will be shown in the future.
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♣
It can be generalized to the case of a system in n independent variables and m dependent

variables with rank r. Let u1, . . . , ur are linearly independent solutions, then a map

s : x → u1 : u2 : . . . : ur,

which acts on the Grassmanian variety Gr(m, r) = GL(m)\{m × r matrix of rank m}.
This is the main invariant we are interested in, since two (strongly) equivalent systems define
the same s-maps, up to the group of motions.

For example, when n = m = 1, r = 2 the s-map equivalence implies that

s1 ∼ s2 ⇒ {s1, x} = {s2, x},

where {·, ·} denotes the Schwarz derivative in the beginning.
If r > 1, our problem reduces to the projective geometry, namely, we have to consider

curves x → Pr−1 and invariants for them up to projective motion group PGL(r). Take r = 3,
then a curve in the plane is given by homogeneous coordinates u(x) = u0(x) : u1(x) : u2(x).
The differential equation for the unknown u:∣∣∣∣∣∣∣∣

u′′′ u′′ u′ u
u′′′
0 u′′

0 u′
0 u0

u′′′
1 u′′

1 u′
1 u1

u′′′
2 u′′

2 u′
2 u2

∣∣∣∣∣∣∣∣ = 0, (7)

where u0, u1, u2 are taken to be its solutions. If the curve is non-degenerate, then (7)
can be written as follows

u′′′ + p1u
′′ + p2u

′ + p3u = 0.

This 3-rd order linear ODE defined for a particular projective curve u is not unique: a
substitution u → ku, where k(x) ̸= 0 gives an equivalent equation

u′′′ + P1u
′ + P2u = 0,

where P1, P2 are some rational functions in pi, i = 1, 2, 3 chosen to make the coefficient of u′

equal zero. As we know from the previous paragraph, it’s helpful to consider the following
Schwarz equation, the solution of which will allow us to give an equivalent equation, that is
uniquely determined by a planar curve:

{f(x), x} =
P2(x)

4

Suppose f(x) is a solution of that equation, then do the change of variables x → y = f(x),
w = f ′u. Hence, we get an equation

w′′′ +Rw ≡ w′′′ +
P3 − P ′

2/2

(f ′)3
w = 0

Regarding the weak equivalence, one can check that R is a complete invariant of curves in
that case. That implies an interesting corollary that R = 0 if and only if the curve w is

3



Kolya Staryi Modular forms December, 2024 – January, 2025

conic. If n ≥ 3, we have the similar condition: the image of the Schwarz map is quadric, i.e
x → u(x) ∈ Pn+1 is in a quadratic hyperspace if and only if the coefficients in the system are
expressed through Christoffel symbols and the Schouten tensor of hij ≡ eθgij, where gij are
taken from the system of rank r = n+ 2 on u with n independent variables (x1, . . . , xn)

∂2u

∂xixj

= gij
∂2u

∂x1∂xn
+ A0

iju+
n∑

k=1

Ak
ij

∂u

∂xk
, (8)

where gij, Ak
ij, A0

ij are symmetric in the indices, and Ak
1n = A0

1n = 0. Recall that the
Christoffel symbols are defined as follows

Γk
ij =

1

2

∑
l

hkl

(
∂hil

∂xj
+

∂hjl

∂xi
− ∂hij

∂xl

)
,

which give rise to the Riemann curvature tensor Rl
ijk:

dπij −
∑
k

πk
i ∧ πj

k =
1

2

∑
kl

Rj
ikl dx

k ∧ dxl,

πj
i =

∑
k

Γj
ikdx

k.

Finally, the Schouten tensor which often appears in conformal geometry:

Sik =
1

n− 2

(
Rik −

R

2(n− 1)
hik

)
,

given using the Ricci and the scalar curvatures:

Rij =
∑
k

Rk
ikj,

R =
∑
ij

hijRij.

