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Published articles

Here is the description of the former research. Articles are numbered as in CV.

5. Real and Imaginary Forms of Quantum Groups, Proceedings of the first semester
“Quantum Groups” of Euler IMI, Leningrad, 1990, Lect. Notes Math. 1510 (1992) 67–
78.

Real forms of complex ribbon braided categories were defined via descent data following the
approach of Deligne and Milne to symmetric categories. The definition is not equivalent to
real forms of Hopf algebras (*-structure), but often includes them and gives new examples
(imaginary structure).

10. Quantum Function Algebra at Roots of 1, Adv. Math. 108 (1994) n. 2, 205–262
(with C. De Concini).

We introduce a form of the quantum function algebra on a Drinfeld-Jimbo quantum group
over the ring Q[q, q−1]. Specializing q to a root of 1, we show that over the cyclotomic
field this algebra is a projective module over its central subalgebra, which is the usual
coordinate algebra of the group. We study induced Poisson-Lie structure of the group. A
bundle of algebras on a complex simply connected Lie group with hamiltonian flows in the
bundle is constructed. Some representations of the quantum function algebra in a root of
1 are constructed as an application.

12. Modular Transformations for Tensor Categories, J. Pure Appl. Algebra 98 (1995)
n. 3, 279–327.

For an abelian braided tensor category we investigate a Hopf algebra F in it, the “braided
function algebra”. We show the existence of the object of integrals for any Hopf algebra
in a rigid abelian braided category. If some assumptions of finiteness and non-degeneracy
are satisfied, the Hopf algebra F has an integral and there are morphisms S, T : F → F ,
called modular transformations. They yield a representation of the modular group. The
properties of S are similar to those of the Fourier transform.

14. Invariants of 3-manifolds and projective representations of mapping class groups via
quantum groups at roots of unity, Commun. Math. Phys. 172 (1995) 467–516.

Realization of the next article for modules over finite dimensional (factorizable and not)
ribbon Hopf algebra with an example of the quotient H = uq(g) of the quantized universal
enveloping algebra Uq(g) at a root of unity q. The mapping class group Mg,1 of a surface of
genus g with one hole projectively acts by automorphisms in the H-module H∗⊗g, if H∗ is
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endowed with the coadjoint H-module structure. There exists a projective representation
of the mapping class group Mg,n of a surface of genus g with n holes labelled by finite di-
mensional H-modules X1, . . . , Xn in the vector space HomH(X1⊗. . .⊗Xn, H

∗⊗g). Also an
invariant of closed oriented 3-manifolds is constructed, which for Hopf algebras reduces to
Hennings invariant and for semisimple categories reduces to Reshetikhin–Turaev invariant.

15. Ribbon Abelian Categories as Modular Categories, J. Knot Theory Ramif. 5 (1996)
n. 3, 311–403.

A category N of labeled ribbon graphs is extended by new generators called fusing, braid-
ing, twist and switch with relations which can be called Moore–Seiberg relations. A functor
to N is constructed from the category Surf of oriented surfaces with labeled boundary
and their homeomorphisms. Given an (eventually non-semisimple) k-linear abelian ribbon
braided category C with some finiteness conditions we construct a functor from a central
extension of N with the set of labels Ob C to k-vector spaces. Composing the functors we
get a modular functor from a central extension of Surf to k-vector spaces.

16. Extensions and Contractions of the Lie Algebra of q-Pseudodifferential Symbols on
the Circle, J. Funct. Anal. 143 (1997) n. 1, 55–97 (with B. Khesin and C. Roger).

We construct cocycles on the Lie algebra of pseudo- and q-pseudodifferential symbols of
one variable and on their close relatives: the sine-algebra and the Poisson algebra on
two-torus. A “quantum” Godbillon-Vey cocycle on (pseudo)-differential operators appears
in this construction as a natural generalization of the Gelfand-Fuchs 3-cocycle on peri-
odic vector fields. A nontrivial embedding of the Virasoro algebra into (a completion
of) q-pseudodifferential symbols is described. q-analogs of the KP and KdV-hierarchies
admitting an infinite number of conserved charges are proposed.

17. Squared Hopf algebras and reconstruction theorems, Proc. of the Workshop “Quantum
Groups and Quantum Spaces”, Banach Center Publ. 40, Inst. Math. Polish Acad. Sci.,
Warszawa 1997, 111–137.

