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Preface

Mudrec~ �e Fiziku provadiv,
I tolkovav �kihs~ monadiv,
I dumav, vidkil~ vz�vs� svit?

Ivan Kotl�revs~kiĭ,
Vergiliva Eneı̈da, qastina tret�, 1798.1

Monoids associative up to homotopy appeared first in topology in works of Stasheff in early
sixties. Simultaneously he started to study their differential graded algebraic analogues,
called A∞-algebras. In nineties mirror symmetry phenomenon discovered by physicists
was spelled by Fukaya in a new language of A∞-categories. They combine features of
categories and of A∞-algebras. The binary composition in A∞-categories is associative
up to a homotopy which satisfies an equation that holds up to another homotopy, etc.
If these homotopies are trivial, we deal with a differential graded category. Bondal and
Kapranov gave a notion of a pretriangulated envelope of a differential graded category.
They indicated that pretriangulated differential graded categories are in the origin of the
truncated notion – triangulated categories of Grothendieck and Verdier. Inspired by all
these developments Kontsevich formulated the homological mirror conjecture: equiva-
lence of pretriangulated A∞-categories associated with a complex manifold and with its
symplectic partner. Jointly with Soibelman he proved recently this conjecture for certain
type of manifolds.

Summing up, the framework of differential graded categories and functors is too narrow
for many problems, and it is preferable to consider wider class of A∞-functors even dealing
with differential graded categories. We have noticed that many features of A∞-categories
and A∞-functors come from the fact that they form a symmetric closed multicategory.
This structure is revealed in the language of comonads.

In the first part of this book the theory of multicategories is presented including its new
ingredients: closed multicategories and multicategories enriched in symmetric multicate-
gories. In the second part we apply this theory to (differential) graded k-linear quivers.
We deduce from it various properties of A∞-categories, A∞-functors and A∞-transforma-
tions such as unitality – existence of unit or identity morphisms. Then we construct two

1
A wise man there Physics honored,
He was explaining certain monads,
And thinking: where the world came from?

Ivan Kotlyarevsky, Eneida, part III, 1798.
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ingredients of pretriangulated categories: the monad of shifts and the Maurer–Cartan
monad. First some predecessors are defined, which are monads in the category of graded
k-linear quivers. Then we deduce commutation rules between these monads and the ten-
sor comonad that defines A∞-categories. This leads to monads on the multicategory of
A∞-categories. Commutation between the monad of shifts and the Maurer–Cartan monad
is also important to us, since it turns their product into another monad, the monad of
pretriangulated A∞-categories. The latter A∞-categories constitute the main subject of
the book.

We prove that zeroth homology of a pretriangulated A∞-category is a strongly trian-
gulated category. As the name suggests, the latter notion due to Maltsiniotis is a trian-
gulated category with stronger axioms. In appendices we do some algebra in 2-categories
necessary for taking tensor products of A∞-categories with differential graded categories.

The results proven in this book open up new possibilities for researchers in algebraic
and symplectic geometry, homological algebra, algebraic homotopy theory and category
theory. Graduate courses on mirror symmetry or representation theory would benefit
from the considered topics in A∞-category theory as well. We hope that the reader will
find the developed techniques useful for his own research.

Acknowledgements. We were able to give the manuscript its final shape due to hos-
pitality and excellent conditions of work in Technische Universität Kaiserslautern and
Max-Planck-Institut für Mathematik during visits of the second author. Commutative
diagrams in this book were typeset with the diagrams package created by Paul Taylor.

Kyiv, Yuri Bespalov
April 2008 Volodymyr Lyubashenko

Oleksandr Manzyuk



Chapter 1

Introduction

A∞-algebras were introduced by Stasheff in 1963 as algebraic counterpart of his the-
ory of H-spaces, topological monoids associative up to homotopies which are in turn
coherent up to higher homotopies, etc. [Sta63]. Since then the theory of A∞-algebras
underwent quiet development motivated by topological applications in works of Smirnov
[Smi80, Smi85, Smi93, Smi01], Kadeishvili [Kad80, Kad82, Kad85, Kad88] and some other
mathematicians. The interest to the subject grew significantly, when Fukaya suggested
a construction of an A∞-category arising from symplectic geometry data [Fuk93]. This
idea was supported and developed further by Kontsevich [Kon95], who studied the phe-
nomenon of mirror symmetry, discovered by physicists. He came up with the homological
version of the mirror symmetry conjecture. It stated equivalence of two A∞-categories,
one coming from the symplectic structure of a manifold, another from the complex struc-
ture of its mirror manifold. The attempts to face this conjecture required significant
efforts on the symplectic and complex sides of the story [Fuk03, KS09, BS04]. It already
has led Kontsevich and Soibelman to the proof of homological mirror symmetry conjec-
ture for certain type of manifolds [KS01]. These findings are expected to be summarized
in the books by Fukaya, Oh, Ohta and Ono [FOOO09], by Kontsevich and Soibelman
[KS07] and by Seidel [Sei08]. On the other hand, the basic notions of A∞-categories and
of A∞-functors have been studied in works of Fukaya [Fuk02], Keller [Kel01], the second
author [Lyu03] and Soibelman [Soi04].

In the present book the A∞-category theory is elaborated aiming at another appli-
cation. In 1963 Verdier has materialized the ideas of Grothendieck about homological
algebra in the notion of triangulated category [Ver77]. It was, however, clear that the
new concept was a truncation of something underlying it. An insight came from Bon-
dal and Kapranov [BK90], who suggested to look for pretriangulated differential graded
(dg) categories, whose 0-th homology would give the triangulated category in question.
Drinfeld has succeeded in doing this for derived categories [Dri04] by relating quotient con-
structions for pretriangulated dg-categories and quotients (localizations) of triangulated
categories.

Clearly, the class of differential graded functors between pretriangulated dg-categories
is too small to provide a sufficient supply of morphisms. We propose to extend this class
to unital A∞-functors. It is advantageous to extend simultaneously the class of objects to
pretriangulated A∞-categories. The aim of this book is to define such notions and to study
their properties. Taking 0-th homology we get from these properties some known results
in the theory of triangulated (derived) categories. However, work with pretriangulated
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6 1. Introduction

A∞-categories instead of triangulated categories opens up new possibilities. For instance,
the quotient pretriangulated dg-category of complexes of quasicoherent sheaves is expected
to encode more information about the variety than the corresponding derived category,
cf. [BO02, Pol03].

1.1 Conventions and basic notions. We work within set theory in which all sets
are elements of some universes [GV73]. In particular, a universe is an element of another
universe. One of them, U (containing an element which is an infinite set) is considered
basic. It is an element of some universe U ′ ∋ U .

A structure is called U -small if it consists of sets which are in bijection with elements
of the universe U [GV73, Exposé I.1]. For instance, sets, rings, modules, categories, etc.
can be U -small. A category V is a U -category if the sets of morphisms V(X, Y ) are
U -small for all objects X, Y of V. A U -category V is U -small if and only if ObV is a
U -small set.

Let k be a U -small commutative associative ring with unity. Let gr denote the
category of graded k-modules. Let Ck = dg denote the abelian category of complexes of
k-modules with chain maps as morphisms. It is a closed monoidal category. A graded
quiver C always means for us a U -small set of objects ObC together with U -small
Z-graded k-modules of morphisms C(X, Y ), given for each pairX, Y ∈ ObC. A differential
graded category is a graded quiver C equipped with differentials m1 : C(X, Y )→ C(X, Y )
of degree 1 and a category structure such that the binary compositions m2 : C(X, Y ) ⊗
C(Y, Z) → C(X,Z) and units 1X : k → C(X,X) are chain maps. In other terms, a
differential graded category is a category enriched in dg, or a dg-category. The first
example of a differential graded category is the dg-category Ck = dg of complexes of
k-modules.

For any graded k-module M there is another graded k-module sM = M [1], its sus-
pension, with the shifted grading (sM)k = M [1]k = Mk+1. The mapping s : M → sM
given by the identity maps Mk===⇀⇁M [1]k−1 has degree −1.

Tensor product of homogeneous mappings f : X → Y , g : U → V between graded
k-modules means the following mapping X ⊗ U → Y ⊗ V of the degree deg f + deg g:

(x⊗ u).(f ⊗ g) = (−1)deg u·deg fx.f ⊗ u.g = (−1)ufx.f ⊗ u.g.

As a rule, we shorten up the usual notation (−1)deg x to (−)x. In the same spirit, (−)x+y
might mean (−1)deg x+deg y, and (−)xy might mean (−1)deg x·deg y, etc.

An A∞-category means for us a graded quiver C with n-ary compositions

bn : sC(X0, X1)⊗ · · · ⊗ sC(Xn−1, Xn)→ sC(X0, Xn),

of degree 1 given for all n ⩾ 1 (we assume for simplicity that b0 = 0) such that b2 = 0 for
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the k-linear map b : TsC→ TsC, whose matrix components are maps

b = bkl =
∑

r+n+t=k
r+1+t=l

1⊗r ⊗ bn ⊗ 1⊗t : T ksC→ T lsC (1.1.1)

of degree 1, where the tensor quiver TsC = ⊕n⩾0T
nsC = ⊕n⩾0(sC)

⊗n is defined as

TsC(X, Y ) = ⊕n⩾0T
nsC(X, Y ) = ⊕n⩾0

X1,...,Xn−1∈ObCsC(X,X1)⊗ · · · ⊗ sC(Xn−1, Y ).

In particular, T 1sC = sC, T 0sC(X,X) = k and T 0sC(X, Y ) = 0 if X ̸= Y .
The equation b2 = 0 is equivalent to the system of equations for n > 0:∑

r+k+t=n

(1⊗r ⊗ bk ⊗ 1⊗t)br+1+t = 0 : T nsC(X, Y )→ sC(X, Y ).

In particular, b1 : sC(X, Y ) → sC(X, Y ) satisfying the equation b21 = 0 is a differential.
Notice that maps here are composed from the left to the right. In general, the composition

of maps, morphisms, functors, etc. is denoted in this book by fg = f · g = f→ g→ =
g ◦ f . A function (or a functor) f : X → Y applied to an element is denoted f(x) = xf =
x.f = x•f and occasionally fx. Preimage is denoted f−1(y) = f−1y.

The compositions bn determine also operations

mn =
(
C⊗n

s⊗n→ (sC)⊗n
bn→ sC

s−1

→ C
)

of degree 2−n. A differential graded category is an example of an A∞-category for which
bn = 0 and mn = 0 if n > 2. It has only the differential m1 and an associative composition
m2, which is a chain map with respect to differentials 1 ⊗ m1 + m1 ⊗ 1 and m1. For a
general A∞-category m2 remains a chain map, but fails to be associative. Instead it is
associative up to boundary of the homotopy m3. Jointly m2 and m3 satisfy an equation,
which holds up to higher homotopy m4 and so on.

The tensor quiver TC becomes a counital coalgebra when equipped with the cut co-
multiplication ∆0 : TC(X, Y ) → ⊕Z∈ObCTC(X,Z)

⊗
k TC(Z, Y ), h1 ⊗ h2 ⊗ · · · ⊗ hn 7→∑n

k=0 h1 ⊗ · · · ⊗ hk
⊗

hk+1 ⊗ · · · ⊗ hn. The map b given by (1.1.1) is a coderivation
with respect to this comultiplication. Thus b is a codifferential. Any coderivation b :
TsC(X, Y )→ TsC(X, Y ) (thus, b∆ = ∆(1⊗ b+ b⊗ 1)) has form (1.1.1) for bn = b · pr1 :
T nsC(X, Y ) → sC(X, Y ) (in general, b0 might be non-zero, but we do not consider such
structures). Thus one of the approaches to A∞-categories is to view them as differential
graded coalgebras. This suggests to use morphisms of dg-coalgebras as A∞-functors.

An A∞-functor f : A → B is a map of objects f = Ob f : ObA → ObB, X 7→ Xf
and k-linear maps f : TsA(X, Y ) → TsB(Xf, Y f) of degree 0 which agree with the cut
comultiplication and commute with the codifferentials b. Such f is determined in a unique
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way by its components fn = f pr1 : T
nsA(X, Y ) → sB(Xf, Y f), n ⩾ 1 (we require that

f0 = 0):

f = fnm =
∑

i1+···+ik=n
fi1 ⊗ fi2 ⊗ · · · ⊗ fik : T nsA(X, Y )→ TmsB(Xf, Y f).

As shown e.g. in [Lyu03] 0-th homology of an A∞-category C is a non-unital k-linear
category. To ensure that H0(C) were unital we may ask C to be unital. An A∞-category
C is unital if for any object X of C there is a cycle Xi

C
0 ∈ C(X,X)[1]−1 such that the

chain maps −(XiC0 ⊗ 1)b2 : sC(X, Y )→ sC(X, Y ), (1⊗ Y i
C
0)b2 : sC(X, Y )→ sC(X, Y ) are

homotopic to 1. An A∞-functor f : A→ B is unital if Xi
A
0 f1−Xf i

B
0 ∈ Im b1 for all objects

X of C.
A∞-transformations r : f → g : A → B (not necessarily natural) can be also intro-

duced using coalgebra structure as (f, g)-coderivations, that is, maps r : TsA(X, Y ) →
TsB(Xf, Y g) of certain degree deg r such that r∆ = ∆(f ⊗ r+ r⊗ g). They are restored
from its components rn = r · pr1 : T nsA(X, Y )→ sB(Xf, Y g) via its matrix entries:

rnm =
∑

k+a+l=n
p+1+q=m

fkp ⊗ ra ⊗ glq : T nsA(X, Y )→ TmsB(Xf, Y g).

Given two A∞-categories A, B one can form a third one A∞(A,B) (“the category of
functors”), whose objects are A∞-functors f : A→ B and graded k-modules of morphisms
A∞(A,B)(f, g)[1] are formed by A∞-transformations r : f → g. The n-ary compositions
Bn in A∞(A,B) are given by explicit formulae [Fuk02, Lyu03, LH03]. In this book we are
going to explain this phenomenon. We show that A∞-categories form a closed category
(not a monoidal one!), and A∞(A,B) are inner homomorphism objects in this category.
Actually, we show more: A∞-categories form a closed symmetric multicategory, and we
explore consequences of this fact.

Before describing these new features we recall some already known results about
A∞-categories. ObjectsX, Y of a unital A∞-category C are said isomorphic if they are iso-
morphic in the ordinary category H0(C). If B is a unital A∞-category then C = A∞(A,B)
is unital as well. According to general terminology, A∞-functors f, g : A → B are called
isomorphic if they are isomorphic in H0(A∞(A,B)). Thus, there are natural A∞-isomor-
phisms r : f → g, p : g → f . Naturality of r, p means that they are cycles of degree
−1 in A∞(A,B)[1], which correspond to cycles of degree 0 in A∞(A,B). These cycles
are mutually inverse in the sense of H0(A∞(A,B)). This gives meaning to the notions
of A∞-equivalences f : A → B (if both A and B are unital). The full subcategory
of A∞(A,B) consisting of unital A∞-functors is denoted Au

∞(A,B). Unital A∞-cate-
gories are objects of a Cat-category (a 2-category) Au

∞ with the categories of morphisms
H0(Au

∞(A,B)). Natural A∞-isomorphisms (resp. A∞-equivalences) are precisely invert-
ible 2-morphisms (resp. quasi-invertible 1-morphisms) in this 2-category.



1.1. Conventions and basic notions. 9

The following theorem gives a criterion of quasi-invertibility for an A∞-functor ϕ with
values in a unital A∞-category: ϕ is an A∞-equivalence iffH

0(ϕ) is essentially surjective on
objects, and ϕ1 consists of homotopy isomorphisms. Notice that the source A∞-category
is not assumed unital, but is proven to be such.

1.2 Theorem ([Lyu03, Theorem 8.8]). Let C be an A∞-category and let B be a unital
A∞-category. Let ϕ : C→ B be an A∞-functor such that for all objectsX, Y of C the chain
map ϕ1 : (sC(X, Y ), b1)→ (sB(Xϕ, Y ϕ), b1) is homotopy invertible. Let h : ObB→ ObC
be a mapping. Assume that each object U of B is isomorphic to Uhϕ in H0(B). Then C

is unital, ϕ is an A∞-equivalence, and there is an A∞-functor ψ : B→ C quasi-inverse to
ϕ such that Obψ = h.

The theorem was originally proven in a more refined form, which allows to draw
inductive conclusions. If the A∞-functor ψ and the natural A∞-isomorphism r : idB →
ψϕ : B→ B are constructed up to k-th component, then the inductive procedure implies
existence of the remaining components with the required properties.

The following proposition was proven in various forms by Gugenheim and Stasheff
[GS86], Merkulov [Mer99], Kontsevich and Soibelman [KS01, Section 6.4], see also the
survey [LM08a, Proposition 2.5].

1.3 Proposition. Let (sC, d) be a differential graded quiver, let B be an A∞-category,
and let f1 : (sC, d) → (sB, b1) be a chain quiver morphism such that chain maps f1 :
sC(X, Y )→ sB(Xf1, Y f1) are homotopy invertible for all pairsX, Y of objects of C. Then
there is an A∞-category structure on C such that bC1 = d and an A∞-functor f : C → B,
whose first component is the given morphism f1.

Note that the proof is constructive. Since one knows the contracting homotopy of the
cone of a certain homotopy isomorphism, one can write down recursive formulas for the
components bn, fn, and to express them in terms of trees.

If in the above proposition the A∞-category B is unital, the statement combines with
the previous theorem. We find out that C is unital and f : C→ B gives an A∞-equivalence
of C with a full A∞-subcategory of B.

The above applies, in particular, if the graded k-modules C(X, Y ) = H(B(X, Y ),m1)
with zero differential are homotopy isomorphic to the complexes (B(X, Y ),m1) (e.g. if k
is a field). In this case it is possible to transfer the A∞-category structure from B to its
homology C = H(B), cf. Kadeishvili [Kad82]. Notice that bC1 = 0. A∞-categories with
such property are called minimal. Composition m2 in minimal A∞-categories is strictly
associative.

This construction has consequences for the derived category of a k-linear abelian cat-
egory, when k is a field. The derived category can be presented as zeroth homology
of a certain differential graded category B, the quotient of all complexes over acyclic
complexes, constructed by Drinfeld [Dri04, Section 3]. Massey products in the derived
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category are related to the operations mn for H•(B), cf. Lu, Palmieri, Wu, and Zhang
[LPWZ06].

Another application of A∞-equivalences is related to the Yoneda Lemma. Recall that
Ck denotes the differential graded category of complexes of k-modules. For any unital
A∞-category A there is the Yoneda A∞-functor Y : Aop → Au

∞(A,Ck), constructed by
Fukaya [Fuk02, Section 9]. It takes an object X of A to the A∞-functor H

X = A(X, ) :
A → Ck, Z 7→ A(X,Z). Higher components of HX and Y do not vanish, they are
given by explicit formulae, which we do not reproduce here. The first result about the
Yoneda A∞-functor is that Y is an A∞-equivalence with its image, the full subcategory
of the dg-category Au

∞(A,Ck) consisting of A∞-functors H
X . This theorem of Fukaya

[Fuk02, Theorem 9.1] was extended to arbitrary A∞-categories, unital in the above sense,
in [LM08c, Proposition A.9]. It has an important corollary:

1.4 Corollary. Let A be a unital A∞-category. Then there is a differential graded cate-
gory D with ObD = ObA and an A∞-equivalence f : A→ D such that Ob f = id.

More general A∞-form of the Yoneda Lemma is the following:

1.5 Proposition ([LM08b, Proposition A.3]). Let A be a unital A∞-category, let X be
an object of A, and let f : A→ Ck be a unital A∞-functor. Then the natural chain map
Xf → Au

∞(A,Ck)(H
X , f), defined by explicit formulae, is homotopy invertible.

For the case of a ground field k, this was also proved by Seidel [Sei08, Lemma 2.12].
The following proposition is proven in [LO06]. Several variations of hypotheses and

conclusions are listed there.

1.6 Proposition ([LO06, Proposition 8.6]). Let A, B be unital A∞-categories, and let
f : A → B be a unital A∞-functor. Let g : ObA → ObB be a mapping. Let cycles

Xr0s
−1 ∈ Z0B(Xf,Xg) be invertible in H0B for all objects X of A. Then the map g

extends to a unital A∞-functor g : A → B and the given Xr0 extend to an invertible
natural A∞-transformation r : f → g : A→ B. Furthermore, such extensions up to level
n can be continued to the full A∞-notion. That is, given An-functor (Ob g, g1, . . . , gn) and
An-transformation (r0, r1, . . . , rn) with invertible r0 (such that the m-th components of
gb− bg and rb+ br vanish for all 0 ⩽ m ⩽ n) extend to a unital A∞-functor g and to an
invertible natural A∞-transformation r.

The latter statement is due to inductive nature of the proof of Proposition 8.1 of
[LO06].

There are five notions of quotient relevant to this book:

– Verdier’s localization of triangulated categories from [Ver77, Ver96];

– Keller–Drinfeld’s quotient of dg-categories from [Dri04]. If B is a full dg-subcategory
of C, then by Drinfeld’s result there is an equivalence

H0(“Keller–Drinfeld” Ctr/Btr) ≃ “Verdier” H0(Ctr)/H0(Btr);
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– Drinfeld’s quotient of dg-categories from [Dri04]. It is equivalent to Keller–Drinfeld’s
quotient under homotopy flatness assumptions on C;

– Quotient D(C|B) of A∞-categories from [LO06], where B is a full A∞-subcategory
of C. It coincides with Drinfeld’s quotient if C is differential graded;

– Quotient q(C|B) of unital A∞-categories from [LM08c]. It is A∞-equivalent to
D(C|B).

Let us discuss the last quotient in detail. Let B be a full A∞-subcategory of a unital
A∞-category C. For A a unital A∞-category, denote by A

u
∞(C,A)modB the full A∞-subcat-

egory of Au
∞(C,A), whose objects are unital A∞-functors C → A which are contractible

when restricted to B. Contractibility means that the first components are null-homotopic.

1.7 Theorem ([LM08c, Theorem 1.3]). In the above assumptions there exists a unital
A∞-category D = q(C|B) and a unital A∞-functor e : C → D such that the composition

B ⊂ → C
e→D is contractible, and the strict A∞-functor given by composition with e

(e⊠ 1)M : Au
∞(D,A)→ Au

∞(C,A)modB, f 7→ ef,

is an A∞-equivalence for an arbitrary unital A∞-category A.

Pretriangulated dg-categories appeared in the work of Bondal and Kapranov [BK90]
under the name of enhanced differential graded categories. The reason to introduce them
lied in deficiencies of triangulated categories. From the very beginning Grothendieck and
Verdier [Ver77] understood that the notion of triangulated category is only a truncation
of the real story. However they did their best to make triangulated categories into a
powerful tool of homological algebra. The study of triangulated categories underwent a
quiet development in the frame of the theory in works of Verdier [Ver96], Neeman [Nee01],
Brown [Bro62]. On the other hand, there were attempts to build a system of axioms above
the axioms of a triangulated category. Grothendieck initiated the theory of derivateurs
which is developed further by Maltsiniotis [Mal07] and his collaborators. This modifica-
tion intended to cure several drawbacks of the usual definition: non-functoriality of the
cone, absence of any kind of product of triangulated categories etc. A less radical change
originated in works of Neeman on K-theory of triangulated categories, see [Nee05] for
a survey. These works combined with the work of Künzer [Kün07a] on Heller triangu-
lated categories led Maltsiniotis to a new notion, that of strongly triangulated categories
[Mal06]. It deals with higher dimensional analogs of triangles and octahedra, which brings
the system of axioms closer to perfection, although the usual drawbacks are still present.

However, the approach of Bondal and Kapranov seems to be more fruitful. Instead of
a mild modification of axioms they suggest to return to the origin of derived categories
— to complexes, and to work with differential graded categories D. The link with ordi-
nary k-linear categories is provided by taking the zeroth homology H0(D). Bondal and
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Kapranov gave conditions for D which ensure that H0(D) be triangulated. Precisely,
they constructed a monad Pre-Tr : dg-Cat→ dg-Cat, which we shall denote C 7→ Ctr and
call the pretriangulated envelope in the sequel. The dg-category Ctr is obtained from C

by adding formal shifts of objects and iterated cones of closed morphisms of degree 0, in
other words, by considering twisted complexes, which are formed by solutions to Maurer–
Cartan equations. Formally, an object X of Ctr is a finite sequence of objects X1,. . . ,Xp

of C together with integers n1,. . . ,np and elements uij ∈ C(Xi, Xj)
nj−ni+1, 1 ⩽ i < j ⩽ p,

satisfying the Maurer-Cartan equation

uijm
C
1 −

∑
i<a<j

(uia ⊗ uaj)mC
2 = 0, 1 ⩽ i < j ⩽ p, (1.7.1)

where mC
1 and mC

2 are the differential and composition in C respectively. If X and Y are
objects of Ctr specified by data (Xi, ni, uij)1⩽i<j⩽p and (Yk,mk, vkl)1⩽k<l⩽q, then the graded
k-module of morphisms between X and Y is given by

Ctr(X, Y ) =

p∏
i=1

q∏
k=1

C(Xi, Yk)[mk − ni].

Elements of Ctr(X, Y ) can be thought as p×q-matrices; composition mCtr

2 in Ctr is given by
matrix multiplication. Putting uij = 0 if i ⩾ j, we may view elements uij as entries of a
matrix u ∈ Ctr(X,X)1. Denoting by d the näıve (componentwise) differential in Ctr(X, Y ),
we can rewrite Maurer-Cartan equation (1.7.1) as ud − u2 = 0. The differential in Ctr is
given by fmCtr

1 = fd− fv + (−)deg fuf , for each f ∈ Ctr(X, Y ).
The multiplication TotA : Atr tr → Atr in the monad tr is an equivalence of dg-cat-

egories, which justifies the name of an envelope. The notation Tot is reminiscent of
the total complex of a bicomplex. The unit of the monad tr is the natural embedding
utr : C → Ctr of a dg-category C into its pretriangulated envelope. If the corresponding
fully faithful embedding H0(utr) : H

0(C)→ H0(Ctr) is essentially surjective on objects, C
is called pretriangulated according to [Dri04, Section 2.4]. Equivalently, an object of Ctr

is isomorphic to an object of C in H0(Ctr). Pretriangulated dg-categories are called also
exact by Keller [Kel06b, Section 4.5]. For a pretriangulated dg-category D the category
H0(D) is naturally triangulated.

The next question arose naturally: How can one obtain derived categories as zeroth
homology of dg-categories? The answer was given by Drinfeld [Dri04] who reproduced
independently and pushed further an earlier construction of Keller [Kel99]. With an
abelian category A the dg-category C = Com(A) of complexes in A and its dg-subcate-
gory B = AcycCom(A) of acyclic complexes are associated. Then the zero homology of
Keller-Drinfeld’s quotient D = C/B is the unbounded derived category of A.

The approach to differential graded categories developed by Toën is to consider a model
structure on the category of small dg-categories. His theory has some very practical
consequences. For instance, Toën and Vaquié prove that a smooth compact complex
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variety X is an algebraic space if and only if a certain dg-category Lparf(X) is saturated
[TV07]. This dg-category is formed by perfect complexes of sheaves of OX-modules.

1.8 The new features introduced in this book. Differential graded categories
arise naturally in the algebraic geometry as the categories of complexes of sheaves. In the
light of Drinfeld’s results [Dri04], it is tempting to develop the entire homological algebra
in the language of dg-categories. However, this seems hardly accessible if one confines to
dg-functors only, simply because the supply of dg-functors between dg-categories is too
poor. We share the confidence that the more flexible notion of unital A∞-functor may
help to get around the problem. For example, a dg-functor may not be invertible as a
dg-functor, but it may have a quasi-inverse which is an A∞-functor. Another example oc-
curred in this book: there are two naturally arising dg-functors quasi-inverse to each other
in A∞-sense, but not in dg-sense, see Remark 13.34. We suggest therefore to enlarge the
category of dg-categories, using unital A∞-functors, and to consider A∞-transformations
between them. Then there is no reason not to extend the context to unital A∞-categories!

Corollary 1.4 might create an impression that unital A∞-categories being A∞-equiva-
lent to dg-categories are not even needed. This is false by several arguments. The first
is natural appearance of Fukaya’s A∞-categories in symplectic geometry. Their objects
are Lagrangian submanifolds with additional data. In order to replace an A∞-category
A with a dg-category via the Yoneda construction, one has to deal with A∞-functors
Aop → Ck, which is suitable for theoretical reasoning, but not for practical computations.
The study of A∞-functors is inevitable anyway.

The second reason is that some constructions beginning with dg-categories end up
in unital A∞-categories. Such is the quotient q(C|B) from [LM08c] which yields a uni-
tal A∞-category even if C were a dg-category. Universality is proven precisely for this
quotient. For an A∞-equivalent quotient D(C|B), which is a dg-category if C is, a direct
proof of universality is not known. Notice also that q(C|B) is unital, but is not strictly
unital, in general. Thus, strictly unital A∞-categories do not cover all needs, and one
should work with unital A∞-categories.

The fundamental notions of category and functor were introduced by Eilenberg and
Mac Lane in order to be able to consider natural transformations. In fact, once we
have the concepts of category and functor, the notion of natural transformation just
pops out. Indeed, the category Cat of (small) categories is monoidal; it comes with the
natural cartesian product of categories. In particular, we may consider functors of many
arguments; these are functors from a cartesian product of categories. Now, for each pair
of small categories A and C, there is a natural category Cat(A,C) with the following
universal property: the functors from A×B to C are in bijection with the functors from
B to Cat(A,C), for each small category B. The objects of the category Cat(A,C) are just
functors from A to C, and the morphisms are natural transformations of these functors.

The category of A∞-categories and A∞-functors is not monoidal. There is no straight-
forward notion of tensor product of A∞-categories. Nonetheless, there is a simple and
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natural notion of A∞-functor of many arguments! The totality of A∞-categories and
A∞-functors forms a structure called multicategory. As in ordinary category theory, the
notion of A∞-transformation is implied by the notions of A∞-category and A∞-functor.
Specifically, for each pair of A∞-categories A and C, there is a natural A∞-category
A∞(A,C) such that the A∞-bifunctors A,B → C are in bijection with the A∞-functors
B → A∞(A,C), for each A∞-category B. The objects of A∞(A,C) are just A∞-functors
A→ C, and the graded k-modules of morphisms consist of A∞-transformations.

The described phenomenon is captured by the concept of closed multicategory. It is
a fairly natural notion, nonetheless, in spite of its naturality it seems not to be covered
in the literature. The only reference we are aware of is the paper of Hyland and Power
[HP02], where the notion of closed Cat-multicategory (i.e., a multicategory enriched in
the category Cat of categories) is implicitly present, although not spelled out. The first
part of the book aims at filling this gap in the literature. Here we set up the framework
of closed multicategories, in which the theory of A∞-categories is developed in the second
part of the book.

The observation that for a pair of A∞-categories A and C there is an A∞-category of
A∞-functors A∞(A,C) is not new. It is usually attributed to Kontsevich. The advantage
of our approach is that it uncovers the nature of these A∞-categories and places them into
a wider context. Another way to understand the origin of the A∞-category A∞(A,C) from
the perspective of non-commutative geometry has been suggested in the recent paper of
Kontsevich and Soibelman [KS09].

We do not try to define in this book the external tensor product of arbitrary A∞-cate-
gories such that sets of objects are multiplied directly. Saneblidze and Umble succeeded to
do it for A∞-algebras [SU04]. For unital A∞-categories there is a roundabout recipe: first
replace them with A∞-equivalent dg-categories, then take the external tensor product of
dg-categories. Here a drawback is that the size of the categories increases. In this book
we restrict to the following particular case: a (unital) A∞-category is externally tensored
with one or several dg-categories. The output is again a (unital) A∞-category. We call
this multiplication an action of (the Monoidal category of) differential graded categories
on (the category of) A∞-categories. It is given by explicit formulae not using the Yoneda
imbedding. We apply this action in order to construct the multifunctor of shifts. Namely,
this multifunctor is obtained as the external tensor product with a certain dg-category Z

such that ObZ = Z. Monoidality of Z translates through the action into the multifunctor
of shifts being a monad.

Treatment of A∞-functors and A∞-transformations of several variables given in this
book had already allowed to study Serre A∞-functors, whose mere definition requires a
natural A∞-isomorphism of two variables [LM08b]. We review this subject as well as
A∞-bimodules in Chapter 14. In order to relate ordinary Serre functors in (triangulated)
categories with their A∞-counterparts, it was crucial to have at hands the multifunctor

k : Au
∞ → K̂-Cat and the theory of Cat-enriched multicategories from this book. Further

properties of k were discovered in [loc.cit.], which allowed to make it into a symmetric
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Cat-multifunctor k : Au
∞ → K̂-Cat.

We have observed also that the 0-th homology of a pretriangulated A∞-category is
strongly triangulated in the sense of Maltsiniotis [Mal06]. In particular, it is triangulated
in the sense of Grothendieck and Verdier [Ver77].

1.9 Synopsis of the book. In the first part of the book we establish categorical tools
and gadgets necessary to approach our goal, A∞-categories.

A lax (symmetric) Monoidal category is a category equipped with n-ary tensor product
functors and functorial coherence morphisms. We start to study lax Monoidal categories
in Chapter 2 in the enriched case. The reason to consider categories enriched in a Monoidal
category V is motivated by an application in which V = Cat, worked out in Appendices
A–C. Besides, the non-enriched case (that is V = Set) is not much easier than the enriched
one, if one recalls that the Monoidal category (Set,×) is not strict. People are very much
used to ignore that the direct product of sets is not strictly associative. This simplifies
the computations indeed, however, most statements can be proven in enriched setting
without significantly increasing the length of proofs. A few lengthy proofs are written
down in the simplified non-enriched setting.

A (symmetric) multicategory [Lam69, Lam89] is a many object version of a (sym-
metric) operad [May72], or a colored (symmetric) operad. An operad is a one-object
multicategory. A multicategory C has a class of objects ObC and sets of morphisms
C(X1, . . . , Xn;Y ) ∋ f : (Xi)

n
i=1 → Y , associative compositions and units like in oper-

ads. Multicategories are considered in Chapter 3. A lax (symmetric) Monoidal category
provides a good example of a (symmetric) multicategory.

In order to prepare the ground for closed multicategories we study in Chapter 4
multicategories enriched in multicategories. Then we pass to the main subject of the
chapter. A multicategory C is called closed (cf. [Lam69, p. 106]) if for every sequence
X1, . . . , Xn;Y there is an object C(X1, . . . , Xn;Y ) of C and the evaluation morphism
ev : X1, . . . , Xn,C(X1, . . . , Xn;Y )→ Y , composition with which gives an isomorphism

C
(
(Yj)

m
j=1;C((Xi)

n
i=1;Z)

)
→ C

(
(Xi)

n
i=1, (Yj)

m
j=1;Z

)
.

When C is a closed symmetric multicategory, the collection C(X1, . . . , Xn;Y ) defines a
symmetric multicategory C enriched in C. Details are given in Chapter 4. We also
study multifunctors between closed multifunctors and concentrate on their important
consequences, closing transformations. These are tools that allow to obtain many devices
for free. For instance, our system of notation for mappings between tensor products of
graded k-modules is nothing but the closing transformation for the tensor product functor
in the symmetric Monoidal category gr of graded k-modules.

An important working tool for us is the Kleisli construction for multicategories de-
veloped in Chapter 5. It uses as an input a multicomonad (T,∆, ε) : C → C defined as
a multifunctor T : C → C and multinatural transformations ∆ : T → TT : C → C and
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ε : T → Id : C → C such that (T,∆, ε) is a coalgebra in the strict monoidal category
of multifunctors C → C. T -coalgebras in general are objects X of C equipped with the
coaction δ : X → TX such that(

X
δ→ TX

Tδ→ TTX
)
=
(
X

δ→ TX
∆→ TTX

)
,(

X
δ→ TX

ε→ TTX
)
= id .

However, we restrict our attention to free T -coalgebras, those which have the form
(TX,∆ : TX → TTX). The multicategory they form is what we mean by the Kleisli
multicategory of T .

In the second part of the book we make our considerations concrete and step on
the road leading to various A∞-categories. First we study k-linear graded quivers. The
category of graded quivers Q is equipped in Chapter 6 with two symmetric Monoidal
structures: ⊠ and ⊠u. The respective symmetric Monoidal categories are denoted Qp and
Qu. We prove that both Monoidal categories are closed in Chapter 7. The symmetric

multicategory Q̂u associated with Qu has the same objects as Qu and the morphisms

Q̂u((Ai)
n
i=1;B) = Qu(⊠i∈n

u Ai,B). We also need the same constructions for the category
dQ of differential graded quivers, in particular, we use symmetric Monoidal categories dQp

and dQu. In order to unify the treatment we consider the category VQ of V-quivers, V can
be the category gr of graded k-modules or the category Ck = dg of differential graded
k-modules (cochain complexes).

There is a lax symmetric Monoidal comonad T⩾1 : Qu → Qu, C 7→ T⩾1C = ⊕n>0T nC
considered in Chapter 6. The symmetric Monoidal category of T⩾1-coalgebras is also
closed, as follows from results of Chapter 5 proved in an abstract context. We are mostly

interested in the category Qu
T⩾1

of free T⩾1-coalgebras, that is, quivers of the form T⩾1C.
It is a closed category, and it can be obtained via Kleisli construction from Qu and
T⩾1, but this is not the point. What we are really interested in is its closed symmetric
multicategory structure.

The symmetric multicategory Q̂u

T⩾1

can be obtained via Kleisli construction for the

associated multicomonad T⩾1 : Q̂u → Q̂u. It has the same objects as Qu and the
morphisms

Q̂u

T⩾1

((Ai)
n
i=1;B) = Q̂u((T

⩾1Ai)
n
i=1;B) = Qu(⊠

i∈n
u T⩾1Ai,B).

The main subject of this book, the symmetric multicategory A∞ of A∞-categories, is
obtained from the above one via shift by s = [1] and by imposing differentials b on objects
in Chapter 8. Objects of A∞ are A∞-categories and morphisms f : A1, . . . ,An → B are
A∞-functors with n entries, which can be identified with differential graded coalgebra
maps f : ⊠n

i=1TsAi → TsB, whose restriction to ⊠n
i=1T

0Ai vanishes. The multicategory
A∞ is closed. Objects of the A∞-category A∞((Ai)

n
i=1;B) are A∞-functors with n en-

tries. Its morphisms are A∞-transformations between such A∞-functors f and g, that is,
(f, g)-coderivations.
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The category of augmented counital coassociative coalgebras in Q is denoted acQ.
Similar category in dQ (the category of augmented differential counital coassociative coal-
gebras in Q) is denoted acdQ. One can define the symmetric multicategory A∞ via
pull-back squares

A∞ ⊂ → d̂QuT⩾1
⊂ → âcdQp

Q̂u

T⩾1

↓
⊂ → Q̂uT⩾1

↓
⊂ → âcQp

↓

where the horizontal arrows are full embeddings of symmetric multicategories and vertical
arrows are faithful multifunctors.

A differential Hopf algebra (Ts[A∞(A,A)(id, id)],∆0, pr0,M, in0, B) is associated with
an A∞-category A due to closedness of A∞. This structure turns the generalization
A∞(A,A)(id, id) of cohomological Hochschild complex into a homotopy Gerstenhaber al-
gebra which is a particular case of a B∞-algebra [GJ94, VG95, Vor00]. In particular, it has
a Lie bracket, which is a generalization of the original Gerstenhaber bracket in Hochschild
cochain complex [Ger63]. The cohomology H•(sA∞(A,A)(id, id), B1) (generalization of
Hochschild cohomology) is a non-unital Gerstenhaber algebra. All this we obtain as a
consequence of A∞-enriched multicategory structure of A∞.

The symmetric submulticategory Au
∞ consists of unital A∞-categories and unital

A∞-functors f : A1, . . . ,An → B, most important for applications. A unital A∞-functor
of several arguments can be defined as such that its restriction to each entry is unital.
This multicategory is also closed as shown in Chapter 9. Objects of the unital A∞-cat-
egory Au

∞((Ai)
n
i=1;B) are unital A∞-functors. Its morphisms are all A∞-transformations

between such A∞-functors.
For any A∞-category A there is a strictly unital A∞-category Asu, containing A and

formally added strict unit elements. Denote by usu : A ↪→ Asu the natural embedding.
We prove in Chapter 9 that the A∞-functor A∞(usu,C) : A

u
∞(A

su,C) → A∞(A,C) is an
A∞-equivalence for an arbitrary unital A∞-category C. Moreover, this functor admits
a one-sided inverse Fsu : A∞(A,C) → Au

∞(A
su,C), that is, Fsu · A∞(usu,C) = idA∞(A,C).

Consequently, the pair (Asu, usu : A ↪→ Asu) unitally represents the Au
∞-2-functor A

u
∞ →

Au
∞, C 7→ A∞(A,C). We may interpret this as follows: the strictly unital envelope of an

A∞-category is simultaneously its unital envelope in the weak sense.
In order to explain what are pretriangulated A∞-categories we describe the relevant

monad C 7→ Ctr. It is a product (composition) of two monads: the monad of shifts and the
Maurer–Cartan monad. The functor of shifts −[ ] from (unital) A∞-categories to (unital)
A∞-categories assigns to an A∞-category C the A∞-category C[ ] obtained by adding formal
shifts of objects. Thus, ObC[ ] = (ObC)× Z. An object of C[ ] is denoted X[n] = (X,n).
The functor of shifts is a monad. The A∞-category C is embedded into C[ ] via X 7→ X[0].
This is the unit of the monad −[ ]. The details are given in Chapter 10. We say that a
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unital A∞-category C is closed under shifts if any object of C[ ] is isomorphic to an object
of the type X[0] which came from some object X of C.

The Maurer–Cartan monad −mc from (unital) A∞-categories to (unital) A∞-categories
assigns to an A∞-category C the A∞-category Cmc. An object of Cmc is an ordered sequence
(Xi)

n
i=1 of objects of C, together with elements xij ∈ C(Xi, Xj)[1]

0 such that xij = 0 for
i ⩾ j (that is, the matrix x = (xij) is upper triangular) and the Maurer–Cartan equation
holds:

m>0∑
i<k1<···<km−1<j

(xik1 ⊗ xk1k2 ⊗ · · · ⊗ xkm−1j)b
C
m = 0.

This agrees with the case of dg-categories. Using the shorthand ⊗ for the matrix–tensor
product we may write this equation as

∑
m>0(x

⊗m)bm = 0. The graded k-modules of
morphisms in Cmc are

Cmc
(
((Xi)

n
i=1, x), ((Yj)

m
j=1, y)

)
=

n∏
i=1

m∏
j=1

C(Xi, Yj).