Then the generalized claim states that the coefficients in (8) are expressed as follows

Ak
ij = Γk

ij − gijΓ
k
1n,

A0
ij = −Sij + gijS1n.

The case when n = 2 is considered in [3].

2 Disclosure

2.1 The Schwarz-Chrostoffel formula

We have already mentioned that it is important to find all possible maps between any
two simply connected domains since it gives us an analytic continuation from one domain
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to another. In other words, for any two adjacent domains D1 and D2 with a common
boundary a, the regular analytic functions f1(z), f2(z) in D1 and D2 respectively, give an
analytic continuation from one domain to another. In a more rigorous form it means that
the Riemann reflection principle holds [8]

Theorem 2.1. Let Ds and Dw be two domains with boundaries that include circular arcs
as, aw (they may be just linear segments). Suppose, there is a map ω : Ds → Dw defined
by ω = f(z) such that aw corresponds to as. Let D∗

s be the domain obtained from Ds by
inversion with respect to the circle Cs of which as forms a part. Choose z ∈ Ds and z∗ ∈ D∗

s

to be such points (inverse with respect to Cs, then the points f(z) and f(z∗) are inverse with
respect to the circle Cw of which aw forms a part.

Corollary 2.2. Let w = f(z) be a function that maps an interior of a circle C onto the
interior of another circle C∗. Then f(z) is necessarily a linear transform.

The last corollary comes obvious as far as we will show that the function w = f(z) is
regular at all points of a z-plane, that eventually comes to the fact that w = f(z) is a rational
function with only one pole, i.e a linear transform.

Consider D – a polygon in the w-plane with its interior angles to be πα1, πα2, . . . , παn

and the corresponding vervices a1, . . . , an to be located in a z-plain. It is more convenient
to introduce exterior angles πµ1, πµ2, . . . , πµn tied with the interior ones by relations
παi + πµi = π. Now w = f(z) is an analytical function that maps the upper half-plane
Im(z) > 0 onto the interior of D. Then the points a1, . . . , an are on real axis and are
mapped by w = f(z) onto a linear segment. Therefore, f(z) is regular at all points on the
real axis except at the points a1, . . . , an and can be continued analytically in each of the
intervals bounded by the vertices. In other words, by the symmetry principle, we have the
mirror image of the polygon D to some D′ which turns out to be a conformal map of the
half-plane Im(z) < 0. Applying the symmetry principle once again, as a result, a point z
returns to its original position, but we obtain another figure D′′ that is congruent to D. As
a result, f(z) goes to f1(z) = Az +B, with A, B to be some constants.

Then we have
f ′′
1 (z)

f ′
1(z)

=
f ′′(z)

f ′(z)
.

Thus, the function g(z) = f ′(z)
f(z)

is single-valued in the whole z-plane, and has singularities
at a1, . . . , an, so we can consider the behaviour of f(z) in the neighborhood of the point ai.
Assume that none of a1, . . . , an is ∞. Then one can show that

f ′′(z)

f ′(z)
= − µi

z − ai
+ k(z),

where k(z) is some regular function in z = ai. But then the function g(z)+ µi

z−ai
is also regular

at ai. Perform of that procedure for all vertices allows to obtain a regular at a1, . . . , an
function:

g1(z) = g(z) +
n∑

i=1

µi

z − ai
.
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But then, taking into account that it is single-valued in the entire plane, we have that
g(z) = const. Moreover, g(z) = 0 since we have a series for f(z) due to its regularity at
z = ∞:

f(z) = f(∞) + c1z
−1 + c2z

−2 + . . . ,

while g1(∞) = 0.
Hence we obtain the desired mapping function (Schwarz-Christoffel formula as follows

f ′′(z)

f ′(z)
= −

n∑
i=1

µi

z − ai
⇒ f(z) = α

∫ z

0

dz

(z − a1)µ1(z − a2)µ2 . . . (z − an)µn
+ β, (9)

where α, β are some integration constants related to parameters of the polygon.
For example, we can construct an analytic function w = f(z) which maps the half-plane