I. Squared Hopf algebras, Mem. Amer. Math. Soc. 142 (1999), no. 677, 184 p.

Given an abelian k-linear rigid monoidal category V , where k is a perfect field, we define
squared coalgebras as objects of cocompleted V ⊗ V (Deligne’s tensor product of cate-
gories) equipped with the appropriate notion of comultiplication, which is a morphism in
V ⊗ V ⊗ V . Based on this, (squared) bialgebras and Hopf algebras are defined without
use of braiding. If V is the category of k-vector spaces, squared (co)algebras coincide with
conventional ones. If V is braided, a braided Hopf algebra can be obtained from a squared
one. The squared notions (coalgebras, bialgebras, Hopf algebras) are objects of the co-
completed tensor square of the initial category V , whence the terminology. The structure
maps – comultiplication, multiplication etc. – are morphisms in tensor powers of V . The
associativity and other properties mean equality of two composite morphisms in tensor
powers of V .
For instance, a squared bialgebra is defined as an object of V ⊗ V having the structure
of a squared coalgebra and of an algebra in the monoidal category V ⊗ V with compati-
bility axioms which require that the multiplication and the unit were homomorphisms of
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coalgebras. (There are several monoidal structures in V ⊗V and we choose a special one.)
If V is braided, a squared Hopf algebra determines a braided Hopf algebra, but not vice
versa. Furthermore, squared quasitriangular Hopf algebra is a solution to the problem of
defining quantum groups in braided categories.
Any such braided abelian category V has a canonically associated squared bialgebra of

that kind — the coend
∫X∈V

X �X∗.
Reconstruction theorems give equivalence of squared co- (bi-, Hopf) algebras in V and
corresponding fibre functors to V (which is not the case with the usual definitions). Philo-
sophically, categories over the category V are fully encoded in terms of coalgebras living
in V ⊗ V and vice versa.
The monoidal version of the reconstruction theorem also holds. Namely, the category of
monoidal k -linear exact faithful functors ω : C → V (C is essentially small) and the
category of squared bialgebras in V are equivalent.

18. Quantum supergroups of GL(n|m) type: differential forms, Koszul complexes and
Berezinians, Duke Math. J. 90 (1997) n. 1, 1–62 (with A. Sudbery).

We introduce and study the Koszul complex for a Hecke R-matrix. Its cohomology, called
the Berezinian, is used to define quantum superdeterminant for a Hecke R-matrix, gen-
eralizing the classical case [4]. Their behaviour with respect to Hecke sum of R-matrices
is studied. Given a Hecke R-matrix in n-dimensional vector space, we construct a Hecke
R-matrix in 2n-dimensional vector space commuting with a differential. The notion of a
quantum differential supergroup is derived. Its algebra of functions is a differential co-
quasitriangular Hopf algebra, having the usual algebra of differential forms as a quotient.
Examples of superdeterminants related to these algebras are calculated. Several remarks
about Woronowicz’s theory are made.

22. Integrals for braided Hopf algebras, (with Yu. Bespalov, T. Kerler and V. Turaev), J.
Pure Appl. Algebra, 148 (2000), no. 2, 113–164.

Let H be a Hopf algebra in a rigid braided monoidal category with split idempotents.
We prove the existence of integrals on (in) H characterized by the universal property,
employing results about Hopf modules, and show that their common target (source) object
of integrals is invertible. This generalizes the result for rigid braided monoidal abelian
categories [16]. The fully braided version of Radford’s formula for the fourth power of the
antipode is obtained. The results apply to topological Hopf algebras, e.g. a torus with a
hole, which do not have additive structure.

II. Non-Semisimple Topological Quantum Field Theories for 3-Manifolds with Corners,
Lect. Notes in Math., vol. 1765, Springer-Verlag, Heidelberg, 2001, vi+379 p. (with
T. Kerler),

In this book we describe extended topological quantum field theories (TQFT’s) as double
functors between two naturally defined double categories: one of topological nature, made
of 3-manifolds with corners, the other of algebraic nature, made of linear categories, func-
tors, vector spaces and maps. The conventional notion of TQFT’s of Atiyah’s, as well as
the notion of a modular functor from axiomatic conformal field theory are unified in this
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concept. We construct a large class of such extended TQFT’s, assigning a double functor
to every abelian modular category, which does not have to be semisimple.

27. External tensor product of perverse sheaves, Ukr. Math. J. 53 (2001), no. 3, 311–322.
30. Tensor products of categories of equivariant perverse sheaves, Cahiers Topologie Géom.
Différentielle Catég. XLIII-1 (2002), 49–79.

We prove that the Deligne tensor product of categories of equivariant constructible perverse
sheaves is again such a category. Precisely, the product of categories on a complex algebraic
G-variety X and an H-variety Y is the category corresponding to the G×H-variety X×Y
– product of constructible spaces.

Hopf categories

21. Operations and isomorphisms in a triangulated Hopf category, Methods of Func.
Analysis and Topology, 5 (1999), no. 4, 37–53.

28. Coherence isomorphisms for a Hopf category, Noncommutative structures in mathe-
matics and physics (September 24-27, 2000, Kyiv), (J. Wess and S. Duplij, eds.), NATO
ARW Proc., Kluwer Acad. Publ., Dordrecht, 283–294.