Its elements r can be viewed as n × m-matrices. The compositions in Cmc are given in
matrix notation by

bmc
n : sCmc(X0, X1)⊗ · · · ⊗ sCmc(Xn−1, Xn)→ sCmc(X0, Xn),

(r1 ⊗ · · · ⊗ rn)bmc
n =

∑
t0,...,tn⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rn ⊗ (xn)⊗tn

]
bCt0+···+tn+n.

Informally we may say that Cmc is obtained from C by adding cones of morphisms of C,
cones of morphisms between cones, etc. The details are given in Chapter 11.

The embedding C ↪→ Cmc, X 7→ ((X), 0) is the unit of the monad −mc. We say that a
unital A∞-category C is mc-closed if any object of Cmc is isomorphic to an object which
came from C. A pretriangulated A∞-category is defined as a unital A∞-category, closed
under shifts and mc-closed.

The above description of Cmc and Ctr = C[ ]mc is rather close to the case of differential
graded categories considered by Bondal and Kapranov [BK90]. However, there is another
approach to Cmc which reveals its A∞-character even if C is differential graded. Define
the A∞-category n with objects 1, 2, . . . , n and the k-modules of morphisms

n(i, j)[1] =

{
0, i ⩾ j

k, i < j
.

Necessarily, all compositions bk for n vanish. Then Cmc is constructed from A∞-categories
A∞(n,C), which are particular cases of the following construction.

The multifunctors of shifts for quivers induce the multifunctors

−[ ] : A∞ → A∞, −[ ] : Au
∞ → Au

∞
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which are also monads. Notice that the unit of this monad u[ ] : Id→ −[ ] is a multinatural

transformation (of multifunctors), while the multiplication m[ ] : −[ ][ ] → −[ ] is only a

natural transformation (of functors). We also view −[ ] as an A∞-2-monad – a sort of
2-functor with a monad structure in Chapter 10.

The Maurer–Cartan functors

−mc : A∞ → A∞, −mc : Au
∞ → Au

∞

are monads as well. The above functors are not multifunctors. The composition C 7→
Ctr = C[ ]mc is also a monad:

−tr : A∞ → A∞, −tr : Au
∞ → Au

∞,

The latter is the monad of pretriangulated A∞-categories.
For a unital A∞-category C multiplications in all three monads

m[ ] : C
[ ][ ] → C[ ], mmc : C

mcmc → Cmc, mtr : C
tr tr → Ctr

are A∞-equivalences, as shown in Chapters 10, 11. Hence, these functors are sort of
completion. The A∞-category C[ ] is closed under shifts, Cmc is mc-closed and Ctr is pre-
triangulated.

The multifunctor version of the Maurer–Cartan functor is also defined:

−Mc : A∞ → A∞, −Mc : Au
∞ → Au

∞ .

It is a multi-dimensional generalization of −mc. In Chapter 11 we study first the case of
quivers, then consider A∞-categories. Objects of CMc are A∞-functorsX : n1, . . . ,nk → C,
where A∞-categories ni = {1, 2, . . . , ni} were described above. The A∞-category CMc can
be constructed from the A∞-categories A∞(n1, . . . ,nk;C). It is a full A∞-subcategory of
the iterated mc-construction:

Cmc∞ def
= lim
−→

(
C ⊂

umc→ Cmc ⊂
umc→ Cmc2 ⊂

umc→ Cmc3 . . .
)
.

Here umc : C ⊂ → Cmc is the unit of the comonad −mc. For unital A∞-categories C

all these embeddings but the first are A∞-equivalences, therefore, C
mc ⊂ → CMc is an

A∞-equivalence. As a consequence the functor −mc : Au
∞ → Au

∞ inherits some properties
of the multifunctor −Mc : Au

∞ → Au
∞. The functor −mc becomes an Au

∞-2-monad – a
sort of 2-functor with a monad structure. The same applies to −[ ] : Au

∞ → Au
∞ and to

−tr : Au
∞ → Au

∞.
Let A, C be unital A∞-categories. If C is closed under shifts, then by Chapter 10
1) the A∞-category A∞(A,C) is closed under shifts,
2) the A∞-category A

u
∞(A,C) is closed under shifts,
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3) the A∞-functor A
u
∞(u[ ],C) : A

u
∞(A

[ ],C)→ Au
∞(A,C) is an A∞-equivalence which ad-

mits a one-sided inverse F[ ] : A
u
∞(A,C)→ Au

∞(A
[ ],C), so that F[ ] ·Au

∞(u[ ],C) = idAu∞(A,C).

4) the A∞-functor −[ ] : Au
∞(A,B) → Au

∞(A
[ ],B[ ]) is homotopy full and faithful, that

is, its first component is homotopy invertible.
Similar properties hold for mc-closed C by Chapter 11 and for pretriangulated C by

Chapter 12. Such properties for pretriangulated A∞-categories were mentioned first by
Kontsevich in his letter to Beilinson [Kon99].

In Chapter 13 we consider categories with translation structure C for which the trans-
lation endofunctor Σ : C → C is not an automorphism. Such generalization of Verdier’s
axioms [Ver77, Ver96] is dictated by our approach to A∞-categories closed under shits.
We recall the definition of strongly triangulated categories due to Maltsiniotis [Mal06].
We prove finally that the 0-th homology of a pretriangulated A∞-category is strongly
triangulated.

Let B be a full A∞-subcategory of a unital A∞-category C. Then there are A∞-equiv-
alent quotients D(C|B) from [LO06] and q(C|B) from [LM08c]. We prove in Chapters 10,
11 that there are A∞-equivalences

q(C[ ]|B[ ])→ q(C|B)[ ], q(Cmc|Bmc)→ q(C|B)mc, q(Ctr|Btr)→ q(C|B)tr.

Since q(C|B) is A∞-equivalent to D(C|B), the same holds for the latter quotient.
Chapter 14 is a survey of applications of results and methods of this book obtained in

[LM08b]. The topics include A∞-bimodules over A∞-categories, Serre A∞-functors and
the generalized Yoneda Lemma for A∞-categories.

1.10 Off the principal road. The dependence of a chapter on other chapters is
shown on the following scheme:

4 - 5 - 6 - 7 - 8 - 9 - 11

3

6

- A - B
?

- C - 10
?

- 12
?

- 13

2

6

14
?

- 1
?

The way of actions in Kleisli multicategories described in Appendices A–C is parallel to
the shorter way of monads in Kleisli multicategories presented in Chapter 5. However the
longer way is more transparent and allows to obtain more results. That is why we have
chosen to present both approaches.

In Chapter 5 we consider an abstract setting of a multicomonad T : C → C in a
multicategory C and a monad M : C→ C. The functor M has to be a multifunctor, but
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the multiplication natural transformation m :MM →M is not necessarily multinatural.
We assume given also a multinatural transformation ξ : MT → TM : C → C, the
commutation law. We propose sufficient conditions which make sure that the monad
M lifts to a monad MT in the Kleisli multicategory CT . These conditions are similar
to Beck’s distributivity laws between two monads. This construction is applied to the

tensor multicomonad T⩾1 : Q̂u → Q̂u and the monad of shifts −[ ] : Q̂u → Q̂u. We find
the corresponding commutation law ξ and prove that the monad of shifts −[ ] lifts to the

Kleisli multicategory Q̂u

T⩾1

.

The same multifunctor −[ ] is obtained in Appendix C via tensoring with a monoidal
graded category Z. The graded quiver Z has ObZ = Z and Z(m,n) = k[n−m]. This Z is
an algebra in the symmetric Monoidal category of graded categories D = gr -Cat equipped
with the tensor product ⊠ (Chapter 10). This category D acts via ⊠ on symmetric
Monoidal categories of graded quivers Qp and Qu (Appendix B). As a corollary, the

symmetric multicategory D̂ acts on the symmetric multicategory Q̂u.

In order to formulate such statements rigorously and without drowning into lots of
irrelevant isomorphisms and equations between them, we develop in Appendix A the
language of internal lax symmetric Monoidal categories which live inside a symmetric
Monoidal Cat-category C. Mostly we are interested in the paradigmatic example of the
category C = sym-Mono-Cat of symmetric Monoidal categories. It can be also viewed as
a (weak) symmetric monoidal 2-category, but the point of view of weak 6-categories is
hardly helpful.

By Proposition 2.36 commutative algebras in a symmetric Monoidal category C form
a symmetric Monoidal category ComAlg(C) themselves. Moreover, each commutative
algebra in C determines a commutative algebra in ComAlg(C). In complete analogy we
show in Appendix A that internal symmetric Monoidal categories in a symmetric Monoidal
Cat-category C form a symmetric Monoidal Cat-category sym-Mono-cat-C themselves.
Moreover, each symmetric Monoidal category in C determines a symmetric Monoidal

category in sym-Mono-cat-C. This implies that the symmetric multicategory D̂ = ĝr -Cat
is an internal symmetric Monoidal category in the symmetric Monoidal Cat-category
SMCatm of symmetric multicategories. In particular, it makes sense to discuss actions of

D̂ on other symmetric multicategories.

In Appendix B we discuss actions of a symmetric multicategory D on a symmetric
multicategory C equipped with a multicomonad T : C → C. An intertwiner of the
action and the multicomonad insures that the action lifts to an action of D on the Kleisli
multicategory CT . Such an intertwiner for the action ⊡ of D = D̂ on Q̂u and for the

multicomonad T⩾1 : Q̂u → Q̂u is constructed in Appendix C. Hence, D̂ acts on the

Kleisli symmetric multicategory Q̂u

T⩾1

of graded quivers. This action extends to the

action of symmetric multicategory d̂g-Cat of differential graded categories on (unital)

A∞-categories. The action ⊡ : Au
∞⊠ d̂g-Cat → Au

∞ is a generalization of the tensor
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product dg-Cat ⊠ dg-Cat → dg-Cat of differential graded categories. Any algebra A in
D induces a multifunctor 1 ⊡ Â : A∞ → A∞. In particular, this holds for the algebra

A = Z ∈ ObD . The multifunctor 1⊡ Ẑ : A∞ → A∞ is precisely the shift multifunctor −[ ].
The tensor product ⊗ : Z ⊠ Z → Z induces the natural transformation m : −[ ][ ] → −[ ],
the multiplication. It is not multinatural, because Z is not a commutative algebra.

1.11 Unital structures for A∞-categories. Definition of unital A∞-categories used
in this book is not the only approach to unitality. Another definition of unitality was given
by Kontsevich and Soibelman [KS09, Definition 4.2.3.]. They define a unital structure of

an A∞-category A as an A∞-functor U
A
su : A

su → A such that
(
A ⊂

usu→Asu UA
su→A

)
= idA.

It is proven in [LM06b] that an A∞-category is unital if and only if it admits a unital
structure. One more notion of unitality is proposed by Fukaya [Fuk02, Definition 5.11],
homotopy unitality, whose essence is extension of A∞-structure from A to a certain larger
quiver. It is proven in [LM06b] that an A∞-category is unital if and only if it homotopy
unital. Thus, all known so far approaches to unitality agree. Let us provide the details
now.

Given an A∞-category A, we associate a strictly unital A∞-category Asu with it. It
has the same set of objects and for any pair of objects X, Y ∈ ObA the graded k-module
sAsu(X, Y ) is given by

sAsu(X, Y ) =

{
sA(X, Y ), if X ̸= Y,

sA(X,X)⊕ kXiA
su

0 , if X = Y,

where Xi
Asu

0 is a new generator of degree−1. The element Xi
Asu

0 is a strict unit by definition,
and the canonical embedding eA = usu : A ↪→ Asu is a strict A∞-functor.

1.12 Definition. A unital structure of an A∞-category A is a choice of an A∞-functor
UA
su : A

su → A such that (
A ⊂

eA→Asu UA
su→A

)
= idA .

1.13 Proposition ([LM06b]). Suppose that an A∞-category A admits a unital structure.
Then the A∞-category A and the A∞-functor U

A
su are unital in the sense of Definitions

9.10 and 9.11.

1.14 Theorem ([LM06b]). Every unital A∞-category admits a unital structure.

1.15 Homotopy unital A∞-categories. One more notion of unitality is dictated by
combinatorial properties of associahedra, also known as the Deligne–Mumford–Stasheff
compactifications of the moduli space of configurations of points on the circle.
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1.16 Definition. An A∞-category C is called homotopy unital in the sense of Fukaya
[Fuk02, Definition 5.11] (reproduced in [FOOO09] and in [Sei08, Definition 2a]) if the
graded k-quiver

C+ = C⊕ kC⊕ skC

(with ObC+ = ObC) has an A∞-structure b
+ of the following kind. Denote the generators

of the second and the third summands of sC+ = sC⊕skC⊕s2kC by Xi
Csu

0 = 1s and jCX = 1s2

of degree respectively −1 and −2 for X ∈ ObC. The conditions on b+ are:

1) the elements Xi
C
0

def
= Xi

Csu

0 − jCXb
+
1 belong to sC(X,X) for all X ∈ ObC;

2) the A∞-category C+ is strictly unital with the strict units iC
su

0 ;

3) the embedding C ↪→ C+ is a strict A∞-functor;

4) (sC⊕ s2kC)⊗nb+n ⊂ sC for any n > 1.

The distinguished cycles Xi
C
0 ∈ C(X,X)[1]−1 turn any homotopy unital A∞-category

C ⊂ C+ into a unital A∞-category C. Indeed, the identity (1⊗ b+1 + b+1 ⊗ 1)b+2 + b+2 b
+
1 = 0

applied to sC⊗ jC or to jC ⊗ sC implies

(1⊗ iC0)b
C
2 = 1 + (1⊗ jC)b+2 b

C
1 + bC1(1⊗ jC)b+2 : sC→ sC,

(iC0 ⊗ 1)bC2 = −1 + (jC ⊗ 1)b+2 b
C
1 + bC1(j

C ⊗ 1)b+2 : sC→ sC.

Thus, (1⊗ jC)b+2 : sC→ sC and (jC⊗ 1)b+2 : sC→ sC are unit homotopies. Therefore, any
homotopy unital A∞-category is unital. Vice versa:

1.17 Theorem ([LM06b]). Any unital A∞-category C with unit elements iC0 admits a
homotopy unital structure (C+, b+) with jCb+1 = iC

su

0 − iC0 .

1.18 The operad of A∞-algebras. By an operad we mean a multicategory (possibly
enriched in a monoidal category) with one object. It is often called a ‘non-Σ-operad’ or
‘non-symmetric operad’.

Denote by Ass the operad of associative algebras. It is defined as the quotient of the
free operad generated by the operation r by the ideal generated by the element

r r − rr
corresponding to the associativity axiom. It is easy to see that for each n ⩾ 1 the k-module
Ass(n) is free of rank 1. It is generated by an ‘n-fold product’. We may view Ass as a
differential graded operad concentrated in degree 0.
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The operad A∞ is defined as follows: as a graded operad, it is freely generated by
operations

n︷ ︸︸ ︷r···
of degree 2 − n, n ⩾ 1. Thus the component of degree g of the graded k-module A∞(n)
is a free k-module generated by the set of plane rooted trees with n + 1 external and
n+ g − 1 internal vertices. The differential is given on the generators by the formula

( n︷ ︸︸ ︷r···
)
∂ = −

1<p<n∑
j+p+q=n

(−)jp+q

j︷ ︸︸ ︷
· · ·

p︷ ︸︸ ︷
· · ·

r
q︷ ︸︸ ︷

· · ·

r
.

There is a natural morphism of differential graded operads ε : (A∞, ∂)→ (Ass, 0) specified

by mapping the generator r to the ‘2-fold product’ in Ass(2) and by mapping the other

generators to 0. More explicitly, the component of degree 0 of the graded k-module A∞(n)
is the free k-module generated by plane binary rooted trees with n+ 1 external vertices.
Each of these is mapped to the ‘n-fold product’ in Ass(n). The other components of
A∞(n) are mapped to 0.

The following result should not be considered new. It is rather an application of
Markl’s theory of homotopy algebras and resolutions of operads [Mar96, Mar00]. We
supply the details of the proof since they introduce notions related to A∞-structures.

1.19 Proposition. The chain map A∞(n) → Ass(n) is homotopy invertible, for each
n ⩾ 1.

Proof. It suffices to deal with the ground commutative ring k = Z. Markl proves in
[Mar96] that A∞(n) → Ass(n) is a quasi-isomorphism if k is a field of characteristic
zero. In Example 4.8 of the same article he remarks that the map remains a quasi-
isomorphism over k = Z as well. Since in this case A∞(n) and Ass(n) are complexes
of free abelian groups of finite rank, being a quasi-isomorphism is equivalent to being
homotopy invertible.

The above sketch of proof hides the operad of Stasheff associahedra [Sta63] inside. Let
us reveal it now.

Denote byD = {z ∈ C | |z| ⩽ 1} the unit disc. The configuration space Confn+1(∂D) ⊂
(∂D)n+1 consists of (n + 1)-tuples of points on the boundary circle whose numbering
is compatible with their cyclic order. For n ⩾ 2 the complex automorphisms group
Aut(D) ≃ PSL2(R) acts freely and properly on this configuration space, and one sets

Rn+1 = Confn+1(∂D)/Aut(D).
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Let T be a stable n-leafed tree (a tree with n + 1 external legs, one of which is the
root, other n are leaves). Stability means that the valency |v| is at least 3 for all internal
vertices v. The set of internal vertices is denoted v(T ). One sets RT =

∏
v∈v(T )R

|v|. The

Deligne–Mumford–Stasheff compactification of Rn+1 (the associahedron) is

R̄n+1 =
∐
T

RT ,

the union is over all stable n-leafed trees T . The associahedron is a part of the real
locus M̄0,n+1(R) of the complex Deligne–Mumford space M̄0,n+1. So R̄n+1 comes with a
canonical structure of smooth compact manifold with corners.

The A∞-associativity relations are in great part due to the recursive structure of the
Deligne–Mumford–Stasheff compactifications R̄n+1. More precisely, each stable n-leafed
tree with two vertices, T (p, j) = (|⊔j ⊔ tp ⊔ |⊔q) · tj+1+q (where q = n − j − p and tp is a
corolla with p leaves), labels a codimension one boundary face

RT (p,j) ∼= Rp+1 × Rn+2−p ⊂ ∂R̄n+1; (1.19.1)

those faces correspond to the summands (1⊗j ⊗mp ⊗ 1⊗q)mn−p+1 with 1 < p < n.
Seidel proves in his book [Sei08, (12.25)] that for certain chosen orientations of R• the

orientations of the left and right sides of embedding (1.19.1) differ by (−)jp+q. He explains
also that smooth compact manifolds with corners R̄n+1 are isomorphic to Stasheff’s convex
polytopes Kn, the associahedra [Sta63], see also [MSS02, Section II.1.6]. The same result
is proven by Costello [Cos04, Proposition 3.2.2]. The operad K• is known to be a cellular
operad (i.e., an operad in the monoidal category of cell complexes, where the tensor
product is just direct product). The cells (faces of the polytope) are identified with RT .
This explicit description implies that the differential graded operad A∞ is isomorphic to
the differential graded operad {CC•(Kn)}n⩾1, where CC• denotes the functor of cellular
chains. In fact, the n-ary generators of A∞ are mn, n ⩾ 2, degmn = 2 − n, and the
differential is

∂mn = −
1<p<n∑
j+p+q=n

(−)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q.

Let T denote the (terminal) cellular operad with T (n) = {·} for each n ⩾ 1. Then it is
easy to see that the operad CC•(T ) is precisely the operad Ass. Consider the natural map
K → T . Since each of the polyhedra Kn is contractible, the map Kn → T (n) is a homo-
topy equivalence, for each n ⩾ 1. It follows that the induced map CC•(Kn)→ CC•(T (n))
is a quasi-isomorphism. One may argue as follows: for cell complexes the cellular ho-
mology is naturally isomorphic to the singular homology, therefore the map in homology
Hm(CC•(Kn))→ Hm(CC•(T (n))) identifies with the map Hm(Kn)→ Hm(T (n)) between
singular homology groups, which is an isomorphism by elementary algebraic topology.
Thus, the map in question

A∞(n) = CC•(Kn)→ CC•(T (n)) = Ass(n)
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is a quasi-isomorphism of complexes of free abelian groups of finite rank. Therefore it is
homotopy invertible.

Thus, A∞ is a free resolution of Ass over an arbitrary commutative ring k by
Markl [Mar96, Example 4.8]. Differential graded algebras (A,m1) over this operad are
precisely A∞-algebras. They satisfy the equation

1⩽p⩽n∑
j+p+q=n

(−)jp+q(1⊗j ⊗mp ⊗ 1⊗q) ·mj+1+q = 0. (1.19.2)

1.20 Operadic approach to A∞-categories. The notion of A∞-category also ad-
mits an ‘operadic’ description. Namely, an A∞-category A consists of the following data:

� a set ObA of objects;

� for each pair of objects X and Y , a complex (A(X, Y ), d) of morphisms;

� for each n ⩾ 1 and sequence of objects X0, . . . , Xn, a morphism of complexes

αn : A(X0, X1)⊗A(X1, X2)⊗ · · · ⊗A(Xn−1, Xn)⊗ A∞(n)→ A(X0, Xn),

called action.

The action is required to be compatible with the structure of the operad A∞ in the obvious
sense. In particular, the action is required to be unital, i.e., the tree | must act as the
identity. In other words, (1 ⊗ |)α1 = 1 : A(X, Y ) → A(X, Y ). Following the notation of
[LM06a], denote by Tn⩾2 the set of stable n-leafed plane rooted trees t (trees with n + 1
external vertices such that each internal vertex is adjacent to at least 3 edges). The graded
k-module A∞(n) is freely generated by the set Tn⩾2, where a tree t ∈ Tn⩾2 is assigned degree
|t|+ 1− n. Therefore, the action morphism αn amounts to a collection of k-linear maps

mt = (1⊗n ⊗ t)αn : A(X0, X1)⊗A(X1, X2)⊗ · · · ⊗A(Xn−1, Xn)→ A(X0, Xn)

of degree |t| + 1 − n, for each t ∈ Tn⩾2, satisfying certain compatibility conditions. In
particular, for each n ⩾ 2, there is a k-linear map

mn = mtn : A(X0, X1)⊗A(X1, X2)⊗ · · · ⊗A(Xn−1, Xn)→ A(X0, Xn)

of degree 2−n. Together with the differentialm1
def
= d : A(X, Y )→ A(X, Y ), these k-linear

maps satisfy the A∞-identity. Conversely, the compatibility of αn with composition in
the operad A∞ implies that, for each tree t ∈ Tn⩾2 with the canonical decomposition

(t,⩽) = (1⊔α1 ⊔ tk1 ⊔ 1⊔β1) · (1⊔α2 ⊔ tk2 ⊔ 1⊔β2) · . . . · tkN ,
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where N = |t|, the k-linear map mt is given by the composite

mt = (1⊗α1 ⊗mk1 ⊗ 1⊗β1) · (1⊗α2 ⊗mk2 ⊗ 1⊗β2) · . . . ·mkN : A⊗n → A.

Define also

bt = (1⊗α1 ⊗ bk1 ⊗ 1⊗β1) · (1⊗α2 ⊗ bk2 ⊗ 1⊗β2) · . . . · bkN : (sA)⊗n → sA.

It is easy to see that s⊗nbt = (−)σmts, where σ =
∑n

i=1(βi + αiki).
In [LM06a], the free A∞-category FQ is associated with a differential graded quiver Q.

The freeness of FQ is expressed by an A∞-equivalence

restr : A∞(FQ,C)→ A1(Q,C),

for each unital A∞-category C, where the target A∞-category is formed by chain quiver
maps Q→ C, see [LM06a] for details.

Let us show that the free A∞-category FQ admits an equivalent description in terms
of the operad A∞. We associate with Q the differential graded quiver

F̃Q
def
=
⊕
k⩾1

T kQ⊗ A∞(k),

‘a free algebra over the operad A∞’. It admits the following structure of an A∞-category.

For n > 1, the n-fold tensor product (F̃Q)⊗n decomposes into a direct sum

(F̃Q)⊗n =
⊕

k1,...,kn⩾1

⊗i∈n(T kiQ⊗ A∞(ki)).

For each k, k1, . . . , kn ⩾ 1 and t ∈ Tn⩾2, the matrix coefficient

(mF̃Q
t )(ki);k =

[
⊗i∈n(T kiQ⊗ A∞(ki))

in(ki)−−−→ (F̃Q)⊗n
mF̃Q
t−−→ F̃Q

prk−→ T kQ⊗ A∞(k)
]

of mF̃Q
t vanishes unless k = k1 + · · ·+ kn, in which case it is given by

(mF̃Q
t )(ki);k =

[
⊗i∈n(T kiQ⊗ A∞(ki))

σ(12)−−→ T k1+···+knQ⊗ (A∞(k1)⊗ · · · ⊗ A∞(kn))
1⊗(−·t)−−−−→ T k1+···+knQ⊗ A∞(k1 + · · ·+ kn)

]
. (1.20.1)

The differential mF̃Q
1 : F̃Q→ F̃Q is given by the sum of morphisms

dT kQ ⊗ 1 + 1⊗ ∂ : T kQ⊗ A∞(k)→ T kQ⊗ A∞(k), k ⩾ 1.
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The natural embedding in1 : Q ∼= T 1Q ⊗ A∞(1) ↪→ F̃Q is a chain quiver map, therefore

it extends uniquely to a strict A∞-functor f = în1 : FQ → F̃Q. Its first component is
described in [LM06a, Section 2.6]:

f1|sFtQ =
[
sFtQ = (sQ)⊗n[−|t|] s|t|−→ (sQ)⊗n

in⊗n1−−→ (sF̃Q)⊗n
bF̃Q
t−−→ sF̃Q

]
.

The composite of the second and the third arrows in the right hand side of the above
formula fits into the commutative diagram

Q⊗n
in⊗n1→ (F̃Q)⊗n

(−)σmF̃Q
t→ F̃Q

(sQ)⊗n

s⊗n

↓
in⊗n1→ (sF̃Q)⊗n

s⊗n

↓
bF̃Q
t → sF̃Q

s
↓

The upper row of the diagram is equal, up to sign (−)σ, to the composite

Q⊗n
sn−|t|−1

−−−−→ Q⊗n[n− |t| − 1] ∼= Q⊗n ⊗ k[n− |t| − 1] ↪→ F̃Q, (1.20.2)

as formula (1.20.1) shows. Taking into account the decomposition

A∞(n) =
⊕
t∈Tn⩾2

k[n− |t| − 1],

we conclude that f1 is the sum of morphisms

(−)σ ·
[
(sQ)⊗n[−|t|] s|t|−→ (sQ)⊗n

(s⊗n)−1

→Q⊗n
sn−|t|−1

−−−−→
Q⊗n[n− |t| − 1] ∼= Q⊗n ⊗ k[n− |t| − 1] ↪→ F̃Q

s−→ sF̃Q
]
,

over all t ∈ Tn⩾2. In particular, f1 is an isomorphism. Thus, A∞-categories FQ and F̃Q

are isomorphic.
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Chapter 2

Lax Monoidal categories

Usual notion of a monoidal category is convenient due to coherence theorem of Mac Lane
[Mac63] which allows to work with a monoidal category as if it were strict. Often one
pretends that a monoidal functor is strict and skips the corresponding isomorphisms. This
can not be done with lax Monoidal functors which play a crucial rôle in this book. The
term ‘Monoidal’ as opposed to ‘monoidal’ indicates that categories are equipped with
n-ary tensor products, related by many associativity morphisms. The latter are invertible
for Monoidal categories and not necessarily invertible for lax Monoidal categories. The
same convention applies to functors. Technically (lax) Monoidal categories and functors
fit better into the framework of multicategories and multifunctors which is widely used in
the sequel. We also develop the corresponding notions for categories enriched in symmetric
Monoidal categories V. For instance, V can be the category of small categories.

2.1 Conventions for finite totally ordered sets. Whenever I and Ji, i ∈ I, are
finite totally ordered sets, the Cartesian product

∏
i∈I Ji is always equipped with the

linear lexicographic ordering: (ji) < (j′i) if and only if there exists k ∈ I such that ji = j′i
for i < k and jk < j′k. The disjoint union of Ji⊔

i∈I

Ji =
{
(i, j) ∈ I ×

⋃
i∈I

Ji | j ∈ Ji
}

(2.1.1)

is also equipped with the standard linear ordering:

(i, j) < (i′, j′)⇐⇒ i < i′ or (i = i′ and j < j′).

In particular cases like I = n = {1 < 2 < · · · < n} the same totally ordered set can be
also denoted as I1 ⊔ I2 ⊔ · · · ⊔ In. We always equip the disjoint union A ⊔ B ⊔ · · · ⊔ Z of
finite totally ordered sets with the standard linear ordering, even if the indexing set I is
not indicated explicitly. Here it means that a < b for all a ∈ A, b ∈ B etc.

When f : I → J is a map between totally ordered sets, the subsets f−1(j) get a linear
ordering, induced by the embedding f−1(j) ↪→ I.

For any finite set I denote by |I| the number of elements of I.
Let O be the category of finite ordinals, whose objects are totally ordered finite sets

including the empty set (elements of a universe U ) and morphisms are isotonic maps,
that is, non-decreasing maps, i.e. mappings which preserve the non-strict order. Let Os

be its skeleton subcategory with objects n = {1 < 2 < · · · < n} for n ⩾ 0, where 0 = ∅.

31
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Let S denote the category, whose objects are the same as in O, but the morphisms are all
mappings of finite sets. Denote by Ss its skeleton subcategory with objects n, n ∈ Z⩾0.

The definitions of various notions below that rely on O do not depend on the concrete
choice of the universe U . Indeed, we may replace everywhere O with its skeleton subcat-
egory Os. Each functor or natural transformation can be restricted from O to Os, or can
be canonically extended from Os to O using the only isotonic isomorphism

n ∋ k 7→ ik ∈ I (2.1.2)

for each I ∈ ObO with |I| = n.
Let [n] denote the category constructed from the totally ordered set [n] = {0 < 1 <

2 < · · · < n − 1 < n}. Its objects are integers m, 0 ⩽ m ⩽ n. The set of morphisms
[n](k,m) is empty if k > m, and has unique element (k → m) if k ⩽ m. The conventional
∆ denotes the full subcategory in O with objects [n] for n ⩾ 0. It can be convenient to
imagine an element i ∈ n as an arrow (i − 1) → i in the category [n]. This suggests a
faithful functor [ ] : Oop

s → ∆ which maps (π : n → m) ∈ Os to ([π] : [m] → [n]) ∈ ∆,
where [π](j) =

∑
i⩽j |π−1(i)| = |π−1(]0, j])|. Note that [π](0) = 0, [π](m) = n, and this

property characterizes the image of the above functor. Moreover, this functor restricts
to an anti-isomorphism between the subcategory of isotonic surjections π : n → m in
Os and the subcategory of isotonic injections [π] : [m] → [n] in ∆ such that [π](0) = 0,
[π](m) = n.

We associate a totally ordered set [I] = {0} ⊔ I with an arbitrary I ∈ ObO. We view
elements of I as generating arrows of the category [I]. Let f : I → J be an isotonic map.
For an arbitrary subset K ⊂ J the linear order on f−1(K) is induced by the embedding
f−1(K) ↪→ I. With the map f the following map is associated: [f ]∗ = id{0} ⊔f : [I]→ [J ].
We view it as a functor. It has a right adjoint functor

[f ] : [J ]→ [I], y 7→ [f ](y)
def
= max([f ]∗)−1([0, y]).

Here [0, y] = {z ∈ [J ] | z ⩽ y} ⊂ [J ]. Indeed, for any x ∈ [I], y ∈ [J ] the following
inequalities are equivalent:

x ⩽ [f ](y)⇐⇒ [f ]∗(x) ⩽ y.

Therefore, there is natural bijection [I](x, [f ]y) ≃ [J ]([f ]∗x, y).
Given a non-empty set S, for each category I = O,Os, S, Ss we define the category I(S),

where an object is an indexed family (Xi ∈ S)i∈I for some I ∈ Ob I, and a morphism
(Xi)i∈I → (Yj)j∈J is just a morphism f : I → J in I. The category I(S) is equivalent to
I. The canonical equivalence takes (Xi ∈ S)i∈I to I and it is identity on morphisms.

Recall that the nerve N.I of a category I is the simplicial set (a functor) ∆op → Set,
[n] 7→ NnI = Cat([n], I). Elements of NnI are functors f : [n] → I, (i → j) 7→ (fi→ j :
f(i) → f(j)). Clearly, such a morphism f is unambiguously specified by a composable
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sequence

(fi = f(i−1)→ i)i∈n =
(
f(0)

f1→ f(1)
f2→ · · · f(n− 1)

fn→ f(n)
)
. (2.1.3)

We turn the nerve of I into a 2-category as follows.

2.2 Definition. Objects of a 2-category NI are objects of I, 1-morphisms are elements
of NI(I, J) =

∐
n⩾0NnI(I, J), where NnI(I, J) = {f ∈ Cat([n], I) | f(0) = I, f(n) = J},

a 2-morphism (f : [n] → I) → (g : [m] → I) is a morphism (π : n → m) ∈ O such that
g = [π] · f . (Horizontal) composition of 1-morphisms is the concatenation of sequences of
morphisms in I. The unit 1-morphism 1I is the only functor [0] → I which maps object
0 to I. (Vertical) composition of 2-morphisms is that of O. Multiplying a 2-morphism
π : n → m on the left (resp. on the right) with a 1-morphism of height k gives the
2-morphism idk ⊔π : k+ n→ k+m (resp. π ⊔ idk : n+ k→m+ k).

2.3 Definition. Objects of a full subcategory BS of the category NS12 formed by 1- and
2-morphisms of NS are elements f ∈ Cat([n], S) of NS such that

for all 0 ⩽ p < q < r ⩽ n, a, b ∈ f(p) inequalities a < b and
fp→q(a) > fp→q(b) imply fp→r(a) ⩾ fp→r(b).

(2.3.1)

A morphism (f : [n] → S) → (g : [m] → S) of BS is a morphism (π : n → m) ∈ O such
that g = [π] · f .

The category BS is not a 2-subcategory, because it is not closed with respect to
composition of 1-morphisms in NS. Similarly a full subcategory B(S(S)) of the category
N(S(S))12 is defined for an arbitrary set S.

2.4 Lax Monoidal categories and functors. Let V be a category, and let I be
a finite totally ordered set. View I as a discrete category, so I(i, j) = ∅ if i ̸= j and
I(i, i) = {1}. Denote by VI the category Cat(I,V) of functors from I to V:

ObVI = { maps I → ObV : i 7→ Ci}, VI((Bi)i∈I , (Ci)i∈I) =
∏
i∈I

V(Bi, Ci).

The category Set of sets, equipped with functors ⊗ISet =
∏

I : Set
I → Set, (Ci)i∈I 7→∏

i∈I Ci, and natural transformations λfSet :
∏

i∈I Ci
∼→

∏
j∈J
∏

i∈f−1j Ci for any map

f : I → J in Mor S, is an example of a symmetric Monoidal category V = (V,⊗IV, λ
f
V). We

give its definition following Day and Street [DS03], Leinster [Lei03, Definition 3.1.1], and
Definitions 1.2.2, 1.2.14 and 1.2.16 of [Lyu99]. We apologize for calling oplax monoidal
categories of Day–Street and Leinster by the name of lax Monoidal categories. Lax and
oplax notions differ by passing to the opposite category. Since we need in this book only
one choice of direction for structure morphisms, we have decided to use the term ‘lax’.
We introduce lax symmetric and braided Monoidal categories simultaneously with plain
ones.
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2.5 Definition. A lax (symmetric, braided) Monoidal category (V,⊗IV, λ
f
V) consists of the

following data:

1. A category V.

2. A functor ⊗I = ⊗IV : VI → V, for every set I ∈ Ob S. In particular, a map
⊗IV :

∏
i∈I V(Xi, Yi)→ V(⊗i∈IXi,⊗i∈IYi) is given.

For a map f : I → J in MorO (resp. Mor S) introduce a functor ⊗f = ⊗fV : VI → VJ

which to a function X : I → ObV, i 7→ Xi assigns the function J → ObV, j 7→
⊗i∈f−1(j)Xi. The linear order on f−1(j) is induced by the embedding f−1(j) ↪→ I.

The functor ⊗fV : VI → VJ acts on morphisms via the map∏
i∈I

V(Xi, Yi)
∼→

∏
j∈J

∏
i∈f−1j

V(Xi, Yi)

∏
j∈J ⊗f

−1j

→
∏
j∈J

V(⊗i∈f−1jXi,⊗i∈f
−1jYi).

3. A morphism of functors

λf : ⊗I → ⊗J ◦ ⊗f : VI → V, λf : ⊗i∈IXi → ⊗j∈J ⊗i∈f
−1j Xi,

for every map f : I → J in MorO (resp. Mor S).

4. A morphism of functors ρL : ⊗L → Iso : VL → V, for each 1-element set L, where
functor Iso is the obvious isomorphism of categories.

These data are subject to the following axioms:

(i) for all sets I ∈ ObO, for all 1-element sets J[
⊗i∈IXi

λidI→ ⊗i∈I (⊗{i}Xi)
⊗i∈Iρ{i}→ ⊗i∈I Xi

]
= id, (2.5.1)[

⊗i∈IXi
λI→J

→ ⊗J (⊗i∈IXi)
ρJ→ ⊗i∈I Xi

]
= id; (2.5.2)

(ii) for any pair of composable maps I
f→ J

g→K from O (resp. from S, resp. a
pair from S that satisfies the following condition)

For any pair of elements a, b ∈ I inequalities a < b and f(a) >
f(b) imply gf(a) ⩾ gf(b)

(2.5.3)

the following equation holds:

⊗i∈IXi
λf →⊗j∈J ⊗i∈f−1j Xi

=

⊗k∈K ⊗i∈f−1g−1k Xi

λfg

↓
⊗k∈Kλf |:f−1g−1k→g−1k

→⊗k∈K ⊗j∈g−1k ⊗i∈f−1jXi

λg

↓
(2.5.4)
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A Monoidal (resp. symmetric Monoidal, resp. braided Monoidal) category is a lax one
for which all λf and ρL are isomorphisms.

If f : I → J is a bijection in S, then the canonical morphism ⊗fV : VI → VJ ,∏
i∈I V(Xi, Yi) →

∏
j∈J V(Xf−1j, Yf−1j) is the canonical isomorphism.

We shall mostly need the category V = Set of sets, the category of graded k-mod-
ules V = gr = gr(k-Mod), the category of differential graded k-modules V = dg =
dg(k-Mod) and the category of small categories V = Cat.

A Monoidal category (V,⊗IV, λ
f
V) is called strict if λfV : ⊗IV → ⊗

f
V · ⊗JV are identity

morphisms for all isotonic maps f : I → J , ⊗L = Id, and ρL : ⊗L → Id is the iden-
tity morphisms, for each 1-element set L. Any plain (resp. symmetric, resp. braided)

Monoidal category (so all structure maps λfV and ρLV are isomorphisms) is equivalent to a
plain (resp. symmetric, resp. braided) strict Monoidal category due to Leinster [Lei03,
Theorem 3.1.6]. Plain (resp. symmetric, resp. braided) strict Monoidal categories are in
bijection with plain (resp. symmetric, resp. braided) strict monoidal categories [Lyu99,
Propositions 1.2.15, 1.2.17]. To explain the notion of equivalence, we recall the defini-
tion of Monoidal functors and transformations given in the plain case by Leinster [Lei03,
Definitions 3.1.3 and 3.1.4].

2.6 Definition. A lax (symmetric, braided) Monoidal functor between lax (symmetric,
braided) Monoidal categories

(F, ϕI) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D)

consists of

i) a functor F : C→ D,

ii) a functorial morphism for each set I ∈ Ob S

ϕI : ⊗ID ◦ F I → F ◦ ⊗IC : CI → D, ϕI : ⊗i∈ID FXi → F ⊗i∈IC Xi,

such that

ρL =
[
⊗LFX ϕL→ F ⊗L X FρL→ FX

]
,

for each 1-element set L, and for every map f : I → J of O (resp. S) and all families
(Xi)i∈I of objects of C the following equation holds:

⊗i∈ID FXi
ϕI → F ⊗i∈IC Xi

=

⊗j∈JD ⊗i∈f
−1j

D FXi

λfD↓
⊗j∈JD ϕf

−1j

→⊗j∈JD F ⊗i∈f
−1j

C Xi
ϕJ→ F ⊗j∈JC ⊗i∈f

−1j
C Xi

FλfC↓ (2.6.1)
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2.7 Definition. A Monoidal transformation (morphism of lax (symmetric, braided)
Monoidal functors)

t : (F, ϕI)→ (G,ψI) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D)

is a natural transformation t : F → G such that for every I ∈ Ob S

⊗i∈ID FXi
ϕI → F ⊗i∈IC Xi

=

⊗i∈ID GXi

⊗It↓
ψI →G⊗i∈IC Xi

t↓ (2.7.1)

Assume from now on that V is a symmetric Monoidal category such that all
ρL are identity morphisms. Let C be an object of V. An element of C is a morphism
1V → C in V. If C is a V-category, then a morphism f : X → Y in C is an element f
of C(X, Y ), that is, a morphism f : 1V → C(X, Y ). An ordinary category C is associated
with C, namely, ObC = ObC and C(X, Y ) = V(1V,C(X, Y )).

There is a lax symmetric Monoidal functor (F, ϕI) : V→ Set, F : C 7→ V(1V, C),

ϕI :
∏
i∈I

V(1V, Ci)
⊗IV→V(⊗I1V,⊗i∈ICi)

V(λ∅→I
V ,1)
→V(1V,⊗i∈ICi). (2.7.2)

It is used to define a lax symmetric Monoidal Cat-functor V-Cat→ Cat, C→ C. The latter,
in particular, can be viewed as a 2-functor. Moreover, any lax symmetric Monoidal functor
(B, βI) : (V,⊗IV, λ

f
V)→ (W,⊗IW, λ

f
W) between symmetric Monoidal categories gives rise to

a lax symmetric Monoidal Cat-functor (B∗, β
I
∗) : V-Cat→W-Cat [Man07, Section 1.1.14].

2.8 Lax Monoidal V-categories. For a V-category C and a finite totally ordered set
I define CI to be the V-category of functions on I with values in C:

ObCI = { maps I → ObC : i 7→ Xi},
CI((Xi)i∈I , (Yi)i∈I) = ⊗IVC(Xi, Yi) = ⊗i∈IV C(Xi, Yi).