Im(z) > 0 onto the interior of the a triangle with its angles to be πα, πβ, πγ. Let the three
vertices of the traingle correspond to the points z = 0 , z = 1, z = ∞. The formula (9)
can also be applied when the point ai coincides with the point at ∞, it can be reached by
means of a linear transformation, that takes ai into the point at infinity, namely the linear
substitution z = an − 1

ξ
. So in our case of the triangle (9) can be written as follows

f(z) = C1

∫ z

0

zα−1(1− z)β−1dz + C2.

Then one can find all sides of the triangle, for example the side c (which is opposite the
angle πγ) – it can be given by the following beta function:

c =
Γ(α)Γ(β)

Γ(α + β)
⇒ c =

1

π
sin πγΓ(α)Γ(β)Γ(γ),

the last equality is valid in virtue by Γ(x)Γ(1− x) = π
sinπx

.

2.2 Circular Arcs

Now we have to find such w = f(z) which maps the half-plane Re(z) > 0 onto the interior of
a curvilinear polygon with interior angles πα1, . . . , παn. In the previous case, we took an op-
erator invariant under linear transform, now, when we have circular acrs, linear substitutions
are replaced by general linear transforms, so we have to deal with the Schwarz derivative
(1). This differential operator has precisely this property since the following property holds

Theorem 2.3.
{W, z} ≡ {az + b

cz + d
, z} = {w, z}, ad− bc ̸= 0, (10)

Indeed, since

W ′ =
ad− bc

(cw + d)2
W ⇒ W ′′

W ′ =
w′′

w′ −
2cw′

cw + d
,

one gets (
W ′′

W ′

)′

− 1

2

(
W ′′

W ′

)2

=

(
w′′

w′

)′

− 1

2

(
w′′

w′

)2

,

6
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which completes a proof of (11).
At the points a1, . . . , an the function w = f(z) has singularities as well as its Schwarz

derivative. Choose the vertex located at z = ai, then the linear transform maps this vertex
to the origin and the adjacent circles, which intersect at z = ai, come to two straight lines,
which meet at παi as well. {w, z} is not affected by this linear transformation, so {w, z} is
singular at z = ai. But then, we have

f(z) = (z − ai)
αf1(z),

where f1(z) is regular at z = ai, f1(ai) ̸= 0. Then we will have an expression for the
Schwarz derivative as follows

{w, z} =
1

2

1− α2
i

(z − αi)2
+

βi

z − ai
+ f2(z),

where parameters βi =
1−α2

i

αi

f ′
1(ai)

f1(ai)
are real, and f2(z) is regular at z = ai. We can do the

same for all singular points ai, in that way we obtain the following expression regular at
a1, . . . , an.

{w, z} =
1

2

n∑
i=1

1− α2
i

(z − αi)2
+

n∑
i=1

βi

z − αi

+ γ. (11)

Here, the constants γ, β1, . . . , βn depend on each other in a sense of the following
relations obtained by inserting the decomposition of f(z) near z = ∞ into the expression of
{w, z}:

γ = 0, (12)
n∑

i=1

βi = 0,

n∑
i=1

(
2αiβi − α2

i + 1
)
= 0,

n∑
i=1

(
αi

(
1− α2

i

)
+ βiα

2
i

)
= 0.