Operations in some graded Hopf categories, Preprint MPI 2001 - 44, unpublished,
www.mpim-bonn.mpg.de/html/preprints/preprints.html

31. The triangulated Hopf category n+SL(2), Applied Categorical Structures, 10 (2002),
no. 4, 331–381.

32. A model of the 2-category of equivariant derived categories, Proc. of the First
Ukrainian Math. Congress (Kyiv), August 2001, Inst. of mathematics NASU, 2002, 307–
322.

A definition of a triangulated Hopf category is proposed. It arises from the Lusztig’s
theory of quantum groups which establishes a bijection between canonical basis and some
set of simple perverse sheaves. With this theory is associated a hypothetical example of a
triangulated Hopf category.

A new feature of the proposed definition is the use of the whole equivariant derived
category instead of only semi-simple complexes. A triangulated Hopf category consists of
a family of equivariant derived categories DV depending on a vector space V equipped
with

1. operad-like operations – triangulated functors JX between equivariant derived
categories, generalizing the operation

x1 ⊗ . . .⊗ xn 7→ ∆m(x1 . . . xn) = (∆⊗ 1) . . .∆(x1 . . . xn)

for ordinary Hopf algebras, which depend on a parameter set X taken from the set of
unions of strata of some stratified space;

2. (associativity, coassociativity as particular cases of) coherence isomorphisms of
functors;
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3. functorial distinguished triangles JU → JX → JF → are given for any closed
embedding of parameter sets F ⊂ X with U = X − F ,

such that

i) a quadratic equation for coherence isomorphisms holds;

ii) diagram made with given distinguished triangles for any pair of closed embeddings
F ⊂ Z ⊂W is an octahedron.

The above triangles JU → JX → JF → reflect the specifics of triangulated
categories. Working with semisimple abelian categories we would ask for the relation
JX = JU ⊕ JF .

The coherence isomorphism imposes the use of parameter sets X and they are not
necessarily maximal possible = unions of all strata.

In the example of Lusztig’s category the parameterizing sets are unions of Bruhat
cells.

The rôle of braiding is played by the shift functor L 7→ L[Q(V )], where Q(V ) is some
integer-valued quadratic form depending on the data.

At the moment I have not proved i), but only it’s particular cases:

– associativity-associativity equation;

– coassociativity-coassociativity equation;

– coassociativity-coherence equation.

The full equation i) should follow from the above and one remaining case:

– associativity-coherence equation.

35. Special PROPs and homotopy bialgebras, Math. bulletin of the Shevchenko Sci. Soc.,
1 (2004), 59–76, in Ukrainian.

For a braided category C we construct a special PROP C such that functors of special
PROPs Bialg→ C are in bijection with braided bialgebras in C.
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Research on A∞-categories

33. Category of A∞-categories, Homology, Homotopy and Applications 5 (2003), no. 1,
1–48.

We define natural A∞-transformations and construct A∞-category of A∞-functors. The
notion of non-strict units in an A∞-category is introduced. The 2-category of (unital)
A∞-categories, (unital) functors and transformations is described.

36. Free A∞-categories, Theory and Applications of Categories 16 (2006), no. 9, 174–205
(with O. Manzyuk).

For a differential graded k-quiver Q we define the free A∞-category FQ generated by
Q. The main result is that the restriction A∞-functor A∞(FQ,A) → A1(Q,A) is an
equivalence, where objects of the last A∞-category are morphisms of differential graded
k-quivers Q → A.

38. A construction of quotient A∞-categories, Homology, Homotopy and Applications 8
(2006), no. 2, 157–203 (with S. Ovsienko)

We construct an A∞-category D(C|B) from a given A∞-category C and its full subcategory
B. The construction is similar to a particular case of Drinfeld’s quotient of differential
graded categories. We use D(C|B) to construct an A∞-functor of K-injective resolutions
of a complex. The conventional derived category is obtained as the 0-th cohomology of
the quotient of differential graded category of complexes over acyclic complexes.

39. Unital A∞-categories, Problems of topology and related questions (V. V. Sharko, ed.),
Proc. of Inst. of Mathematics NASU, vol. 3, no. 3, Inst. of Mathematics, Nat. Acad. Sci.
Ukraine, Kyiv, 2006, 235–268 (with O. Manzyuk).

We prove that three definitions of unitality for A∞-categories suggested by the first author,
by Kontsevich and Soibelman, and by Fukaya are equivalent.

41. A∞-bimodules and Serre A∞-functors, Geometry and Dynamics of Groups and Spaces
(M. M. Kapranov, S. Kolyada, Yu. I. Manin, P. Moree, and L. Potyagailo, eds.), Progress
in Mathematics, vol. 265, Birkhäuser Verlag, Basel, 2008, 565–645 (with O. Manzyuk).