In particular, C∅ is the V-category 1 with one object ∗ (the only map ∅→ ObC), whose
endomorphism object is the unit object 1V of V. For each 1-element set I we identify CI

with C via the obvious isomorphism.
A natural transformation ν between V-functors F,G : C→ D is a collection of elements

νX ∈ D(FX,GX), X ∈ ObC (that is, elements νX ∈ D(FX,GX)) which satisfies an
equation

C(X, Y )
λI .V → C(X, Y )⊗ 1V

FX,Y⊗νY→D(FX,FY )⊗D(FY,GY )

=

1V ⊗ C(X, Y )

λ . I
V ↓

νX⊗GX,Y→D(FX,GX)⊗D(GX,GY )
µD

→D(FX,GY )

µD

↓
(2.8.1)
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in V, where µD is the composition in D. One can show that it induces a natural trans-
formation between ordinary functors ν : F → G : C→ D.

2.9 Remark. Let ν,κ : F → G : C→ D be natural V-transformations. They coincide if
and only if the induced ordinary natural transformations ν,κ : F → G : C→ D coincide.
Indeed, enriched and ordinary transformations are specified by the same data. Thus, while
considering equations between natural V-transformations, we may assume that V = Set.
On the other hand, to prove that given collection νX : 1V → D(FX,GX) ∈ V is a natural
V-transformation, one has to prove an equation in V.

2.10 Definition. A lax (symmetric, braided) Monoidal V-category (C,⊗I , λf) consists of

1. A V-category C.

2. A V-functor ⊗I = ⊗IC : CI → C, for every set I ∈ Ob S. In particular, a morphism
⊗I : ⊗i∈IV C(Xi, Yi)→ C(⊗i∈IXi,⊗i∈IYi) is given.

For a map f : I → J in MorO (resp. Mor S) introduce a functor ⊗f = ⊗fC : CI → CJ

which to a function X : I → ObC, i 7→ Xi assigns the function J → ObC, j 7→
⊗i∈f−1(j)Xi. The linear order on f−1(j) is induced by the embedding f−1(j) ↪→ I.

The functor ⊗fC : CI → CJ acts on morphisms via the map

⊗i∈IV C(Xi, Yi)
λfV

∼
→ ⊗j∈JV ⊗i∈f

−1j
V C(Xi, Yi)

⊗j∈JV ⊗f−1j

→ ⊗j∈JV C(⊗i∈f−1jXi,⊗i∈f
−1jYi).

3. A morphism of V-functors λf : 1V → C(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Xi) for every map

f : I → J in MorO (resp. Mor S):

CI
⊗fC → CJ

λf===
===

=⇒

C

⊗J
↓⊗I →

4. A morphism of V-functors ρL : ⊗L → Id, ρL : 1V → C(⊗LX,X), for each 1-element
set L

such that

(i) for all sets I ∈ ObO, for all 1-element sets J

CI
⊗I → C

Id

→⊗i∈Iρ{i}⇐=
==
==
==

CI

⊗I

↑
λidI

==========⇒

⊗idI

→

= id,

CI
⊗I → C

CJ

⊗I→J

↓

⊗J
→

λI→J

⇐=
==
==
==
==
=

Id

↑

ρJ
=======⇒

= id . (2.10.1)
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Here the transformation ⋋(I) def
= ⊗i∈Iρ{i} : ⊗idI → Id means the composition

1V

λ∅→I
V→ ⊗i∈IV 1V

⊗i∈IV ρ{i}

→ ⊗i∈IV C(⊗{i}Xi, Xi). (2.10.2)

(ii) for any pair of composable maps I
f→ J

g→K from O (resp. from S, resp. a
pair from S that satisfies condition (2.5.3)) the following equation holds:

CJ
⊗gC → CK

λg

==
==
==
==
⇒

CI

⊗fC

↑

⊗I
→

λf

⇐
===============

C

⊗K

↓

⊗J

→

=

CJ
⊗gC → CK

⊗KV λf |:f
−1g−1k→g−1k

⇐===========

CI

⊗fC

↑

⊗I
→

⊗g◦fC

→

λg◦f

==
==
==
==
==
==
==
==
=⇒

C

⊗K

↓

(2.10.3)

Here the transformation ⋋(f,g) def
= ⊗KV λf |:f

−1g−1k→g−1k : ⊗g◦fC → ⊗gC ◦ ⊗
f
C means the compo-

sition

1V

λ∅→K
V → ⊗KV 1V

⊗k∈KV λf |:f
−1g−1k→g−1k

→ ⊗k∈KV C(⊗i∈f−1g−1kXi,⊗j∈g
−1k ⊗i∈f−1j Xi). (2.10.4)

A Monoidal (resp. symmetric Monoidal, resp. braided Monoidal) V-category is a lax one
for which all λf and all ρL are isomorphisms.

In particular, the V-functor uC = ⊗∅ : 1 = C∅ → C, ∗ 7→ 1C defines the unit object
1C of C.

For a bijective map f : I → J in MorO (resp. Mor S), introduce a functor Cf : CI →
CJ which permutes the objects. Namely, Cf((Xi)i∈I) = (Xf−1j)j∈J , and the action on
morphisms is given by

CI((Xi)i∈I , (Yi)i∈I) = ⊗i∈IV C(Xi, Yi)
λfV→ ⊗j∈JV C(Xf−1j, Yf−1j)

= CJ((Xf−1j)j∈J , (Yf−1j)j∈J).

For two bijections I
f→ J

g→K, we have Cf ·g = Cf · Cg. Since CidI = IdCI , the functor
Cf is invertible with the inverse C(f−1) : CJ → CI . Consider the functorial morphism

ℓf =
[
⊗I λf→ ⊗J ◦ ⊗f ⊗j∈Jρ{f−1j}

→ ⊗J ◦Cf
]
,

ℓf =
[
⊗i∈IXi

λf→ ⊗j∈J ⊗{f−1j}Xf−1j
⊗j∈Jρ{f−1j}

→ ⊗j∈J Xf−1j

]
.
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2.11 Remark. Suppose that ⊗L = Id and ρL : ⊗L → Id is an identity morphism, for
each 1-element set L. Then Cf = ⊗fC : CI → CJ and ℓf = λf : ⊗I → ⊗J ◦ Cf .

2.12 Proposition. For each pair of composable bijections I
f→ J

g→K, the equation[
⊗I ℓf→ ⊗J ◦Cf ℓg◦Cf→ ⊗K ◦Cg ◦ Cf = ⊗K ◦ Cfg

]
= ℓfg

holds true. Furthermore, ℓidI = id : ⊗I → ⊗I .

Proof. The equation in question expands out to the exterior of the following commutative
diagram:

⊗i∈IXi
λfg→⊗k∈K ⊗{f−1g−1k} Xf−1g−1k == ⊗k∈K ⊗{f

−1g−1k} Xf−1g−1k

⊗j∈J ⊗{f−1j} Xf−1j

λf

↓
λg→⊗k∈K ⊗{g−1k} ⊗{f−1g−1k}Xf−1g−1k

⊗k∈Kλ{f−1g−1k}→{g−1k}

↓
⊗k∈Kρ{g−1k} →

⊗k∈KXf−1g−1k

⊗k∈Kρ{f−1g−1k}

↓

⊗j∈JXf−1j

⊗j∈Jρ{f−1j}

↓
λg→⊗k∈K ⊗{g−1k} Xf−1g−1k

⊗k∈K⊗{g−1k}ρ{f
−1g−1k}

↓ ⊗k∈Kρ{g−1k}

→

Here the left upper square is a particular case of equation (2.10.3), the left lower square
commutes by the naturality of λg, and the right lower square commutes by the naturality
of ρ. The triangle is commutative by the second of equations (2.10.1).

The second assertion is precisely the first of equations (2.10.1).

2.13 Corollary. For each bijection f : I → J , the morphism ℓf is invertible with the
inverse ℓf

−1 ◦ Cf : ⊗J ◦ Cf → ⊗I ◦ Cf−1 ◦ Cf = ⊗I .

A lax (symmetric, braided) Monoidal V-category (C,⊗IC, λf) induces a lax (symmetric,

braided) Monoidal category (C,⊗I
C
, λf). For instance,

⊗I
C
:
∏
i∈I

C(Xi, Yi) =
∏
i∈I

V(1V,C(Xi, Yi))
⊗IV→V(⊗IV1V,⊗i∈IV C(Xi, Yi))

V(λ∅→I
V ,⊗IC)→V(1V,C(⊗i∈IXi,⊗i∈IYi)) = C(⊗i∈IXi,⊗i∈IYi).

Due to Remark 2.9 equations (2.10.3) for C and C are equivalent. The latter, written in
terms of morphisms λf : ⊗i∈IXi → ⊗j∈J⊗i∈f

−1jXi in C takes the form of equation (2.5.4).

We put ⊗(fi)i∈n to be the composition of Cf(0)
⊗f1→ Cf(1)

⊗f2→ . . .
⊗fn→ Cf(n) for each

(fi)i∈n in NnO (resp. in NnS, resp. in BnS). Thus we have a functor (of ordinary categories)
⊗C : NO01 → V-Cat (resp. ⊗C : NS01 → V-Cat). Here the category NI01 consists of
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objects and 1-morphisms of the 2-category NI. For every element (I) of N0O, we have
a morphisms of V-functors ⋋(I) : ⊗idI → Id given by (2.10.2). Furthermore, for every

element (f, g) =
(
I

f→ J
g→K

)
of N2O (resp. N2S, resp. B2S) we have a morphism of

V-functors ⋋(f,g) : ⊗fgC → ⊗
(f,g)
C given by (2.10.4). In particular, if K is a 1-element set,

then for the only map ▷ : J → K and the element (f, ▷) =
(
I

f→ J
▷→K

)
we have

⋋(f,▷) = λf : ⊗IC → ⊗
(f,▷)
C . We define ⋋ also for an element I

f→ J of height 1 of the

nerve as ⋋(f) = id : ⊗fC → ⊗
f
C.

If f : [n] → I, (i → j) 7→ (fi→ j : f(i) → f(j)) is an element of the nerve NnI,
specified by (fi)i∈n as in (2.1.3), and k ∈ f(n), we denote by (f1, . . . , fn|k) ∈ NnI the

tree f |k : [n] → I, i 7→ f−1i→nk, with f
|k
i→ j given by restriction of fi→ j. In particular,

f |k(n) = {k}. Explicit presentation of f |k in the form (2.1.3) is

(f1 . . . fn)
−1(k)

f1|(f1...fn)−1k→ (f2 . . . fn)
−1(k)

f2|(f2...fn)−1k→ · · ·

· · ·
fn−1|(fn−1fn)

−1k→ f−1n (k)
fn|f−1

n k→{k}.

Correspondingly, ⊗(f1,...,fn|k) = ⊗f |k : Cf |k(0) → C.

2.14 Proposition. Let C be a lax (resp. lax symmetric, resp. lax braided) Monoidal
V-category. For any (f1, f2, f3) in N3O (resp. in N3S, resp. in B3S) the following associa-
tivity equation holds:

Cf(1)
⊗f2 → Cf(2)

⋋(f2,f3)

==
==
==
==
==
=⇒

Cf(0)

⊗f1

↑

⊗f1f2f3
→

⇐
=================

⋋
(f
1 ,f

2 f
3 )

Cf(3)

⊗f3

↓
⊗f2f3

→

=

Cf(1)
⊗f2 → Cf(2)

⋋(f1,f2)
⇐===========

Cf(0)

⊗f1

↑

⊗f1f2f3
→

⊗f1f2

→

==
==
==
==
==
==
==
==
=

⋋
(f
1
f 2
,f
3
)

⇒

Cf(3)

⊗f3

↓

(2.14.1)

Proof. We may replace C with ordinary Monoidal category C due to Remark 2.9. So we
reduce the question to V = Set and a lax (symmetric) Monoidal category C.

Let us put I = f(0), J = f(1), K = f(2), L = f(3), f = f1, g = f2, h = f3 for brevity.
Let us also introduce the following shorthands: for a fixed l ∈ L put

fl = f |f−1g−1h−1l : f
−1g−1h−1l→ g−1h−1l, gl = g|g−1h−1l : g

−1h−1l→ h−1l.
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Then we have:

⋋(f,gh) =
(
λfl : ⊗i∈f−1g−1h−1lXi → ⊗j∈g

−1h−1l ⊗i∈f−1j Xi

)
l∈L,

⋋(g,h) =
(
λgl : ⊗j∈g−1h−1l ⊗i∈f−1j Xi → ⊗k∈h

−1l ⊗j∈g−1k ⊗i∈f−1jXi

)
l∈L,

⋋(fg,h) =
(
λflgl : ⊗i∈f−1g−1h−1lXi → ⊗k∈h

−1l ⊗i∈f−1g−1k Xi

)
l∈L,

⋋(f,g) =
(
λf |:f

−1g−1k→g−1k : ⊗i∈f−1g−1kXi → ⊗j∈g
−1k ⊗i∈f−1j Xi

)
k∈K .

The left hand side of equation (2.14.1) equals

⋋(f,gh) ·⋋(g,h) =
(
⊗i∈f−1g−1h−1lXi

λfl→ ⊗j∈g−1h−1l ⊗i∈f−1jXi

λgl→ ⊗k∈h−1l ⊗j∈g−1k ⊗i∈f−1j Xi

)
l∈L.

Similarly, the right hand side of (2.14.1) is

⋋(fg,h) ·(⋋(f,g) · ⊗h) =
(
⊗i∈f−1g−1h−1lXi

λflgl→ ⊗k∈h−1l ⊗i∈f−1g−1kXi

⊗k∈h−1lλf |:f
−1g−1k→g−1k

→ ⊗k∈h−1l ⊗j∈g−1k ⊗i∈f−1j Xi

)
l∈L.

The equation follows from (2.5.4) written for maps f−1g−1h−1l
fl→ g−1h−1l

gl→ h−1l.

For every element (fi)i∈n of height n > 2 in NnO (resp. in NnS, resp. in BnS) we define
a morphism of V-functors

Cf(1)
⊗f2 → · · · ⊗fn−1

→ Cf(n−1)

Cf(0)

⊗f1
↑

⊗f1·····fn
→

⋋(fi)i∈n

~wwwww
Cf(n)

⊗fn↓

as the composition of (n− 1) morphisms ⋋(-,-) corresponding to any triangulation of the
above (n+ 1)-gon, in particular as the composition of ⋋(f1,f2), ⋋(f1f2,f3), . . . , ⋋(f1...fn−1,fn).
According to equation (2.14.1) the result is independent of triangulation. For n ⩽ 2 the
transformation ⋋(fi)i∈n was defined above.

For a 2-morphism (π : n → m) = (ψ = [π] : [m] → [n]) : (fi)i∈n = f → ψ · f in
NI = NO,NS,BS, we define a morphism of V-functors π⋋f = ψ⋋f : ⊗ψ·f → ⊗f as the
pasting

Cf(0)

⊗f0→ψ(1)

→w�⋋(fi)i∈π−1(1)

⊗
(fi)i∈π−1(1)

→
Cf(ψ(1))

⊗fψ(1)→ψ(2)

→w�⋋(fi)i∈π−1(2)

⊗
(fi)i∈π−1(2)

→
. . .

⊗fψ(m−1)→n

→w�⋋(fi)i∈π−1(m)

⊗
(fi)i∈π−1(m)

→
Cf(n).

In particular,

n→1⋋f = ⋋(fi)i∈n : ⊗f1...fn = ⊗f0→n → ⊗(fi)i∈n : Cf(0) → Cf(n).
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2.15 Proposition. Any lax (symmetric) Monoidal V-category C defines a strict 2-functor
⊗C : NO2-op → V-Cat (resp. ⊗C : NS2-op → V-Cat) such that I 7→ CI , (fi)i∈n 7→ ⊗(fi)i∈n,
and a 2-morphism (ψ = [π] : [m]→ [n]) : f → ψ · f is mapped to the natural transforma-
tion ψ⋋f : ⊗ψ·f → ⊗f : Cf(0) → Cf(n).

Proof. Since each 1-morphism of NI can be represented as a product of generators in a
unique way, it is obvious that ⊗C preserves composition of 1-morphisms. It is also straight-
forward from the definition that ⊗C preserves horizontal composition of 2-morphisms. To
check that ⊗C preserves vertical composition, it suffices to check that it preserves com-

position of 2-morphisms of the form n
π→m → 1. Indeed, by the interchange law,

an arbitrary composite n
ϕ→m

ψ→ k can be computed by stacking horizontally the
vertical composites ϕ−1ψ−1p → ψ−1p → {p}, obtained by restriction to p ∈ k. Thus, we
have to prove the equation

n→1⋋f =
(
⊗f0→n

m→1⋋[π]·f

→ ⊗[π]·f
π⋋f→⊗f

)
. (2.15.1)

If π is surjective, it holds true due to ⋋f being well-defined and independent of triangu-
lation of a polygon.

Suppose π is injective. The element g = [π] · f of NmO (resp. NmS) is given by the
sequence of morphisms

J0
g1→ J1

g2→ . . .
gm→ Jm,

where gk = f[π](k) : Jk−1 = I[π](k)−1 → I[π](k) = Jk if k is in the image of π, and

gk = idI[π](k) : Jk−1 = I[π](k) → I[π](k) = Jk

otherwise. The source of the morphism m→1⋋[π]·f is the V-functor ⊗f1·····fn = ⊗g1·····gm :
CI0 → CIn; the target is the composite

CJ0
⊗g1→ CJ1

⊗g2→ . . .
⊗gm→ CJm.

The composite in the right hand side of equation (2.15.1) is given by the pasting diagram
obtained by attaching the cell

CIi
Id →
⇑ ⋋(Ii)

⊗idIi=⊗gk
→

CIi

to the (m + 1)-gon representing the morphism m→1⋋[π]·f , along the edge ⊗gk, for each
k ∈ m which is not in the image of π; here i = [π](k). By triangulating the (m + 1)-gon
suitably and using identities (2.10.1), we can pass from the described pasting diagram
representing the right hand side of equation (2.15.1) to a triangulation of the (n+1)-gon
representing the morphism n→1⋋f .
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General case follows from the two above particular cases. Indeed, an arbitrary (non-
decreasing) map π decomposes into a (non-decreasing) surjection and a (non-decreasing)

injection, π =
(
n

σ
▷ k ⊂

ι→m
)
. Therefore, by the previous cases

n→1⋋f =
(
⊗f0→n

k→1⋋[σ]·f

→ ⊗[σ]·f
σ⋋f→⊗f

)
=
(
⊗f0→n

m→1⋋[ι]·[σ]·f

→ ⊗[ι]·[σ]·f
ι⋋[σ]·f

→ ⊗[σ]·f
σ⋋f→⊗f

)
.

It remains to prove that ι ⋋[σ]·f ·σ⋋f = π⋋f . This is one of the equations claiming the
compatibility of ⊗C with vertical composition of 2-morphisms. Therefore, it follows from
equation (2.15.1), written for the pairs 0→ 0→ 1 and p→ 1→ 1. These are particular
cases of already proven equations. Hence equation (2.15.1) holds true for general π.

2.16 Remark. Applying this proposition to the sequence

n = n0
π1→ n1

π2→ n2 . . .
πk→ nk = 1

of composable 2-morphisms we get

πk ⋋f ·πk−1 ⋋f · . . . · π1⋋f = n→1⋋f = ⋋(fi)i∈n : ⊗f1...fn → ⊗(fi)i∈n : Cf(0) → Cf(n).

The left hand side composite does not depend on π1, . . . , πk. Expressed in terms of
λ’s, this means that all pastings ⊗f1...fn → ⊗(fi)i∈n : Cf(0) → Cf(n) constructed from λ’s
coincide.

Let us spell out the definition of lax Monoidal V-functor given by Day and Street
[DS03]. Given a functor F : C→ D we define a functor F I : CI → DI , (Xi)i∈I 7→ (FXi)i∈I
via the following morphism

CI((Xi)i∈I , (Yi)i∈I) = ⊗i∈IV C(Xi, Yi)
⊗i∈IV (F )i→ ⊗i∈IV D(FXi, FYi)

= DI((FXi)i∈I , (FYi)i∈I).

2.17 Definition. A lax (symmetric, braided) Monoidal V-functor between lax (symmet-
ric, braded) V-categories

(F, ϕI) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D)

consists of

i) a V-functor F : C→ D,

ii) a functorial morphism for each set I ∈ Ob S

CI
F I →DI

C

⊗I
↓

F →

ϕI

⇐=
==
==
==
==
=

D

⊗I
↓

(2.17.1)
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such that

ρL =
[
⊗L ◦ F ϕL→ F ◦ ⊗L FρL→ F

]
,

for each 1-element set L, and for every map f : I → J of O (resp. S) the following
equation holds:

CI
F I →DI

CJ
F J

→

⊗j∈JV ϕf
−1j

⇐=====
=====

=====
=====

=====
=====

⊗fC

←
DJ⇐=======

λfD

⊗fD←

C
F

→

ϕJ

⇐=
==
==
==
==

⊗JC →
D

⊗ID

↓⊗JD →

=

CI
F I →DI

CJ⇐=======
λfC

⊗fC

←

C

⊗IC

↓
F
→

ϕI

⇐=
==
==
==
==
==
==
==

⊗JC →
D

⊗ID

↓

(2.17.2)

Notice that given natural transformations ϕf
−1j : 1→ D(⊗i∈f−1j(FXi), F (⊗i∈f

−1jXi))
induce for every map f : I → J of O (resp. S) the natural transformation

ϕf
def
= ⊗j∈JV ϕf

−1j =
(
1

λ∅→J
V→ ⊗j∈JV 1

⊗j∈JV ϕf
−1j

→ ⊗j∈JV D(⊗i∈f−1jFXi, F ⊗i∈f
−1j Xi)

= DJ((⊗i∈f−1jFXi)j∈J , (F ⊗i∈f
−1j Xi)j∈J)

)
,

used in the top square of left diagram above. In particular, ϕI→1 = ϕI .
For any f ∈ NnO (resp. f ∈ NnS, resp. f ∈ BnS) we put ϕ(fi)i∈n to be the pasting

Cf(0)
⊗f1→ Cf(1)

⊗f2 → Cf(n−1)
⊗fn→ Cf(n)

· · ·

Df(0)

F f(0)↓

⊗f1
→

ϕf1==
==
==
==
⇒

Df(1)

F f(1)↓

⊗f2
→

ϕf2==
==
==
==
=⇒

Df(n−1)

F f(n−1)

↓
⊗fn
→

ϕfn==
==
==
==
⇒

Df(n)

F f(n)↓

In particular, for the element f = (I) ∈ N0I we have ϕ(I) = id : F I → F I . For n = 1 we
have ϕ(g) = ϕg.

2.18 Proposition. For any (fi)i∈n in NnO (resp. NnS, BnS) the following equation holds

Cf(0)
⊗(fi)i∈n

→~w⋋
(fi)i∈n
C

⊗f1...fn
→

Cf(n)

Df(0)

F f(0)↓

⊗f1...fn
→

ϕf1...fn

==
==
==
==
=⇒

Df(n)

F f(n)↓
=

Cf(0)
⊗(fi)i∈n

→Df(n)

ϕ(fi)i∈n

==
==
==
==
==
=⇒

Df(0)

F f(0)

↓ ⊗(fi)i∈n

→~w⋋
(fi)i∈n
D

⊗f1...fn
→

Df(n)

F f(n)

↓
. (2.18.1)
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For any f = (fi)i∈n in NnI and for any 2-morphism (ψ = [π] : [m]→ [n]) : f → ψ · f the
following equation holds

Cf(0)
⊗f→~w

ψ⋋
f
C

⊗ψ·f
→

Cf(n)

Df(0)

F f(0)↓

⊗ψ·f
→

ϕψ·f

==
==
==
==
=⇒

Df(n)

F f(n)↓
=

Cf(0)
⊗f→Df(n)

ϕf

==
==
==
==
==
=⇒

Df(0)

F f(0)

↓ ⊗f→~w
ψ⋋

f
D

⊗ψ·f
→

Df(n)

F f(n)

↓
. (2.18.2)

Proof. Wemay assume that V = Set due to Remark 2.9. For n = 2 and
(
I

f→ J
g→K

)
∈

N2I equation (2.18.1) takes the form

CI
F I →DI

CJ
F J

→

ϕf

⇐=====
=====

=====
=====

=====
=====

⊗fC

←
DJ⇐=======

⋋(f,g)
D

⊗fD←

CK
FK

→

ϕg

⇐=
==
==
==
=

⊗gC →
DK

⊗fgD

↓⊗gD →

=

CI
F I →DI

CJ⇐=======
⋋(f,g)

C

⊗fC

←

CK

⊗fgC

↓

FK
→

ϕfg
⇐=

==
==
==
==
==
==
==

⊗gC →
DK

⊗fgD

↓

Denote fk = f | : f−1g−1k → g−1k for k ∈ K. Explicitly this equation says that for all
k ∈ K and all families (Xi)i∈I of objects of C

⊗i∈f
−1g−1k

D FXi
ϕf

−1g−1k

→ F ⊗i∈f
−1g−1k

C Xi

=

⊗j∈g
−1k

D ⊗i∈f
−1j

D FXi

λ
fk
D ↓

⊗j∈g
−1k

D ϕf
−1j

→⊗j∈g
−1k

D F ⊗i∈f
−1j

C Xi
ϕg

−1k

→ F ⊗j∈g
−1k

C ⊗i∈f
−1j

C Xi

Fλ
fk
C↓

This is precisely equation (2.6.1), written for the map fk : f
−1g−1k → g−1k.

The general case of (2.18.1) follows from the case n = 2.
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The proof of equation (2.18.2) is obtained by splitting it into parts of the form

Cf(ψ(j−1))

⊗
(fi)i∈π−1(j)

→~w⋋
(fi)i∈π−1(j)
C

⊗fψ(j−1)→ψ(j)
→

Cf(ψ(j))

Df(ψ(j−1))

F f(ψ(j−1))

↓

⊗fψ(j−1)→ψ(j)
→

ϕ
fψ(j−1)→ψ(j)

===
===

===
===

=⇒

Df(ψ(j))

F f(ψ(j))↓
=

Cf(ψ(j−1))
⊗

(fi)i∈π−1(j)

→ Cf(ψ(j))

ϕ
(fi)i∈π−1(j)

===
===

===
===

===
=⇒

Df(ψ(j−1))

F f(ψ(j−1))

↓ ⊗
(fi)i∈π−1(j)

→~w⋋
(fi)i∈π−1(j)
D

⊗fψ(j−1)→ψ(j)
→

Df(ψ(j))

F f(ψ(j))

↓

for every j ∈m. These equations are proven above.

2.19 Proposition. A lax (symmetric) Monoidal V-functor (F, ϕI) : (C,⊗IC, λ
f
C) →

(D,⊗ID, λ
f
D) gives rise to a lax 2-transformation between strict 2-functors ⊗F : ⊗C →

⊗D : NI2-op → V-Cat which assigns the V-functor F I : CI → DI to each object I and the
transformation ϕ(fi)i∈n to each 1-morphism (fi)i∈n : I → J .

Proof. Naturality of the 2-morphism ϕ(fi)i∈n in our case coincides with equation (2.18.2).
Relation involving ϕidI is trivially satisfied, because functors we are dealing with are strict,
and ϕ(I) = id : F I → F I by the definition. It remains to verify equation

CI
⊗fg → CK

DI

F I↓
⊗fg →

ϕfg

====
====

====
====

====
⇒

DK

FK↓

=

DJ

⊗g

→

⊗f →

=

CI
⊗fg → CK

=

DI

F I↓
=======

ϕf ⇒ CJ

⊗g →⊗f

→
DK

FK↓

DJ

F J↓

ϕg

==
==
==
==
==
==
==
=⇒

⊗g

→

⊗f →

,

where f = (fν)ν∈n ∈ NnI(I, J), g = (gµ)µ∈m ∈ NmI(J,K). It is also satisfied, because by
definition both sides are equal to the pasting

CI
⊗f1→ Cf(1) Cf(n−1)

⊗fn → CJ
⊗g1→ Cg(1) Cg(m−1)

⊗gm→ CK

. . . . . .

DI

F I

↓

⊗f1
→

ϕf1

==
==
==
==
=⇒

Df(1)

F f(1)

↓
Df(n−1)

F f(n−1)

↓

⊗fn
→

ϕfn
==
==
==
==
⇒

DJ

F J

↓

⊗g1
→

ϕg1

==
==
==
==
=⇒

Dg(1)

F g(1)

↓
Dg(m−1)

F g(m−1)

↓

⊗gm
→

ϕgm
==
==
==
==
⇒

DK

FK

↓

The claim is proven.
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An arbitrary natural transformation t : F → G : C → D, represented by a family
of morphisms t(X) : 1 → D(FX,GX), X ∈ ObC induces a natural transformation
tI : F I → GI : CI → DI , represented by

tI [(Xi)i∈I ]

=
(
1

λ∅→I
V→ ⊗i∈IV 1

⊗i∈IV t(Xi)→ ⊗i∈IV D(FXi, GXi) = DI((FXi)i∈I , (GXi)i∈I)
)
.

2.20 Definition. A Monoidal transformation (morphism of lax (symmetric, braided)
Monoidal V-functors)

t : (F, ϕI)→ (G,ψI) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D)

is a natural transformation t : F → G such that for every I ∈ Ob S

CI
F I→

tI⇓
GI
→DI

C

⊗I
↓

G
→

ψI

⇐=
==
==
==
==
==

D

⊗I
↓

=

CI
F I →DI

ϕI

⇐=
==
==
==
==
==

C

⊗I

↓ F→
t⇓
G
→D

⊗I

↓

. (2.20.1)

2.21 Proposition. For any (fi)i∈n in NnO (resp. NnS, BnS) the following equation holds

Cf(0)
F f(0)→
⇓tf(0)
Gf(0)
→

Df(0)

Cf(n)

⊗(fi)i∈n↓

Gf(n)
→

ψ(fi)i∈n

⇐=
==
==
==
==

Df(n)

⊗(fi)i∈n↓
=

Cf(0)
F f(0)→Df(0)

ϕ(fi)i∈n

⇐=
==
==
==
==
==

Cf(n)

⊗(fi)i∈n

↓ F f(n)→
⇓tf(n)
Gf(n)
→

Df(n)

⊗(fi)i∈n

↓
.

Proof. We may assume that V = Set. For n = 1 and (I
f→ J) ∈ N1I the equation takes

the form

CI
F I→
⇓tI
GI
→

DI

CJ

⊗fC↓

GJ
→

ψf

⇐=
==
==
==
==
=

DJ

⊗fD↓
=

CI
F I →DI

ϕf

⇐=
==
==
==
==
==

CJ

⊗fC

↓ F J→
⇓tJ
GJ
→

DJ

⊗fD

↓
.
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Explicitly this equation says that for all j ∈ J and all families (Xi)i∈I of objects in C

⊗i∈f
−1j

D FXi
ϕf

−1j

→ F ⊗i∈f
−1j

C Xi

=

⊗i∈f
−1j

D GXi

⊗f
−1j

D t(Xi)↓
ψf

−1j

→G⊗i∈f
−1j

C Xi

t(⊗f
−1j

C Xi)↓

This is precisely equation (2.7.1), written for the set f−1j.
The general case follows from the case n = 1.

2.22 Proposition. A Monoidal transformation t : (F, ϕI)→ (G,ψI) is precisely a modi-
fication ⊗F → ⊗G : ⊗C → ⊗D : NI2-op → V-Cat, which assigns the natural transformation
tI : F I → GI : CI → DI to each object I of NI, where t : F → G : C → D is a fixed
transformation.

Proof. The required equation is exactly the statement of Proposition 2.21.

2.23 Example. Denote by 1 the symmetric Monoidal V-category with one object ∗; the
endomorphisms object 1(∗, ∗) = 1V is the unit object of V; the V-functor ⊗I : 1I → 1,
(I → {∗}) 7→ ∗ is specified on morphisms by the structure isomorphisms (λ∅→IV )−1 :
⊗i∈IV (1V)i → 1V of the symmetric Monoidal category V; the identity morphism of V-func-
tors for every map f : I → J in Mor S:

1I
⊗f → 1J

===
===

==

1

⊗J
↓⊗I

→

specified by id : 1V → 1V ∈ V. The equation between two V-functors above follows from

equation (2.10.3) for V, written for maps ∅→ I
f→ J .

2.24 Algebras. We are going to study ‘associative’ algebras in lax Monoidal cate-
gories.

2.25 Definition. A (commutative) algebra A in a lax (symmetric, braided) Monoidal
V-category C is a lax (symmetric, braided) Monoidal V-functor A : 1 → C. A morphism
g : A→ B of such algebras is a Monoidal transformation g : A→ B : 1→ C.

Equivalently, an algebra (resp. commutative algebra) A in C is

i) an object A of C,
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ii) a morphism µI : ⊗IA→ A in C, that is, µI : 1V → C(⊗IA,A), for each set I ∈ Ob S,
such that µL = ρL for each 1-element set L, and for every map f : I → J of O (resp.
S) the following equation holds:

µI =
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
⊗j∈Jµf−1j

→ ⊗J A µJ→A
)
. (2.25.1)

A morphism g : A → B of such algebras is a morphism g : A → B in C, that is,
g : 1V → C(A,B), such that for every set I the following equation holds:(

⊗IA ⊗Ig→ ⊗I B µIB→B
)
=
(
⊗IA µIA→A

g→B
)
. (2.25.2)

Equations (2.25.1), (2.25.2) are shorthand for longer equations involving C and V.
They are equivalent to the same equations in C that hold on the nose (µI are natural
transformations), and define algebras in the lax Monoidal category C.

Category O, equipped with disjoint union ⊔i∈I : OI → O, (Xi)i∈I 7→ ⊔i∈IXi, given by
(2.1.1), is an example of a Monoidal category. To an isotonic map f : I → J the only

isotonic bijection λfO : ⊔i∈IXi → ⊔j∈J ⊔i∈f−1j Xi is associated.

2.26 Definition. A colax (symmetric, braided) Monoidal functor between lax (symmet-
ric, braided) Monoidal categories

(F, ϕI) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D)

consists of

i) a functor F : C→ D,

ii) a functorial morphism for each set I ∈ ObO

ϕI : F ◦ ⊗IC → ⊗ID ◦ F I : CI → D, ϕI : F ⊗i∈IC Xi → ⊗i∈ID FXi

such that ϕI = idF for each 1-element set I, and for every map f : I → J of O (resp. S)
and all families (Xi)i∈I of objects of C the following equation holds:

⊗i∈ID FXi←
ϕI

F ⊗i∈IC Xi

=

⊗j∈JD ⊗i∈f
−1j

D FXi

λfD↓
←
⊗j∈JD ϕf

−1j

⊗j∈JD F ⊗i∈f
−1j

C Xi←
ϕJ

F ⊗j∈JC ⊗i∈f
−1j

C Xi

FλfC↓

2.27 Proposition. An algebra A in a lax Monoidal V-category C defines a colax Monoidal
functor

(F, ϕI) : (O,⊔I , λfO)→ (C,⊗I
C
, λfC), FX = ⊗XA,

(f : X → Y ) 7−→ µfA =
(
⊗XA

λfC→ ⊗y∈Y ⊗f−1yA
⊗y∈Y µf

−1y
A→ ⊗Y A

)
,

ϕI = λpr:⊔i∈IXi→I : ⊗⊔i∈IXiA→ ⊗i∈I ⊗Xi A.
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Proof. Clearly, µidIA = id⊗IA. To show that F is a functor, we have to prove for any pair

of composable maps I
f→ J

g→K in O the following equations in C:

µfA · µ
g
A =

(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
⊗j∈Jµf

−1j
A→ ⊗J A

λgC→ ⊗k∈K ⊗g−1kA
⊗k∈Kµg

−1k
A→ ⊗K A

)
=
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
λgC→

⊗k∈K ⊗j∈g−1k ⊗f−1j A
⊗k∈K⊗j∈g−1kµf

−1j
A→ ⊗k∈K ⊗g−1kA

⊗k∈Kµg
−1k
A→ ⊗K A

)
=
(
⊗IA

λfgC→ ⊗k∈K ⊗f−1g−1kA
⊗k∈Kλf |:f

−1g−1k→g−1k
C →

⊗k∈K ⊗j∈g−1k ⊗f−1j A
⊗k∈K⊗j∈g−1kµf

−1j
A→ ⊗k∈K ⊗g−1kA

⊗k∈Kµg
−1k
A→ ⊗K A

)
=
(
⊗IA

λfgC→ ⊗k∈K ⊗f−1g−1kA
µf

−1g−1k
A → ⊗K A

)
= µfgA . (2.27.1)

To show that transformation ϕI is natural, we notice that the following diagram is
commutative:

⊗⊔i∈IXiA
λ⊔i∈IXi→I

→⊗i∈I ⊗Xi A

=

⊗(i,yi)∈⊔i∈IYi ⊗f
−1
i yi A

λ⊔i∈Ifi↓
λ⊔i∈IYi→I

→⊗i∈I ⊗yi∈Yi ⊗f
−1
i yiA

⊗i∈Iλfi↓

=

µ⊔i∈Ifi

→⊗⊔i∈IYiA

⊗(i,yi)∈⊔i∈IYiµf
−1
i

yi

↓
λ⊔i∈IYi→I

→⊗i∈I ⊗Yi A

⊗i∈I⊗yi∈Yiµf
−1
i

yi

↓
←

⊗i∈Iµfi (2.27.2)

The pair (F, ϕI) is a colax Monoidal functor, since the diagram

⊗⊔i∈IXiA
λ⊔i∈IXi→I

→⊗i∈I ⊗Xi A

⊗⊔j∈J⊔i∈f−1jXiA

λ
λ
f
O

C ↓
=

⊗j∈J ⊗⊔i∈f−1jXi A

λ
⊔j∈J⊔i∈f−1j

Xi→J

↓
⊗j∈Jλ⊔i∈f−1j

Xi→f−1j

→⊗j∈J ⊗i∈f−1j ⊗XiA

λf :I→J

↓

(2.27.3)

commutes being equation (2.5.4) for maps ⊔i∈IXi
pr→ I

f→ J .

Let us single out familiar pieces of structure of an algebra (A, µI) : (1,⊗I1, id) →
(C,⊗IC, λ

f
C). It determines an object A(∗) of C, denoted also A. Functorial mor-

phism (2.17.1) for I = ∅ gives the unit ηA = µ∅ : 1V → C(1C, A) of A, shortened
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to ηA : 1C → A. For I = 2 functorial morphism (2.17.1) gives the multiplication
µA = µ2 : 1V → C(A⊗A,A) of A, shortened to µA : A⊗A→ A, where A⊗A = ⊗2(A,A).

The morphism ηA is, indeed, the unit of µA as the following equations show:(
⊗1A

λI .C→ (⊗1A)⊗ 1C
ρ1⊗ηA→A⊗ A µA→A

)
= ρ1, (2.27.4)(

⊗1A
λ . I
C→ 1C ⊗ (⊗1A)

ηA⊗ρ1→A⊗ A µA→A
)
= ρ1. (2.27.5)

They follow from equation (2.25.1) written for the maps

I . = e1 : 1→ 2, e1(1) = 1,

. I = e2 : 1→ 2, e2(1) = 2, (2.27.6)

respectively, and from the condition µ1 = ρ1. The associativity of multiplication is
expressed by the equations(

A⊗ A⊗ A λIVC→ (⊗1A)⊗ (⊗{2,3}(A,A)) ρ1⊗ℓh→A⊗ (A⊗ A)
1⊗µA→A⊗ A µA→A

)
= µ3,(

A⊗ A⊗ A λVIC→ (A⊗ A)⊗ (⊗{3}A) µA⊗ρ{3}→A⊗ A µA→A
)
= µ3,

where A ⊗ A ⊗ A = ⊗i∈3(A)i, and h : {2, 3} → 2 is the only non-decreasing bijection.
These equations are nothing else but equation (2.25.1) written for the maps

IV = f : 3→ 2, f(1) = 1, f(2) = f(3) = 2,

VI = g : 3→ 2, f(1) = f(2) = 1, f(3) = 2, (2.27.7)

respectively. Also, equation (2.25.1) written for the map h implies that

µ{2,3} =
[
⊗{2,3}(A,A) λhC→ (⊗{2}A)⊗ (⊗{3}A) ρ{2}⊗ρ{3}→A⊗ A µ2

→A
]
= ℓh · µA.

The following description of algebras in a lax Monoidal category will be used in the
next chapter in the characterization of multicategory.

2.28 Proposition. An object A of a lax Monoidal V-category C, equipped with mor-
phisms ηA : 1C → A, µA : A⊗ A→ A such that equations (2.27.4), (2.27.5) and

(
A⊗ A⊗ A λIVC→ (⊗1A)⊗ (⊗{2,3}(A,A)) ρ1⊗ℓh→A⊗ (A⊗ A) 1⊗µA→A⊗ A µA→A

)
=
(
A⊗ A⊗ A λVIC→ (A⊗ A)⊗ (⊗{3}A) µA⊗ρ{3}→A⊗ A µA→A

)
, (2.28.1)

hold, admits a unique structure (A, µI) of an algebra in C such that µ∅ = ηA, µ
2 = µA.
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Proof. We may and we shall assume that V = Set and C is a lax Monoidal category. The
morphisms µI : ⊗IA → A, I ∈ ObO, are constructed by induction on cardinality of I.
Consider the following property Pn:

µI is defined for all I ∈ ObO with |I| < n and for all f : I → J in MorO
with |I| < n, |J | < n equation (2.25.1) holds. For all f : I → J in MorO with
|I| = n and 1 < | Im f | ⩽ |J | < n denote

µIf =
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
⊗j∈Jµf−1j

→ ⊗J A µJ→A
)
. (2.28.2)

At last, it is required that for all I ∈ ObO with |I| = n and all f : I → J ,
g : I → K in MorO with 1 < | Im f | ⩽ |J | < n, 1 < | Im g| ⩽ |K| < n the
compositions µIf and µIg coincide.

For each 1-element set L, define µL : ⊗LA → A simply as ρL : ⊗LA → A. For each
2-element set I, define

µI =
[
⊗I(A,A) ℓg→A⊗ A µA→A

]
,

where g : I → 2 is a unique order-preserving bijection. Thus µI is defined for each
I ∈ ObO with |I| < 3. It follows immediately from the assumptions that property P3

is satisfied. Suppose the property Pn holds for n ⩾ 3. We claim that property Pn+1 is
satisfied. Let us define µI for |I| = n as µIf , where f : I → J is an arbitrary map in MorO

with 1 < | Im f | ⩽ |J | < n. We use the notation µIf for the right hand side of (2.28.2)
also for arbitrary f : I → J in MorO with |I|, |J | ⩽ n, since it is well-defined now.

2.29 Lemma. Let the property Pn hold. Let h =
(
I

f→ J
g→K

)
be maps in O

with |I|, |J | ⩽ n, |K| < n. Assume that |g−1k| < n, |h−1k| < n for all k ∈ K. Then
µIf = µIh = µI .