In (11) there are 3n+1 independent real parameters, and that number reduces to 3n− 3
due to relations (12), so it seems, that this number is more than the number of independent
parameters implied by a poligon Pn, namely 3n− 6 (3n real parameters for a circle on which
linear transformations act, – that excludes extra 6 parameters), but this not the case due to a
linear transformation of the upper half-plane onto itself (we have to eliminate another triple
of constants). Thus, equations (12) exhaust all possible relations between the parameters
αi, βi, γ. However, it is quite difficult to work with the equation (11) since it contains n− 3
accessory parameters (apart from αi, of course) which are very complicated to be found using
only the geometry of Pn. The only case which is free of accessory parameters is that of a
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curvilinear triangle mentioned in the intro. If we take angles to be α1 = α , α2 = β, α3 = γ
the equation (11) reduces to

{w, z} =
1

(z − a)(z − b)(z − c)

[
1− α2

2
· (a− b)(a− c)

z − a
+

1− β2

2
· (b− a)(b− c)

z − b
+

+
1− γ2

2
· (c− a)(c− b)

z − c
.

]
If we take the points z1 = 0, z2 = ∞, z3 = 1 and let b → ∞ we will obtain an expression
for {w, z} as in (5).

Let us take a closer look at equation (11) and find its particular solution. Here we can
make progress thanks to

Theorem 2.4. If u1 and u2 are linearly independent solutions of the linear ODE

u′′(z) + p(z)u = 0.

Then a function w(z) = u1(z)
u2(z)

is a solution of the equation

{w, z} = 2p(z)

But then (11), (12) imply the following

Corollary 2.5. Let w = f(z) maps Im(z) > 0 onto a curvilinear polygon with n vertices on
the real axis denoted by ai and corresponding angles as παi. Then w = u1(z)

u2(z)
, where u1(z),

u2(z) are two linearly independent solutions of the following linear ODE

u′′(z) +

(
1

4

n∑
i=1

1− α2
i

(z − αi)2
+

1

2

n∑
i=1

βi

z − αi

)
u(z) = 0, (13)

where real β are constrained by these relations:∑
i

βi = 0,

n∑
i=1

(
−α2

i + 2αiβi + 1
)
= 0,

n∑
i=1

(
αi(1− α2

i ) + βiα
2
i

)
= 0.

For the simplest case of a curvilinear polygon with two vertices, choose one of two points
as z = 0 the theorem 2.4 with the corollary 2.5 together give:

2p(z) =
1− µ2

2z2
+

β

z
.

8
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But then the relations between αi and βi give that β = 0 and the Schwarz equation has such
form

{w, z} =
1− µ2

2z2
,

with the corresponding 2-nd order ODE

u′′ +
1− µ2

4z2
u = 0.

Its solution can be written as follows

u = C1z
1+µ
2 + C2z

1−µ
2 .

Hence, we have the following conformal map from the polygon to the domain Im(z) > 0

w =
A1z

µ + A2

B1zµ +B2

In the case of a curvilinear triangle, the equation (13) takes a form of the hypergeometric
equation (three vertices take its positions at points z = ∞, at z = 0 and z = 1:

z(1− z)y′′ + (c− (a+ b+ 1)z) y′ − aby = 0, (14)

where a, b, c are defined using angles

a =
1

2
(1 + β − α− γ),

b =
1

2
(1− β − α− γ),

c = 1− α.

The solution of (14) is given by the following definite integral for b > 0, c > b

F (a, b, c; z) =
Γ(c)

Γ(b)Γ(c− b)

1∫
0

tb−1(1− t)c−b−1(1− zt)−adt.

To apply the mapping theorem we need another solution of (14), let us obtain it by performing
the substitution of 1− z instead of z which gives another hypergeometric equation

z(1− z)y′′ + (a+ b− c+ 1− (a+ b+ 1)z) y′ − aby = 0.

It can be solved

y =

1∫
0

tb−1(1− t)a−c(1− zt)−adt.

Replace z by 1− z, then the mapping function takes the following explicit form

9
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Corollary 2.6.

w = f(z) =

1∫
0

t−
1
2
(1+α+β+γ)(1− t)−

1
2
(1+α−β−γ)(1− zt)−

1
2 (1 + β − α− γ)dt

1∫
0

t−
1
2
(1+α+β+γ)(1− t)−

1
2
(1+γ−β−α)(1− t+ zt)−

1
2 (1 + β − α− γ)dt

,

maps Im(z) > 0 onto a curvilinear triangle with the angles πα, πβ, πγ sum of which is
smaller than π.