We define A∞-bimodules and show that this notion is equivalent to an A∞-functor with
two arguments which takes values in the differential graded category of complexes of k-
modules, where k is a ground commutative ring. Serre A∞-functors are defined via A∞-
bimodules likewise Kontsevich and Soibelman. We prove that a unital closed under shifts
A∞-category A over a field k admits a Serre A∞-functor if and only if its homotopy
category H0A admits a Serre k-linear functor. The proof uses categories enriched in K,
the homotopy category of complexes of k-modules, and Serre K-functors. Also we use a
new A∞-version of the Yoneda Lemma generalizing the previously obtained result.

42. Quotients of unital A∞-categories, Theory Appl. Categ. 20 (2008), no. 13, 405–496
(with O. Manzyuk).
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Assuming that B is a full A∞-subcategory of a unital A∞-category C we construct the quo-
tient unital A∞-category D =‘C/B’. It represents the Au

∞-2-functor A 7→ Au
∞(C,A)modB,

which associates with a given unital A∞-categoryA the A∞-category of unital A∞-functors
C → A, whose restriction to B is contractible. Namely, there is a unital A∞-functor
e : C → D such that the composition B ↪→ C → D is contractible, and for an arbitrary
unital A∞-category A the restriction A∞-functor Au

∞(e,A) : Au
∞(D,A)→ Au

∞(C,A)modB
is an equivalence.

Let Ck be the differential graded category of differential graded k-modules. We prove that
the Yoneda A∞-functor Y : Aop → A∞(A,Ck) is a full embedding for an arbitrary unital
A∞-category A. Therefore, any unital A∞-category is equivalent to a differential graded
category with the same set of objects.

III. Pretriangulated A∞-categories, Proceedings of the Institute of Mathematics of NAS
of Ukraine, vol. 76, Institute of Mathematics of NAS of Ukraine, Kyiv, 2008, 599 p. (with
Yu. Bespalov and O. Manzyuk),

The framework of differential graded categories and functors is too narrow for many prob-
lems, and it is preferable to consider wider class of A∞-functors even dealing with dif-
ferential graded categories. We have noticed that many features of A∞-categories and
A∞-functors come from the fact that they form a symmetric closed multicategory. In the
first part of this book the theory of multicategories is presented including its new parts:
closed multicategories and multicategories enriched in symmetric multicategories. In the
second part we apply this theory to (differential) graded k-linear quivers. In this setting
we start to construct two ingredients of pretriangulated categories: the monad of shifts
and the Maurer–Cartan functor. We finish the construction in the third part, where var-
ious properties of A∞-categories and A∞-functors are discussed. In particular we obtain
the monad of pretriangulated A∞-categories and prove that zeroth homology of a pretri-
angulated A∞-category is a triangulated category. In appendices we do some algebra in
2-categories necessary for taking tensor products of A∞-categories with differential graded
categories.

44. Homotopy unital A∞-algebras, J. Algebra 329 (2011), no. 1, 190–212, Special Issue
Celebrating the 60th Birthday of Corrado De Concini.

In this article we find a cofibrant replacement Ahu
∞ of the dg-operad Ass of associative

differential graded algebras with units. As a graded operad it is freely generated by a
nullary homotopy unit i and operations mn1,n2,...,nk

, k ≥ 1, n1, . . . , nk ∈ Z≥0, of arity

n =
∑k

q=1 nq, n + k ≥ 3, and of degree 4− n− 2k. The projection morphism Ahu
∞ → Ass

is a homotopy isomorphism. It turns out that Ahu
∞ -algebras are precisely homotopy unital

A∞-algebras in the sense of Fukaya.

We construct also a cofibrant replacement for the regular Ass-bimodule Ass describing mor-
phisms of associative dg-algebras with units. This Ahu

∞ -bimodule Fhu
1 is freely generated

by elements fn1,n2,...,nk
, k ≥ 1, n1, . . . , nk ∈ Z≥0, of arity n =

∑k
q=1 nq, n+k ≥ 2, and de-

gree 3−n−2k. Instead of f0,0 a special notation v is used. The projection map Fhu
1 → Ass

is a homotopy isomorphism. It turns out that (Ahu
∞ , Fhu

1 )-algebras can be identified with
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homotopy unital A∞-morphisms, defined entirely in terms of Fukaya’s homotopy unital
A∞-data.

Research on curved algebras and coalgebras

45. Bar and cobar constructions for curved algebras and coalgebras, Matematychni Studii
40 (2013), no. 2, 115–131.

We provide bar and cobar constructions as functors between some categories of curved
algebras and curved augmented coalgebras over a graded commutative ring. These functors
are adjoint to each other.
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