Proof. We have

µJ =
(
⊗JA

λgC→ ⊗k∈K ⊗g−1kA
⊗k∈Kµg−1k

→ ⊗K A µK→A
)
, (2.29.1)

µh
−1k =

(
⊗h−1kA

λ
fk
C→ ⊗j∈g−1k ⊗f−1jA

⊗j∈g−1kµf
−1j

→ ⊗j∈g−1k A
µg

−1k

→A
)
, (2.29.2)
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where fk = f | : f−1g−1k → g−1k for all k ∈ K. Therefore,

µIf =
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
⊗j∈Jµf−1j

→ ⊗J A µJ→A
)

=
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
⊗j∈Jµf−1j

→ ⊗J A
λgC→ ⊗k∈K ⊗g−1kA

⊗k∈Kµg−1k

→ ⊗K A µK→A
)
,

=
(
⊗IA

λfC→ ⊗j∈J ⊗f−1jA
λgC→ ⊗k∈K ⊗j∈g−1k ⊗f−1j A

⊗k∈K⊗j∈g−1kµf
−1j

→ ⊗k∈K ⊗g−1kA
⊗k∈Kµg−1k

→ ⊗K A µK→A
)
,

=
(
⊗IA

λfgC→ ⊗k∈K ⊗f−1g−1kA
⊗k∈KλfkC→ ⊗k∈K ⊗j∈g−1k ⊗f−1j A

⊗k∈K⊗j∈g−1kµf
−1j

→ ⊗k∈K ⊗g−1kA
⊗k∈Kµg−1k

→ ⊗K A µK→A
)
,

=
(
⊗IA λhC→ ⊗k∈K ⊗h−1kA

⊗k∈Kµh−1k

→ ⊗K A µK→A
)
= µIh = µI , (2.29.3)

due to property Pn.

Let us check that equation µIf = µI holds for an arbitrary f : I → J in MorO with
|I|, |J | ⩽ n. If | Im f | > 1, then there is an isotonic surjection g : J ▷ 2 = K such
that h = fg : I → 2 is a surjection. Such data satisfy assumptions of Lemma 2.29, which
gives µIf = µI . Suppose I = ∅. If J = ∅ or J is a 1-element set, then the equation

µIf = µI is part of property P3, which is satisfied by assumption. If J contains at least 2
elements, choose an arbitrary surjection g : J ▷ 2. Lemma 2.29 applied to the maps

h =
(
∅ f→ J

g
▷ 2
)
implies that µIf = µI .

It remains to consider the case when | Im f | = 1. Suppose that f(i) = k, for each
i ∈ I, i.e., f factorizes as

f = (I
p
▷ {k} ⊂

e→ J).

Using the second of two equations (2.10.1), we find that

µI =
[
⊗IA

λpC→ ⊗{k} ⊗IA ρ{k}→ ⊗I A µI→A
]

=
[
⊗IA

λpC→ ⊗{k} ⊗IA ⊗{k}µI→ ⊗{k} A ρ{k}→A
]

=
[
⊗IA

λpC→ ⊗{k} ⊗IA ⊗{k}µI→ ⊗{k} A µ{k}

→A
]
, (2.29.4)
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where the second equality is due to the naturality of ρ{k}. Therefore,

µIf =
(
⊗IA

λfC→ ⊗J
(
(1)j<k,⊗IA, (1)j>k

) ⊗J((ηA)j<k,µI ,(ηA)j>k)→ ⊗J A µJ→A
)

=
(
⊗IA

λfC→ ⊗j∈J ((1)j<k,⊗IA, (1)j>k)
⊗j∈J((1)j<k,λpC,(1)j>k)→

⊗j∈J ((1)j<k,⊗{k} ⊗I A, (1)j>k)
⊗j∈J((1)j<k,⊗{k}µI ,(1)j>k)→

⊗j∈J ((1)j<k,⊗{k}A, (1)j>k)
⊗j∈J((ηA)j<k,µ{k},(ηA)j>k)→ ⊗J A µJ→A

)
.

Using equation (2.10.3) for the pair of maps p and e, we replace the last expression by
the composite(
⊗IA

λpC→ ⊗{k} ⊗IA λeC→ ⊗j∈J ((1)j<k,⊗{k} ⊗I A, (1)j>k)
⊗j∈J((1)j<k,⊗{k}µI ,(1)j>k)→

⊗j∈J ((1)j<k,⊗{k}A, (1)j>k)
⊗j∈J((ηA)j<k,µ{k},(ηA)j>k)→ ⊗J A µJ→A

)
=
(
⊗IA

λpC→ ⊗{k} ⊗IA ⊗{k}µI→ ⊗{k} A λeC→

⊗j∈J ((1)j<k,⊗{k}A, (1)j>k)
⊗j∈J((ηA)j<k,µ{k},(ηA)j>k)→ ⊗J A µJ→A

)
.

The last three arrows compose to µ
{k}
e = µ{k} by Lemma 2.29, applied to some pair

{k} e→ J
g→ 2. Hence the whole composite equals(

⊗IA λp→ ⊗{k} ⊗IA ⊗{k}µI→ ⊗{k} A µ{k}

→A
)
,

which is simply µI by (2.29.4).
We extend the notation µIf to the right hand side of (2.28.2) for f : I → J with

|I| = n+ 1 and 1 < | Im f | ⩽ |J | ⩽ n.

2.30 Lemma. Let f : I → J be a map in O with |I| = n + 1 and 1 < | Im f | ⩽ |J | ⩽ n.
Suppose that f is factorized as

f = (I
p
▷ N

e→ J)

with |N | = n. Then µIp = µIf .

Proof. Indeed, since |J | ⩽ |N | = n, we have µN = µNe , which plays the part of (2.29.1).

Due to |f−1j|, |e−1j| ⩽ n we have µf
−1j = µf

−1j
p|:f−1j→e−1j, which is used in place of (2.29.2).

Using (2.29.3) as in Lemma 2.29, we get µIp = µIf .

Finally, let us show that if I is an (n + 1)-element set and f : I → J and g : I → K
are maps with 1 < | Im f | ⩽ |J | ⩽ n and 1 < | Im g| ⩽ |K| ⩽ n, then µIf = µIg. Factorize
f and g as

f = (I
p
▷ N

e→ J), g = (I
q
▷ M

d→K),
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where |N | = n and |M | = n. By Lemma 2.30, µIf = µIp and µIg = µIq . There exist
surjective maps ϕ : N → L and ψ : M → L with |L| = n − 1 such that pϕ = qψ.
Applying Lemma 2.30 to the factorizations

pϕ =
[
I

p
▷ N

ϕ→L
]
, qψ =

[
I

q
▷ M

ψ→L
]
,

we obtain µIp = µIpϕ and µIq = µIqψ. Hence

µIf = µIp = µIpϕ = µIqψ = µIq = µIg,

property Pn+1 is satisfied, and the induction goes through.

2.31 Proposition. Let (A, µIA), (B, µ
I
B) be algebras in a lax Monoidal V-category C. A

morphism g : A→ B in C is a morphism of algebras if and only if

ηB =
(
1C

ηA→A
g→B

)
, (2.31.1)(

A⊗ A g⊗g→B ⊗B µB→B
)
=
(
A⊗ A µA→A

g→B
)
. (2.31.2)

In this case for any set I ∈ ObO denote by

µIg =
(
⊗IA ⊗Ig→ ⊗I B µIB→B

)
=
(
⊗IA µIA→A

g→B
)
. (2.31.3)

the value of both sides of (2.25.2). Then for each map ϕ : I → J in O the following
equation holds: (

⊗IA
λϕC→ ⊗j∈J ⊗ϕ−1jA

⊗j∈Jµϕ−1j
g→ ⊗j∈J B µIB→B

)
= µIg. (2.31.4)

Proof. If g : A→ B in C is a morphism of algebras, then (2.31.1), (2.31.2) obviously hold.
Assume that these equations hold. We have to prove equation (2.25.2). We do this by
induction on |I|. For |I| = 0, 1, 2 the equation holds by assumption. Let |I| ⩾ 3 and let
f : I → 2 be an arbitrary surjection. Then since (A, µIA) and (B, µIB) are algebras in C,
we have:

µIA = (⊗IA
λfC→ (⊗f−11A)⊗ (⊗f−12A)

µf
−11
A ⊗µf

−12
A→A⊗ A µA→A),

µIB = (⊗IB
λfC→ (⊗f−11B)⊗ (⊗f−12B)

µf
−11
B ⊗µf

−12
B→B ⊗B µB→B).

Therefore,(
⊗IA ⊗Ig→ ⊗I B µIB→B

)
=
(
⊗IA ⊗Ig→ ⊗I B

λfC→ (⊗f−11B)⊗ (⊗f−12B)
µf

−11
B ⊗µf

−12
B→B ⊗B µB→B

)
=
(
⊗IA

λfC→ (⊗f−11A)⊗ (⊗f−12A)
(⊗f−11g)⊗(⊗f−12g)→ (⊗f−11B)⊗ (⊗f−12B)

µf
−11
B ⊗µf

−12
B→B ⊗B µB→B

)
. (2.31.5)
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Since f is surjective, |f−11|, |f−12| < |I|, hence by induction hypothesis

(⊗f−11A
⊗f−11g→ ⊗f−11 B

µf
−11
B→B) = (⊗f−11A

µf
−11
A→A

g→B),

(⊗f−12A
⊗f−12g→ ⊗f−12 B

µf
−12
B→B) = (⊗f−12A

µf
−12
A→A

g→B).

Hence expression (2.31.5) can be rewritten as follows:

(
⊗IA

λfC→ (⊗f−11A)⊗ (⊗f−12A)
µf

−11
A ⊗µf

−12
A→A⊗ A g⊗g→B ⊗B µB→B

)
=
(
⊗IA

λfC→ (⊗f−11A)⊗ (⊗f−12A)
µf

−11
A ⊗µf

−12
A→A⊗ A µA→A

g→B
)

=
(
⊗IA µIA→A

g→B
)
,

and equation (2.25.2) is proven.
The last statement is proved as follows. Substituting definition (2.31.3) into the left

hand side of (2.31.4) we get, due to λϕC being a natural transformation, the equation

(
⊗IA

λϕC→ ⊗j∈J ⊗ϕ−1jA
⊗j∈J⊗ϕ−1jg→ ⊗j∈J ⊗ϕ−1jB

⊗j∈Jµϕ
−1j
B→ ⊗j∈J B µIB→B

)
=
(
⊗IA ⊗Ig→ ⊗I B

λϕC→ ⊗j∈J ⊗ϕ−1jB
⊗j∈Jµϕ

−1j
B→ ⊗j∈J B µIB→B

)
=
(
⊗IA ⊗Ig→ ⊗I B µIB→B

)
= µIg,

since µB is associative.

Commutativity of an algebra A in a lax symmetric Monoidal category (C,⊗IC, λ
f
C) is

expressed by equation (
A⊗ A ℓXC→A⊗ A µA→A

)
= µA, (2.31.6)

where the permutation

X = σ : 2→ 2, σ(1) = 2, σ(2) = 1 (2.31.7)

implies the symmetry ℓXC : X ⊗ Y → Y ⊗ X of the category C. The above equation is
equation (2.25.1), written for the map σ.

When C is a Monoidal category, Definition 2.25 of an algebra agrees with the usual
one. Indeed, in the strict Monoidal case all higher multiplications µk : ⊗i∈k(A)i → A,
k > 2, in algebra A are iterations of µA : A⊗A→ A. Therefore, the category of algebras
in a strict Monoidal category is isomorphic to the category of usual algebras (A, µA, ηA)
in a strict monoidal category.
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2.32 Coherence principle. We are going to formulate an observation which shortens
up significantly verification of many statements.

2.33 Lemma. An equation between isomorphisms of functors, constructed from arbitrary
plain (resp. symmetric, resp. braided) Monoidal V-category data holds, if it holds for
arbitrary plain (resp. symmetric, resp. braided) strict Monoidal categories.

Proof. A V-category C has an underlying category C with the same set of objects and
with the sets of morphisms C(X, Y ) = V(1V,C(X, Y )). A V-functor F : C → D has
an underlying functor F : C → D with ObF = ObF . A natural V-transformation
t : F → G : C → D between V-functors F , G is a family tX ∈ V(1V,D(FX,GX)),
X ∈ ObC that satisfies (2.8.1). In particular, it is a natural transformation t : F → G :
C → D between the underlying functors. An equation between compositions of natural
V-transformations ti means precisely an equation between compositions of underlying
natural transformations ti, see Remark 2.9.

For example, a plain (resp. symmetric, resp. braided) Monoidal V-category C has an
underlying plain (resp. symmetric, resp. braided) Monoidal category C. The meaning
of the phrase ‘the considered equation holds in C’ is that it holds in C. The Monoidal
category C is Monoidally equivalent to a strict Monoidal category A by Leinster [Lei03,
Theorem 3.1.6]. The equation we consider holds in A by assumption. A Monoidal equiv-
alence (F, ϕI) : C → A gives rise to a prism (in which edges are isomorphisms) with
commutative walls, whose bottom is the considered equation in A. Therefore, its top,
which is the required equation in C, also commutes.

2.34 Remark. All isomorphisms of functors which can be constructed for arbitrary sym-
metric strictly monoidal category data, coincide, if their source and target coincide. There-
fore, the same property holds for isomorphisms of functors which can be constructed for
arbitrary symmetric Monoidal V-category data. Similarly, all isomorphisms of functors
which can be constructed from λf with isotonic f and from ρL for arbitrary Monoidal
V-category data, coincide, if their source and target coincide. Two functorial isomor-
phisms, constructed from generic braided Monoidal V-category data, coincide, if their
source and target coincide and they determine the same element of the braid group.

Let (C,⊗I , λf) be a symmetric Monoidal V-category. Let I1, . . . , Ik be totally ordered
finite sets. Consider the sequential tree f = (fp)p∈k ∈ NkS, where f(p) = I1 × · · · × Ik−p,
p ∈ k, f(k) = 1, fp is the projection I1 × · · · × Ik−p+1 → I1 × · · · × Ik−p, p ∈ k. The tree
f gives rise to an isomorphism of functors ⋋f : ⊗I1×···×Ik → ⊗fk ◦ · · · ◦ ⊗f1. Note that the
functor ⊗fp : CI1×···×Ik−p+1 → CI1×···×Ik−p maps a family

I1 × · · · × Ik−p+1 ∋ (i1, . . . , ik−p+1) 7→ Xi1,...,ik−p+1

of objects of C to the family

I1 × · · · × Ik−p ∋ (i1, . . . , ik−p) 7→ ⊗(i1,...,ik−p,ik−p+1)∈{i1}×···×{ik−p}×Ik−p+1Xi1,...,ik−p+1
.
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For each element (i1, . . . , ik−p) ∈ I1 × · · · × Ik−p, denote by gp the obvious bijection
{i1}×· · ·×{ik−p}×Ik−p+1 → Ik−p+1. Define an isomorphisms of functors νf : ⊗I1×···×Ik →
⊗I1 ◦ · · · ◦ ⊗Ik by the composite

νf =
[
⊗I1×···×Ik ⋋f→ ⊗fk ◦ · · · ◦ ⊗f1 ℓgk◦···◦ℓg1→ ⊗I1 ◦ · · · ◦ ⊗Ik

]
,

where the last arrow is the horizontal composition of 2-isomorphisms ℓgp : ⊗fp → ⊗Ik−p,
p ∈ k. An arbitrary permutation π ∈ Sk induces the sequential tree fπ, where fπ(i) =
Iπ−11×· · ·×Iπ−1i, i ∈ k, fπi is the projection Iπ−11×· · ·×Iπ−1(k−i+1) → Iπ−11×· · ·×Iπ−1(k−i).

Respectively, we get isomorphisms of functors ⋋fπ : ⊗Iπ−11×···×Iπ−1k → ⊗fπk ◦ · · · ◦ ⊗fπ1 and
νf

π

: ⊗Iπ−11×···×Iπ−1k → ⊗Iπ−11 ◦ · · · ◦ ⊗Iπ−1k. Denote by σπ the composite

σπ =
[
⊗I1 ◦ · · · ◦ ⊗Ik (νf )−1

→ ⊗I1×···×Ik ℓPπ→

⊗Iπ−11×···×Iπ−1k ◦CPπ νf
π◦CPπ→ ⊗Iπ−11 ◦ · · · ◦ ⊗Iπ−1k ◦ CPπ

]
,

where Pπ : I1 × · · · × Ik → Iπ−11 × · · · × Iπ−1k is the obvious bijection induced by π.

2.35 Proposition. For each pair of permutations π, τ ∈ Sk, the equation[
⊗I1 ◦ · · · ◦ ⊗Ik σπ→ ⊗Iπ−11 ◦ · · · ◦ ⊗Iπ−1k ◦ CPπ

στ◦CPπ→ ⊗Iτ−1π−11 ◦ · · · ◦ ⊗Iτ−1π−1k ◦ CPτ◦π
]
= στ◦π

holds true. Furthermore, σid = id.

Proof. Note that (fπ)τ = f τ◦π, in particular στ in the above equation is equal to the
composite

στ =
[
⊗Iπ−11 ◦ · · · ◦ ⊗Iπ−1k

(νf
π
)−1

→ ⊗Iπ−11×···×Iπ−1k
ℓPτ→

⊗Iτ−1π−11×···×Iτ−1π−1k ◦CPτ νf
τ◦π◦CPτ→ ⊗Iτ−1π−11 ◦ · · · ◦ ⊗Iτ−1π−1k ◦ CPτ

]
,

therefore

στ ◦ CPπ =
[
⊗Iπ−11 ◦ · · · ◦ ⊗Iπ−1k ◦ CPπ (νf

π
)−1◦CPπ→ ⊗Iπ−11×···×Iπ−1k ◦CPπ ℓPτ ◦CPπ→

⊗Iτ−1π−11×···×Iτ−1π−1k ◦CPτ ◦ CPπ νf
τ◦π◦CPτ ◦CPπ→ ⊗Iτ−1π−11 ◦ · · · ◦ ⊗Iτ−1π−1k ◦ CPτ ◦ CPπ

]
.

It follows that

σπ · (στ ◦ CPπ) =
[
⊗I1 ◦ · · · ◦ ⊗Ik (νf )−1

→ ⊗I1×···×Ik ℓPπ→ ⊗Iπ−11×···×Iπ−1k ◦CPπ ℓPτ ◦CPπ→

⊗Iτ−1π−11×···×Iτ−1π−1k ◦CPτ ◦ CPπ νf
τ◦π◦CPτ◦π→ ⊗Iτ−1π−11 ◦ · · · ◦ ⊗Iτ−1π−1k ◦ CPτ◦π

]
.

The assertion of the proposition follows now from Proposition 2.12.
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Note that if π = π′×π′′ for π′ ∈ Sp, π
′′ ∈ Sq, p+q = k, then σπ = (⊗I1 · · ·⊗Ipσπ′′)·σπ′.

Indeed, for symmetric strict Monoidal categories the equation in question reduces to an
equation between two permutations. The general case follows by Lemma 2.33.

Assume that C is a symmetric Monoidal V-category. Let I, J be finite sets from O, let
X : I×J → ObC, (i, j) 7→ Xij be an object of CI×J . The morphism σ(12) : ⊗i∈I⊗j∈JXij →
⊗j∈J ⊗i∈I Xij is given explicitly by

σ(12) =
[
⊗i∈I ⊗j∈J Xij

(⊗i∈Iℓ{i}×J→J)−1

→ ⊗i∈I ⊗(i,j)∈{i}×JXij

(λpr:I×J→I)−1

→ ⊗(i,j)∈I×J Xij
ℓ
P(12):I×J→J×I

→ ⊗(j,i)∈J×I Xij

λpr:J×I→J

→ ⊗j∈J ⊗(j,i)∈{j}×IXij
⊗j∈Jℓ{j}×I→I

→ ⊗j∈J ⊗i∈IXij

]
. (2.35.1)

2.36 Proposition. Let C be a symmetric Monoidal V-category. Then the category Alg(C)
of algebras in C has the following structure of a symmetric Monoidal category: a functor
⊗KAlgC : Alg(C)K → Alg(C), given on objects by ((Ak, µ

I
k))k∈K 7→ (⊗k∈KC Ak, µ

I),

µI =
[
⊗IC ⊗k∈KC Ak

σ(12)→ ⊗k∈KC ⊗ICAk
⊗k∈KµIk→ ⊗k∈KC Ak

]
,

and by (fk)k∈K 7→ ⊗k∈KC fk on morphisms. The algebra isomorphisms λfAlgC : ⊗IAlgC

∼→⊗f

⊗JAlgC and ρLAlgC : ⊗LAlgC → Id are defined as λfC and ρLC respectively.

The same statement holds for the category of commutative algebras ComAlg(C).

Proof. We must check the following statements:

(i) Let (Ak, µ
I
k), k ∈ K, be a family of algebras in C. For every set I ∈ ObO define µI

as

µI =
[
⊗IC ⊗k∈KC Ak

σ(12)→ ⊗k∈KC ⊗ICAk
⊗k∈KµIk→ ⊗k∈KC Ak

]
.

Then (⊗k∈KC Ak, µ
I) is an algebra in C.

(ii) Let fk : (Ak, µ
I
Ak
) → (Bk, µ

I
Bk
), k ∈ K, be a family of algebra morphisms. Then

⊗k∈Kfk : ⊗k∈KC Ak → ⊗k∈KC Bk is an algebra morphism.

(iii) Let (Ai, µ
K
i ), i ∈ I, be a family of algebras in C. Then for every map f : I → J in

Mor S the morphism λfC : ⊗i∈IAi → ⊗j∈J ⊗i∈f
−1j Ai is an algebra morphism.

(iv) For each 1-element set L and an algebra (A, µI), the morphism ρL : ⊗LA→ A is an
algebra morphism.
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Let us prove (i). Clearly, µI = id for every 1-element set I. Let us show that equation
(2.25.1) holds for every map f : I → J in MorO. We have

[
⊗IC ⊗k∈KC Ak

λfC→ ⊗j∈JC ⊗f
−1j

C ⊗k∈KC Ak
⊗j∈Jσ(12)→ ⊗j∈JC ⊗k∈KC ⊗f

−1j
C Ak

⊗j∈J⊗k∈Kµf
−1j
k→ ⊗JC ⊗k∈KC Ak

σ(12)→ ⊗k∈KC ⊗JCAk
⊗k∈KµJk→ ⊗k∈KC Ak

]
=
[
⊗IC ⊗k∈KC Ak

λfC→ ⊗j∈JC ⊗f
−1j

C ⊗k∈KC Ak
⊗j∈Jσ(12)→ ⊗j∈JC ⊗k∈KC ⊗f

−1j
C Ak

σ(12)→ ⊗k∈KC ⊗j∈JC ⊗f
−1j

C Ak
⊗k∈K⊗j∈Jµf

−1j
k→ ⊗k∈KC ⊗JCAk

⊗k∈KµJk→ ⊗k∈KC Ak

]
.

By Lemma 2.33 and Remark 2.34

[
⊗IC ⊗k∈KC Ak

λfC→ ⊗j∈JC ⊗f
−1j

C ⊗k∈KC Ak
⊗j∈Jσ(12)→ ⊗j∈JC ⊗k∈KC ⊗f

−1j
C Ak

σ(12)→ ⊗k∈KC ⊗j∈JC ⊗f
−1j

C Ak

]
=
[
⊗IC ⊗k∈KC Ak

σ(12)→ ⊗k∈KC ⊗ICAk
⊗k∈KλfC→ ⊗k∈KC ⊗j∈JC ⊗f

−1j
C Ak

]
,

therefore we can write the previous expression as follows:

[
⊗IC ⊗k∈KC Ak

σ(12)→ ⊗k∈KC ⊗ICAk
⊗k∈KλfC→ ⊗k∈KC ⊗j∈JC ⊗f

−1j
C Ak

⊗k∈K⊗j∈Jµf
−1j
k→ ⊗k∈KC ⊗j∈JC Ak

⊗k∈KµJk→ ⊗k∈KC Ak

]
.

The last three arrows compose to ⊗k∈KµIk by (2.25.1), hence the assertion.

Statement (ii) follows from the diagram below:

⊗i∈IC ⊗k∈KC Ak
⊗i∈I⊗k∈Kfk→⊗i∈IC ⊗k∈KC Bk

⊗k∈KC ⊗i∈IC Ak

σ(12)↓
⊗k∈K⊗i∈Ifk→⊗k∈KC ⊗i∈IC Bk

σ(12)↓

⊗k∈KC Ak

⊗k∈KµIAk↓
⊗k∈Kfk →⊗k∈KC Bk

⊗k∈KµIBk↓

The upper rectangle is commutative due to naturality of σ(12), the lower rectangle com-
mutes by (2.25.2).
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Statement (iii) follows from the following diagram:

⊗k∈KC ⊗i∈IC Ai
⊗k∈KλfC→⊗k∈KC ⊗j∈JC ⊗i∈f

−1j
C Ai

⊗j∈JC ⊗k∈KC ⊗i∈f
−1j

C Ai

σ(12)↓

⊗i∈IC ⊗k∈KC Ai

σ(12)

↓
λfC→⊗j∈JC ⊗i∈f

−1j
C ⊗k∈KC Ai

⊗j∈Jσ(12)↓

⊗i∈IC Ai

⊗i∈IµKi ↓
λfC →⊗j∈JC ⊗i∈f

−1j
C Ai

⊗j∈J⊗f−1jµKi↓

Commutativity of the pentagon is a consequence of Lemma 2.33 and Remark 2.34. The
lower rectangle commutes by naturality of λfC.

Finally, statement (iv) follows from the commutative diagram:

⊗I⊗L ⊗IρL →⊗IA

⊗L ⊗I A

σ(12)↓

⊗L⊗µI
→

ρL
→

⊗LA
ρL
→A

µI

↓

The quadrilateral commutes by the naturality of ρL, the triangle commutes by Lemma 2.33
and Remark 2.34.

2.37 Example. Let us look at the particular case of a symmetric Monoidal category
V = (Cat,×,1), the category of small categories. In this book, we encounter only examples
of symmetric Monoidal Cat-categories in which the isomorphisms ρL can be chosen to be
identity morphisms. With this additional assumption, Definition 2.10 turns into the
following.

A symmetric Monoidal Cat-category (C,⊠I ,Λf) consists of

1. A strict 2-category C.

2. A strict 2-functor ⊠I : CI → C, for every set I ∈ Ob S, such that ⊠I = IdC for each
1-element set I. In particular, a functor ⊠I :

∏
i∈I C(Xi, Yi)→ C(⊠I(Xi),⊠I(Yi)) is

given.

For a map f : I → J in Mor S consider the 2-functor ⊠f = ⊠f
C : CI → CJ which to a

function X : I → ObC, i 7→ Xi assigns the function J → ObC, j 7→ ⊠i∈f−1(j)(Xi)i.
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It acts on categories of morphisms via the functor∏
i∈I

C(Xi, Yi)
∼→

∏
j∈J

∏
i∈f−1j

C(Xi, Yi)

∏
j∈J ⊠

f−1j

→
∏
j∈J

C(⊠i∈f−1j(Xi),⊠
i∈f−1j(Yi)).

3. An invertible strict 2-transformation Λf for every map f : I → J in Mor S:

CI
⊠fC → CJ

Λf===
===

=⇒

C

⊠J

↓⊠I →
(2.37.1)

(a family of invertible 1-morphisms Λf : ⊠i∈IXi → ⊠j∈J ⊠i∈f−1j Xi, Xi ∈ ObC) such that

(i) for all sets I ∈ ObO, for all 1-element sets J

ΛidI = id, ΛI→J = id;

(ii) for any pair of composable maps I
f→ J

g→K from S this equation holds:

CJ
⊠g → CK

Λg

==
==
==
==
⇒

CI

⊠f

↑

⊠I
→

Λf

⇐
===============

C

⊠K

↓

⊠J

→

=

CJ
⊠g → CK∏

k∈K Λf :f
−1g−1k→g−1k

⇐============

CI

⊠f

↑

⊠I
→

⊠g◦f

→

Λg◦f

==
==
==
==
==
==
==
==
==
⇒

C

⊠K

↓

(2.37.2)

A symmetric Monoidal Cat-category is a particular case of a symmetric monoidal
2-category, as defined e.g. in [Lyu99, Definition A.6.1], which in turn is a very particular
case of a weak 6-category.

Let V = (V,⊗IV, λ
f
V) be a symmetric Monoidal category. Then the 2-category C of

V-categories, V-functors and their natural transformations is a symmetric Monoidal Cat-
category. Indeed, a strict 2-functor ⊠I : CI → C is defined as follows. To a family of
V-categories (Ci)i∈I it assigns their product C = ⊠i∈ICi with ObC =

∏
i∈I ObCi and

C((Xi)i∈I , (Yi)i∈I) = ⊗i∈IV Ci(Xi, Yi). To a family of V-functors (Fi : Ci → Di)i∈I it assigns
their product F = ⊠i∈IFi with ObF =

∏
i∈I ObFi and

F = ⊗i∈IV Fi : ⊗i∈IV Ci(Xi, Yi)→ ⊗i∈IV Di(FiXi, FiYi).
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To a family of natural V-transformations ri : Fi → Gi : Ci → Di, which are morphisms
ri : 1 → Di(FiXi, GiXi), the alleged 2-functor assigns the natural V-transformation r :

F → G : C→ D which equals r =
(
1

λ∅→I
V→ ⊗IV 1

⊗i∈IV ri→ ⊗i∈IV Di(FiXi, GiXi)
)
. Coherence

with compositions is rather clear, so ⊠I is, indeed, a strict 2-functor.
2-transformation (2.37.1) is given by the family of V-functors ΛfC : ⊠i∈ICi → ⊠j∈J⊠i∈f−1j

Ci, defined as ΛfC : (Xi)i∈I 7→ ((Xi)i∈f−1j)j∈J on objects, and by

ΛfC = λfV : ⊗i∈IV Ci(Xi, Yi)
∼→ ⊗j∈JV ⊗i∈f

−1j
V Ci(Xi, Yi) (2.37.3)

on morphisms. One can check that this 2-transformation is strict. Equation (2.37.2) for
Λf follows from similar equation (2.10.3) for λf . Therefore, C = V-Cat is a symmetric
Monoidal Cat-category.
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Chapter 3

Multicategories

Multicategories came into usage with the work of Lambek [Lam69]. Various versions
of them were used since then under various names [Bor98, Soi99b, DS03, BD04]. The
idea of using morphisms with several sources and one target instead of tensor products
seems to penetrate into mathematics deeper and deeper. One may view multicategories
as generalizations of lax Monoidal categories. The opposite point of view is also fruitful:
a lax Monoidal category is a particular case of a multicategory. The relationship between
k-polylinear maps and tensor products over k convinces in the latter approach. We prove
in this chapter that the 2-category of lax (symmetric) Monoidal categories is equivalent
to the 2-category of lax representable (symmetric) multicategories.

Actually, we define and work with multicategories enriched in a symmetric Monoidal
category V. This is a warm-up before defining multicategories enriched in symmetric
multicategories in the next chapter. V-multicategories are defined as algebras in a certain
Monoidal category.

3.1 Multiquivers. Let V be a symmetric Monoidal U -category. In the simplest case
V = Set is the category of U -small sets. It can be also the category V = gr = gr(k-Mod)
(resp. V = dg = dg(k-Mod)) of (resp. differential) graded U -small k-modules.

3.2 Definition. A V-quiver C consists of a U -small set ObC of objects, and objects of
morphisms

C(X, Y ) = HomC(X, Y ) ∈ ObV,

given for each pair of objects X, Y ∈ ObC. A symmetric (resp. plain) V-multiquiver C
consists of a U -small set ObC of objects, objects of multimorphisms

C((Xi)i∈I ;Y ) = HomC((Xi)i∈I ;Y ) ∈ ObV,

assigned to each map I ⊔ {∗} → ObC, i 7→ Xi, ∗ 7→ Y , where I is a finite totally ordered
set.

In particular, for I = n = {1, 2, . . . , n}, n ⩾ 0, the objects of V

C(X1, . . . , Xn;Y ) = HomC(X1, . . . , Xn;Y ) ∈ ObV

are given for all sequences of objects X1, . . . , Xn, Y ∈ ObC.

65
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Let VQ, MQV be categories, whose objects are V-(multi)quivers. A morphism f :
C → C′ is a map between the sets of objects ObC → ObC′, X 7→ Xf , and a family of
morphisms in V between objects of multimorphisms:

(Xi)i;Y f : C((Xi)i∈I ;Y )→ C′((Xif)i∈I ;Y f),

(I = {∗} for VQ).
The categories VQ, MQV are symmetric Monoidal. To a family of V-(multi)quivers

(Qi)i∈I their product Q = ⊠i∈IQi is assigned with ObQ =
∏

i∈I ObQi and

Q(((Xk
i )k∈K)i∈I ; (Yi)i∈I) = ⊗i∈IV Qi((X

k
i )k∈K ;Yi)

(K = {∗} for VQ). To a family of morphisms of (multi)quivers (Fi : Pi → Qi)i∈I their
product F = ⊠i∈IFi is assigned with ObF =

∏
i∈I ObFi and

F = ⊗i∈IV Fi : ⊗i∈IV Pi((X
k
i )k∈K ;Yi)→ ⊗i∈IV Qi((FiX

k
i )k∈K ;FiYi).

This defines a V-functor ⊠I : MQI → MQ. Corresponding isomorphisms λfMQ are deter-

mined by λfV of V.

3.3 Notation for sequential trees. We just summarize below notation that we use
when dealing with trees and forests. The reader may get familiar with the beginning of
the section and skip the rest until necessity arises.

Let S be a set (of labels).

3.4 Definition. A sequential (resp. symmetric sequential, resp. braided sequential) S-la-
beled forest t of height n ⩾ 0 is an element of the nerve Nn(O(S)), (resp. Nn(S(S)), resp.
Bn(S(S))), that is, a functor t : [n] → O (resp. t : [n] → S, resp. t : [n] → S which
satisfies (2.3.1)), (i → j) 7→ (ti→j : t(i) → t(j)), together with label maps ℓtm : t(m) → S
for 0 ⩽ m ⩽ n. A sequential forest t of height n ⩾ 0 is a sequential tree, if |t(n)| = 1.

Clearly, a (symmetric, braided) sequential forest t is unambiguously specified by a
composable sequence

t =
(
t(0)

t1→ t(1)
t2→ . . . t(n− 1)

tn→ t(n) | (t(m) ∋ i ℓtm→X i
m ∈ S)nm=0

)
(3.4.1)

of morphisms of O (resp. S) and by elements X i
m ∈ S. Here tm = tm−1→m. Denote also

Im = t(m). The number n of morphisms in the sequence is called the height of t. The
totally ordered set

v(t) = ⊔m∈nt(m) = t(1) ⊔ t(2) ⊔ · · · ⊔ t(n)
is called the set of internal vertices of t. A (symmetric, braided) sequential tree is often
written as follows

t =
(
I0

t1→ I1
t2→ I2 . . .

tn−1→ In−1
tn→ In | (ℓtm : Im → S)nm=0

)
, (3.4.2)
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where |In| = 1.
We draw (symmetric, braided) sequential trees in the plane placing points of t(m) in

the given order at the line y = const − m, 0 ⩽ m ⩽ n, connected by edges (segments
of straight lines) accordingly to maps tm, 0 < m ⩽ n. Edges are labeled by elements
X i
m−1 ∈ ℓtm−1(t(m − 1)) ⊂ S. One more label Xn = ℓtn(∗) ⊂ S is placed below the root

vertex, the image of ∗ ∈ t(n), which is located on the line y = const− n.
For instance, the tree t = (1 | X) of height 0 is specified by an element X ∈ S and

is drawn as
r
X . This tree has no internal vertices. The tree t = (I → 1 | (Xi)i∈I ;Y ) of

height 1 is specified by a finite totally ordered set I and by elements Xi, i ∈ I, and Y of
S. When I ≃ n, this elementary tree is drawn as

X1 X2 . . . Xn−1 Xn

HHH
HH

@
@@

�
��

���
��t

···

Y

. (3.4.3)

This tree has one internal vertex, v(t) = 1. In the case I = ∅, the tree of height 1

t1 = (∅→ 1 | ();Y ) =
∅r
Y

differs from the tree t0 = (1 | Y ) =
r
Y of height 0.

For any finite totally ordered set I we define NII as NnI, where n is isomorphic to I
in O. A map f : I → J ∈ MorO induces the functor [f ] : [J ] → [I]. For any sequential
forest q : [I] → I there is another sequential forest q = [f ] · q : [J ] → I, and the map f
determines a 2-morphism f : q → qf .

Let ψ : [r]→ [n] be a functor, that is, an isotonic map of totally ordered sets, which we
write down also as a non-decreasing sequence of integers ψ = (ψ(0), ψ(1), . . . , ψ(r)). Let
t be a (symmetric, braided) sequential tree described via data (3.4.1). Denote p = ψ(r),

and assume that j ∈ Ip = t(p). Define a new sequential tree t
|j
ψ of height r restricting

the composite functor [r]
ψ→ [n]

t→ I, I = O, S and functions ℓtψ(k) : t(ψ(k)) → S,

0 ⩽ k ⩽ r as follows. Let t
|j
ψ(k) = t−1ψ(k)→p(j). Here the map tq→p : t(q)→ t(p) is the value

of the functor t on the arrow q → p. The mapping t
|j
ψ(k → l) is the restriction of the

mapping tψk→ψl. The function ℓ
tψ
k is the restriction of the function ℓtψ(k) : t(ψ(k))→ S. If

t is a sequential forest and J is a subset of t(ψ(r)), we define a new sequential forest tJψ
of height r by restricting ψ · t and ℓt to t|jψ(k) = t−1ψ(k)→p(j).

For example, integers 0 < p ⩽ n define a functor ψ : [1] → [n], 0 7→ p − 1, 1 7→ p. A
choice of j ∈ Ip = t(p) determines a sequential tree

t
|j
⟩p

def
= t

|j
ψ = t

|j
p−1,p =

(
t−1p j → {j} | (X i

p−1)i∈t−1
p j, X

j
p

)
of height 1. The data it contains amount precisely to the list of labels of incoming edges
for the vertex j and the label of the outgoing edge.
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If ψ(r) = n, then j is the only element of t(n), and we do not have to restrict the

mappings. In this case we may shorten t
|1
ψ = ψ · t to tψ. If the isotonic map ψ : [r]→ [n] is

an injection, we shall denote t
|j
ψ also as t

|j
Q, where the subset Q = ψ[r] ⊂ [n] is the image

of ψ. For instance, Q might be an interval [k, p] = {m ∈ Z | k ⩽ m ⩽ p}. When both

above conditions are fulfilled, we may write tQ in place of t
|j
ψ . For example, Q = {0, n}

determines the tree of height 1

<t
def
= t0n =

(
t(0)→ t(n) | (X i

0)i∈t(0), Xn

)
(3.4.4)

which keeps information about labels on leaves and the root label of the tree t. The same
definition applies to the case of tree t = (J | X) of height n = 0, where |J | = 1. It
produces the tree of height 1

<t
def
= t00 =

(
J → J | X,X

)
.

With each sequential forest (t : [n] → I | (ℓtm : t(m) → S)nm=0) is associated a staged
forest t : [n] → Set, m 7→ t(m) = Im, which we view as a partially ordered set, or as the

associated category Tree(t). Its object set v(t)
def
= ObTree(t) = I0 ⊔ I1 ⊔ · · · ⊔ In is totally

ordered. There is a unique morphism between objects (k, j) and (m, l), where k,m ∈ [n],
j ∈ Ik, l ∈ Im, if k ⩽ m and tk→m : j 7→ l. Otherwise, Tree(t)((k, j), (m, l)) is empty.

Any functor ψ : [r] → [n] induces the sequential forest tψ = t
Iψ(r)
ψ via composition

[r]
ψ→ [n]

t→ I(S). Composition gives also a functor Tree(ψ) : Tree(tψ) → Tree(t).
On objects (p, j), p ∈ [r] it acts as “identity” map: Tree(ψ) = id : tψ(p) → t(ψp). The
functor Tree(ψ) takes a morphism (k, j) → (m, (tψ)k→m(j)) to the morphism (ψk, j) →
(ψm, tψk→ψm(j)).

If ψ(r) = n, there is a left adjoint functor Tree(ψ)∗ : Tree(t)→ Tree(tψ). Thus,

Tree(tψ)
(
Tree(ψ)∗(k, j), (m, l)

)
= Tree(t)

(
(k, j),Tree(ψ)(m, l)

)
.

It is given on the object (k, j), k ∈ n, j ∈ Ik = t(k), by the following formula:

Tree(ψ)∗(k, j) = (p, tk→ψ(p)(j)), (3.4.5)

where p ∈ [r] satisfies ψ(p− 1) < k ⩽ ψ(p) (with convention ψ(−1) = −1). The meaning
of this formula is that a vertex of t slides to the right along the edges of t until it encounters
a level which belongs to the image of the map ψ : [r]→ [n].

We view vψ
def
= Ob(Tree(ψ)∗) as the mapping of sets of objects v(t) = ObTree(t) =

I0⊔ I1⊔· · ·⊔ In → Iψ0⊔ Iψ1⊔· · ·⊔ Iψr = ObTree(tψ) = v(tψ). If moreover, ψ(0) = 0, then
inequalities 0 < k ⩽ ψ(p) imply that p > 0. In this case vψ = Ob(Tree(ψ)∗) restricts to a

map vψ
def
= vψ | : v(t)→ v(tψ), which is also given by (3.4.5). It is defined only if ψ(0) = 0

and ψ(r) = n.
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If f : n→ r is a non-decreasing map, there is the associated functor ψ = [f ] : [r]→ [n]
such that ψ(0) = 0 and ψ(r) = n. The sequential forest tψ is denoted also tf and the map
vψ : v(t)→ v(tf) is denoted also vf .

If S is a set, S∗ denotes the set of finite totally ordered families (Xi)i∈I of elements Xi

of S.

3.5 Spans. The purpose of this section and Propositions 3.6, 3.8 is to present V-mul-
ticategories as algebras in a certain lax Monoidal category. With this goal in mind we
introduce V-spans, parameterized V-multiquivers, etc. Direct Definition 3.7 of V-multi-
categories is more important for practice, and the reader is advised to concentrate on it
at the first reading. The subject of V-spans and V-multiquivers can be covered after the
initial acquaintance with the book.

Recall that a span C is a pair of maps with a common source, which we denote

Obs C←
src

ParC
tgt→ Obt C. We say that Obs C is the set of source objects, ParC is the

set of parameters, and Obt C is the set of target objects. A morphism of spans F : C→ D
is a triple of maps

Obs F : Obs C→ ObsD, X 7→ FX,

ParF : ParC→ ParD, p 7→ Fp,

Obt F : Obt C→ ObtD, Y 7→ FY,

compatible with the source mapping src and the target mapping tgt.
Let V be a symmetric Monoidal category. A V-span C is a pair consisting of a span

Obs C←
src

ParC
tgt→ Obt C and a function

ParC ∋ p 7→ Cp = Cp(src p, tgt p) ∈ ObV.