If α+β+γ > 1 then these solutions should be replaced by other integral representations
of hypergeometric functions, you can read more about them in [12].

3 Modular forms over SL(2,Z)

3.1 Doubly-perioding functions

Firstly, let us construct a one-periodic complex function f(z) (holomorphic or meromorphic),
so there exists such w ̸= 0 that f(z) is invariant uner the action of a group Zw

f(z + w) = f(z) ∀z ∈ C

Put w = 1, so we have to find a Z-periodic function on C. Let us apply averaging for f(z)
which means that we have to consider the following periodic expression:

f(z) =
∑
n∈Z

ϕ(z + n) ⇒ f(z) =
∑
n∈Z

1

(z + n)2
.

We can guess that f(z) is 1/(sin(πz))2 which can be shown more explicitly. Consider a
Lauren expansion for f(z) nrear its poles z = 0:

f(z) =
1

z2
+
∑
n̸=0

1

(z + n)2
=

1

z2
+ holomorphic near z = 0.

But then we ahve for the inverse square of sine function

1

sin(πz)2
=

1

(πz)2
+ holomorphic at 0.

Now, as Im(z) → ∞ we have that the following two expressions

f(z) → 0

π2/ sin(πz)2

go to zero. Hence, by virtue of Liouville theorem∑
n∈Z

1

(z + n)2
=

π2

sin2(πz)
.

10
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We can do the same for meromorphic functions f on C that are periodic with respect to a
lattice Λ (they are called elliptic functions)

Λ = Zw1 + Zw2 ⇔ f(z + λ) = f(z) ∀z ∈ C, λ ∈ Λ,

where w1 and w2 are some linearly independent numbers. Now, the procedure of averaging
which we used for the previous example can be applied for elliptic functions as well. Just as
in the previous case, consider the following sums∑

λ∈Λ

1

(z + λ)k
. (15)

Choose k = 2 to define the Weierstrass ℘-function

℘(z) =
1

z2
+
∑

0̸=λ∈Λ

(
1

(z + λ2
− 1

λ2

)
, (16)

the expression of which is invariant under the substitution z → z + λ in (16), since so is its
derivative

℘′(z) = −2
∑
λ∈Λ

1

(z + λ)3
⇒ ℘′(z + λ) = ℘′(z) ⇒ ℘(z + λ) = ℘(z) + Aλ.

where the constant Aλ can be found by choosing some specific z, for example take z = −λ
2
,

so Aλ turns to zero. In fact, we have the folllowing algebraic relation, which gives us a map
between (℘, ℘′) and its corresponding elliptical curve

Theorem 3.1. Let Λ be a fixed lattice on which a Weierstrass function is defined. Then the
following relation holds

℘′2 = 4℘3 − 60g2℘− 140g3, (17)

where g2 and g3 are the following series defined for Λ:

g2(Λ) = 60
∑

0̸=λ∈Λ

1

λ4
,

g3(Λ) = 140
∑

0̸=λ∈Λ

1

λ6
.

Hence we can explicitly write the uniformizing map between (℘, ℘′) and the torus C/Λ
which is given by (17)

C/Λ

((

C

>>

// {y2 = 4x3 − 60g2x− 140g3}

11
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z + Λ

%%

z

==

// (℘(z), ℘′(z))

For a given lattice Λ = Zw1+Zw2 we have an ordered basis given as w1 and w2, the ratio
of which w1/w2 lies in the upper half-plane. Suppose, we want to choose another ordered
basis, which does not change the lattice Λ:

C/ (Zw1 + Zw2) ∼= C/ (Zw′
1 + Zw′

2) .