A morphism of V-spans F : C→ D is a morphism of spans (Obs F,ParF,Obt F ) and for
each p ∈ ParC a morphism in V

F p : Cp = Cp(src p, tgt p)→ DFp(F src p, F tgt p) = DFp.

For example, a V-quiver C is a V-span with ObC = Obs C = Obt C, ParC = Obs C×
Obt C, src = pr1, tgt = pr2. A morphism of V-quivers F : C→ D is a morphism of V-spans
with ObF = Obs F = Obt F . A V-multiquiver C is a V-span with Obs C = (ObC)∗ – the
set of finite totally ordered families of elements of ObC = Obt C, ParC = Obs C×Obt C,
src = pr1, tgt = pr2. A morphism of V-multiquivers F : C→ D is a morphism of V-spans
with Obs F = (ObF )∗ : (Xi)i∈I 7→ (FXi)i∈I , determined by ObF = Obt F : Y 7→ FY .

Consider parameterized V-multiquivers, which are V-spans C with Obs C = (Obt C)
∗.

An element X ∈ Obs C is a function I → Obt C, i 7→ Xi. Denote by domX its domain I.
For each i ∈ domX there is an element srciX = Xi ∈ Obt C. Morphisms of parameterized
V-multiquivers F : C → D are morphisms of V-spans such that Obs F = (Obt F )

∗. The
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set Obt C is often abbreviated to ObC; the function Obt F is abbreviated to ObF . Denote
this category PMQV.

Fix a set S. Consider the subcategory SPMQ of the category PMQ whose objects are
parameterized V-multiquivers C with Obt C = S and whose morphisms are morphisms of
parametrized V-multiquivers F : C → D with Obt F = idS. It follows that Obs C = S∗,
for each object C of SPMQ, and Obs F = idS∗, for each morphism F of SPMQ. We are
going to turn SPMQ into a lax Monoidal category with the tensor product ⊙, defined for
each finite totally ordered set I by the formula ⊙i∈ICi = ⊙k∈nCik, where n ∋ k 7→ ik ∈ I
is the unique isotonic isomorphism for n = |I|. The functor ⊙n will be defined now. (One
expects that PMQ is a lax bicategory as defined by [Lei03, Definition 3.4.1]. However, we
do not pursue this subject here.)

Denote by N′nI(S) ⊂ NnI(S) one of the sets of sequential trees N′nO(S) ⊂ NnO(S),
N′nS(S) ⊂ NnS(S), B′nS(S) ⊂ BnS(S), N′nOs(S) ⊂ NnOs(S), N′nSs(S) ⊂ NnSs(S),
B′nSs(S) ⊂ BnSs(S), relatively to the plain, symmetric or braided case. Recall that
objects of Os and Ss are sets n, n ∈ Z⩾0. Thus, elements t ∈ N′nI(S) are distinguished
between elements of NnI(S) by condition |t(n)| = 1, as in (3.4.2). Let Ci, i ∈ n, be pa-
rameterized V-multiquivers with Obt Ci = S. A parameterized V-multiquiver C = ⊙i∈nCi
with Obt C = S is defined by the following data. The set of parameters of C is defined to
be

Par⊙i∈nCi =
{
(t, p) | t ∈ N′nI(S), p = (pjm)

j∈Im
m∈n ∈

∏
m∈n

(ParCm)
Im,

∀m ∈ n ∀j ∈ Im tgt pjm = Xj
m, dom src pjm = t−1m j, ∀i ∈ t−1m j srci p

j
m = X i

m−1
}
,

where, as usually, Im = t(m), tm = tm−1→m, X
j
m = ℓtm(j) ∈ S. The target mapping

for C is given by tgt(t, p) = X1
n ∈ S. Depending on the plain, symmetric or braided

case, we denote ⊙ as ⊙PMQO, ⊙PMQS or ⊙PMQB. The source mapping is src : ParC → S∗,
(t, p) 7→ (ℓt0 : I0 → S, i 7→ X i

0). Thus, dom src(t, p) = I0 = t(0), srci(t, p) = X i
0. The

object of V associated to (t, p) is

C(t,p) = ⊗(m,j)∈v(t)
V Cp

j
m
m .

For example, if n = 0 we get the unit parameterized V-multiquiver ⊙0 with

Par⊙0 = {(X,L) ∈ S ×ObO | |L| = 1},

tgt = pr1 : Par⊙0 → S = Obt⊙0, (X,L) 7→ X, src : Par⊙0 ⊂ → S∗ = Obs⊙0,
(X,L) 7→ (L ∋ l 7→ X) is the natural embedding, and (⊙0)(X,L) = 1V, (X,L) ∈ Par⊙0.

Let us describe associativity morphism λϕPMQ : ⊙l∈nCl → ⊙m∈k⊙l∈ϕ
−1m Cl, correspond-

ing to an isotonic map ϕ : n → k. First of all, the parameter set of the source can be
embedded into the parameter set of the target. Indeed, the 2-morphism (ϕ : n→ k, ψ =
[ϕ] : [k]→ [n]) and a sequential tree t ∈ N′nI(S) induce trees

tψ =
(
[k]

ψ→ [n]
t→ I(S)

)
∈ N′kI(S)
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and t
|j
[ψ(m−1),ψ(m)] ∈ N′[ψ(m−1),ψ(m)]I(S) for all m ∈ k, j ∈ t(ψ(m)) = Iψ(m). This gives the

mapping

ParλϕPMQ : Par⊙l∈nCl −→ Par⊙m∈k ⊙l∈ϕ−1m Cl,

(t, (pjl )
j∈Il
l∈n ) 7−→ (tψ, (t

|j
[ψ(m−1),ψ(m)], (p

i
l)
i∈t|j[ψ(m−1),ψ(m)](l)

l∈ϕ−1m )
j∈Iψ(m)

m∈k ),

which is clearly an injection. There is also a mapping in the inverse direction, constructed
via the disjoint union of a finite totally ordered family of finite totally ordered sets. The
union is again a finite totally ordered set. In the skeletal case I = Os or Ss, the said
mapping is inverse to ParλϕPMQ. For parameter (t, p) we define the morphism in V

λϕPMQ = λ
vψ:v(t)→v(tψ)
V : ⊗(l,i)∈v(t)

V C
pil
l → ⊗(m,j)∈v(tψ)

V ⊗
(l,i)∈v(t|j[ψ(m−1),ψ(m)])

V C
pil
l .

Notice that v(t
|j
[ψ(m−1),ψ(m)]) = v−1ψ (m, j).

In the case n = 1, the set of parameters of the parameterized V-multiquiver ⊙1C

consists of pairs (t, p), where t is a tree of height 1 of the form (I
▷→L | I ∋ i 7→ Xi, L ∋

l 7→ Y ) with a 1-element set L, and p is an element of ParC subject to the conditions
tgt p = Y , dom src p = I, and srci p = Xi, for each i ∈ I. For each parameter (t, p), the
object (⊙1C)(t,p) is equal to Cp. Define a morphism ρ1 : ⊙1C→ C by the map

Par ρ1 : Par⊙1C→ ParC, (t, p) 7→ p,

on parameters and by the morphisms in V

ρ1 = id : (⊙1C)(t,p) → Cp.

In the skeletal case, Par ρ1 is a bijection and ρ1 is an isomorphism.

3.6 Proposition. In all three cases (plain, symmetric or braided) the so defined triple

(SPMQ,⊙I , λϕPMQ, ρ
1) is a lax Monoidal category, which we denote PMQO

V, PMQS
V or PMQB

V .

In the skeletal case, (SPMQ,⊙I , λϕPMQ, ρ
1) is a Monoidal category.

Proof. Equations (2.5.1) and (2.5.2) are to be checked on parameters only, since λidIPMQ,
λI→JPMQ , and ρ

1 are identities on objects of morphisms. The corresponding equations between
mappings of parameters are straightforward from the definitions.

Let a
f→ b

g→ c be non-decreasing maps. Denote the associated functors by
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[a]←ϕ

[f ]
[b]←ψ

[g]
[c]. Consider a sequential tree t ∈ N′aI(S). We have to prove the identity

[
⊗v(t)

V

λvϕ:v(t)→v(tϕ)

→ ⊗(m,j)∈v(tϕ)
V ⊗v−1

ϕ (m,j)

V

λvψ :v(tϕ)→v(tϕ◦ψ)

→ ⊗(l,i)∈v(tϕ◦ψ)
V ⊗(m,j)∈v−1

ψ (l,i)

V ⊗v−1
ϕ (m,j)

V

]
=
[
⊗v(t)

V

λvϕ◦ψ :v(t)→v(tϕ◦ψ)

→ ⊗(l,i)∈v(tϕ◦ψ)
V ⊗

v(t
|i
[ϕψ(l−1),ϕψl])

V

⊗
(l,i)∈v(tϕ◦ψ)

V λ
v(ϕ|):v(t|i

[ϕψ(l−1),ϕψl]
)→v(t

|i
[ψ(l−1),ψl]

)

→

⊗(l,i)∈v(tϕ◦ψ)
V ⊗

(m,j)∈v(t|i[ψ(l−1),ψl])

V ⊗v−1
ϕ (m,j)

V

]
.

Here we use the identifications v−1ψ (l, i) = v(t
|i
[ψ(l−1),ψl]) and v−1ϕ◦ψ(l, i) = v(t

|i
[ϕψ(l−1),ϕψl]).

Using the equations vϕ◦ψ = vϕ ◦ vψ and

vϕ|:[ψ(l−1),ψl]→[ϕψ(l−1),ϕψl] = vϕ
∣∣ : v(t|i[ϕψ(l−1),ϕψl])→ v(t

|i
[ψ(l−1),ψl]),

we transform the right hand side to[
⊗v(t)

V

λvϕ ◦ vψ :v(t)→v(tϕ◦ψ)

→ ⊗(l,i)∈v(tϕ◦ψ)
V ⊗v−1

ϕ v−1
ψ (l,i)

V

⊗
(l,i)∈v(tϕ◦ψ)

V λ
vϕ |:v−1

ϕ
v−1
ψ

(l,i)→v−1
ψ

(l,i)

→ ⊗(l,i)∈v(tϕ◦ψ)
V ⊗(m,j)∈v−1

ψ (l,i)

V ⊗v−1
ϕ (m,j)

V

]
.

This equals the left hand side due to axiom (2.10.3), which holds for V.

V-multicategories, which we are going to define now, are examples of algebras in PMQV.

3.7 Definition. Let V be a symmetric Monoidal category. A plain (resp. symmetric,
braided) V-multicategory consists of the following data:

� a V-multiquiver C;

� for each map ϕ : I → J from O (resp. S) and objects Xi, Yj, Z ∈ ObC, i ∈ I, j ∈ J ,
a morphism in V

µϕ : ⊗J⊔1
[(
C((Xi)i∈ϕ−1(j);Yj)

)
j∈J ,C((Yj)j∈J ;Z)

]
→ C((Xi)i∈I ;Z),

called composition;

� for each object X ∈ ObC and 1-element set L, a morphism ηX,L : 1→ C((X)L;X),
called the identity of X, also denoted by 1X,L.
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⊗
J
⊔
1
[ ( C(

(X
i)
i∈
ϕ

−
1
j
;
Y
j
)) j

∈
J
,
⊗
K

⊔
1
( ( C(

(Y
j
) j

∈
ψ

−
1
k
;
Z
k
)) k

∈
K
,
C
((
Z
k
) k

∈
K
;
W

))]

⊗
J
⊔
K

⊔
1
[ ( C(

(X
i)
i∈
ϕ

−
1
j
;
Y
j
)) j

∈
J
,
( C((

Y
j
) j

∈
ψ

−
1
k
;
Z
k
)) k

∈
K
,
C
((
Z
k
) k

∈
K
;
W

)]
λ
α V

>

⊗
J
⊔
1
[ ( C(

(X
i)
i∈
ϕ

−
1
j
;
Y
j
)) j

∈
J
,
C
((
Y
j
) j

∈
J
;
W

)]
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J
⊔
1
((
1
) j

∈
J
,µ
ψ
)

∨

⊗
K
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1
[( ⊗

ψ
−

1
k
⊔
1
[( C(

(X
i)
i∈
ϕ

−
1

k
j
;
Y
j
)) j

∈
ψ

−
1
k
,
C
((
Y
j
) j

∈
ψ

−
1
k
;
Z
k
)]) k

∈
K
,
C
((
Z
k
) k

∈
K
;
W

)]
λ
β V

∨

C
((
X
i)
i∈
I
;
W

)

µ
ϕ

∨

⊗
K

⊔
1
[( C(

(X
i)
i∈

(ϕ
ψ
)−

1
(k

);
Z
k
)) k

∈
K
,
C
((
Z
k
) k

∈
K
;
W

)]
⊗
K

⊔
1
((
µ
ϕ
k
) k

∈
K
,1
) ∨

µ
ϕ
ψ

>

Figure 3.1: Associativity in V-multicategories
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These data are required to satisfy the following axioms.

� (Associativity) For each pair of composable maps I
ϕ→ J

ψ→K from O (resp.
each pair from S, resp. each pair from S that satisfies condition (2.5.3)), the diagram
shown on the preceding page commutes. Here ϕk = ϕ|(ϕψ)−1(k) : (ϕψ)

−1(k)→ ψ−1(k),
k ∈ K. The other maps involved in the diagram are α = idJ ⊔▷ : J ⊔K⊔1→ J ⊔1,
where ▷ : K ⊔ 1→ 1 is the only map, and β : J ⊔K ⊔ 1→ K ⊔ 1 given by

β
∣∣
K⊔1 = id : K ⊔ 1→ K ⊔ 1, β

∣∣
J
=
(
J

ψ→K ⊂ →K ⊔ 1
)
.

Note that α preserves the order, while β in general does not.

� (Identity) If J is a 1-element set and Yj = Z for the only j ∈ J , then for ϕ : I → J
the equation[

C((Xi)i∈I ;Z)
λJ↪→J⊔1

→ ⊗J⊔1 (C((Xi)i∈I ;Z),1V)
⊗J⊔1(1,ηZ,J)→

⊗J⊔1 (C((Xi)i∈I ;Z),C((Z)J ;Z))
µϕ:I→J→ C((Xi)i∈I ;Z)

]
= id . (3.7.1)

holds true. If ϕ = id : I → I and Xi = Yi for all i ∈ I, then the equation[
C((Xi)i∈I ;Z)

λ1↪→I⊔1

→ ⊗I⊔1
(
(1V)i∈I ,C((Xi)i∈I ;Z)

) ⊗I⊔1((ηXi,{i})i∈I ,1)→

⊗I⊔1
[(
C((Xi){i};Xi)

)
i∈I ,C((Xi)i∈I ;Z)

] µidI→ C((Xi)i∈I ;Z)
]
= id . (3.7.2)

holds true.

Restricting this definition to sets I = n we find that a multicategory is the same as
a substitude A of Day and Street [DS03] with the unit η : A(A,B) → P1(A;B) equal
to the identity map. In the case V = Set, our notion of symmetric multicategory is
precisely the same as that of fat symmetric multicategory introduced by Leinster [Lei03,
Definition A.2.1]. Also a symmetric multicategory is nearly the same as a pseudo-tensor
category of Beilinson and Drinfeld [BD04, Definition 1.1.1]. The difference is that they
use only surjective maps f : I → J ∈ S, which is analogous to not having a unit object in
a monoidal category. Pseudo-tensor categories are essentially the same as the multilinear
categories of Borcherds [Bor98]. A braided multicategory is close to a pseudo-braided
category of Soibelman [Soi99b, Soi99a].

Similarly to Leinster [Lei03, Lemma A.2.2], one can prove that, for each (resp. order
preserving) bijection ϕ : I → J such that Xi = Yϕ(i), i ∈ I, there is an isomorphism
C(ϕ;Z) : C((Yj)j∈J ;Z)→ C((Xi)i∈I ;Z) given by the composite

C(ϕ;Z) =
[
C((Yj)j∈J ;Z)

λ1↪→J⊔1
V →

⊗J⊔1 [(1V)j∈J ,C((Yj)j∈J ;Z)]
⊗J⊔1[(1C

X
ϕ−1j

,{ϕ−1j})j∈J ,1]

→

⊗J⊔1 [(C((Xϕ−1j){ϕ−1j};Yj))j∈J ,C((Yj)j∈J ;Z)]
µC
ϕ→ C((Xi)i∈I ;Z)

]
. (3.7.3)
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These isomorphisms satisfy the equation C(ψ;Z)C(ϕ;Z) = C(ϕψ;Z), whenever the left
hand side is defined, and moreover C(id;Z) = id.

3.8 Proposition. Let V be a symmetric Monoidal category. The structure of a plain
(resp. symmetric, braided) V-multicategory on a V-multiquiver C is equivalent to an

algebra structure µCn on C in the lax Monoidal category (ObCPMQO
V,⊙I , λ

ϕ
PMQ) (respectively

in (ObCPMQS
V,⊙I , λ

ϕ
PMQ), (

ObCPMQB
V ,⊙I , λ

ϕ
PMQ)) such that binary composition

µC2 : ⊗J⊔K
[(
C((Xi)i∈ϕ−1(j);Yj)

)
j∈J ,C((Yj)j∈J ;Z)

]
→ C((Xi)i∈I ;Z),

indexed by the tree (I
ϕ→ J

▷→K | (Xi)i∈I , (Yj)j∈J , (Z)K) does not depend on the
choice of 1-element set K, meaning that the diagram

⊗J⊔K
[(
C((Xi)i∈ϕ−1(j);Yj)

)
j∈J ,C((Yj)j∈J ;Z)

] µI,ϕ,J,▷,K2 → C((Xi)i∈I ;Z)

⊗J⊔1
[(
C((Xi)i∈ϕ−1(j);Yj)

)
j∈J ,C((Yj)j∈J ;Z)

]λid⊔▷:J⊔K→J⊔1
V ↓ µI,ϕ,J,▷,12

→
(3.8.1)

commutes.

Proof. Since C is a multiquiver, ParC = Obs C×Obt C = (ObC)∗×ObC. The parameter-
ized multiquiver ⊙nC has the set of parameters Par⊙nC = N′nI(ObC). The source–target
mapping (src, tgt) : Par⊙nC → Obs C × Obt C = ParC, t 7→

(
(X i

0)i∈I0, X
1
n

)
is identified

with the mapping t 7→ <t, given by (3.4.4).
As Proposition 2.28 shows, in order to give an algebra structure on C, it suffices

to specify a nullary multiplication µC0 and a binary multiplication µC2 subject to certain
equations. The unit η = µC0 : ⊙0 → C of the algebra amounts to morphisms ηX,L = 1X,L :
(⊙0)(X,L) = 1V → C((X)L;X), for each X ∈ ObC and 1-element set L ∈ ObO.

Since C is a V-multiquiver, the map ParµC2 : Par(C ⊙ C) = N2I(ObC) → ParC =
Obs C×Obt C is determined by the condition Obt µ

C
2 = id, which implies that

ParµC2 : (I
ϕ→ J

▷→K | (Xi)i∈I , (Yj)j∈J , (Z)K) 7→ ((Xi)i∈I ;Z).

Under additional assumptions (3.8.1), the equations involving µC0 and µC2 take the form of
Definition 3.7. The associativity is expressed by the equation for each pair of composable

maps I
ϕ→ J

ψ→K from O (resp. each pair from S, resp. each pair from S that satisfies
condition (2.5.3)), shown on page 73, ϕk = ϕ|(ϕψ)−1(k) : (ϕψ)

−1(k) → ψ−1(k). Notice that

ϕ−1k (j) = ϕ−1(j) for any j ∈ ψ−1(k). The sequential tree t =
(
I

ϕ→ J
ψ→K

▷→ 1 |
(Xi)i∈I , (Yj)j∈J , (Zk)k∈K ,W

)
and the map π = IV : 3 → 2, [π] = II . I : [2] → [3] produce

the map
α = v([π]) = idJ ⊔▷ : v(t) = J ⊔K ⊔ 1→ J ⊔ 1 = v(t[π]).
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The map π = VI : 3→ 2, [π] = I . II : [2]→ [3] induces the map

β = v([π]) : v(t) = J ⊔K ⊔ 1→ K ⊔ 1 = v(t[π])

given by

β
∣∣
K⊔1 = id : K ⊔ 1→ K ⊔ 1, β

∣∣
J
=
(
J

ψ→K ⊂ →K ⊔ 1
)
. (3.8.2)

Note that for I = ∅ we have

µ∅→∅ = id : C(;Z)→ C(;Z).

3.9 Lax 2-categories and (co)lax 2-functors. The notion of lax Monoidal cate-
gory can be easily generalized to the notion of lax 2-category. This was done by Leinster
in [Lei03, Definition 3.4.1]. We recall his definition with the direction of arrows suit-
able for our applications. The definition is simplified by the requirement similar to the
condition that ρL be the identity morphism in the case of lax Monoidal categories. We
use the notions of lax 2-category and colax 2-functor mostly for illustrative purposes,
see Section 3.12 and Exercise 3.13. Practically minded reader is advised to proceed to
Definition 3.14 of a V-multifunctor.

For i ∈ I ∈ ObO let i− 1 ∈ [I] = {0} ⊔ I denote the preceding element.

3.10 Definition. A lax 2-category C consists of the following data:

1. a class of objects ObC;

2. for every pair of objects X, Y ∈ ObC a category C(X, Y );

3. for every set I ∈ ObO and every collection (Xi)i∈[I] of objects of C a functor

•
I :
∏
i∈I

C(Xi−1, Xi)→ C(X0, Xmax I)

such that •
I = Id for each 1-element set I. In particular, a map

•
I :
∏
i∈I

C(Xi−1, Xi)(Fi, Gi)→ C(X0, Xmax I)(•
i∈IFi, •

i∈IGi)

is given.

For a map f : I → J in MorO introduce a functor

•
f :
∏
i∈I

C(Xi−1, Xi)→
∏
j∈J

C(X[f ](j−1), X[f ](j))
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which to a collection (Fi)i∈I assigns a collection (•i∈f
−1jFi)j∈J . The action on mor-

phisms is given by the map∏
i∈I

C(Xi−1, Xi)(Fi, Gi)
∼→

∏
j∈J

∏
i∈f−1j

C(Xi−1, Xi)(Fi, Gi)

∏
j∈J •f

−1j

→
∏
j∈J

C(X[f ](j−1), X[f ](j))(•
i∈f−1jFi, •

i∈f−1jGi).

4. a morphism of functors

λf : •
I → •

J ◦ •
f :
∏
i∈I

C(Xi−1, Xi)→ C(X0, Xmax I), λf : •
i∈IFi → •

j∈J
•
i∈f−1jFi

for every map f : I → J in MorO

such that

(i) for all sets I ∈ ObO, for all 1-element sets J

λidI = id, λI→J = id;

(ii) for any pair of composable maps I
f→ J

g→K from O the following equation
holds:

•
i∈IFi

λf → •
j∈J

•
i∈f−1jFi

=

•
k∈K

•
i∈f−1g−1kFi

λfg

↓
•k∈Kλf |:f

−1g−1k→g−1k

→ •
k∈K

•
j∈g−1k

•
i∈f−1jFi

λg

↓

3.11 Definition. A colax 2-functor between lax 2-categories

(F, ϕI) : (C, •IC, λ
f
C)→ (D, •ID, λ

f
D)

consists of

1. a function F : ObC→ ObD;

2. for every pair of objects X, Y ∈ ObC a functor FX,Y : C(X, Y )→ D(FX,FY );

3. a functorial morphism for each set I ∈ ObO

ϕI : F ◦ •
I
C → •

I
D ◦
∏
i∈I

FXi−1,Xi
:
∏
i∈I

C(Xi−1, Xi)→ D(FX0, FXmax I)

ϕI : F •
i∈I
C Ki → •

i∈I
D FKi
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such that ϕI = id for each one element set I, and for every map f : I → J of O the
following equation holds:

F •
i∈I
C Ki

ϕI → •
i∈I
D FKi

=

F •
j∈J
C •

i∈f−1j
C Ki

FλfC↓
ϕJ→ •

j∈J
D F •

i∈f−1j
C Ki

•
j∈J
D ϕf

−1j

→ •
j∈J
D •

i∈f−1j
D FKi

λfD↓

3.12 V-multicategory as an algebra. Due to Proposition 2.27 a (symmetric,
braided) V-multicategory C has well-defined multiplications µgC : ⊙IC → ⊙JC for each

isotonic map g : I → J . They define a colax Monoidal functor O→ ObCPMQI
V. In details,

Par⊙IC = N′II(ObC) and

⊙IC(q) = µqC
def
= ⊗(i,a)∈v(q)

V C(q
|a
⟩i ) (3.12.1)

is associated to any sequential tree q ∈ N′II(ObC). Also there is multiplication with I
entries: µCq = µCI : ⊙IC(q)→ C(<q).

Each isotonic map f : I → J gives a morphism f : q → qf in N′I(ObC), whose source

is q. According to Proposition 2.27 µfC : ⊙IC→ ⊙JC is the composition

µf :q→q
f

C =
[
(⊙IC)(q) = ⊗(i,a)∈v(q)

V C(q
|a
⟩i )

λv
f :v(q)→v(qf )

→ ⊗(j,b)∈v(qf )
V ⊗(i,a)∈(vf )−1(j,b)

V C(q
|a
⟩i )

⊗(j,b)∈v(qf )
V µC

q
|b
[[f ](j−1),[f ]j]→ ⊗(j,b)∈v(qf )

V C(q
f |b
⟩j ) = (⊙JC)(qf)

]
. (3.12.2)

Notice that (vf)−1(j, b) = v(q
|b
[[f ](j−1),[f ]j]). So defined functor O → ObCPMQI

V can be also

written as a functor N′I(ObC)→ V, N′II(ObC) ∋ q 7→ (⊙IC)(q), (f : q → qf) 7→ µf :q→q
f

C .

3.13 Exercise. Let C be a (symmetric) V-multicategory. The functor N′I(ObC) → V

extends by (3.12.1) and (3.12.2) to a weak colax 2-functor (µC, ϕ
I) : NI(ObC)→ V, where

V is viewed as a lax 2-category with one object,

µC : q 7−→ µqC
def
= ⊗(x,a)∈v(q)

V C(q
|a
⟩x),

f : q → qf 7−→ µf :q→q
f

C : µqC → µq
f

C ,

ϕI = λ
v(•i∈Iqi)→I
V : µ•i∈Iqi

C −→ ⊗i∈IµqiC ,

where •
i∈Iqi is the composition of 1-morphisms qi. A family of sequential forests pk ∈

NII(ObC), k ∈ K ∈ ObO, and an isotonic map f : I → J induce the family qk = (pk)f ∈
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NJI(ObC) and the following equation holds:

µ⊔k∈Kp
k

C

λv(⊔k∈Kp
k)→K

→⊗k∈KV µp
k

C

=

µ⊔k∈Kq
k

C

µfC↓
λv(⊔k∈Kq

k)→K

→⊗k∈KV µq
k

C

⊗k∈KV µfC↓

Notice that colax 2-functors whose transformation ϕI is invertible are equivalent to lax
2-functors with invertible transformation component. The bijection is given by inverting
the transformation.

3.14 Definition. Let C, D be plain (resp. symmetric, resp. braided) V-multicategories.
A plain (resp. symmetric, resp. braided) V-multifunctor F : C → D is a mapping of
objects ObF : ObC→ ObD, X 7→ FX, together with morphisms

F(Xi)i∈I ;Y : C((Xi)i∈I ;Y )→ D((FXi)i∈I ;FY )

of V, given for each function I ⊔ 1→ ObC, i 7→ Xi, 1 7→ Y , such that for each X ∈ ObC
and 1-element set J(

1V

1CX,J→ C((X)J ;X)
F(X)J ;X→D((FX)J ;FX)

)
= 1DFX,J ,

and for an order-preserving (resp. arbitrary) map ϕ : I → J together with a map
I ⊔ J ⊔ 1→ ObC, i 7→ Xi, j 7→ Yj, 1 7→ Z, we have

⊗J⊔1
[(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C((Yj)j∈J ;Z)

] µC
ϕ→ C((Xi)i∈I ;Z)

=

⊗J⊔1
[(
D((FXi)i∈ϕ−1j;FYj)

)
j∈J ,D((FYj)j∈J ;FZ)

]⊗J⊔1[(F(Xi)i∈ϕ−1j
;Yj

)j∈J ,F(Yj)j∈J ;Z ]↓
µD
ϕ→D((FXi)i∈I ;FZ)

F(Xi)i∈I ;Z↓

A V-multicategory C gives rise to a V-category C with the same set of objects and
C(X, Y ) = C((X)1;Y ), for each X, Y ∈ ObC. Composition in C is given by µC1→1, and
for each X ∈ ObC, the element 1CX,1 : 1V → C((X)1;X) = C(X,X) is the identity of X.
The V-category C is called the underlying V-category of the multicategory C and is often
denoted by the same symbol. A multifunctor F : C → D induces a V-functor between
the underlying V-categories, an underlying V-functor of F . It acts on objects like F , and
the action on morphisms is given by F(X)1;Y : C((X)1;Y ) → D((FX)1;FY ), for each
X, Y ∈ ObC.

3.15 Definition. A multinatural transformation of V-multifunctors r : F → G : C → D
is a collection of elements rX,L ∈ D((FX)L;GX), for each object X ∈ ObC and 1-element
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set L, such that

[
C((Xi)i∈I ;Y )

λJ↪→J⊔1
V → ⊗J⊔1

(
C((Xi)i∈I ;Y ),1V

) ⊗J⊔1(F(Xi)i∈I ;Y ,rY,J)→

⊗J⊔1
(
D((FXi)i∈I ;FY ),D((FY )J ;GY )

) µD
I→J→D((FXi)i∈I ;GY )

]
=
[
C((Xi)i∈I ;Y )

λJ→I⊔1
V → ⊗I⊔1 ((1V)i∈I ,C((Xi)i∈I ;Y ))

⊗I⊔1((rXi,{i})i∈I ,G(Xi)i∈I ;Y )→

⊗I⊔1
(
(D((FXi){i};GXi))i∈I ,D((GXi)i∈I ;GY )

) µD
idI→D((FXi)i∈I ;GY )

]
(3.15.1)

for each family (Xi)i∈I , Y of objects of C and 1-element set J . Here the map J → I ⊔ 1

is the composite
(
J

▷→ 1 ↪→ I ⊔ 1
)
. A natural transformation of V-multifunctors

r : F → G : C → D is a natural transformation of underlying V-functors. It satisfies the
above equation for one-element sets I.

Suppose r : F → G : C→ D is a multinatural transformation. Then for two 1-element
sets I and J , the elements rX,I ∈ D((FX)I ;GX) and rX,J ∈ D((FX)J ;GX) are related
by the formula

rX,I =
[
1V

rX,J→D((FX)J ;GX)
D(▷;GX)→D((FX)I ;GX)

]
, (3.15.2)

where ▷ : I → J is the only map and D(▷;GX) is given by (3.7.3).
A multinatural transformation of multifunctors r : F → G : C → D admits an-

other equivalent description in terms of maps C(X1, . . . , Xn;Y )→ D(FX1, . . . , FXn;GY ).
Plain (resp. symmetric) multicategories, multifunctors and their natural transformations
form a 2-category MCat (resp. SMCat). Multinatural transformations are distinguished
between all natural transformations and they give a 2-subcategory MCatm of MCat (resp.
SMCatm of SMCat).

Recall that multiquivers form a symmetric Monoidal category by Section 3.1. The
2-categories MCat, MCatm (resp. SMCat, SMCatm) of plain (resp. symmetric) V-multicat-
egories, V-multifunctors and their (multi)natural transformations are symmetric Monoidal

Cat-categories. The strict 2-functor ⊠I : MCatI → MCat and the 2-transformation ΛfMCat

come from the corresponding multiquiver notions, see also (2.37.3) for V-category case.

3.16 Example. Consider the symmetric multicategory k̂-Mod over Set. Its objects

are U -small k-modules. Multimaps f ∈ k̂-Mod((Xi)i∈I ;Y ) are k-polylinear maps f :∏
i∈I Xi → Y . The composition µϕ:I→J assigns to k-polylinear maps fj :

∏
i∈ϕ−1jXi → Yj

and g :
∏

j∈J Yj → Z the k-polylinear map

∏
i∈I

Xi ≃
∏
j∈J

∏
i∈ϕ−1j

Xi

∏
j∈J fj→

∏
j∈J

Yj
g→Z.
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3.17 Example. Consider the symmetric multicategory ĝr over Set. Its objects are
Z-graded U -small k-modules, that is, functions X : Z → Obk-Mod, n 7→ Xn. Mul-
timaps f ∈ ĝr((Xi)i∈I ;Y ) (of degree 0) are families of k-polylinear maps (f (ni)i∈I :∏

i∈I X
ni
i → Y

∑
i∈I ni)(ni)∈ZI . The compositionµϕ:I→J assigns to multimaps fj = (f

(ni)i∈ϕ−1j

j :∏
i∈ϕ−1jX

ni
i → Y

∑
i∈ϕ−1j ni

j )(ni)∈Zϕ−1j and g = (g(mj)j∈J :
∏

j∈J Y
mj

j → Z
∑
j∈J mj)(mj)∈ZJ the

k-polylinear map∏
i∈I

Xni
i ≃

∏
j∈J

∏
i∈ϕ−1j

Xni
i

∏
j∈J f

(ni)
j→

∏
j∈J

Y
∑
i∈ϕ−1j ni

j

g
(
∑
i∈ϕ−1j

ni)

→Z
∑
j∈J

∑
i∈ϕ−1j ni

(−1)σ→Z
∑
i∈I ni,

where

σ =

i,p∈I∑
i<p, ϕ(i)>ϕ(p)

ninp. (3.17.1)

The above sign is prescribed by the Koszul sign rule. Equation at Fig. 3.1 for composable

maps I
ϕ→ J

ψ→K follows from identities

∑
k∈K

i,p∈ϕ−1ψ−1k∑
i<p, ϕ(i)>ϕ(p)

ninp +

i,p∈I∑
i<p, ψϕ(i)>ψϕ(p)

ninp

=

i,p∈I∑
i<p, ϕ(i)>ϕ(p), ψϕ(i)=ψϕ(p)

ninp +

i,p∈I∑
i<p, ϕ(i)<ϕ(p), ψϕ(i)>ψϕ(p)

ninp

+

i,p∈I∑
i<p, ϕ(i)>ϕ(p), ψϕ(i)>ψϕ(p)

ninp,

j,q∈J∑
j<q, ψ(j)>ψ(q)

( ∑
i∈ϕ−1j

ni
)( ∑

p∈ϕ−1q

np
)
+

i,p∈I∑
i<p, ϕ(i)>ϕ(p)

ninp

=

i,p∈I∑
ϕ(i)<ϕ(p), ψϕ(i)>ψϕ(p)

ninp +

i,p∈I∑
i<p, ϕ(i)>ϕ(p)

ninp

=

i,p∈I∑
i<p, ϕ(i)<ϕ(p), ψϕ(i)>ψϕ(p)

ninp +

i,p∈I∑
i<p, ϕ(i)>ϕ(p), ψϕ(i)<ψϕ(p)

npni

+

i,p∈I∑
i<p, ϕ(i)>ϕ(p), ψϕ(i)<ψϕ(p)

ninp +

i,p∈I∑
i<p, ϕ(i)>ϕ(p), ψϕ(i)⩾ψϕ(p)

ninp.
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In fact, these expressions differ by 2
∑i,p∈I

i<p, ϕ(i)>ϕ(p), ψϕ(i)<ψϕ(p) ninp, which proves Fig. 3.1.

3.18 Example. Consider the symmetric multicategory d̂g over Set. Its objects are
Z-graded U -small k-modules X equipped with a differential, a family of k-linear maps

(d : Xn → Xn+1)n∈Z such that d2 = 0. Morphisms f ∈ d̂g((Xi)i∈I ;Y ) are chain mul-
timaps, that is, elements f ∈ ĝr((Xi)i∈I ;Y ) such that[∏

i∈I

Xni
i

f (ni)i∈I→ Y
∑
i∈I ni

d→ Y 1+
∑
i∈I ni

]
=
∑
q∈I

(−1)
∑
i>q ni

[∏
i∈I

Xni
i

∏
i∈I [(1)i<q,d,(1)i>q]→

∏
i∈I

X
ni+δiq
i

f (ni+δiq)i∈I→ Y 1+
∑
i∈I ni

]
for all (ni)i∈I ∈ ZI . Here δiq = 1 if i = q and δiq = 0 otherwise. Composition µϕ:I→J in ĝr
of chain multimaps is again a chain multimap. Indeed, this follows from the identity

i,p∈I∑
i<p, ϕi>ϕp

ninp +
i∈I∑
ϕi>ϕq

ni +
i∈I∑

i>q, ϕi=ϕq

ni + 2
i∈I∑

i>q, ϕi<ϕq

ni

=

i,p∈I∑
i<p, ϕi>ϕp

(ni + δiq)(np + δpq) +
i∈I∑
i>q

ni

which holds for all q ∈ I. Therefore, there is a faithful multifunctor d̂g → ĝr which
forgets the differential.

3.19 Example. Denote by 1 the symmetric V-multicategory with one object ∗; the mul-
timorphism object 1((∗)i∈I ; ∗) = 1V is the unit object of V; the identity morphism is
1∗ = id : 1V → 1V = 1(∗; ∗), multiplication is µϕ:I→J = (λ∅→J⊔1V )−1 : ⊗J⊔1V 1V → 1V.

We have to verify equation at Fig. 3.1, which is the exterior of the diagram with
invertible arrows

⊗J⊔1
[
(1V)j∈J ,⊗K⊔1

(
(1V)k∈K ,1V

)]

⊗J⊔K⊔1
[
(1V)j∈J , (1V)k∈K ,1V

]λαV

↑

⊗J⊔1
[
(1V)j∈J ,1V

]
⊗J⊔1((1)j∈J ,(λ

∅→K⊔1
V )−1)

→

⊗K⊔1
[(
⊗ψ−1k⊔1[(1V)j∈ψ−1k,1V]

)
k∈K ,1V

]λβV
↓

1V

(λ∅→J⊔1
V )−1

↓

(λ∅→J⊔K⊔1
V )−1

→

⊗K⊔1
[
(1V)k∈K ,1V

](λ∅→K⊔1
V )−1

↑

⊗K⊔1(((λ∅→ψ−1k⊔1
V )−1)k∈K ,1) →
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where

α = idJ ⊔▷ : J ⊔K ⊔ 1→ J ⊔ 1,

and

β = vπ : v(t) = J ⊔K ⊔ 1→ K ⊔ 1 = v(tπ)

is induced by the map π = VI : 3 → 2, [π] = I . II : [2] → [3]. Inverting the arrows which
contain λ−1V , we find two squares. They commute due to equation (2.5.4), written for

pairs of maps ∅→ J ⊔K ⊔ 1 α→ J ⊔ 1 and ∅→ J ⊔K ⊔ 1 β→K ⊔ 1. Therefore, the
exterior of the above diagram commutes.

3.20 Definition (Algebras in multicategories). A (commutative) algebra A in a (sym-
metric, braided) V-multicategory C is a (symmetric, braded) V-multifunctor A : 1 → C.
A morphism g : A→ B of such algebras is a multinatural V-transformation g : A→ B :
1→ C.

Equivalently, an algebra (resp. commutative algebra) A in C is

i) an object A of C,

ii) a multimorphism µIA ∈ C((A)i∈I ;A), that is,µIA : 1V → C((A)i∈I ;A), for each set
I ∈ Ob S, such that µIA = 1CA,I for each 1-element set I, and for every map ϕ : I → J
of O (resp. S) the following equation holds:

µIA =
[
1V

λ∅→J⊔1
V → ⊗J⊔1 1V

⊗J⊔1[(µϕ
−1j
A )j∈J ,µ

J
A]→

⊗J⊔1
[(
C((A)i∈ϕ−1j;A)

)
j∈J ,C((A)j∈J ;A)

] µC
ϕ→ C((A)i∈I ;A)

]
. (3.20.1)

A morphism g : A→ B of such algebras consists of morphisms gL : (A)L → B in C, that
is, gL : 1V → C((A)L;B), for each 1-element set L, such that for each set I ∈ ObO and
1-element set J the following equation holds:

[
1V

λJ↪→J⊔1

→ ⊗J⊔1 1V

⊗J⊔1(µIA,gJ)→

⊗J⊔1
(
C((A)i∈I ;A),C((A)J ;B)

) µC
I→J→ C((A)i∈I ;B)

]
=
[
1V

λJ→I⊔1
V → ⊗I⊔1 1V

⊗I⊔1[(g{i})i∈I ,µ
I
B ]→

⊗I⊔1
[(
C((A){i};B)

)
i∈I ,C((B)i∈I ;B)

] µC
idI→ C((A)i∈I ;B)

]
. (3.20.2)

By formula (3.15.2), each of the morphisms gL : 1V → C((A)L;B) determines all the other
morphisms unambiguously.
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3.21 From Monoidal categories to multicategories and back. In the remaining
part of the chapter we consider only lax Monoidal categories in which ⊗L = Id and
ρL : ⊗L → Id is the identity morphism, for each 1-element set L.

Versions of the following statements have appeared without a proof in many articles,
e.g. [Lam69], [DS03].

3.22 Proposition. A plain (resp. symmetric, braided) lax Monoidal V-category C gives

rise to a plain (resp. symmetric, braided) V-multicategory Ĉ with

� the set of objects Ob Ĉ = ObC,

� the objects of morphisms Ĉ((Xi)i∈I ;Y ) = C(⊗I(Xi), Y ),

� the unit ηĈX = ηCX : 1V → C(X,X),

� the multiplication morphism for each map f : I → J

µf : ⊗J⊔1V

[(
Ĉ((Xi)i∈f−1j;Yj)

)
j∈J , Ĉ((Yj)j∈J ;Z)

]
λγ:J⊔1→2

→
(
⊗j∈JV C(⊗i∈f−1jXi, Yj)

)
⊗ C(⊗j∈JYj, Z)

⊗J⊗1→

C(⊗j∈J ⊗i∈f−1j Xi,⊗j∈JYj)⊗ C(⊗j∈JYj, Z)
λf ·−·−→ C(⊗i∈IXi, Z) = Ĉ((Xi)i∈I ;Z),

where γ
∣∣
J
(j) = 1, γ

∣∣
1
(1) = 2.