Actually, that change is implied by the action of the modular group SL2(Z):(
w′

1

w′
2

)
=

(
a b
c d

)
·
(
w1

w2

)
Simply speaking we make transform the lattice basis in a linear way, so for a fixed

z ∈ H – the upper half-plane, a basis z, 1 goes to az + b, cz + d, which is equivalent to
(az + b)/(cz + d), 1. The first part here

γ(z) =
az + b

cz + d

is called linear fractional transormations cause it sends H to itself. It is these γ(z) that give
the equivalence classes of moduli spaces

Theorem 3.2. If for z, z′ ∈ H there is such γ ∈ SL2(Z) that γz = z′, then for the complex
toris C/(Zz + Z) ∼= C/(Zz′ + Z).

This statement gives rise to the notion of modular curve, namely the quotient Γ/H, where
Γ = SL2(Z).

3.2 Elliptic modular forms

We have already introduced functions g2 = g2(Λ) and g3 = g3(Λ) through the elliptic curve
map (℘, ℘′) → C/Λ. Certainly, these fucntions depend on the lattice (module), so in this
sense we call them as modular forms. These functions have many amazing properties which
give a lot of generalizations, but now we only need homogeneity:

g2(µΛ) = µ−4g2(Λ),

g3(µΛ) = µ−6g3(Λ).

Now, let us consider the general homogeneous functions F , which has a degree −k on lattices,
so

F (µΛ) = µ−kF (Λ).

One can normalize a basis of the lattice w1, w2 to make it z = w1/w2, 1, then the homoge-
neous property turns as

F (w−1
2 Λ) = wk

2F (Λ).

12
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As we have already mentioned a function of lattices don’t depend on choice of basis. Now
combine this basis transform along with normalization. Then we get for z = w2/w2 ∈ H:(

a b
c d

)(
z
1

)
=

(
az + b
cz + d

)
⇒ f(z) = F (Z · z + Z · 1) ⇒

⇒ F (Z · (az + b) + Z · (cz + d)) = (cz + d)−kF

(
Z · az + b

cz + d
+ Z · 1

)
.

Hence,

f(z) = (cz + d)−kf

(
az + b

cz + d

)
.

That gives us motivation to treat to modular forms as to elliptic modular forms of weight k,
namely the holomorphic functions satisfying the automorphy condition, this is the definition
we will use in the next subsection.

3.3 Fundemental domain

Here we will consider SL2(Z) in more details. Let H ⊂ C denote the upper half-plane,
namely the set of z ∈ C such that Im(z) > 0. Recall that SL2(Z) is defined a s a set of
two-by-two matrices with unit determinant:

SL2(Z) :=
{(

a b
c d

)
∈ M2(Z) | ad− bc = 1

}
with the matrix multiplication as the group operation. This is why we can regard SL2(Z) as
a discrete subgroup of the group of two-by-two matrices with the unit determinant SL2(R).

A natural action of SL2(Z) on H is given by the Möbius transformation:

γ =

(
a b
c d

)
∈ SL2(Z), γ · z :=

az + b

cz + d
,

where z ∈ H \ {−d/c}. Hereafter, the dot in the definition of the action is usually omitted.
Since Im(γz) = Im(z)/|cz + d|2, a point γz belongs to H and therefore the above is indeed
an action.

Now we identify H with its image in the Riemann sphere. In this way, the action of
SL2(Z) can be extended to the points z = −d/c and z = ∞:

γ · ∞ =
a

c
, γ · (−d

c
) = ∞.

Before giving the definition of
We are ready to give a formal definition of a modular form.

Definition 3.3. A modular form of weight k for the modular group SL2(Z) is a function
f : H → C satisfying the following three conditions:

1. f is a holomorphic function on H.

13
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2. For any z ∈ H and any matrix in SL2(Z) we have the following:

f

(
az + b

cz + d

)
= (cz + d)kf(z). (18)

3. f is required to be bounded as z → i∞.