Proof. Substituting the definitions of unit and multiplication in Ĉ into unitality equations
we get:

[
C(⊗i∈IXi, Y )

λI .V→ C(⊗i∈IXi, Y )⊗ 1
1⊗η→ C(⊗i∈IXi, Y )⊗ C(Y, Y )

comp→ C(⊗i∈IXi, Y )
]
= id,[

C(⊗i∈IXi, Y )
λ ... I
V→ 1⊗I ⊗ C(⊗i∈IXi, Y )

η⊗I⊗1→ ⊗i∈I C(Xi, Xi)⊗ C(⊗i∈IXi, Y )
⊗I⊗1→ C(⊗i∈IXi,⊗i∈IXi)⊗ C(⊗i∈IXi, Y )

composition→ C(⊗i∈IXi, Y )
]

=
[
C(⊗i∈IXi, Y )

λ . I
V→ 1⊗ C(⊗i∈IXi, Y )

η⊗1→ C(⊗i∈IXi,⊗i∈IXi)⊗ C(⊗i∈IXi, Y )
comp→ C(⊗i∈IXi, Y )

]
= id,

as required.

In order to prove the associativity equation for a composable pair I
f→ J

g→K
we consider objects Xi, Yj, Zk, W of C and substitute the definition of multiplication in

Ĉ. The last factor C(⊗k∈KZk,W ) splits out and the equation takes the form of exterior
of left diagram on the facing page. Here fk denotes the map f |(fg)−1(k) : (fg)−1(k) →
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g−1(k). Pentagon 1 commutes due to ⊗K being a functor. Square 2 commutes due to
equation (2.10.3). Polygon 3 in this diagram can be rewritten as the right diagram on the
previous page. Here pentagon 4 commutes due to ⊗K being a functor. Square 5 is the
definition of ⊗gC. Quadrilateral 6 follows from associativity of composition in C. Polygon 7

expresses naturality of transformation λg. Therefore, associativity of multiplication in Ĉ

is proven.

3.23 Definition. A plain (resp. symmetric, braided) V-multicategory C is lax repre-
sentable if the V-functors C((Xi)i∈I ;−) : C → V are representable for all families (Xi)i∈I
of objects of C, that is, there exists an objectX of C and an element τ : 1V → C((Xi)i∈I ;X)
such that the composition

ρ =
[
C(X;Y )

λ . I
V→ 1V ⊗ C(X;Y )

τ⊗1→ C((Xi)i∈I ;X)⊗ C(X;Y )
µI→1→ C((Xi)i∈I ;Y )

]
is an isomorphism.

We may, and always shall, assume that for any 1-element set I the chosen X coincides
with Xi for the only i ∈ I, and τ = η : 1V → C(X;X) is chosen to be the unit. The
corresponding map ρ is the identity map idC(X;Y ).

Strong notion of representability is given by Hermida [Her00, Definition 8.3]. The
above condition of lax representability is taken from definition 8.1(1) of [Her00]. Day and
Street make in [DS03] remarks similar to the following statement.

3.24 Theorem. A plain (resp. symmetric, braided) V-multicategory C is lax repre-

sentable if and only if it is isomorphic to Ĉ for some lax plain (resp. symmetric, braided)
Monoidal V-category C.

Proof. Let C be a plain (resp. symmetric, braided) V-multicategory. We claim that
category C with ObC = ObC, C(X, Y ) = C(X;Y ) has the following lax plain (resp.
symmetric, braided) Monoidal structure. The quiver map ⊗IC : CI → C which takes
a family (Xi)i∈I to an object X = ⊗i∈IXi, representing the functor C((Xi)i∈I ;−), and
which is given on morphisms by

⊗IC =
[
⊗i∈IV C(Xi;Yi)

λI↪→I⊔1
V ·⊗I⊔1((1)i∈I ,τ)→
⊗I⊔1V

[(
C(Xi;Yi)

)
i∈I ,C((Yi)i∈I ;⊗

i∈IYi)
]

µidI→ C((Xi)i∈I ;⊗i∈IYi)
ρ−1

∼
→ C(⊗i∈IXi;⊗i∈IYi)

]
,

is claimed to be a V-functor. The collection

λfC =
[
1V

λ∅→J⊔1

→ ⊗J⊔1V (1V)
⊗J⊔1τ→

⊗J⊔1V

[(
C((Xi)i∈f−1j;⊗i∈f

−1jXi)
)
j∈J ,C((⊗

i∈f−1jXi)j∈J ;⊗j∈J ⊗i∈f
−1j Xi)

]
µf→ C((Xi)i∈I ;⊗j∈J ⊗i∈f

−1j Xi)
ρ−1

∼
→ C(⊗i∈IXi;⊗j∈J ⊗i∈f

−1j Xi)
]
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is claimed to be a natural transformation λfC : ⊗IC → ⊗JC⊗
f
C. The triple (C,⊗IC, λ

f
C) is

claimed to be a lax (symmetric, braided) Monoidal category.
To prove all this, we consider an isomorphism α : D → C of V-multiquivers. Then

there is a unique multicategory structure on D such that α is a multifunctor. If C is lax
representable, then D is lax representable as well. We shall illustrate this statement in
the particular case, when ObD = ObC, Obα = id. The element τD is found as

τD =
[
1V

τC→ C((Xi)i∈I ;⊗i∈IXi)
α−1

∼
→D((Xi)i∈I ;⊗i∈IXi)

]
.

All claims of the above paragraph are equivalent to similar claims for D, where (D,⊗ID, λ
f
D)

is constructed from D exactly by the same formulae as given for C. Therefore, we may
choose D and α at our convenience and to proceed to work with D.

We set D((Xi)i∈I ;Y ) = C(⊗i∈IXi;Y ), α = ρC : D((Xi)i∈I ;Y ) = C(⊗i∈IXi;Y ) →
C((Xi)i∈I ;Y ). In particular, for 1-element set I we have α = id : D(X;Y ) → C(X;Y ).
Thus, the category D, constructed from D, coincides with C. From commutative square

D(⊗i∈IXi;Y )
ρD→D((Xi)i∈I ;Y )

C(⊗i∈IXi;Y )

α =id↓
ρC→ C((Xi)i∈I ;Y )

α =ρC↓

we find that ρD = id : D(⊗i∈IXi;Y ) → D((Xi)i∈I ;Y ). Therefore, for each family (Xi)i∈I
there exists an element τD ∈ D((Xi)i∈I ;⊗i∈IXi) such that

ρD =
[
D(⊗i∈IXi;Y )

λ . I
V→ 1V ⊗ D(⊗i∈IXi;Y )

τD⊗1→

D((Xi)i∈I ;⊗i∈IXi)⊗ D(⊗i∈IXi;Y )
µD
I→1→D((Xi)i∈I ;Y )

]
= id (3.24.1)

for all objects Y . Considering Y = ⊗i∈IXi and composing the above identity map with
ηDY : 1V → D(⊗i∈IXi;Y ), we get by axiom (3.7.1) that τD = ηD⊗IXi

∈ D(⊗i∈IXi;⊗i∈IXi).
Thus, τD is the unit element.

The following diagram

D(⊗i∈IXi;Y )⊗ D(Y ;Z)

D((Xi)i∈I ;⊗i∈IXi)⊗ D(⊗i∈IXi;Y )⊗ D(Y ;Z)

λ . IIV ·(τD⊗1⊗1)↓
µI→1⊗1→D((Xi)i∈I ;Y )⊗ D(Y ;Z)

D((Xi)i∈I ;⊗i∈IXi)⊗ D(⊗i∈IXi;Z)

1⊗µ1→1↓
µI→1 →D((Xi)i∈I ;Z)

µI→1↓
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commutes because the square in it is nothing else but particular case of the commutative
diagram at Fig. 3.1, written for maps I → 1 → 1. Using equation (3.24.1) we deduce
that the multiplications in D

D(⊗i∈IXi;Y )⊗ D(Y ;Z)
µD
1→1

µD
→D(⊗i∈IXi;Z)

D((Xi)i∈I ;Y )⊗ D(Y ;Z)

wwwww
µI→1→D((Xi)i∈I ;Z)

wwwww
coincide.

(a) Let us prove all the above claims for such D. In the following computations many
isomorphisms λV and their inverses are neglected and dropped. The expressions can be
written in standard form without parenthesized tensor signs, however, this would not
improve the readability. Let us prove that

⊗ID =
[
⊗i∈IV D(Xi, Yi)

λI .V ·(1⊗η)→ [⊗i∈IV D(Xi, Yi)]⊗D(⊗i∈IYi,⊗i∈IYi)
µD
idI→D(⊗i∈IXi,⊗i∈IYi)

]
is a V-functor, that is, diagram

[⊗i∈IV D(Xi, Yi)]⊗⊗i∈IV D(Yi, Zi)
⊗ID⊗⊗ID→D(⊗i∈IXi,⊗i∈IYi)⊗D(⊗i∈IYi,⊗i∈IZi)

⊗i∈IV [D(Xi, Yi)⊗D(Yi, Zi)]

σ(12)↓

⊗i∈IV D(Xi, Zi)

⊗i∈IV µD

↓
⊗ID →D(⊗i∈IXi,⊗i∈IZi)

µD

↓

(3.24.2)

commutes for all families (Xi)i∈I , (Yi)i∈I , (Zi)i∈I of objects of D.
The top–right path equals[
[⊗i∈IV D(Xi, Yi)]⊗⊗i∈IV D(Yi, Zi)

λII .V ·(1⊗1⊗η)→ [⊗i∈IV D(Xi, Yi)]⊗ [⊗i∈IV D(Yi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)
λI .V ⊗µD

idI→ [⊗i∈IV D(Xi, Yi)]⊗ 1⊗D(⊗i∈IYi,⊗i∈IZi)
1⊗η⊗1→ [⊗i∈IV D(Xi, Yi)]⊗D(⊗i∈IYi,⊗i∈IYi)⊗D(⊗i∈IYi,⊗i∈IZi)

µD
idI
⊗1
→D(⊗i∈IXi,⊗i∈IYi)⊗D(⊗i∈IYi,⊗i∈IZi)

µD
1→1→D(⊗i∈IXi,⊗i∈IZi)

]
=
[
[⊗i∈IV D(Xi, Yi)]⊗⊗i∈IV D(Yi, Zi)
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λII .V ·(1⊗1⊗η)→ [⊗i∈IV D(Xi, Yi)]⊗ [⊗i∈IV D(Yi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)
1⊗µD

idI→ [⊗i∈IV D(Xi, Yi)]⊗D(⊗i∈IYi,⊗i∈IZi)
µD
idI→D(⊗i∈IXi,⊗i∈IZi)

]
.

The left–bottom path of (3.24.2) equals

[
[⊗i∈IV D(Xi, Yi)]⊗⊗i∈IV D(Yi, Zi)

σ(12)→ ⊗i∈IV [D(Xi, Yi)⊗D(Yi, Zi)]
⊗IVµD

→ ⊗i∈IV D(Xi, Zi)
λI .V ·(1⊗η)→ [⊗i∈IV D(Xi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)

µD
idI→D(⊗i∈IXi,⊗i∈IZi)

]
=
[
[⊗i∈IV D(Xi, Yi)]⊗⊗i∈IV D(Yi, Zi)

λII .V ·(1⊗1⊗η)→ [⊗i∈IV D(Xi, Yi)]⊗ [⊗i∈IV D(Yi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)
σ(12)⊗1→ ⊗i∈IV [D(Xi, Yi)⊗D(Yi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)

(⊗IVµD
1→1)⊗1→ [⊗i∈IV D(Xi, Zi)]⊗D(⊗i∈IZi,⊗i∈IZi)

µD
idI→D(⊗i∈IXi,⊗i∈IZi)

]
.

The both paths are equal to each other because they coincide with the corresponding

paths of commutative diagram at Fig. 3.1, written for maps I
id→ I

id→ I and object
W = ⊗i∈IZi, multiplied with the first factor λII .V ·(1⊗1⊗η). Therefore, ⊗ID is a V-functor.

(b) Let us prove that

λfD =
[
1

λ∅→J⊔1·⊗J⊔1η→
⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jXi)⊗D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f
−1j Xi)

µD
f→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Xi)
]

is a natural transformation λfD : ⊗ID → ⊗JD⊗f . This is expressed by equation

[
⊗i∈IV D(Xi, Yi)

⊗ID→D(⊗i∈IXi,⊗i∈IYi)
λI .V ·(1⊗λfD)·µD

→D(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Yi)

]
=
[
⊗i∈IV D(Xi, Yi)

λfV→ ⊗j∈JV ⊗i∈f
−1j

V D(Xi, Yi)
⊗j∈JV ⊗f

−1j
D→

⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f
−1jYi)

⊗JD→D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f
−1j Yi)

λ . I
V ·(λ

f
D⊗1)·µD

→D(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Yi)

]
.
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The left hand side is

[
⊗i∈IV D(Xi, Yi)

λI ... :1↪→2⊔J⊔1·[1⊗η⊗(⊗Jη)⊗η]→
[⊗IVD(Xi, Yi)]⊗D(⊗IYi,⊗IYi)⊗ [⊗j∈JV D(⊗f−1jYi,⊗f

−1jYi)]

⊗D(⊗j∈J ⊗f−1j Yi,⊗j∈J ⊗f
−1j Yi)

µD
idI
⊗µD

f→D(⊗i∈IXi,⊗i∈IYi)⊗D(⊗i∈IYi,⊗j∈J ⊗i∈f
−1j Yi)

µD

→D(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Yi)

]
=
[
⊗i∈IV D(Xi, Yi)

λI .. :1↪→1⊔J⊔1·[1⊗(⊗Jη)⊗η]→
[⊗i∈IV D(Xi, Yi)]⊗ [⊗j∈JV D(⊗i∈f−1jYi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

1⊗µD
f→ [⊗i∈IV D(Xi, Yi)]⊗D(⊗i∈IYi,⊗j∈J ⊗i∈f

−1j Yi)
µD
idI→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Yi)
]
.

(3.24.3)

The right hand side is

[
⊗i∈IV D(Xi, Yi)

λfV→ ⊗j∈JV ⊗i∈f
−1j

V D(Xi, Yi)
⊗j∈JV [λI . ·(1⊗η)]

→
⊗j∈JV {[⊗i∈f

−1j
V D(Xi, Yi)]⊗D(⊗i∈f−1jYi,⊗i∈f

−1jYi)}
⊗j∈JV µD

id
f−1j→ ⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)
λI . ·(1⊗η)→

[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f
−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f

−1j Yi)
µD
idJ→D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f

−1j Yi)
λ .. I:1↪→J⊔2·[(⊗Jη)⊗η⊗1]→

[⊗j∈JV D(⊗f−1jXi,⊗f
−1jXi)]⊗D(⊗j∈J ⊗f−1j Xi,⊗j∈J ⊗f

−1j Xi)

⊗D(⊗j∈J ⊗f−1j Xi,⊗j∈J ⊗f
−1j Yi)

µD
f⊗1→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Xi)⊗D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f
−1j Yi)

µD

→D(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Yi)

]
=
[
⊗i∈IV D(Xi, Yi)

S→
[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

µD
idJ→D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f

−1j Yi)
λ . I:1↪→J⊔1·[(⊗Jη)⊗1]→

[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f
−1jXi)]⊗D(⊗j∈J ⊗i∈f−1j Xi,⊗j∈J ⊗i∈f

−1j Yi)
µD
f→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Yi)
]
,
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where S denotes the composition

S =
[
⊗i∈IV D(Xi, Yi)

λI .. :1↪→1⊔J⊔1·[1⊗(⊗Jη)⊗η]→
[⊗i∈IV D(Xi, Yi)]⊗ [⊗j∈JV D(⊗i∈f−1jYi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

[(λfV⊗1)·σ(12)]⊗1→
⊗j∈JV {[⊗i∈f

−1j
V D(Xi, Yi)]⊗D(⊗i∈f−1jYi,⊗i∈f

−1jYi)}
⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f

−1j Yi)

⊗j∈JV µD
id
f−1j

⊗1
→ [⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

]
.

Thus, the right hand side can be rewritten as

[
⊗i∈IV D(Xi, Yi)

S→
[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

λ . II:J⊔1↪→J⊔J⊔1·[(⊗Jη)⊗1⊗1]→
[⊗j∈JV D(⊗f−1jXi,⊗f

−1jXi)]⊗ [⊗j∈JV D(⊗f−1jXi,⊗f
−1jYi)]

⊗D(⊗j∈J ⊗f−1j Yi,⊗j∈J ⊗f
−1j Yi)

µD
idJ
·µD
f→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Yi)
]
.

Applying axiom at Fig. 3.1, written for maps I
f→ J

id→ J and objects Zj = ⊗i∈f
−1jYi,

W = ⊗j∈J ⊗i∈f−1j Yi, we may replace this composition with

[
⊗i∈IV D(Xi, Yi)

S→
[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

λ . II:J⊔1↪→J⊔J⊔1·[(⊗Jη)⊗1⊗1]→
[⊗j∈JV D(⊗f−1jXi,⊗f

−1jXi)]⊗ [⊗j∈JV D(⊗f−1jXi,⊗f
−1jYi)]

⊗D(⊗j∈J ⊗f−1j Yi,⊗j∈J ⊗f
−1j Yi)

(σ(12)⊗1)·(⊗j∈JµD
f−1j→{j}⊗1)·µ

D
f

→D(⊗i∈IXi,⊗j∈J ⊗i∈f
−1j Yi)

]
=
[
⊗i∈IV D(Xi, Yi)

S→
[⊗j∈JV D(⊗i∈f−1jXi,⊗i∈f

−1jYi)]⊗D(⊗j∈J ⊗i∈f−1j Yi,⊗j∈J ⊗i∈f
−1j Yi)

µD
f→D(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Yi)
]
.
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Using axiom at Fig. 3.1, written for maps I
id→ I

f→ J and objects Zj = ⊗i∈f
−1jYi,

W = ⊗j∈J ⊗i∈f−1j Yi, we deduce that the above expression equals (3.24.3). Therefore,

λfD : ⊗ID → ⊗JD⊗f is a natural transformation.

(c) To prove that (D,⊗ID, λ
f
D) satisfies equation (2.10.3) between natural V-transforma-

tions, we may restrict the considerations to V = Set. Indeed, the functor MQV → MQSet,
Q 7→ V(1V,Q) takes V-multicategories C, D and V-category D to multicategories C, D and

category D, related in the same way. The V-functor ⊗ID is taken to the functor ⊗ID = ⊗I
D

and the natural V-transformation λfD is taken to the natural transformation λf
D
. Thereby,

we give the proof for V = Set, in other words, in non-enriched version.

We have to show that for any pair of composable maps I
f→ J

g→K and for any
family of objects (Xi)i∈I of D equation (2.5.4) holds. The morphism λfD · λ

g
D : ⊗IXi →

⊗(f,g,▷)Xi is obtained by applying the composition[∏
j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)
]
×D(⊗(f,▷)Xi,⊗(f,▷)Xi)

×
[∏
k∈K

D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
]
×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

µD
f×µD

g→D(⊗IXi,⊗(f,▷)Xi)×D(⊗(f,▷)Xi,⊗(f,g,▷)Xi)
µD

→D(⊗IXi,⊗(f,g,▷)Xi)

to the family of morphisms η : ⊗(f |j)Xi → ⊗(f |j)Xi, j ∈ J , η : ⊗(f,▷)Xi → ⊗(f,▷)Xi,
η : ⊗(f,g|k)Xi → ⊗(f,g|k)Xi, k ∈ K, η : ⊗(f,g,▷)Xi → ⊗(f,g,▷)Xi. Applying axiom at Fig. 3.1,

written for maps I
f→ J → 1 and objects Yj = ⊗(f |j)Xi, Z = ⊗(f,▷)Xi, W = ⊗(f,g,▷)Xi

we may replace this composition with[∏
j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)
]
×D(⊗(f,▷)Xi,⊗(f,▷)Xi)

×
[∏
k∈K

D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
]
×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

∏
j∈J 1×1×µD

g→[∏
j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)
]
×D(⊗(f,▷)Xi,⊗(f,▷)Xi)×D(⊗(f,▷)Xi,⊗(f,g,▷)Xi)

∏
j∈J 1×µD

J→1→
[∏
j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)
]
×D(⊗(f,▷)Xi,⊗(f,g,▷)Xi)

µD
f→D(⊗IXi,⊗(f,g,▷)Xi).

Note that by the axiom of units

(η, 1)µDJ = (η, 1)µD1→1 = id : D(⊗(f,▷)Xi,⊗(f,g,▷)Xi)→ D(⊗(f,▷)Xi,⊗(f,g,▷)Xi).
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Therefore the morphism λfD · λ
g
D is obtained by applying the composition∏

j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)×
∏
k∈K

D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

∏
j∈J 1×µD

g→[∏
j∈J

D(⊗(f |j)Xi,⊗(f |j)Xi)
]
×D(⊗(f,▷)Xi,⊗(f,g,▷)Xi)

µD
f→D(⊗IXi,⊗(f,g,▷)Xi) (3.24.4)

to the family of morphisms η : ⊗(f |j)Xi → ⊗(f |j)Xi, j ∈ J , η : ⊗(f,g|k)Xi → ⊗(f,g|k)Xi,
k ∈ K, η : ⊗(f,g,▷)Xi → ⊗(f,g,▷)Xi.

The morphism λfgD · ⊗k∈KD λfkD , where fk = f |(fg)−1k : (fg)−1k → g−1k, is obtained by
applying the composition[∏

k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)
]
×D(⊗(fg,▷)Xi,⊗(fg,▷)Xi)

×
∏
k∈K

( ∏
j∈g−1k

D(⊗(f |j)Xi,⊗(f |j)Xi)×D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)
µD
fg×(

∏
k∈K µ

D
fk
×1)µD

idK→D(⊗IXi,⊗(fg,▷)Xi)×D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi)
µD

→D(⊗IXi,⊗(f,g,▷)Xi)

to the family of morphisms η : ⊗(fg|k)Xi → ⊗(fg|k)Xi, k ∈ K, η : ⊗(fg,▷)Xi → ⊗(fg,▷)Xi, η :
⊗(f |j)Xi → ⊗(f |j)Xi, j ∈ J , η : ⊗(f,g|k)Xi → ⊗(f,g|k)Xi, k ∈ K, η : ⊗(f,g,▷)Xi → ⊗(f,g,▷)Xi.

Applying axiom at Fig. 3.1, written for maps I
fg→K → 1 and objects Yk = ⊗(fg|k)Xi,

Z = ⊗(fg,▷)Xi, W = ⊗(f,g,▷)Xi we may replace this composition with[∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)
]
×D(⊗(fg,▷)Xi,⊗(fg,▷)Xi)

×
∏
k∈K

( ∏
j∈g−1k

D(⊗(f |j)Xi,⊗(f |j)Xi)×D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)∏
k∈K 1×1×(

∏
k∈K µ

D
fk
×1)µD

idK→∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)×D(⊗(fg,▷)Xi,⊗(fg,▷)Xi)×D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi)

∏
k∈K 1×µD

K→1→
[∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)
]
×D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi)
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µD
fg→D(⊗IXi,⊗(f,g,▷)Xi).

As above,

(η, 1)µDK→1 = (η, 1)µD1→1 = id : D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi)→ D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi),

therefore the morphism λfgD · ⊗k∈KD λfkD is obtained by applying the composition

∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)

×
∏
k∈K

( ∏
j∈g−1k

D(⊗(f |j)Xi,⊗(f |j)Xi)×D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

∏
k∈K 1×(

∏
k∈K µ

D
fk
×1)µD

idK→∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)×D(⊗(fg,▷)Xi,⊗(f,g,▷)Xi)
µD
fg→D(⊗IXi,⊗(f,g,▷)Xi) (3.24.5)

to the family of morphisms η : ⊗(fg|k)Xi → ⊗(fg|k)Xi, k ∈ K, η : ⊗(f |j)Xi → ⊗(f |j)Xi,
j ∈ J , η : ⊗(f,g|k)Xi → ⊗(f,g|k)Xi, k ∈ K, η : ⊗(f,g,▷)Xi → ⊗(f,g,▷)Xi. Applying axiom at

Fig. 3.1, written for maps I
fg→K

idK→K and objects Yk = ⊗(fg|k)Xi, Zk = ⊗(f,g|k)Xi,
W = ⊗(f,g,▷)Xi we may replace (3.24.5) with

∏
k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)

×
∏
k∈K

( ∏
j∈g−1k

D(⊗(f |j)Xi,⊗(f |j)Xi)×D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

∏
k∈K 1×

∏
k∈K µ

D
fk
×1
→∏

k∈K

D(⊗(fg|k)Xi,⊗(fg|k)Xi)×
∏
k∈K

D(⊗(fg|k)Xi,⊗(f,g|k)Xi)

×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)
∼→∏

k∈K

(
D(⊗(fg|k)Xi,⊗(fg|k)Xi)×D(⊗(fg|k)Xi,⊗(f,g|k)Xi)

)
×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

∏
k∈K µ

D
(fg)−1k→{k}×1→[∏

k∈K

D(⊗(fg|k)Xi,⊗(f,g|k)Xi)
]
×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

µD
fg→D(⊗IXi,⊗(f,g,▷)Xi).
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By the axiom of units

(η, 1)µD(fg)−1k→{k} = (η, 1)µD1→1 = id :

D(⊗(fg|k)Xi,⊗(f,g|k)Xi)→ D(⊗(fg|k)Xi,⊗(f,g|k)Xi).

Therefore the morphism λfgD · ⊗k∈KD λfkD is obtained by applying the composition∏
k∈K

( ∏
j∈g−1k

D(⊗(f |j)Xi,⊗(f |j)Xi)×D(⊗(f,g|k)Xi,⊗(f,g|k)Xi)
)
×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)∏

k∈K µ
D
fk
×1
→
∏
k∈K

D(⊗(fg|k)Xi,⊗(f,g|k)Xi)×D(⊗(f,g,▷)Xi,⊗(f,g,▷)Xi)

µD
fg→D(⊗IXi,⊗(f,g,▷)Xi) (3.24.6)

to the family of morphisms η : ⊗(f |j)Xi → ⊗(f |j)Xi, j ∈ J , η : ⊗(f,g|k)Xi → ⊗(f,g|k)Xi,
k ∈ K, η : ⊗(f,g,▷)Xi → ⊗(f,g,▷)Xi.

Expressions (3.24.4) and (3.24.6) coincide by axiom at Fig. 3.1, written for maps

I
f→ J

g→K and objects Yj = ⊗(f |j)Xi, j ∈ J , Zk = ⊗(f,g|k)Xi, k ∈ K,W = ⊗(f,g,▷)Xi.
Thus, we have proved that D is a lax (symmetric, braided) Monoidal category. As a
corollary, we have proved in the enriched setting that D is a lax (symmetric, braided)
Monoidal V-category.

(d) We continue to work with V-categories and V-multicategories for the given sym-

metric Monoidal category V. Let us prove that D̂ = D. The main ingredient is the

equality µD̂f = µDf for every f ∈ Mor S. We have:

µD̂f =
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

λγ:J⊔1→2

→
(
⊗j∈JV D(⊗(f |j)Xi, Yj)

)
⊗D(⊗JYj, Z)

⊗JD⊗1→D(⊗(f,▷)Xi,⊗JYj)⊗D(⊗JYj, Z)
λfD·−·−→D(⊗IXi, Z)

]
=
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

λγ:J⊔1→2

→
(
⊗j∈JV D(⊗(f |j)Xi, Yj)

)
⊗D(⊗JYj, Z)

[λJ↪→J⊔1·⊗J⊔1((1)j∈J ,η)]⊗1→ ⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj,⊗JYj)]⊗D(⊗JYj, Z)
µD
idJ
⊗1
→D(⊗(f,▷)Xi,⊗JYj)⊗D(⊗JYj, Z)

µD

→D(⊗(f,▷)Xi, Z)
λ . I

→ 1⊗D(⊗(f,▷)Xi, Z)
[λ∅→J⊔1·⊗J⊔1η]⊗1→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi,⊗(f,▷)Xi)]⊗D(⊗(f,▷)Xi, Z)
µD
f⊗1→D(⊗IXi,⊗(f,▷)Xi)⊗D(⊗(f,▷)Xi, Z)

µD

→D(⊗IXi, Z)
]
, (3.24.7)
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where γ = ▷ ⊔ id : J ⊔ 1 → 2. Let us split this expression into composition of two
morphisms:

ξ =
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

λγ:J⊔1→2

→
(
⊗j∈JV D(⊗(f |j)Xi, Yj)

)
⊗D(⊗JYj, Z)

[λJ↪→J⊔1·⊗J⊔1((1)j∈J ,η)]⊗1→
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj,⊗JYj)]⊗D(⊗JYj, Z)

µD
idJ
⊗1
→D(⊗(f,▷)Xi,⊗JYj)⊗D(⊗JYj, Z)

µD

→D(⊗(f,▷)Xi, Z)
]
,

ζ =
[
D(⊗(f,▷)Xi, Z)

λ . I

→ 1⊗D(⊗(f,▷)Xi, Z)
[λ∅→J⊔1·⊗J⊔1η]⊗1→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi,⊗(f,▷)Xi)]⊗D(⊗(f,▷)Xi, Z)
µD
f⊗1→D(⊗IXi,⊗(f,▷)Xi)⊗D(⊗(f,▷)Xi, Z)

µD

→D(⊗IXi, Z)
]
.

Applying axiom at Fig. 3.1, written for maps J
id→ J → 1 and objects ⊗JYj in place

of Z and Z in place of W we find that

ξ =
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

⊗J⊔1((1)j∈J ,λ
. I·(η⊗1)·µD

J→1)→

⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]
µD
idJ→D(⊗(f,▷)Xi, Z)

]
= µDidJ .

Applying axiom at Fig. 3.1, written for maps I
f→ J → 1 and objects ⊗(f |j)Xi in place

of Yj, ⊗(f,▷)Xi in place of Z, and Z in place of W we may write:

ζ =
[
D(⊗(f,▷)Xi, Z)

λ ... I:1↪→J⊔1·⊗J⊔1((η)j∈J ,1)→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi, Z)]
⊗J⊔1((1)j∈J ,λ

. I·(η⊗1)·µD
J→1)→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi, Z)]
µD
f→D(⊗IXi, Z)

]
=
[
D(⊗(f,▷)Xi, Z)

λ ... I:1↪→J⊔1·⊗J⊔1((η)j∈J ,1)→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi, Z)]
µD
f→D(⊗IXi, Z)

]
.

The morphism µD̂f = ξ · ζ may be rewritten:

µD̂f =
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

µD
idJ→D(⊗(f,▷)Xi, Z)

λ ... I:1↪→J⊔1

→ ⊗J⊔1V [(1)j∈J ,D(⊗(f,▷)Xi, Z)]
⊗J⊔1((η)j∈J ,1)→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi, Z)]
µD
f→D(⊗IXi, Z)

]
=
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

λ ... I:1↪→J⊔1

→
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⊗J⊔1V [(1)j∈J ,⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]]
⊗J⊔1((η)j∈J ,1)→

⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]]
⊗J⊔1((1)j∈J ,µ

D
idJ

)
→ ⊗J⊔1V [(D(⊗(f |j)Xi,⊗(f |j)Xi))j∈J ,D(⊗(f,▷)Xi, Z)]

µD
f→D(⊗IXi, Z)

]
.

Applying axiom at Fig. 3.1, written for maps I
f→ J

idJ→ J and objects ⊗(f |j)Xi in
place of Yj, Yj in place of Zj, and Z in place of W , we get:

µD̂f =
[
⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]

⊗J⊔1(λ . I·(η⊗1)·µD
f−1j→{j},1)→

⊗J⊔1V [(D(⊗(f |j)Xi, Yj))j∈J ,D(⊗JYj, Z)]
µD
f→D(⊗IXi, Z)

]
= µDf .

For an arbitrary lax representable V-multicategory C we have constructed an isomor-

phism D̂ = D
α→ C with the multicategory D̂, coming from a lax (symmetric, braided)

Monoidal V-category D. The converse statement is obvious.

3.25 Example. The symmetric multicategory k̂-Mod from Example 3.16 is repre-
sentable. Thus, it comes from some symmetric Monoidal structure of the category
k-Mod. For instance, we shall define ⊗i∈Ik Xi to be the free k-module, generated by the set∏

i∈I Xi, divided by k-polylinearity relations. The tautological map τ :
∏

i∈I Xi → ⊗i∈Ik Xi

determines the isomorphisms λfk.

3.26 Example. The symmetric multicategory ĝr from Example 3.17 is representable.
Thus, it comes from some symmetric Monoidal structure of the category V = gr =
gr(k-Mod). We define (⊗i∈Igr Xi)

n = ⊕∑
i ni=n

⊗i∈Ik Xni
i . The isomorphism λfgr is λfk,

extended additively to direct sums, multiplied with the sign (−1)σ, where σ is given by
Koszul sign rule (3.17.1).

3.27 Example. The symmetric multicategory d̂g from Example 3.18 is representable.
Thus, it comes from some symmetric Monoidal structure of the category V = dg =
dg(k-Mod). We define ⊗i∈Idg Xi as the graded k-module ⊗i∈Igr Xi equipped with the dif-

ferential given by the formula d =
∑

j∈I ⊗i∈I [(1)i<j, d, (1)i>j]. The notation ⊗ allows to
omit the permutation signs while we consider d as a degree 1 map of graded k-modules.
Occasionally we abuse the notation employing the usual tensor symbol ⊗ in place of ⊗.
In our sign conventions the matrix elements of the j-th summand are

(−1)
∑
i>j ni1⊗ · · · ⊗ d⊗ · · · ⊗ 1 : ⊗i∈Ik Xni

i → ⊗
i∈I
k X

ni+δij
i .

Here d is considered as k-module map. The isomorphism λfdg coincides with λfgr.
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3.28 Proposition. Any lax (symmetric) Monoidal V-functor (F, ϕI) : (C,⊗I , λfC) →
(D,⊗I , λfD) between lax (symmetric) Monoidal V-categories gives rise to a (symmetric)

V-multifunctor F̂ : Ĉ→ D̂ with

� the mapping of objects Ob F̂ = ObF ,

� the morphism of objects of morphisms

F̂(Xi);Y =
[
Ĉ((Xi)i∈I ;Y ) = C(⊗i∈IXi, Y )

F⊗i∈IXi,Y→D(F (⊗i∈IXi), FY )
D(ϕI ,FY )→D(⊗i∈I(FXi), FY ) = D̂((FXi)i∈I ;FY )

]
. (3.28.1)

Here

D(ϕI , FY ) = ϕI · − =
[
D(F (⊗i∈IXi), FY )

λ . I
V→ 1V ⊗D(F (⊗i∈IXi), FY )

ϕI⊗1→

D(⊗i∈I(FXi), F (⊗i∈IXi))⊗D(F (⊗i∈IXi), FY )
composition→D(⊗i∈I(FXi), FY )

]
.

Proof. When I = 1 and X1 = Y , then ϕI = id and the map

F̂Y ;Y = FY,Y : C(Y, Y )→ D(FY, FY )

takes units to units.
Compatibility of F̂ with multiplication that corresponds to a map f : I → J is

expressed by equation

⊗J⊔1V

[(
Ĉ((Xi)i∈f−1j;Yj)

)
j∈J , Ĉ((Yj)j∈J ;Z)

] µĈ
f → Ĉ((Xi)i∈I ;Z)

=

⊗J⊔1V

[(
D̂((FXi)i∈f−1j;FYj)

)
j∈J , D̂((FYj)j∈J ;FZ)

]⊗J⊔1
V [(F̂(Xi)i∈f−1j

;Yj
)j∈J ,F̂(Yj)j∈J ;Z ]↓

µD̂
f→ D̂((FXi)i∈I ;FZ)

F̂(Xi)i∈I ;Z↓

It coincides with exterior of diagram on the facing page. Here square 1 commutes due
to ⊗J being a functor. Quadrilateral 2 follows from associativity of composition in D.
Quadrilateral 3 commutes due to F being a functor. The remaining polygon 4 is the
exterior of diagram 100. In this diagram square 5 is due to F being a functor. Triangle 6
commutes, as equation (2.17.2) shows. Hexagon 7 follows from naturality of transforma-

tion ϕJ . Therefore, the whole diagram commutes, and F̂ : Ĉ→ D̂ is a multifunctor.

3.29 Proposition. A Monoidal transformation r : (F, ϕI) → (G,ψI) : C → D gives rise

to a multinatural transformation of V-multifunctors r̂ : F̂ → Ĝ : Ĉ → D̂, determined by
the morphisms

r̂X = rX ∈ D(FX,GX).
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Strictly speaking, rX are elements of V(1V,D(FX,GX)), but we shall not always care
about this subtlety in notation.

Proof. We have to prove the following property of r̂:

Ĉ((Xi)i∈I ;Y )
Ĝ(Xi);Y→ D̂((GXi)i∈I ;GY )

=

D̂((FXi)i∈I ;FY )

F̂(Xi);Y ↓
−·r̂Y→ D̂((FXi)i∈I ;GY )

(r̂Xi)i∈I ·−↓

Plugging in definitions of F̂ , Ĝ and compositions we get the following equation to verify:[
C(⊗i∈IXi, Y )

λ ... I
C→ 1⊗IV ⊗ C(⊗i∈IXi, Y )
(⊗IrXi)⊗G⊗IXi,Y→ [⊗i∈ID(FXi, GXi)]⊗D(G(⊗i∈IXi), GY )

⊗ID⊗(ψI ·−)→D(⊗i∈IFXi,⊗i∈IGXi)⊗D(⊗i∈IGXi, GY )
comp→D(⊗i∈IFXi, GY )

]
=
[
C(⊗i∈IXi, Y )

λI .V→ C(⊗i∈IXi, Y )⊗ 1

F⊗IXi,Y
⊗rY
→D(F (⊗i∈IXi), FY )⊗D(FY,GY )

(ϕI ·−)⊗1→D(⊗i∈IFXi, FY )⊗D(FY,GY )
comp→D(⊗i∈IFXi, GY )

]
. (3.29.1)

Equation (2.20.1) means that elements

⊗ID(rXi
)⊗ ψI ∈ D(⊗i∈IFXi,⊗i∈IGXi)⊗D(⊗i∈IGXi, G(⊗i∈IXi)),

ϕI ⊗ r⊗IXi
∈ D(⊗i∈IFXi, F (⊗i∈IXi))⊗D(F (⊗i∈IXi), G(⊗i∈IXi))

compose to the same element

(⊗IrXi
) · ψI = ϕI · r⊗IXi

∈ D(⊗i∈IFXi, G(⊗i∈IXi)).

Therefore, in the following short form of (3.29.1)

C(⊗i∈IXi, Y )
G⊗IXi,Y→D(G(⊗i∈IXi), GY )

=

D(F (⊗i∈IXi), FY )

F⊗IXi,Y ↓
ϕI ·−·rY→D(⊗i∈IFXi, GY )

(⊗IrXi)·ψ
I ·−↓

we may replace the right vertical arrow with ϕI · r⊗IXi
· −. The equation reduces to

C(⊗i∈IXi, Y )
G⊗IXi,Y→D(G(⊗i∈IXi), GY )

=

D(F (⊗i∈IXi), FY )

F⊗IXi,Y ↓
−·rY→D(F (⊗i∈IXi), GY )

r⊗IXi
·−↓



102 3. Multicategories

This is nothing else but naturality of the transformation r : F → G : C→ D.

3.30 Proposition. Let C, D be lax (symmetric) Monoidal V-categories. Then the maps

lax-(sym-)Mono(C,D) → (S)MCatm(Ĉ, D̂), F 7→ F̂ , r 7→ r̂, constructed in Propositions
3.28, 3.29 are bijective.

Compare this statement with a result of Hermida [Her00, Theorem 9.8]. He constructs
a 2-equivalence between 2-categories of monoidal categories and representable multicate-
gories.

Proof. Let us write an inverse map to the map F 7→ F̂ . Let G : Ĉ→ D̂ be a (symmetric)
V-multifunctor. Define a V-functor F : C→ D with ObF = ObG,

FX,Y : C(X, Y ) = Ĉ(X;Y )
GX;Y→ D̂(GX;GY ) = D(GX,GY ).

Define a family of morphisms

ϕI =
[
1

η→ C(⊗i∈IXi,⊗i∈IXi) = Ĉ((Xi)i∈I ;⊗i∈IXi)
G(Xi)i∈I ;⊗i∈IXi→ D̂((GXi)i∈I ;G(⊗i∈IXi)) = D(⊗i∈IGXi, G(⊗i∈IXi))

]
.

We claim that it is a natural transformation ϕI : ⊗ID ◦F I → F ◦⊗IC. This is expressed by
commutativity of the diagram

CI((Xi)i∈I , (Yi)i∈I)
(⊗IDF I)⊗ϕI−−−−−−→ D(⊗i∈IGXi,⊗i∈IGYi)⊗D(⊗i∈IGYi, G⊗i∈I Yi)

D(⊗i∈IGXi, G⊗i∈I Xi)⊗D(G⊗i∈I Xi, G⊗i∈I Yi)
µD−→ D(⊗i∈IGXi, G⊗i∈I Yi).

ϕI⊗F⊗IC↓ µD↓

Expanded form of this equation is

[
⊗i∈IV C(Xi, Yi)

(⊗i∈IV GXi;Yi)⊗Vη→ [⊗i∈IV D(GXi, GYi)]⊗V C(⊗i∈IYi,⊗i∈IYi)
⊗ID⊗VG(Yi);⊗IYi→D(⊗i∈IGXi,⊗i∈IGYi)⊗V D(⊗i∈IGYi, G⊗i∈I Yi)

µD→D(⊗i∈IGXi, G⊗i∈I Yi)
]

=
[
⊗i∈IV C(Xi, Yi)

η⊗V⊗IC→ C(⊗i∈IXi,⊗i∈IXi)⊗V C(⊗i∈IXi,⊗i∈IYi)
G(Xi);⊗IXi

⊗VG⊗IXi;⊗IYi→D(⊗i∈IGXi, G⊗i∈I Xi)⊗V D(G⊗i∈I Xi, G⊗i∈I Yi)
µD→D(⊗i∈IGXi, G⊗i∈I Yi)

]
.
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It is equivalent to

[
⊗i∈IV C(Xi, Yi)

1⊗Vη→ [⊗i∈IV C(Xi, Yi)]⊗V C(⊗i∈IYi,⊗i∈IYi)
(⊗IC⊗V1)·µC→ C(⊗i∈IXi,⊗i∈IYi)

G(Xi);⊗IYi→D(⊗i∈IGXi, G⊗i∈I Yi)
]

=
[
⊗i∈IV C(Xi, Yi)

η⊗V⊗IC→ C(⊗i∈IXi,⊗i∈IXi)⊗V C(⊗i∈IXi,⊗i∈IYi)
µC→ C(⊗i∈IXi,⊗i∈IYi)

G(Xi);⊗IYi→D(⊗i∈IGXi, G⊗i∈I Yi)
]
.

This equation is satisfied because the both sides are equal to

[
⊗i∈IV C(Xi, Yi)

⊗IC→ C(⊗i∈IXi,⊗i∈IYi)
G(Xi);⊗IYi→D(⊗i∈IGXi, G⊗i∈I Yi)

]
.

We conclude that ϕI : ⊗ID ◦ F I → F ◦ ⊗IC is a natural transformation.
Let us prove that (F, ϕI) : C → D is a lax (symmetric) Monoidal functor. If I is

a 1-element, then ϕI = η defines the identity transformation idF . We have to prove
equation (2.17.2) for every map f : I → J , namely,

[
⊗i∈ID GXi

λfD→ ⊗j∈JD ⊗i∈f
−1j

D GXi
⊗j∈JD ϕf

−1j

→

⊗j∈JD G⊗i∈f
−1j

C Xi
ϕJ→G⊗j∈JC ⊗i∈f

−1j
C Xi

]
=
[
⊗i∈ID GXi

ϕI→G⊗i∈ID Xi
GλfC→G⊗j∈JC ⊗i∈f

−1j
C Xi

]
. (3.30.1)

The left hand side is expanded below:

[
1
⊗Jη→ ⊗j∈JV C(⊗i∈f

−1j
C Xi,⊗i∈f

−1j
C Xi)

⊗j∈JV G
(Xi)i∈f−1j

;⊗i∈f
−1j

C
Xi

⊗η

→
⊗j∈JV D(⊗i∈f

−1j
D GXi, G⊗i∈f

−1j
C Xi)⊗V C(⊗j∈JC ⊗i∈f

−1j
C Xi,⊗j∈JC ⊗i∈f

−1j
C Xi)

λfD⊗⊗JD⊗G
(⊗i∈f

−1j
C

Xi)j∈J ;⊗
j∈J
C

⊗i∈f
−1j

C
Xi→

D(⊗i∈ID GXi,⊗j∈JD ⊗i∈f
−1j

D GXi)⊗D(⊗j∈JD ⊗i∈f
−1j

D GXi,⊗j∈JD G⊗i∈f
−1j

C Xi)⊗
⊗D(⊗j∈JD G⊗i∈f

−1j
C Xi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

µD

→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f
−1j

C Xi)
]

=
[
1
⊗Jη⊗η→ ⊗j∈JV C(⊗i∈f

−1j
C Xi,⊗i∈f

−1j
C Xi)⊗V C(⊗j∈JC ⊗i∈f

−1j
C Xi,⊗j∈JC ⊗i∈f

−1j
C Xi)

⊗j∈JV G
(Xi)i∈f−1j

;⊗i∈f
−1j

C
Xi

⊗G
(⊗i∈f

−1j
C

Xi)j∈J ;⊗
j∈J
C

⊗i∈f
−1j

C
Xi

→
⊗j∈JV D(⊗i∈f

−1j
D GXi, G⊗i∈f

−1j
C Xi)⊗D(⊗j∈JD G⊗i∈f

−1j
C Xi, G⊗j∈JC ⊗i∈f

−1j
C Xi)
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µD̂
f→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
=
[
1
⊗Jη⊗η→ ⊗j∈JV C(⊗i∈f

−1j
C Xi,⊗i∈f

−1j
C Xi)⊗V C(⊗j∈JC ⊗i∈f

−1j
C Xi,⊗j∈JC ⊗i∈f

−1j
C Xi)

µĈ
f→ C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f

−1j
C Xi)

G
(Xi)i∈I ;⊗

j∈J
C

⊗i∈f
−1j

C
Xi→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
=
[
1

λfC→ C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f
−1j

C Xi)
G

(Xi)i∈I ;⊗
j∈J
C

⊗i∈f
−1j

C
Xi→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
.

The right hand side of (3.30.1) is expanded below:

[
1

η⊗λfC→ C(⊗i∈IC Xi,⊗i∈IC Xi)⊗ C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f
−1j

C Xi)
G

(Xi)i∈I ;⊗
i∈I
C

Xi
⊗G

⊗i∈I
C

Xi;⊗
j∈J
C

⊗i∈f
−1j

C
Xi→

D(⊗i∈ID GXi, G⊗i∈IC Xi)⊗D(G⊗i∈IC Xi, G⊗j∈JC ⊗i∈f
−1j

C Xi)

µD̂
I→1→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
=
[
1

η⊗λfC→ C(⊗i∈IC Xi,⊗i∈IC Xi)⊗ C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f
−1j

C Xi)
µĈ
I→1→

C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f
−1j

C Xi)
G

(Xi)i∈I ;⊗
j∈J
C

⊗i∈f
−1j

C
Xi→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
=
[
1

λfC→ C(⊗i∈IC Xi,⊗j∈JC ⊗i∈f
−1j

C Xi)
G

(Xi)i∈I ;⊗
j∈J
C

⊗i∈f
−1j

C
Xi→D(⊗i∈ID GXi, G⊗j∈JC ⊗i∈f

−1j
C Xi)

]
.

This coincides with the left hand side. Hence, equation (3.30.1) is proven. Therefore,
(F, ϕI) : C→ D is a lax (symmetric) Monoidal functor.

Now we are going to prove that the two constructed maps are inverse to each other.
Given a multifunctor G, we have produced a lax Monoidal functor (F, ϕI) out of it. Let us

prove that F̂ = G. Indeed, both multifunctors give ObF = ObG on objects. Both give
on morphisms FX,Y = GX;Y . Let us show that both F̂ and G coincide on multimorphisms.
Indeed,

F̂(Xi)i∈I ;Y =
[
C(⊗i∈IC Xi, Y )

G⊗i∈I
C

Xi;Y→D(G⊗i∈IC Xi, GY )
λ . I

→

1V ⊗D(G⊗i∈IC Xi, GY )
η⊗1→ C(⊗i∈IC Xi,⊗i∈IC Xi)⊗D(G⊗i∈IC Xi, GY )

G
(Xi)i∈I ;⊗

i∈I
C

Xi
⊗1
→

D(⊗i∈ID GXi, G⊗i∈IC Xi)⊗D(G⊗i∈IC Xi, GY )
µD

→D(⊗i∈ID GXi, GY )
]
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=
[
C(⊗i∈IC Xi, Y )

λ . I

→ 1V ⊗ C(⊗i∈IC Xi, Y )
η⊗1→

C(⊗i∈IC Xi,⊗i∈IC Xi)⊗ C(⊗i∈IC Xi, Y )
G

(Xi)i∈I ;⊗
i∈I
C

Xi
⊗G⊗i∈I

C
Xi;Y→

D(⊗i∈ID GXi, G⊗i∈IC Xi)⊗D(G⊗i∈IC Xi, GY )
µD̂
I→1→D(⊗i∈ID GXi, GY )

]
=
[
C(⊗i∈IC Xi, Y )

λ . I

→ 1V ⊗ C(⊗i∈IC Xi, Y )
η⊗1→ C(⊗i∈IC Xi,⊗i∈IC Xi)⊗ C(⊗i∈IC Xi, Y )

µĈ
I→1→ C(⊗i∈IC Xi, Y )

G(Xi)i∈I ;Y→D(⊗i∈ID GXi, GY )
]
= G(Xi)i∈I ;Y .

Therefore, F̂ = G.
Given a lax (symmetric) Monoidal functor (F, ϕI) : C → D, we make a (symmetric)

multifunctor G = F̂ out of it via (3.28.1). It gives rise to a lax (symmetric) Monoidal
functor (H,ψI) : C→ D. Let us prove that (H,ψI) = (F, ϕI). Indeed, both functors give
ObF = ObG = ObH on objects. Both coincide on morphisms, HX,Y = GX;Y = FX,Y .
Let us show that ψ = ϕ:

ψI =
[
1

η→ C(⊗i∈IXi,⊗i∈IXi)
F⊗i∈IXi;⊗i∈IXi→D(F ⊗i∈I Xi, F ⊗i∈I Xi)

λ . I·(ϕI⊗1)→D(⊗i∈ID FXi, F ⊗i∈IC Xi)⊗D(F ⊗i∈IC Xi, F ⊗i∈IC Xi)
µD

→D(⊗i∈ID FXi, F ⊗i∈IC Xi)
]

=
[
1

ϕI→D(⊗i∈ID FXi, F ⊗i∈IC Xi)
λI . ·(1⊗η)→

D(⊗i∈ID FXi, F ⊗i∈IC Xi)⊗D(F ⊗i∈IC Xi, F ⊗i∈IC Xi)
µD

→D(⊗i∈ID FXi, F ⊗i∈IC Xi)
]
= ϕI .

Therefore, (H,ψI) = (F, ϕI), and bijectivity on (multi)functors is proven.
Bijectivity on transformations is clear. Thus Proposition 3.30 is proven.
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Chapter 4

Closed multicategories

Closed monoidal categories are well-understood and widely used in mathematics. Defini-
tion of closedness transfers without significant changes from monoidal categories to multi-
categories. A∞-categories form the main example of a closed multicategory for this book.
Having a closed symmetric multicategory C we construct in this chapter a symmetric
multicategory C enriched in C. Objects of C are objects of C and C((Xi)i∈I ;Z) ∈ ObC are
inner homomorphism objects of C. For any multifunctor between closed multicategories
we construct its closing transformation. We also consider augmented multifunctors which
are multifunctors F : C→ C equipped with a multinatural transformation uF : IdC → F .
Some multifunctors used in this book are monads. In particular, they are augmented.
Augmented comonad multifunctors occur as well.

4.1 Multicategories enriched in multicategories. According to classical picture,
categories can be enriched in monoidal categories, and (symmetric) monoidal categories
can be enriched in symmetric monoidal categories. As we have seen, (symmetric) multi-
categories are generalizations of (symmetric) Monoidal categories. Therefore, it is not sur-
prising that categories can be enriched in multicategories, and (symmetric) multicategories
can be enriched in symmetric multicategories. We shall encounter such situations further
in this book. In this section we give definitions of (multi)categories, (multi)functors,
and (multi)natural transformations enriched in a symmetric multicategory V. At the
down-to-earth level, a multicategory enriched in V comes with multiplications indexed by
trees of height 2 which satisfy associativity equations corresponding to trees of height 3.
Similarly, V-multifunctors can be given by morphisms of V for trees of height 1, so that
equations corresponding to trees of height 2 hold. Analogously, (multi)natural V-transfor-
mations are given by morphisms for trees of height 0 satisfying equations corresponding to
trees of height 1. Altogether V-multicategories, V-multifunctors and their (multi)natural
transformations form a 2-category.

4.2 Definition. Let V be a symmetric multicategory. A plain (resp. symmetric) V-mul-
ticategory C consists of the following data.

� A V-multiquiver C.

� For each map ϕ : I → J in MorO (resp. Mor S) and Xi, Yj, Z ∈ ObC, i ∈ I, j ∈ J ,
a morphism

µCϕ :
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C((Yj)j∈J ;Z)→ C((Xi)i∈I ;Z) (4.2.1)

107
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in V, called composition. Its source is indexed by the totally ordered set J ⊔ 1.

� For each X ∈ ObC and 1-element set L, a morphism 1CX,L : ()→ C((X)L;X) in V,
called the identity of X.

These data are subject to the following axioms.

� Associativity: for each pair of composable maps I
ϕ−→ J

ψ−→ K in Mor S (resp. MorO)
and objects Xi, Yj, Zk,W ∈ ObC, i ∈ I, j ∈ J , k ∈ K, the diagram(

C((Xi)i∈ϕ−1j;Yj)
)
j∈J ,(

C((Yj)j∈ψ−1k;Zk)
)
k∈K ,

C((Zk)k∈K ;W )

(1VC((Xi)i∈ϕ−1j
;Yj),{j}

)j∈J ,µ
C
ψ

→
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,

C((Yj)j∈J ;W )

C((Xi)i∈(ϕψ)−1k;Zk)
)
k∈K ,

C((Zk)k∈K ;W )

(µC
ϕk

)k∈K ,1
V
C((Zk)k∈K ;W ),1

↓
µC
ϕψ → C((Xi)i∈I ;W )

µC
ϕ

↓

commutes; more precisely, denoting composition in V simply by dot ·, the equation(
(1VC((Xi)i∈ϕ−1j ;Yj),{j}

)j∈J , µ
C
ψ

)
·α µCϕ =

(
(µCϕk)k∈K , 1

V
C((Zk)k∈K ;W ),1

)
·β µCϕψ (4.2.2)

holds true. The map ϕk is the restriction ϕ|ϕ−1ψ−1k : ϕ−1ψ−1k → ψ−1k, k ∈ K.
The map α = idJ ⊔▷ : J ⊔ K ⊔ 1 → J ⊔ 1 preserves the order, while the map
β : J ⊔K ⊔ 1→ K ⊔ 1 is not necessarily order-preserving; it is given by (3.8.2).

� Right identity: for each Xi, Y ∈ ObC, i ∈ I, and for each map I → J from I to a
1-element set J , the equation

[
(C((Xi)i∈I ;Y ))J

(1VC((Xi)i∈I ;Y ))J ,1
C
Y,J

→

(C((Xi)i∈I ;Y ))J ,C((Y )J ;Y )
µC
I→J→ C((Xi)i∈I ;Y )

]
= 1VC((Xi)i∈I ;Y ),J

holds true, where the composition in V is taken in the sense of the map J ↪→ J ⊔ 1;

� Left identity: for each Xi, Y ∈ ObC, i ∈ I, the equation

[
C((Xi)i∈I ;Y )

(1CXi,{i}
)i∈I ,1

V
C((Xi)i∈I ;Y ),1→(

C((Xi){i};Xi)
)
i∈I ,C((Xi)i∈I ;Y )

µC
idI→ C((Xi)i∈I ;Y )

]
= 1VC((Xi)i∈I ;Y ),1

holds true, where the composition in V is take in the sense of the map 1 ↪→ I ⊔ 1.
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A V-category is like a V-multicategory, the difference being that the objects C((Xi)i∈I ;Y )
of morphisms are given only for the set I = 1 and composition (4.2.1) is given only for
the map 1 → 1. The associativity and identity axioms retain their meaning. Obviously,
an arbitrary V-multicategory has an underlying V-category.

As in the case of multicategories enriched in a symmetric Monoidal category considered
in Chapter 3, for each (resp. order preserving) bijection ϕ : I → J such that Xi = Yϕ(i),
i ∈ I, there is an isomorphism C(ϕ;Z) : C((Yj)j∈J ;Z) → C((Xi)i∈I ;Z) in V given by the
composite

C(ϕ;Z) =
[
C((Yj)j∈J ;Z)

(1C
X
ϕ−1j

,{ϕ−1j})j∈J ,1
V
C((Yj)j∈J ;Z)

→

(C((Xϕ−1j){ϕ−1j};Yj))j∈J ,C((Yj)j∈J ;Z)
µC
ϕ→ C((Xi)i∈I ;Z)

]
. (4.2.3)

The axioms imply that C(id;Z) = id and C(ψ;Z)C(ϕ;Z) = C(ϕψ;Z), whenever the left
hand side is defined.

Given a symmetric multicategory V we shall consider not only V-(multi)categories,
but also V-(multi)functors.

4.3 Definition. Let C, D be symmetric (resp. plain) V-multicategories. A symmetric
(resp. plain) V-multifunctor F : C → D is a mapping of objects ObF : ObC → ObD,
X 7→ FX, together with morphisms

FL
(Xi)i∈I ;Y

∈ V
(
(C((Xi)i∈I ;Y ))L;D((FXi)i∈I ;FY )

)
,

for each Xi, Y ∈ ObC, i ∈ I, and 1-element set L, such that identities and composition
are preserved. The former means that

[
()

(1CX,L)K−−−−→ (C((X)L;X))K
FK(X)L;X−−−−→ D((FX)L;FX)

]
= 1DFX,L, (4.3.1)

for each X ∈ ObC and 1-element sets K and L. The composite in the left hand side is in
the sense of the map ∅→ K. The second condition means that for each map ϕ : I → J
in Mor S (resp. MorO), objects Xi, Yj, Z ∈ ObC, i ∈ I, j ∈ J , and 1-element set L, the
diagram

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C((Yj)j∈J ;Z)

(µC
ϕ)L→ (C((Xi)i∈I ;Z))L

(
D((FXi)i∈ϕ−1j;FYj)

)
j∈J ,D((FYj)j∈J ;FZ)

(F
{j}
(Xi)i∈ϕ−1j

;Yj
)j∈J ,F

1
(Yj)j∈J ;Z

↓
µD
ϕ→D((FXi)i∈I ;FZ)

FL(Xi)i∈I ;Z

↓
(4.3.2)
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commutes. Here the top-right composite is calculated in the sense of the map ▷ : J ⊔1→
L; the right-bottom composite is calculated in the sense of the map idJ⊔1 : J ⊔1→ J ⊔1.
For two 1-element sets K and L, the canonical isomorphism

V(▷;D((FXi)i∈I ;FY )) : V((C((Xi)i∈I ;Y ))L;D((FXi)i∈I ;FY ))→
V((C((Xi)i∈I ;Y ))K ;D((FXi)i∈I ;FY )),

defined by (3.7.3), maps FL
(Xi)i∈I ;Y

to FK
(Xi)i∈I ;Y

. Therefore, each of the morphisms FL
(Xi)i∈I ;Y

determines the other FK
(Xi)i∈I ;Y

unambiguously. For V-categories C and D, a V-functor
F : C → D is a mapping of objects ObF : ObC → ObD, X 7→ FX, together with
morphisms F = FX;Y ∈ V

(
(C(X;Y ))1;D(FX;FY )

)
which satisfy equations (4.3.1) and

(4.3.2) for I = J = 1. Obviously, a V-multifunctor induces a V-functor between the
underlying V-categories.

We complete the V-multicategory picture for a given symmetric multicategory V by
considering multinatural (resp. natural) transformations of V-multifunctors (resp. V-func-
tors).

4.4 Definition. A multinatural transformation of V-multifunctors r : F → G : C→ D is
a family of elements rX,L ∈ V( ;D((FX)L;GX)), for each X ∈ ObC and 1-element set L,
such that for each Xi, Y ∈ ObC and 1-element sets J and L, the diagram

(C((Xi)i∈I ;Y ))L
(FL(Xi)i∈I ;Y

)J ,rY,J
→ (D((FXi)i∈I ;FY ))J ,D((FY )J ;GY )

(
D((FXi){i};GXi)

)
i∈I ,D((GXi)i∈I ;GY )

(rXi,{i})i∈I ,G
L
(Xi)i∈I ;Y

↓
µD
idI →D((FXi)i∈I ;GY )

µD
I→J

↓
(4.4.1)

commutes. The top-right composite in V is taken in the sense of the map L
▷→ J ↪→ J⊔1,

while the right-bottom composite is taken in the sense of the map L
▷→ 1 ↪→ I ⊔ 1.

A natural transformation of V-functors r : F → G : C → D is a family of elements
rX ∈ V( ;D(FX;GX)), X ∈ ObC, such that diagram (4.4.1) commutes for I = 1.

If r : F → G : C → D is a multinatural transformation of V-multifunctors, then the
elements rX,I ∈ V( ;D((FX)I ;GX)) and rX,J ∈ V( ;D((FX)J ;GX)) for 1-element sets I
and J are related by the formula

rX,I =
[
()

rX,J→D((FX)J ;GX)
D(▷;GX)→D((FX)I ;GX)

]
,

where ▷ : I → J is the only map and D(▷;GX) is given by (4.2.3).
From now on we drop 1-element indexing sets from the notation, sometimes replacing

them all with ∗ which might indicate different 1-element sets in the same formula. Some-
times instead of ∗ with use 1 with the same meaning. The reader can recover the exact
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form of the expressions using the definitions given above. In practice, the dependence
on a 1-element set is the same as the dependence of the product of a 1-element family
(S)i∈I on the indexing set I. Formally, the product

∏
i∈I S differs from the set S, but this

difference will be ignored in any practical reasoning.

4.5 Proposition. Let V be a symmetric multicategory. Then (U -small) (possibly sym-
metric) V-(multi)categories, V-(multi)functors and their (multi)natural transformations
form a 2-category.

Proof. Given V-multifunctors F : C → D and G : D → E we see that the composition
H = F · G : C → E with ObH = ObF · ObG, H(Xi)i∈I ;Y = F(Xi)i∈I ;Y · G(FXi)i∈I ;FY is a
V-multifunctor as well.

The ‘vertical’ composition κ = λ·ν of (multi)natural transformations F
λ→G

ν→H :
C→ D is given by morphisms

κX =
[
()

λX ,νX→D(FX;GX),D(GX;HX)
µD
∗→∗→D(FX;HX)

]
.

It satisfies equation (4.4.1) as the following verification shows:

[
C((Xi)i∈I ;Y )

F,λY ,νY→D((FXi)i∈I ;FY ),D(FY ;GY ),D(GY ;HY )
(1,µD

∗→∗)·µD
I→∗

∥
(µD
I→∗,1)·µD

I→∗

→D((FXi)i∈I ;HY )
]

=
[
C((Xi)i∈I ;Y )

(λXi)i∈I ,G,νY→ (D(FXi;GXi))i∈I ,D((GXi)i∈I ;GY ),D(GY ;HY )
(µD

idI
,1)·µD

I→∗

∥
((1)I ,µ

D
I→∗)·µD

idI

→D((FXi)i∈I ;HY )
]

=
[
C((Xi)i∈I ;Y )

(λXi)i∈I ,(νXi)i∈I ,H→
(D(FXi;GXi))i∈I , (D(GXi;HXi))i∈I ,D((HXi)i∈I ;HY )

((1)I ,µ
D
idI

)·µD
idI

∥
((µD

∗→∗)I ,1)·µD
idI

→D((FXi)i∈I ;HY )
]
.

Composition ν =
(
C

F→
λ⇓
G
→D

H→ E
)
of a multinatural transformation λ and a V-mul-

tifunctor H is specified by the morphisms

νX =
[
()

λX→D(FX;GX)
HFX;GX→ E(HFX;HGX)

]
.

It satisfies equation (4.4.1) due to the same equation for λ composed with H(FXi)i∈I ;GY .
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Composition ν =
(
B

H→ C
F→
λ⇓
G
→D

)
of a V-multifunctor H and a multinatural trans-

formation λ is given by the morphisms νX = λHX : () → D(FHX;GHX). It satisfies
equation (4.4.1) due to composition of H(Xi)i∈I ;Y : B((Xi)i∈I ;Y )→ C((HXi)i∈I ;HY ) with
the same equation for λ written for the objects (HXi)i∈I , HY .

Identity V-multifunctors and identity multinatural transformations are the obvious
ones. Axioms of a 2-category are satisfied due to associativity of the composition in
V and in V-multicategories. Also equation (4.4.1) is used. For instance, the axiom for

‘horizontal’ composition C
F→
λ⇓
G
→D

H→
ν⇓
K
→ E of multinatural transformations λ, ν of V-mul-

tifunctors reads:[
()

λX−→ D(FX;GX)
HFX;GX ,νGX→ E(HFX;HGX),E(HGX;KGX)

µE
∗→∗→ E(HFX;KGX)

]
=
[
()

λX−→ D(FX;GX)
νFX ,KFX;GX→

E(HFX;KFX),E(KFX;KGX)
µE
∗→∗→ E(HFX;KGX)

]
.

It follows from equation (4.4.1), written for ν, a 1-element set I, and objects FX, GX of
D.

4.6 Definition. A plain Monoidal V-category C is closed if for each pair X,Z of objects
of C there is an object C(X,Z) of C and an evaluation element

evCX,Z ∈ C
(
X ⊗ C(X,Z), Z

)
such that the composition in V

φC =
[
C(Y,C(X,Z))

λ . I

→ 1V ⊗ C(Y,C(X,Z))
1X⊗id→ C(X,X)⊗ C(Y,C(X,Z))

⊗2
C→ C(X ⊗ Y,X ⊗ C(X,Z))

λI .→ C(X ⊗ Y,X ⊗ C(X,Z))⊗ 1V

id⊗ evC→ C(X ⊗ Y,X ⊗ C(X,Z))⊗ C(X ⊗ C(X,Z), Z)
µC

→ C(X ⊗ Y, Z)
]

(4.6.1)

is an isomorphism, for arbitrary objects X, Y, Z of C. A symmetric (resp. braided)
Monoidal category is closed if its underlying plain Monoidal category is closed.

The definition of a closed Set-multicategory was first given by Joachim Lambek
[Lam69, p. 106] in an equivalent form to the following

4.7 Definition. A plain V-multicategory C is closed if for any collection ((Xi)i∈I , Z),
I ∈ Ob S, of objects of C there is an object C((Xi)i∈I ;Z) of C and an evaluation element

evC(Xi)i∈I ;Z
∈ C
(
(Xi)i∈I ,C((Xi)i∈I ;Z);Z

)
,
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where the sequence of inputs is indexed by the totally ordered set I ⊔ 1, such that the

composition in V with ι =
(
1 = ∅ ⊔ 1 ⊔∅ ◁⊔id⊔◁→ I ⊔ 1 ⊔ 1 = I ⊔ 2

)
φ(Yj)j∈J ;(Xi)i∈I ;Z =

[
C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
λι:1↪→I⊔2

→ ⊗I⊔2 [(1V)i∈I ,C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
,1V]

⊗I⊔2[(1CXi,{i}
)i∈I ,id,ev

C
(Xi)i∈I ;Z

]

→
⊗I⊔2

[(
C((Xi){i};Xi)

)
i∈I ,C

(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
,C
(
(Xi)i∈I ,C((Xi)i∈I ;Z);Z

)]
µC
id⊔▷:I⊔J→I⊔1→ C

(
(Xi)i∈I , (Yj)j∈J ;Z

)]
(4.7.1)

is an isomorphism for an arbitrary sequence (Yj)j∈J , J ∈ Ob S, of objects of C. A sym-
metric (resp. braided) multicategory is closed if its underlying plain multicategory is
closed.

Here ◁ : ∅ → K for an arbitrary set K is the only map. Concatenation of sequences
indexed by I and J is indexed by the disjoint union I ⊔J , where i < j for all i ∈ I, j ∈ J .

Notice that for I = ∅ an object C(;Z) and an element evC;Z with the required property

always exist. Namely, we shall always take C(;Z) = Z and evC;Z = 1Z : Z → Z. With this

choice φ(Yj)j∈J ;;Z = id : C
(
(Yj)j∈J ;Z

)
→ C

(
(Yj)j∈J ;Z

)
is the identity map.

The second of the above definitions is a generalization of the first, as the following
result shows.

4.8 Proposition. Let C be a (symmetric) closed Monoidal V-category. Then Ĉ is closed,

inner homomorphism objects are Ĉ((Xi)i∈I ;Z) = C(⊗i∈IXi, Z) with evaluations repre-
sented by compositions in C

evĈ =
[
⊗I⊔1((Xi)i∈I ,C(⊗i∈IXi, Z))

λ▷⊔id:I⊔1→2
C → (⊗i∈IXi)⊗ C(⊗i∈IXi, Z)

evC→Z
]
.

Proof. The above formula of evĈ is a short form of

evĈ =
[
1V

λ∅→2

→ 1V ⊗ 1V

λ▷⊔id:I⊔1→2
C ⊗evC→

C
(
⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z)

)
⊗ C

(
(⊗i∈IXi)⊗ C(⊗i∈IXi, Z), Z

)
µC

→ C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], Z)
]
.

Since C is a closed Monoidal V-category, the morphism φC given by (4.6.1) is an isomor-
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phism in V. According to (4.7.1) we have:

φĈ =
[
C(⊗j∈JYj,C(⊗i∈IXi, Z))

λι:1↪→I⊔2

→

⊗I⊔2 [(1V)i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z)),1V]
⊗I⊔2[(id)i∈I ,id,λ

∅→2]→

⊗I⊔2 [(1V)i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z)),1V ⊗ 1V]
⊗I⊔2[(1Xi)i∈I ,id,λ

▷⊔id:I⊔1→2
C ⊗evC]

→
⊗I⊔2 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z)),

C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))

⊗ C((⊗i∈IXi)⊗ C(⊗i∈IXi, Z), Z)]
⊗I⊔2[(1Xi)i∈I ,id,µ

C]
→

⊗I⊔2 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z)),C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], Z)]
λγ:I⊔2→2

→
⊗I⊔1 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]⊗ C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], Z)

⊗I⊔1
C ⊗id→

C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj],⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)])

⊗ C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], Z)
µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λ . I

→

1V ⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λid⊔▷:I⊔J→I⊔1
C ⊗id→

C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ],⊗I⊔1[(Xi)i∈I ,⊗j∈JYj])⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
µC

→ C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ], Z)
]
,

where

ι = ◁ ⊔ id⊔◁ : 1 = ∅ ⊔ 1 ⊔∅→ I ⊔ 1 ⊔ 1 = I ⊔ 2,

γ = ▷ ⊔ id : I ⊔ 2 = (I ⊔ 1) ⊔ 1→ 1 ⊔ 1 = 2.

Using associativity of µC we can transform this expression as follows:

φĈ =
[
C(⊗j∈JYj,C(⊗i∈IXi, Z))

λ◁⊔id:1↪→I⊔1

→
⊗I⊔1 [(1V)i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]

⊗I⊔1[(1Xi)i∈I ,id]→ ⊗I⊔1 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]
λI .→ ⊗I⊔1 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]⊗ 1V

⊗I⊔1
C ⊗λ▷⊔id:I⊔1→2

C →
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj],⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)])⊗
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⊗ C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
λI .→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))⊗ 1V

id⊗ evC→
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))⊗ C((⊗i∈IXi)⊗ C(⊗i∈IXi, Z), Z)

µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λ . I

→

1V ⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λid⊔▷:I⊔J→I⊔1
C ⊗id→

C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ],⊗I⊔1[(Xi)i∈I ,⊗j∈JYj])⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
µC

→ C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ], Z)
]
.

Naturality of λ▷⊔id:I⊔1→2
C is expressed by the following equation:[

⊗I⊔1[(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]
λI .→

⊗I⊔1 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]⊗ 1V

⊗I⊔1
C ⊗λ▷⊔id:I⊔1→2

C →
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj],⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)])⊗

⊗ C(⊗I⊔1[(Xi)i∈I ,C(⊗i∈IXi, Z)], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
]

=
[
⊗I⊔1[(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]

λ . I

→

1V ⊗⊗I⊔1[(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]
id⊗λ▷⊔id:I⊔1→2·(⊗IC⊗id)→

1V ⊗ [C(⊗i∈IXi,⊗i∈IXi)⊗ C(⊗j∈JYj,C(⊗i∈IXi, Z))]
λ▷⊔id:I⊔1→2
C ⊗⊗2

C→
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ (⊗j∈JYj))⊗

⊗ C((⊗i∈IXi)⊗ (⊗j∈JYj), (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
]
.

This allows to write

φĈ =
[
C(⊗j∈JYj,C(⊗i∈IXi, Z))

λ◁⊔id:1↪→I⊔1

→ ⊗I⊔1 [(1V)i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]
⊗I⊔1[(1Xi)i∈I ,id]→ ⊗I⊔1 [(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]

λ . I

→ 1V ⊗⊗I⊔1[(C(Xi, Xi))i∈I ,C(⊗j∈JYj,C(⊗i∈IXi, Z))]
id⊗λ▷⊔id:I⊔1→2

→ 1V ⊗ [(⊗i∈IC(Xi, Xi))⊗ C(⊗j∈JYj,C(⊗i∈IXi, Z))]
id⊗(⊗IC⊗id)→ 1V ⊗ [C(⊗i∈IXi,⊗i∈IXi)⊗ C(⊗j∈JYj,C(⊗i∈IXi, Z))]

λ▷⊔id:I⊔1→2
C ⊗⊗2

C→
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ (⊗j∈JYj))
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⊗ C((⊗i∈IXi)⊗ (⊗j∈JYj), (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))
λI .→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))⊗ 1V

id⊗ evC→
C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ C(⊗i∈IXi, Z))⊗ C((⊗i∈IXi)⊗ C(⊗i∈IXi, Z), Z)

µC

→ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λ . I

→

1V ⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λid⊔▷:I⊔J→I⊔1
C ⊗id→

C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ],⊗I⊔1[(Xi)i∈I ,⊗j∈JYj])⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
µC

→ C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ], Z)
]
.

Using associativity of µC and the identity ⊗i∈IC 1Xi
= 1⊗i∈IXi

implied by the fact that ⊗IC
is a V-functor, we obtain:

φĈ =
[
C(⊗j∈JYj,C(⊗i∈IXi, Z))

φC

→ C((⊗i∈IXi)⊗ (⊗j∈JYj), Z)
λ . I

→ 1V ⊗ C((⊗i∈IXi)⊗ (⊗j∈JYj), Z)
λ▷⊔id:I⊔1→2
C ⊗id→

C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], (⊗i∈IXi)⊗ (⊗j∈JYj))⊗ C((⊗i∈IXi)⊗ (⊗j∈JYj), Z)
µC

→

C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λ . I

→ 1V ⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
λid⊔▷:I⊔J→I⊔1
C ⊗id→

C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ],⊗I⊔1[(Xi)i∈I ,⊗j∈JYj])⊗ C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
µC

→ C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ], Z)
]
,

that is,

φĈ =
[
C(⊗j∈JYj,C(⊗i∈IXi, Z))

φC

∼
→ C((⊗i∈IXi)⊗ (⊗j∈JYj), Z)

C(λ▷⊔id:I⊔1→2
C ,1)

∼
→

C(⊗I⊔1[(Xi)i∈I ,⊗j∈JYj], Z)
C(λI⊔J→I⊔1

C ,1)

∼
→ C(⊗I⊔J [(Xi)i∈I , (Yj)j∈J ], Z)

]
.

In particular, φĈ is an isomorphism.

4.9 A closed multicategory gives an enriched multicategory. We show that a
closed multicategory C gives rise to multicategory C enriched in C. We begin by intro-
ducing some notation.

Let t ∈ N′nS be a symmetric sequential tree. We associate with it the symmetric
sequential tree t ∈ N′nS with ordered sets t(m) = t(m) ⊔ t(m + 1) ⊔ · · · ⊔ t(n), m ∈ [n],
and maps tm : t(m− 1)→ t(m), determined by

tm
∣∣
t(m−1) =

(
t(m− 1)

tm→ t(m) ↪→ t(m)
)
, tm

∣∣
t(m)⊔t(m+1)⊔···⊔t(n) = id .
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For example, a map ϕ : I → J in Mor S gives rise to a sequential tree t = (I
ϕ→ J → 1)

of height 2. The induced tree t is of the form (I ⊔J ⊔1 ϕ→ J ⊔1→ 1), where ϕ is given
by

ϕ|I =
(
I

ϕ→ J ↪→ J ⊔ 1
)
, ϕ|J⊔1 = id : J ⊔ 1→ J ⊔ 1. (4.9.1)

In the sequel, composition

µCϕ :
∏
j∈J

C((Xi)i∈ϕ−1j;Yj)× C((Yj)j∈J ;Z)→ C((Xi)i∈I ;Z)

in the multicategory C associated with a map ϕ : I → J in Mor S is written as
((fj)j∈J , g) 7→ (fj)j∈J ·ϕ g, or even as ((fj)j∈J , g) 7→ (fj)j∈J · g if ϕ : I → J is an
order-preserving map.

4.10 Proposition. A closed symmetric multicategory C gives rise to a symmetric multi-
category C enriched in C.

Proof. For each map ϕ : I → J in Mor S and Xi, Yj, Z ∈ ObC, i ∈ I, j ∈ J , there exists
a unique morphism

µCϕ :
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C((Yj)j∈J ;Z)→ C((Xi)i∈I ;Z)

that makes the diagram

(Xi)i∈I ,
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C((Yj)j∈J ;Z)

(1CXi,{i}
)i∈I ,µ

C
ϕ→ (Xi)i∈I ,C((Xi)i∈I ;Z)

(Yj)j∈J ,C((Yj)j∈J ;Z)

(evC(Xi)i∈ϕ−1j
;Yj

)j∈J ,1
C
C((Yj)j∈J ;Z),1

↓ evC(Yj)j∈J ;Z →Z

evC(Xi)i∈I ;Z

↓
(4.10.1)

commute. More precisely, the commutativity in the above diagram means that the equa-
tion (

(1CXi,{i})i∈I , µ
C
ϕ

)
·idI ⊔▷ evC(Xi)i∈I ;Z

=
(
(evC(Xi)i∈ϕ−1j ;Yj

)j∈J , 1
C
C((Yj)j∈J ;Z),1

)
·ϕ ev

C
(Yj)j∈J ;Z

holds true, where idI ⊔▷ : I ⊔ J ⊔ 1→ I ⊔ 1, and ϕ : I ⊔ J ⊔ 1→ J ⊔ 1 is given by (4.9.1).
Furthermore, for each X ∈ ObC and a 1-element set L, there is a morphism

1CX,L
def
= φ−1;(X)L;X

(1CX,L) ∈ C( ;C((X)L;X)).

It is a unique solution to the equation

[
(X)L

1CX,L,1
C
X,L−−−−−→ (X)L,C((X)L;X)

evC(X)L;X−−−−−→ X
]
= 1CX,L,



118 4. Closed multicategories

where the composition in V is taken in the sense of the map L ↪→ L⊔ 1. Let us check the

conditions of Definition 4.2. Let I
ϕ→ J

ψ→K be a pair of composable maps, and let
(Xi)i∈I , (Yj)j∈J , (Zk)k∈K , W be families of objects of C. Equation (4.2.2) reads(

(1CC((Xi)i∈ϕ−1j ;Yj),{j}
)j∈J , µ

C
ψ

)
·idJ ⊔▷ µ

C
ϕ =

(
(µCϕk)k∈K , 1

C
C((Zk)k∈K ;W ),1

)
·ψ µ

C
ϕψ,

where idJ ⊔▷ : J ⊔K⊔1→ J ⊔1, and ψ : J ⊔K⊔1→ K⊔1 is given by (4.9.1). Applying
the transformation φ(C((Xi)i∈ϕ−1j ;Yj))j∈J ,C((Yj)j∈J ;Z);(Xi)i∈I ;Z one gets an equivalent equation(

(1CXi,{i})i∈I ,
[(
(1CC((Xi)i∈ϕ−1j ;Yj),{j}

)j∈J , µ
C
ψ

)
·idJ ⊔▷ µ

C
ϕ

])
·idI ⊔▷ evC(Xi)i∈I ;Z

=
(
(1CXi,{i})i∈I ,

[(
(µCϕk)k∈K , 1

C
C((Zk)k∈K ;W ),1

)
·ψ µ

C
ϕψ

])
·idI ⊔▷ evC(Xi)i∈I ;Z

,

where idI ⊔▷ : I ⊔ J ⊔ 1 → I ⊔ 1. It is proven as follows. To shorten the notation, we
drop the subscripts of identities and of evaluation morphisms. The detailed form can
be read from the diagrams on the next page. Since identities in C are idempotent, the
associativity axiom for the pair of maps

I ⊔ J ⊔K ⊔ 1
idI ⊔ idJ ⊔▷−−−−−−→ I ⊔ J ⊔ 1

idI ⊔▷−−−→ I ⊔ 1

yields(
(1)i∈I ,

[(
(1)j∈J , µ

C
ψ

)
·idJ ⊔▷ µ

C
ϕ

])
·idI ⊔▷ evC

=
(
(1)i∈I , (1)j∈J , µ

C
ψ

)
·idI ⊔ idJ ⊔▷

((
(1)i∈I , µ

C
ϕ

)
·idI ⊔▷ evC

)
.

By the definition of µCϕ,(
(1)i∈I , µ

C
ϕ

)
·idI ⊔▷ evC =

(
(evC)j∈J , 1

)
·ϕ ev

C,

which corresponds to commutative square
�� ��2 of the diagram. The associativity axiom for

the pair of maps

I ⊔ J ⊔K ⊔ 1
idI ⊔ idJ ⊔▷−−−−−−→ I ⊔ J ⊔ 1

ϕ−→ J ⊔ 1

implies(
(1)i∈I ,

[(
(1)j∈J , µ

C
ψ

)
·idJ ⊔▷ µ

C
ϕ

])
·idI ⊔▷ evC

=
((

((1)i∈ϕ−1j, 1) ·idϕ−1j⊔1
evC
)
j∈J , µ

C
ψ ·K⊔1→1 1

)
·(idI ⊔ idJ ⊔▷)·ψ ev

C .

By the identity axiom,

((1)i∈ϕ−1j, 1) ·idϕ−1j⊔1
evC = evC ·ϕ−1j⊔1→11, µCψ ·K⊔1→1 1 =

(
(1)k∈K , 1) ·idK⊔1

µCψ.
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Therefore, by the associativity axiom for the pair of maps

I ⊔ J ⊔K ⊔ 1
π−→ J ⊔K ⊔ 1

idJ ⊔▷−−−→ J ⊔ 1,

where π is given by

π|J⊔K⊔1 = id : J ⊔K ⊔ 1→ J ⊔K ⊔ 1, π|I =
(
I

ϕ−→ J ↪→ J ⊔K ⊔ 1
)
,

it follows that(
(1)i∈I ,

[(
(1)j∈J , µ

C
ψ

)
·idJ ⊔▷ µ

C
ϕ

])
·idI ⊔▷ evC

=
(
(evC)j∈J , (1)k∈K , 1

)
·π
((

(1)j∈J , µ
C
ψ

)
·idJ ⊔▷ evC

)
,

which means the commutativity of quadrilateral
�� ��1 . By the definition of µCψ, the equation(

(1)j∈J , µ
C
ψ

)
·idJ ⊔▷ evC =

(
(evC)k∈K , 1

)
·ψ ev

C,

holds true, found in the diagram as commutative quadrilateral
�� ��3 . Therefore(

(1)i∈I ,
[(
(1)j∈J , µ

C
ψ

)
·idJ ⊔▷ µ

C
ϕ

])
·idI ⊔▷ evC

=
(
(evC)j∈J , (1)k∈K , 1

)
·π
((

(evC)k∈K , 1
)
·ψ ev

C
)
.

Similarly, by the associativity axiom for the pair of maps

I ⊔ J ⊔K ⊔ 1
idI ⊔ψ−−−→ I ⊔K ⊔ 1

idI ⊔▷−−−→ I ⊔ 1

and the identity axiom,(
(1)i∈I ,

[(
(µCϕk)k∈K , 1

)
·ψ µ

C
ϕψ

])
·idI ⊔▷ evC

=
(
(1)i∈I , (µ

C
ϕk
)k∈K , 1

)
·idI ⊔ψ

((
(1)i∈I , µ

C
ϕψ

)
·idI ⊔▷ evC

)
.