Using the holomorphy of f at ∞ we can use the Fourier decomposition for f(z)

f(z) =
∞∑
n=0

anq
n q = e2πiz. (19)

If in addition a(0) = 0, then f(z) is called a cusp form. The set of all modular forms for a
given integer k ∈ Z is denoted as Mk.

Now we give a notion of a fundemental domain for SL2(Z). The action of a modular group
is given up to an equivalence of orbits. So, if we collect each one point of these orbits we get
a fundamental set for SL2(Z). Let us find the fundamental domain for SL2(Z). But firstly
we want to prove that there are two particular elements in SL2(Z), namely the following
matrices: T and S which correspond to translation and rotation respectively:

Theorem 3.4. T =

(
1 1
0 1

)
and S =

(
0 −1
1 0

)
generate the entire SL2(Z)

Take z ∈ H for which the lattice {mz+n | m,n ∈ Z} is defined. Suppose a point cz+ d,
where c, d are relatively prime, is a point with minimal modulus. Then there exist integers
a, b such that

γ1 =

(
a b
c d

)
∈ SL2(Z).

By

Im(γz) =
Im(z)

|cz + d|2
,

we get that
Im(γ1z) ≥ Im(γz) ∀γ ∈ SL2(Z).

Now set the following point

z∗ = T nγ1z = γ1z + n s.t |Re(z∗)| ≤ 1

2
,

We have the impossibility of |z| < 1 for then Im(−1/z∗) = Im(z∗)/|z ∗ |2 > Im(z∗), which
contradicts to the maximality off Im(z∗). Therefor, z∗ ∈ F1 and z is equivalent under SL2(Z).

Suppose there are two equivalent points z1 and z2 = γz1 in F1 and γ ̸= ±1. Then we
have that the coefficient c ̸= 0 for γ. Since Im(z) >

√
3/2 for all z ∈ F1 we get

√
3

2
< Im(z2) =

Im(z1)

|cz1 + d|2
≤ Im(z1)

c2Im(z1)2
<

2

c2
√
3
⇒ c = ±1

Assume that Imz1 ≤ Imz2. But | ± z1 + d| ≥ |z1| > 1, so we get a contradiction, which leads
to a proof of the theorem.

14
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3.4 Eisenstein series

Consider the following function (known in literature as Eisenstein series) defined on z ∈ H
with an even integer parameter k ≥ 4:

Gk(z) =
∑

m,n∈Z\{0}

(mz + n)−k.

Our main goal is to show that Gk(z) is a basic example of modular forms of weight k. But
firstly, note that the limit

lim
z→i∞

∑
m,n∈Z\{0}

(mz + n)−k =
∑

n∈Z\{0},m=0

n−k + lim
z→i∞

∑
m,n∈Z\{0}, m ̸=0

(mz + n)−k

= 2
∞∑
n=1

n−k = 2ζ(k),

equals to double zeta function ζ(k). So Gk(z) has no nonnegative term in its Fourier expan-
sion, and is holomorphic at +i∞. Now check the invariance of the Eisenstein series under
an action of SL2(Z). Indeed,

Gk

∣∣∣
k
T (z) =

∑
m,n∈Z ;m,n ̸=0

(mz +m+ n)−k = Gk(z),

Gk

∣∣∣
k
S(z) = z−k

∑
m,n∈Z ;m,n ̸=0

(nz −m)−k = Gk(z).

Hence, we have established that Gk(z) is a modular form of weight k for SL2(Z). Now there
is a turn of Fourier series for Gk(z). We have already found the constant term, namely 2ζ(k),
for higher terms, let us apply the following relation:

Theorem 3.5.

ζ(k) = −(2πi)k

2k!
Bk,

where Bk denotes the k-th Bernoulli number defined by

x

ex − 1
=

∞∑
k=0

Bk

k!
xk.

It can be seen by comparing powers of the series given by logarithmic derivative with
respect to z of the following expressions:

πz cot(πz) = 1 + 2
∞∑
n=1

z2

z2 + 4π2n2
= 1 + 2

∞∑
n=1

ζ(2n)

(
t

2π

)m

,

πz cot(πz) = iπz +
2iπz

e2iπz − 1
≡ t

2
+

t

et − 1
=

t

2
+

∞∑
i=0

Bi

i!
ti.

15
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Comparing the k-th power of x we obtain the desired result. Now rewrite the last formula
as follows

π cot(πz) = iπ

(
1− 2

1− e2πiz

)
= iπ

(
1− 2

∞∑
n=0

e2πinz

)
Substituting e2πiz = q, as it’s appropriate for Fourier analysists, we have π cot(πz) =
−iπ (1 + 2n

∑
n q

n). But then

1

z
+

∞∑
n=−∞, n ̸=0

(
1

z + n
− 1

n

)
= −iπ

(
1 + 2

∑
n

qn

)

If we differentiate it k − 1 times with respect to z, we obtain

(k − 1)!
∞∑

n=−∞

(z + n)−k = (2πi)k
∞∑
n=1

nk−1qn (20)

By the definition of Gk(z) one gets

Gk(z) = 2ζ(k) + 2
∞∑

m=1

∞∑
n=−∞

(mz + n)−k = 2ζ(k) + 2
(2πik)k

(k − 1)!

∞∑
m=1

∞∑
n=1

nk−1qmn,

So by (20) and theorem 3.2:

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∑
n≥1

σk−1(n)q
n

)
,

where σr(n) =
∑

d|n d
r denotes the divisor sum function. One can "normalize" Gk(z) by

dividing to 2ζ(k):

Ek(z) = 1− 2k

Bk

∑
n≥1

σk−1(n)q
n.

3.5 Weight formula

Let f be a meromorphic function defined on H. Fix a point p ∈ H, then let vp(f) be
the order of zero of f at P , and v∞(f) – the least integer n for which a(n) is nonzero in

f(q = e2πinz) =
∞∑
n=0

a(n)qn. Then one can prove the weight formula for f – non-zero modular

function of weight k for SL2(Z):

Theorem 3.6. Let p = −1
2
+ i

√
3

2∑
P∈H\SL2(Z), p̸=i,P

vP (f) + v∞(f) +
1

3
vp(f) +

1

2
vi(f) =

k

12
. (21)
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Using (21) we see that the C-vector space Mk is one-dimensional for 4 ≤ k ≤ 10 and Mk

is generated by Gk. Therefore in that case we do not have a cusp form – it occurs the first
time when k = 12. The following example represents a cusp form with of weight 12 for a
group SL2(Z):

∆(z) =
1

1728

(
E3

4(z)− E2
6(z)

)
.

In terms of Fourier expansions

E4(z) = 1 + 240
∑
n≤1

σ3(n)q
n,

E6(z) = 1− 504
∑
n≤1

σ5(n)q
n,

it can be written as follows

∆(n) =
1

1728

(
1728q − 41472q2 + . . .

)
=
∑
n

τ(n)qn,

where τ(n) denotes the so-called Ramanujan’s tau function.
Interesting fact: each space Mk of modular forms weight k is generated by only E4(z)

and E6(z), that can be expressed by the following conjecture

Theorem 3.7.
f(z) =

∑
a,b∈Z≥0, 4a+6b=k

cabE4(z)
aE6(z)

b,

with some constants cab ∈ C

It can be shown that the following decomposition takes place

Theorem 3.8.
Mk = CEk ⊕ Sk,

Theorem 3.9. The discriminant function ∆(z) gives an isomorphism between Mk and Mk−12

Corollary 3.10. Dimension formula:

dimC Mk =

{⌊
k
12

⌋
if k ≡ 2 (mod 12),

1 +
⌊

k
12

⌋
if k ̸≡ 2 (mod 12).
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