By the definition of µCϕψ,(
(1)i∈I , µ

C
ϕψ

)
·idI ⊔▷ evC =

(
(evC)k∈K , 1

)
·ϕψ ev

C,

which corresponds to commutative square
�� ��5 of the diagram. Applying the associativity

axiom for the pair of maps

I ⊔ J ⊔K ⊔ 1
idI ⊔ψ−−−→ I ⊔K ⊔ 1

ϕψ−→ K ⊔ 1
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leads to(
(1)i∈I , (µ

C
ϕk
)k∈K , 1

)
·idI ⊔ψ

((
(1)i∈I , µ

C
ϕψ

)
·idI ⊔▷ evC

)
=
((

((1)i∈ϕ−1ψ−1k, µ
C
ϕk
) ·idϕ−1ψ−1k ⊔▷ ev

C
)
k∈K , 1

)
·ψ ev

C,

where idϕ−1ψ−1k ⊔▷ : ϕ−1ψ−1k ⊔ ψ−1k ⊔ 1→ ϕ−1ψ−1k ⊔ 1. Finally, since by the definition

of µCϕk the equation(
(1)i∈ϕ−1ψ−1k, µ

C
ϕk

)
·idϕ−1ψ−1k ⊔▷ ev

C =
(
(evC)i∈ϕ−1ψ−1k, 1

)
·ϕk ev

C

holds true, found as commutative square
�� ��4 , it follows that(

(1)i∈I ,
[(
(µCϕk)k∈K , 1

)
·ψ µ

C
ϕψ

])
·idI ⊔▷ evC

=
(((

(evC)i∈ϕ−1ψ−1k, 1
)
·ϕk ev

C
)
k∈K

, 1
)
·(idI ⊔ψ)·ϕψ ev

C .

The equation in question is a consequence of the associativity of composition in C, written
for the pair of maps

I ⊔ J ⊔K ⊔ 1
π−→ J ⊔K ⊔ 1

ψ−→ K ⊔ 1

and morphisms

evC : (Xi)i∈ϕ−1j,C((Xi)i∈ϕ−1j;Yj)→ Yj, j ∈ J,
evC : (Yj)j∈ψ−1k,C((Yj)j∈ψ−1k;Zk)→ Zk, k ∈ K,
evC : (Zk)k∈K ,C((Zk)k∈K ;W )→ W.

Note that π · ψ = (idI ⊔ψ) · ϕψ, and the map

πk = π|π−1ψ−1k : π
−1ψ−1k = ϕ−1ψ−1k ⊔ ψ−1k ⊔ 1→ ψ−1k ⊔ 1 = ψ−1k

coincides with ϕk, k ∈ K. The verification of the identity axioms is left to the reader.

4.11 Proposition. For any symmetric (resp. plain) closed multicategory C the isomor-
phism φ(Yj)j∈J ;(Xi)i∈I ;Z given by (4.7.1) is natural in (Yj)j∈J . That is, for an arbitrary (resp.
isotonic) map f : K → J the following diagram commutes:∏

j∈J

C((Wk)k∈f−1j;Yj)× C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
C
(
(Wk)k∈K ;C((Xi)i∈I ;Z)

)µf→

∏
i∈I

C(Xi;Xi)×
∏
j∈J

C((Wk)k∈f−1j;Yj)×C
(
(Xi)I , (Yj)J ;Z

)
∏
i 1Xi×id×φ(Yj)j∈J ;(Xi)i∈I ;Z

↓

C
(
(Xi)i∈I , (Wk)k∈K ;Z

)
φ(Wk)k∈K ;(Xi)i∈I ;Z

↓
µidI ⊔f →
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Proof. Indeed, top square in the following diagram commutes since units 1Xi
are idempo-

tents. ∏
j∈J C((Wk)k∈f−1j;Yj)

×C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

) µf → C
(
(Wk)K ;C((Xi)I ;Z)

)

∏
i∈IC(Xi;Xi)×

∏
j∈JC((Wk)k∈f−1j;Yj)×∏

i∈IC(Xi;Xi)×C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
×C
(
(Xi)i∈I ,C((Xi)i∈I ;Z);Z

)
∏
i 1Xi×id×

∏
i 1Xi×id× ev(Xi);Z
↓ ∏

i µid1

×µf×id
→

∏
i∈IC(Xi;Xi)

×C
(
(Wk)K ;C((Xi)I ;Z)

)
×C
(
(Xi)I ,C((Xi)I ;Z);Z

)
∏
i 1Xi×id× ev(Xi);Z

↓

∏
i∈IC(Xi;Xi)×

∏
j∈JC((Wk)f−1j;Yj)

×C
(
(Xi)I , (Yj)J ;Z

)
id× id×µid⊔▷:I⊔J→I⊔1

↓
µidI ⊔f→ C

(
(Xi)i∈I , (Wk)k∈K ;Z

)
µid⊔▷:I⊔J→I⊔1

↓

The bottom commutative square is associativity property of multicategory C, written for

mappings I ⊔K 1⊔f→ I ⊔J 1⊔▷→ I ⊔1, see Fig. 3.1. Therefore, the exterior commutes and
the proposition is proven.

4.12 Proposition. The choice of evaluations evC(Xi)i∈I ;Z
for a closed multicategory C de-

termines a unique isomorphism

φ
(Yj)j∈J ;(Xi)i∈I ;Z

: C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
→ C

(
(Xi)i∈I , (Yj)j∈J ;Z

)
.

Proof. We have three isomorphisms natural in (Wk)k∈K by Proposition 4.11:

ψ(Wk)k∈K =
[
C
(
(Wk)k∈K ;C

(
(Yj)j∈J ;C((Xi)i∈I ;Z)

))
φ(Wk)k∈K ;(Yj)j∈J ;C((Xi)i∈I ;Z)

→ C
(
(Yj)j∈J , (Wk)k∈K ;C((Xi)i∈I ;Z)

)
φ(Yj)j∈J ,(Wk)k∈K ;(Xi)i∈I ;Z→ C

(
(Xi)i∈I , (Yj)j∈J , (Wk)k∈K ;Z

)
φ−1
(Wk)k∈K ;(Xi)i∈I ,(Yj)j∈J ;Z→ C

(
(Wk)k∈K ;C((Xi)i∈I , (Yj)j∈J ;Z)

)]
.

Denote A = C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

)
and B = C((Xi)i∈I , (Yj)j∈J ;Z). One deduces from

Proposition 4.11 naturality of the composition ψ. Namely, for any map f : K → L in O

we have the equation∏
l∈L C((Wk)k∈f−1l;Ul)× C((Ul)l∈L;A)

µf→ C((Wk)k∈K ;A)

=∏
l∈L C((Wk)k∈f−1l;Ul)× C((Ul)l∈L;B)

id×ψ(Ul)l∈L↓
µf→ C((Wk)k∈K ;B)

ψ(Wk)k∈K↓
(4.12.1)
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Considering K = L = 1 we get an isomorphism of functors W 7→ C(W ;A) and W 7→
C(W ;B), which by ordinary Yoneda Lemma gives an isomorphism φ

(Yj)j∈J ;(Xi)i∈I ;Z
: A→ B

in C, the image of 1A under the map ψA.

Notice that for arbitrary family (Wk)k∈K the isomorphism ψ(Wk)k∈K is obtained by
composition with φ

(Yj)j∈J ;(Xi)i∈I ;Z
. Indeed, consider f = ▷ : K → 1, U1 = A, an arbitrary

morphism g : (Wk)k∈K → A and apply equation (4.12.1) to the element (g, 1A).

Let g : (Yj)j∈J → Z be a morphism in C, Xi ∈ ObC, i ∈ I a family of objects, and let
ϕ : I → J be a map in Mor S. The morphism g gives rise to a morphism

C(ϕ; g) : (C((Xi)i∈ϕ−1j;Yj))j∈J → C((Xi)i∈I ;Z)

in C determined in a unique way via the diagram

(Xi)i∈I , (C((Xi)i∈ϕ−1j;Yj))j∈J
(1)I ,C(ϕ;g)→ (Xi)i∈I ,C((Xi)i∈I ;Z)

(Yj)j∈J

(evC(Xi)i∈ϕ−1j
;Yj

)j∈J↓
g →Z

evC(Xi);Z↓
(4.12.2)

Its existence and uniqueness follows from closedness of C.

Let ψ : K → I be a map in S. Let fi : (Wk)k∈ψ−1i → Xi, i ∈ I, be morphisms in C. A
morphism C((fi)i∈I ; 1) : C((Xi)i∈I ;Z) → C((Wk)k∈K ;Z) is defined as the only morphism
that makes the following diagram commutative:

(Wk)k∈K ,C((Xi)i∈I ;Z)
(1)K ,C((fi)i∈I ;1)→ (Wk)k∈K ,C((Wk)k∈K ;Z)

(Xi)i∈I ,C((Xi)i∈I ;Z)

(fi)i∈I ,1↓
evC(Xi);Z →Z

evC(Wk);Z↓
(4.12.3)

4.13 Lemma. In the above assumptions the introduced morphisms satisfy the commu-
tativity relation:

[(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

C(ϕ;g)→ C((Xi)i∈I ;Z)
C((fi)i∈I ;1)→ C((Wk)k∈K ;Z)

]
=
[(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(C((fi)i∈ϕ−1j ;1))j∈J→
(
C((Wk)k∈ψ−1ϕ−1j;Yj)

)
j∈J
C(ψϕ;g)→ C((Wk)k∈K ;Z)

]
.
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Proof. We may rewrite the required equation in the form:

[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(1)K ,C(ϕ;g)→ (Wk)k∈K ,C((Xi)i∈I ;Z)

(1)K ,C((fi)i∈I ;1)→ (Wk)k∈K ,C((Wk)k∈K ;Z)
evC→Z

]
=
[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(1)K ,(C((fi)i∈ϕ−1j ;1))j∈J→
(Wk)k∈K ,

(
C((Wk)k∈ψ−1ϕ−1j;Yj)

)
j∈J

(1)K ,C(ψ·ϕ;g)→ (Wk)k∈K ,C((Wk)k∈K ;Z)
evC→Z

]
.

The left hand side can be transformed as follows:

[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(1)K ,C(ϕ;g)→ (Wk)k∈K ,C((Xi)i∈I ;Z)

(fi)i∈I ,1→ (Xi)i∈I ,C((Xi)i∈I ;Z)
evC→Z

]
=
[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(fi)i∈I ,(1)J→ (Xi)i∈I ,
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(1)I ,C(ϕ;g)→ (Xi)i∈I ,C((Xi)i∈I ;Z)
evC→Z

]
=
[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(fi)i∈I ,(1)J→ (Xi)i∈I ,
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(evC(Xi)i∈ϕ−1j
;Yj

)j∈J

→ (Yj)j∈J
g→Z

]
. (4.13.1)

The right hand side can be transformed to:

[
(Wk)k∈K ,

(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(1)K ,(C((fi)i∈ϕ−1j ;1))j∈J→

(Wk)k∈K ,
(
C((Wk)k∈ψ−1ϕ−1j;Yj)

)
j∈J

(evC(Wk)k∈ψ−1ϕ−1j
;Yj

)j∈J

→ (Yj)j∈J
g→Z

]
,

which coincides with the last expression of (4.13.1).

4.14 Lemma. Let I
ϕ→ J

ψ→K be maps in S, and let (Xi)i∈I , (Yj)j∈J , (Zk)k∈K , W
be families of objects in a closed symmetric multicategory C. Let fj : (Xi)i∈ϕ−1j → Yj,
j ∈ J , gk : (Yj)j∈ψ−1k → Zk, k ∈ K, be morphisms in C. Then

C
(
((fj)j∈ψ−1k · gk)k∈K ; 1

)
=
[
C((Zk)K ;W )

C((gk)k∈K ;1)→ C((Yj)J ;W )
C((fj)j∈J ;1)→ C((Xi)I ;W )

]
.
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Proof. The commutative diagram

(Xi)i∈I ,C((Yj)J ;W )

(Xi)i∈I ,C((Zk)K ;W )

(1)I ,C((gk)K ;1) →

= (Yj)j∈J ,C((Yj)J ;W )

(fj)j∈J ,1

↓
(Xi)i∈I ,C((Xi)I ;W )

(1)I ,C((fj)J ;1)

→

(Yj)j∈J ,C((Zk)K ;W )

(fj)j∈J ,1

↓
(gk)k∈K ,1

→

(1)J ,C((gk)K ;1) →

(Zk)k∈K ,C((Zk)K ;W )
evC(Zk);W

→W

evC(Xi);W

↓

evC(Yj);W

→

implies the lemma.

4.15 Lemma. Let I
ϕ→ J

ψ→K be maps in S, and let (Xi)i∈I , (Yj)j∈J , (Zk)k∈K , W
be families of objects in a closed symmetric multicategory C. Let fk : (Yj)j∈ψ−1k → Zk,
k ∈ K, g : (Zk)k∈K → W be morphisms in C. Denote ϕk = ϕ

∣∣: ϕ−1ψ−1k → ψ−1k. Then

[(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

C(ϕ;(fk)·g)→ C((Xi)i∈I ;W )
]

=
[(
(C((Xi)i∈ϕ−1j;Yj))j∈ψ−1k

)
k∈K

(C(ϕk;fk))k∈K→(
C((Xi)i∈ϕ−1ψ−1k;Zk)

)
k∈K

C(ϕψ;g)→ C((Xi)i∈I ;W )
]
.

Proof. Omitting the permutations of elements we write the following commutative dia-
gram:

(Xi)i∈I ,
(
C((Xi)i∈ϕ−1j;Yj)

)
j∈J

(evC(Xi)i∈ϕ−1j
;Yj

)j∈J

→ (Yj)j∈J

(Xi)i∈I ,
(
C((Xi)i∈ϕ−1ψ−1k;Zk)

)
k∈K

(1)I ,(C(ϕk;fk))k∈K↓ (evC(Xi)i∈ϕ−1ψ−1k
;Zk

)k∈K

→ (Zk)k∈K

(fk)k∈K↓

(Xi)i∈I ,C((Xi)i∈I ;W )

(1)I ,C(ϕψ;g)↓ evC(Xi)i∈I ;W →W

g
↓

Uniqueness implies the claim.

Notation. Let g : (Yj)j∈J → Z be a morphism in a closed symmetric multicategory C.
Denote by ġ : ()→ C((Yj)j∈J ;Z) the morphism φ−1();(Yj)j∈J ;Z

(g) ∈ C(;C((Yj)j∈J ;Z)).
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4.16 Lemma. Let the above assumptions hold. Let (Xi)i∈I be a family of objects of C,
and let ϕ : I → J be a map in Mor S. Then

C(ϕ; g) =
[
(C((Xi)i∈ϕ−1j;Yj))j∈J

(1)J ,ġ→

(C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)
µ
C
ϕ−→ C((Xi)i∈I ;Z)

]
.

Proof. Plugging the right hand side into defining equation (4.12.2) for C(ϕ; g) we obtain
the diagram in C

(Xi)i∈I , (C((Xi)i∈ϕ−1j;Yj))j∈J
(evC(Xi)i∈ϕ−1j

;Yj
)j∈J

→ (Yj)j∈J

=

(Xi)i∈I , (C((Xi)i∈ϕ−1j;Yj))j∈J ,

C((Yj)j∈J ;Z)

(1)I⊔J ,ġ↓
(evC(Xi)i∈ϕ−1j

;Yj
)j∈J ,1

→ (Yj)j∈J ,

C((Yj)j∈J ;Z)

(1)J ,ġ↓

=

(Xi)i∈I ,C((Xi)i∈I ;Z)

(1)I ,µ
C
ϕ

↓ evC(Xi)i∈I ;Z →Z

evC(Yj)j∈J ;Z

↓

The lower square is definition (4.10.1) of µCϕ. The right column composes to g due to the

equation φ();(Yj)j∈J ;Z(ġ) = g. Commutativity of exterior of the diagram implies statement
of the lemma.

4.17 Lemma. Let ψ : K → I be a map in S. Let fi : (Wk)k∈ψ−1i → Xi, i ∈ I, be
morphisms in C. Then

C((fi)i∈I ; 1) =
[
C((Xi)i∈I ;Z)

(ḟi)i∈I ,1→

(C((Wk)k∈ψ−1i;Xi))i∈I ,C((Xi)i∈I ;Z)
µ
C
ψ−→ C((Wk)k∈K ;Z)

]
.

Proof. Plug the right hand side into defining equation (4.12.3) for C((fi)i∈I ; 1). We obtain
the diagram in C

(Wk)k∈K ,C((Xi)i∈I ;Z)
(fi)i∈I ,1→ (Xi)i∈I ,C((Xi)i∈I ;Z)

(Wk)k∈K , (C((Wk)k∈ψ−1i;Xi))i∈I ,C((Xi)i∈I ;Z)

(1)K ,(ḟi)i∈I ,1 =

↓ (evC(Wk)k∈ψ−1i
;Xi

)i∈I ,1

→

=

(Wk)k∈K ,C((Wk)k∈K ;Z)

(1)K ,µ
C
ψ

↓ evC(Wk)k∈K ;Z →Z

evC(Xi)i∈I ;Z

↓
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The quadrilateral is the definition of µCψ. The triangle follows from equations

φ();(Wk)k∈ψ−1i;Xi
(ḟi) = fi.

Commutativity of the exterior of the diagram implies statement of the lemma.

When C is a symmetric closed multicategory, it admits a transformation

C( ;Z) : C(X;Y )→ C(C(Y ;Z);C(X;Z)), (4.17.1)

natural inX, Y and dinatural in Z. It is determined unambiguously from the commutative
diagram

C(Y ;Z),C(X;Y )
1,C( ;Z)→ C(C(Y ;Z);C(X;Z))

C(X;Z)

evC

↓µCop →

where µC
op

is the image of µC under the canonical isomorphism

C((12);C(X;Z)) : C(C(X;Y ),C(Y ;Z);C(X;Z))
∼→ C(C(Y ;Z),C(X, Y );C(X;Z)).

4.18 Closing transformations. We begin by an easy motivational example. Given
closed monoidal categories C,D and a lax monoidal functor (F, ϕ) : C → D, there is a
natural transformation FX,Y : FC(X, Y ) → D(FX,FY ) uniquely determined from the
commutative diagram

FX ⊗ FC(X, Y )
1⊗FX,Y→ FX ⊗D(FX,FY )

F (X ⊗ C(X, Y ))

ϕX,C(X,Y )↓
F evX,Y → FY

evFX,FY
↓

It is called the closing transformation. The generalization to the case of a V-multifunctor
between closed V-multicategories is straightforward. More specifically, let C, D be closed
symmetric V-multicategories. Let F : C → D be a (symmetric) V-multifunctor. The
symmetric multicategory D is enriched in D. The symmetric multicategory C enriched in
C can be considered as a D-multicategory CF via the base change F : C→ D. Since D is
closed, there is an isomorphism in V

φFC((Xi);Z);(FXi)i;FZ =
[
D
(
FC((Xi)i∈I ;Z);D((FXi)i∈I ;FZ)

)
(⊗i∈I1FXi)⊗id⊗ evD(FXi);FZ→(

⊗i∈ID(FXi;FXi)
)
⊗ D

(
FC((Xi);Z);D((FXi);FZ)

)
⊗ D

(
(FXi),D((FXi);FZ);FZ

)
µ→D

(
(FXi)i∈I , FC((Xi)i∈I ;Z);FZ

)]
(4.18.1)
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(take J = 1 in Definition 4.7). Define a morphism in D

F (Xi);Z : FC((Xi)i∈I ;Z)→ D((FXi)i∈I ;FZ) (4.18.2)

as the only element of the source of (4.18.1) which is mapped to the element F evC(Xi);Z
of

the target. It is uniquely determined by the commutative diagram

(FXi)i∈I , FC((Xi)i∈I ;Y )
(1)I ,F (Xi);Y→ (FXi)i∈I ,D((FXi)i∈I ;FY )

FY

ev(FXi);FY↓F ev(Xi);Y →
(4.18.3)

The natural transformation (4.18.2) is called closing transformation of the V-multifunctor
F .

4.19 Lemma. The following equation holds

C
(
(Yj)j∈J ;C((Xi)i∈I ;Z)

) F→D
(
(FYj)j∈J ;FC((Xi)i∈I ;Z)

)
=

D
(
(FYj)j∈J ;D((FXi)i∈I ;FZ)

)D(1,F (Xi);Z
)↓

C
(
(Xi)i∈I , (Yj)j∈J ;Z

)
φ(Yj);(Xi);Z

↓
F→D

(
(FXi)i∈I , (FYj)j∈J ;FZ

)φ(FYj);(FXi);FZ↓

(4.19.1)

for all (Yj)j∈J , J ∈ Ob S.
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Proof. Associativity of µ allows to rewrite (4.19.1) as the exterior of the diagram

C
(
(Yj);C((Xi);Z)

) F⊗F (Xi);Z → D
(
(FYj);FC((Xi);Z)

)
⊗D
(
FC((Xi);Z);D((FXi);FZ)

)

D((FYj);FC((Xi);Z))⊗ (⊗i∈ID(FXi;FXi))

⊗D(FC((Xi);Z);D((FXi);FZ))

⊗D((FXi),D((FXi);FZ);FZ)

id⊗(⊗i∈I1FXi)⊗id⊗ evD(FXi);FZ
↓

(⊗IC(Xi;Xi))

⊗C((Yj);C((Xi);Z))

⊗C((Xi),C((Xi);Z);Z)

(⊗i∈I1Xi)⊗id⊗ evC(Xi);Z

↓

(⊗IF )⊗F⊗F →
(⊗i∈ID(FXi;FXi))

⊗D((FYj);FC((Xi);Z))

⊗D((FXi), FC((Xi);Z);FZ)

(⊗i∈I1FXi)⊗id⊗µ↓

(⊗i∈I1FXi)⊗F⊗F evC(Xi);Z

→

C
(
(Xi)i∈I , (Yj)j∈J ;Z

)
µ

↓
F →D

(
(FXi)i∈I , (FYj)j∈J ;FZ

)
µ

↓

which commutes due to F being a multifunctor.

4.20 Corollary. For J = ∅ we get the following relation between F and F :

C
(
;C((Xi)i∈I ;Z)

) F→D
(
;FC((Xi)i∈I ;Z)

) D(;F (Xi);Z
)
→D

(
;D((FXi)i∈I ;FZ)

)

C
(
(Xi)i∈I ;Z

)φ();(Xi);Z↓
F →D

(
(FXi)i∈I ;FZ

)φ();(FXi);FZ↓

4.21 Proposition. The following equation in D holds for an arbitrary map ϕ : I → J in
Mor S and arbitrary symmetric V-multifunctor F : C→ D:

(FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z)
Fµ

C
ϕ→ FC((Xi)i∈I ;Z)

(D((FXi)i∈ϕ−1j;FYj))j∈J ,D((FYj)j∈J ;FZ)

(F (Xi);Yj
)j∈J ,F (Yj);Z

↓
µ
D
ϕ→D((FXi)i∈I ;FZ)

F (Xi);Z

↓
(4.21.1)

Morphism (4.18.2) may be interpreted as a (symmetric) D-multifunctor F : CF → D
such that ObF = ObF .
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Proof. Equation (4.21.1) is an equation between two elements of

D((FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z);D((FXi)i∈I ;FZ)).

We show that these elements are mapped to the same element by the isomorphism φ.
Applying equation (4.19.1) to the element

µCϕ ∈ C((C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z);C((Xi)i∈I ;Z))

we conclude that the top-right path is mapped by φ to Fφ(µCϕ). Since

φ(µCϕ) =
[
(Xi)i∈I , (C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)

(evC(Xi);Yj
)j∈J ,1

→

(Yj)j∈J ,C((Yj)j∈J ;Z)
evC(Yj);Z→Z

]
by equation (4.10.1), it follows that

Fφ(µCϕ) =
[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z)

(F evC(Xi);Yj
)j∈J ,1

→ (Yj)j∈J , FC((Yj)j∈J ;Z)
F evC(Yj);Z→ FZ

]
. (4.21.2)

This coincides with the image of the left-bottom path. Indeed:[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z)

(1)I ,(F (Xi);Yj
)j∈J ,F (Yj);Z→

(FXi)i∈I , (D((FXi)i∈ϕ−1j;FYj))j∈J ,D((FYj)j∈J ;FZ)

(1)I ,µ
D
ϕ→ (FXi)i∈I ,D((FXi)i∈I ;FZ)

ev
D
(FXi);FZ→ FZ

]
=
[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z)

(1)I ,(F (Xi);Yj
)j∈J ,F (Yj);Z→

(FXi)i∈I , (D((FXi)i∈ϕ−1j;FYj))j∈J ,D((FYj)j∈J ;FZ)
(evD(FXi);FYj

)j∈J ,1

→

(FYj)j∈J ,D((Yj)j∈J ;FZ)
evD(FYj);FZ→ FZ

]
,

which equals (4.21.2) by (4.10.1) and by definition of F . This proves the claim.

4.22 Lemma. Let f : (Yj)j∈J → Z be a morphism in C, Xi ∈ ObC, i ∈ I a family of
objects, and ϕ : I → J a map in Mor S. The following diagram commutes for an arbitrary
symmetric V-multifunctor F : C→ D:

(FC((Xi)i∈ϕ−1j;Yj))j∈J
FC(ϕ;f)→ FC((Xi)i∈I ;Z)

(D((FXi)i∈ϕ−1j;FYj))j∈J

(F (Xi);Yj
)j∈J↓

D(ϕ;Ff)→D((FXi)i∈I ;FZ)

F (Xi);Z↓
(4.22.1)
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Proof. Commutativity of (4.22.1) is equivalent to the following equation in D:

[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J

(1)I ,FC(ϕ;f)→

(FXi)i∈I , FC((Xi)i∈I ;Z)
(1)I ,F (Xi);Z→ (FXi)i∈I ,D((FXi)i∈ϕ−1j;FZ)

evD(FXi);FZ→ FZ
]

=
[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J

(1)I ,(F (Xi);Yj
)j∈J
→

(FXi)i∈I , (D((FXi)i∈ϕ−1j;FYj))j∈J
(1)I ,D(ϕ;Ff)→

(FXi)i∈I ,D((FXi)i∈I ;FZ)
evD(FXi);FZ→ FZ

]
, (4.22.2)

which we are going to prove. The left hand side of (4.22.2) equals

[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J

(1)I ,FC(ϕ;f)→

(FXi)i∈I , FC((Xi)i∈I ;Z)
F evC(Xi);Z→ FZ

]
(4.22.3)

by definition of F . The right hand side of (4.22.2) equals

[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J

(1)I ,(F (Xi);Yj
)j∈J
→

(FXi)i∈I , (D((FXi)i∈ϕ−1j;FYj))j∈J
(evD(FXi);FYj

)j∈J
→ (FYi)j∈J

Ff→ FZ
]

by (4.12.2). Using definition of F we can write it as follows:

[
(FXi)i∈I , (FC((Xi)i∈ϕ−1j;Yj))j∈J

(F evC(Xi);Yj
)j∈J
→ (FYi)j∈J

Ff→ FZ
]
. (4.22.4)

Expressions (4.22.3) and (4.22.4) coincide by (4.12.2) and due to F being a multifunctor.

4.23 Lemma. Let ψ : K → I be a map in S. Let fi : (Wk)k∈ψ−1i → Xi, i ∈ I, be
morphisms in C, and let F : C → D be a symmetric V-multifunctor. The following
diagram commutes:

FC((Xi)i∈I ;Z)
FC((fi)i∈I ;1)→ FC((Wk)k∈K ;Z)

D((FXi)i∈I ;FZ)

F (Xi);Z↓
D((Ffi)i∈I ;1)→D((FWk)k∈K ;FZ)

F (Wk);Z↓
(4.23.1)
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Proof. Commutativity of (4.23.1) is equivalent to the following equation in D:[
(FWk)k∈K , FC((Xi)i∈I ;Z)

(1)K ,FC((fi)i∈I ;1)→ (FWk)k∈K , FC((Wk)k∈K ;Z)

(1)K ,F (Wk);Z→ (FWk)k∈K ,D((FWk)k∈K ;FZ)
evD(FWk);FZ→ FZ

]
=
[
(FWk)k∈K , FC((Xi)i∈I ;Z)

(1)K ,F (Xi);Z→ (FWk)k∈K ,D((FXi)i∈I ;FZ)

(1)K ,D((Ffi)i∈I ;1)→ (FWk)k∈K ,D((FWk)k∈K ;FZ)
evD(FWk);FZ→ FZ

]
. (4.23.2)

The left hand side of (4.23.2) equals[
(FWk)k∈K , FC((Xi)i∈I ;Z)

(1)K ,FC((fi)i∈I ;1)→

(FWk)k∈K , FC((Wk)k∈K ;Z)
F evC(Wk);Z→ FZ

]
(4.23.3)

by definition of F . The right hand side of (4.23.2) equals[
(FWk)k∈K , FC((Xi)i∈I ;Z)

(1)K ,F (Xi);Z→ (FWk)k∈K ,D((FXi)i∈I ;FZ)

(Ffi)i∈I ,1→ (FXi)i∈I ,D((FXi)i∈I ;FZ)
evD(FXi);FZ→ FZ

]
by equation (4.12.3). The latter can be written as[

(FWk)k∈K , FC((Xi)i∈I ;Z)
(Ffi)i∈I ,1→ (FXi)i∈I , FC((Xi)i∈I ;Z)

F evC(Xi);Z→ FZ
]

(4.23.4)

according to definition of F . Expressions (4.23.3) and (4.23.4) coincide by (4.12.3) and
due to F being a multifunctor.

4.24 Lemma. Given a multinatural transformation ν : F → G : C → D, the following
diagram is commutative

FC((Xi)i∈I ;Y )
F (Xi);Y →D((FXi)i∈I ;FY )

GC((Xi)i∈I ;Y )

νC((Xi)i∈I ;Y )↓
G(Xi);Y→D((GXi)∈I ;GY )

D((νXi)i∈I ;1)→D((FXi)i∈I ;GY )

D(▷;νY )↓
(4.24.1)

Proof. Commutativity of (4.24.1) is equivalent to the following equation in D:[
(FXi)i∈I , FC((Xi)i∈I ;Y )

(1)I ,F (Xi);Y→ (FXi)i∈I ,D((FXi)i∈I ;FY )
(1)I ,D(▷;νY )→ (FXi)i∈I ,D((FXi)i∈I ;GY )

evD→GY
]

=
[
(FXi)i∈I , FC((Xi)i∈I ;Y )

(1)I ,νC((Xi)i∈I ;Y )→ (FXi)i∈I , GC((Xi)i∈I ;Y )
(1)I ,G(Xi);Y→

(FXi)i∈I ,D((GXi)i∈I ;GY )
(1)I ,D((νXi)i∈I ;1)→ (FXi)i∈I ,D((FXi)i∈I ;GY )

evD→GY
]
, (4.24.2)
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which we are going to prove now. By (4.12.2) the left hand side of (4.24.2) equals

[
(FXi)i∈I , FC((Xi)i∈I ;Y )

(1)I ,F (Xi);Y→

(FXi)i∈I ,D((FXi)i∈I ;FY )
evD→ FY

νY→GY
]

=
[
(FXi)i∈I , FC((Xi)i∈I ;Y )

F evC→ FY
νY→GY

]
. (4.24.3)

The last transformation is due to definition of F . According to (4.12.3) the right hand
side of (4.24.2) can be written as

[
(FXi)i∈I , FC((Xi)i∈I ;Y )

(1)I ,νC((Xi)i∈I ;Y )→ (FXi)i∈I , GC((Xi)i∈I ;Y )
(1)I ,G(Xi);Y→

(FXi)i∈I ,D((GXi)i∈I ;GY )
(νXi)i∈I ,1→ (GXi)i∈I ,D((GXi)i∈I ;GY )

evD→GY
]

=
[
(FXi)i∈I , FC((Xi)i∈I ;Y )

(νXi)i∈I ,νC((Xi)i∈I ;Y )→

(GXi)i∈I , GC((Xi)i∈I ;Y )
G evC→GY

]
. (4.24.4)

The last transformation is due to definition of G. Expressions (4.24.3) and (4.24.4) coin-
cide by multinaturality of ν.

4.25 Lemma. Let C, D, E be closed (symmetric) V-multicategories. Let C
F→D

G→ E
be (symmetric) V-multifunctors. Then

G ◦ F =
[
GFC((Xi)i∈I ;Y )

GF (Xi);Y→GD((FXi)i∈I ;FY )
G(FXi);FY→ E((GFXi)i∈I ;GFY )

]
.

Proof. This follows from the commutative diagram

(GFXi)i∈I , GD((FXi)i∈I ;FY )
(1)I ,G(FXi);FY→ (GFXi)i∈I ,E((GFXi)i∈I ;GFY )

(GFXi)i∈I , GFC((Xi)i∈I ;Y )

(1)I ,GF (Xi);Y

↑

GF evC(Xi);Y →GFY

evE(GFXi);GFY↓
G evD(FXi);FY

→

Uniqueness of the closing transformation implies the result.

4.26 Example. Let C = (C,⊗I , λf) be a symmetric Monoidal category. Then for each

J ∈ ObO the category CJ has a natural symmetric Monoidal structure (CJ ,⊗I
CJ
, λf

CJ
).

Here

⊗ICJ =
[
(CJ)I

∼→ (CI)J
(⊗I)J→ CJ

]
,
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and for a map f : I → K the isomorphism λf
CJ

is given by the pasting

(CJ)I
∼→
∏
k∈K

(CJ)f
−1k ∼→

∏
k∈K

(Cf
−1k)J

∏
k∈K(⊗f−1k)J

→
∏
k∈K

CJ
∼→(CJ)K

= =(∏
k∈K

Cf
−1k
)J≀↓

(
∏
k∈K ⊗f

−1k)J

→ (CK)J

≀
↓

=

(CI)J

≀

↓

(⊗I)J
→

(⊗f )J

→

∼
→

(λf )J

===
===

===
===

===
⇒

CJ

(⊗K)J

↓

Necessary equations (2.5.4) hold due to coherence principle of Lemma 2.33 and Re-
mark 2.34.

The functor ⊗J : CJ → C, equipped with the functorial morphism

σ(12) =

CJ×I← ∼
CI×J← ∼

(CJ)I
(⊗J)I → CI

⇐=======
λI×J→J×I (λI×J→I)−1

⇐==
===

===
===

=

(CI)J

≀

↓
(⊗I)J →

λJ×I→J

⇐==
===

===
=

CJ
⊗J → C============

⊗J×I

→
C

⊗I

↓
⊗I×J

→

(see (2.35.1)) is a symmetric Monoidal functor. Indeed, equation (2.6.1) holds due to the
said coherence principle.

Assume that C is closed, then CJ is closed as well. Thus the symmetric Monoidal
functor (⊗J , σ(12)) : (CJ ,⊗ICJ , λ

f
CJ
)→ (C,⊗I , λf) determines the closing transformation

⊗J : ⊗j∈JC(Xj, Yj)→ C(⊗j∈JXj,⊗j∈JYj)

as at the beginning of Section 4.18. It is the only solution of the equation

(⊗j∈JXj)⊗ (⊗j∈JC(Xj, Yj))
1⊗⊗J→ (⊗j∈JXj)⊗ C(⊗j∈JXj,⊗j∈JYj)

=

⊗j∈J(Xj ⊗ C(Xj, Yj))

σ(12)↓
⊗J evC →⊗j∈JYj

evC↓ (4.26.1)

These transformations turn C into a symmetric Monoidal C-category. For each f : I → J ,
the isomorphism λfC : 1C → C(⊗i∈IXi,⊗j∈J ⊗i∈f

−1j Xi) is the morphism λ̇f . Equa-

tion (2.10.3) for λfC follows from similar equation (2.5.4) for λf .
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In the case of C = gr(k-Mod) the transformation ⊗J (or ⊗J by abuse of notation)
serves as part of our conventions. The above diagram gives meaning to ⊗j∈nfj = f1 ⊗
· · · ⊗ fn, where fj are k-linear mappings of various degrees.

Let (F, ϕJ) : (C,⊗IC, λ
f
C)→ (D,⊗ID, λ

f
D) be a lax symmetric Monoidal functor between

symmetric Monoidal categories (not necessarily closed). Then ϕJ : ⊗JD ◦ F J → F ◦ ⊗JC :
CJ → D is a Monoidal transformation. Indeed, the diagram

⊗i∈ID ⊗
j∈J
D FXij

σ(12)→⊗j∈JD ⊗i∈ID FXij
⊗JDϕI →⊗j∈JD F ⊗i∈IC Xij

⊗(i,j)∈I×J
D FXij

λI×J→J
↑

ϕI×J→
λI×J→I

←

F ⊗(i,j)∈I×J
C Xij

⊗i∈ID F ⊗j∈JC Xij

⊗IDϕJ

↓
ϕI → F ⊗i∈IC ⊗

j∈J
C Xij

FλI×J→I

↓
Fσ(12)→ F ⊗j∈JC ⊗i∈IC Xij

ϕJ

↓
FλI×J→J

→

commutes due to (2.6.1) and (2.35.1).

4.27 Lemma. Let C be a symmetric closed Monoidal category. Let ϕ : I → J be

a map in S, and let g : (Yj)j∈J → Z be a morphism in Ĉ. The morphism Ĉ(ϕ, g) :

(Ĉ((Xi)i∈ϕ−1j;Yj))j∈J → Ĉ((Xi)i∈I ;Z) is given by the composition in C

⊗j∈J C(⊗i∈ϕ−1jXi, Yj)
⊗J→ C(⊗j∈J ⊗i∈ϕ−1j Xi,⊗j∈JYj)

C(λϕ,1)→ C(⊗i∈IXi,⊗j∈JYj)
C(1,g)→ C(⊗i∈IXi, Z).

Proof. The multicategory Ĉ is closed due to Proposition 4.8. The morphism Ĉ(ϕ, g) is

determined by diagram (4.12.2) for C = Ĉ. This condition expands to the following
equation in C:

[
⊗I⊔J((Xi)i∈I , (C(⊗i∈ϕ

−1jXi, Yj))j∈J)
λ1⊔▷:I⊔J→I⊔1

→

⊗I⊔1 ((Xi)i∈I ,⊗j∈JC(⊗i∈ϕ
−1jXi, Yj))

⊗I⊔1((1)I ,Ĉ(ϕ,g))→

⊗I⊔1 ((Xi)i∈I ,C(⊗i∈IXi, Z))
λ▷⊔1:I⊔1→2

→ (⊗i∈IXi)⊗ C(⊗i∈IXi, Z)
evC→Z

]
=
[
⊗I⊔J((Xi)i∈I , (C(⊗i∈ϕ

−1jXi, Yj))j∈J)
λ(ϕ,1):I⊔J→J

→

⊗j∈J ⊗ϕ−1j⊔1((Xi)i∈ϕ−1j,C(⊗i∈ϕ
−1jXi, Yj))

⊗j∈Jλ▷⊔1:ϕ−1j⊔1→2

→

⊗j∈J ((⊗i∈ϕ−1jXi)⊗ C(⊗i∈ϕ−1jXi, Yj))
⊗J evC→ ⊗j∈J Yj

g→Z
]
.

Using diagram (4.26.1) and definition (4.12.2) of C(1, g) we transform the above equation
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to the following one

[
⊗I⊔J((Xi)i∈I , (C(⊗i∈ϕ

−1jXi, Yj))j∈J)
λ▷⊔▷:I⊔J→2

→

(⊗i∈IXi)⊗⊗j∈JC(⊗i∈ϕ
−1jXi, Yj)

1⊗Ĉ(ϕ,g)→ (⊗i∈IXi)⊗ C(⊗i∈IXi, Z)
evC→Z

]
=
[
⊗I⊔J((Xi)i∈I , (C(⊗i∈ϕ

−1jXi, Yj))j∈J)
λϕ⊔1:I⊔J→J⊔J

→

⊗J⊔J ((⊗i∈ϕ−1jXi)j∈J , (C(⊗i∈ϕ
−1jXi, Yj))j∈J)

λ▷⊔▷:J⊔J→2

→

(⊗j∈J ⊗i∈ϕ−1j Xi)⊗⊗j∈JC(⊗i∈ϕ
−1jXi, Yj)

1⊗⊗J→
(⊗j∈J ⊗i∈ϕ−1j Xi)⊗ C(⊗j∈J ⊗i∈ϕ−1j Xi,⊗j∈JYj)

1⊗C(1,g)→ (⊗j∈J ⊗i∈ϕ−1j Xi)⊗ C(⊗j∈J ⊗i∈ϕ−1j Xi, Z)
evC→Z

]
.

Using definition (4.12.3) of C(λϕ, 1) and Lemma 4.13 we may replace the right hand side
with an equal expression that follows:

[
⊗I⊔J((Xi)i∈I , (C(⊗i∈ϕ

−1jXi, Yj))j∈J)
λ▷⊔▷:I⊔J→2

→

(⊗i∈IXi)⊗⊗j∈JC(⊗i∈ϕ
−1jXi, Yj)

1⊗⊗J→ (⊗i∈IXi)⊗ C(⊗j∈J ⊗i∈ϕ−1j Xi,⊗j∈JYj)
1⊗C(λϕ,1)→ (⊗i∈IXi)⊗ C(⊗i∈IXi,⊗j∈JYj)

1⊗C(1,g)→ (⊗i∈IXi)⊗ C(⊗i∈IXi, Z)
evC→Z

]
.

Comparing this with the left hand side we come to conclusion of the lemma.

4.28 Lemma. Let C be a symmetric closed Monoidal category. Let ϕ : I → J be a map

in S. Then multiplication in closed multicategory Ĉ is given by the formula

µĈϕ =
[
⊗J⊔1[(C(⊗i∈ϕ−1jXi, Yj))j∈J ,C(⊗j∈JYj, Z)]

λ▷⊔1:I⊔1→2

→

[⊗j∈JC(⊗i∈ϕ−1jXi, Yj)]⊗ C(⊗j∈JYj, Z)
⊗J⊗1→

C(⊗j∈J ⊗i∈ϕ−1j Xi,⊗j∈JYj)⊗ C(⊗j∈JYj, Z)
µC

→ C(⊗j∈J ⊗i∈ϕ−1j Xi, Z)
C(λϕ,1)→ C(⊗i∈IXi, Z)

]
.

Proof is similar to proof of the previous lemma.

4.29 Augmented multifunctors. An augmented (symmetric) multifunctor is a pair
consisting of a (symmetric) multifunctor F : C → C from a closed symmetric multicate-
gory C to itself and a multinatural transformation uF : Id→ F : C→ C.
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4.30 Proposition. An augmented (symmetric) multifunctor (F, uF ) : C→ C provides a
(symmetric) C-multifunctor F ′ : C→ C such that ObF ′ = ObF and

F ′(Xi);Y
=
[
C((Xi)i∈I ;Y )

uF→ FC((Xi)i∈I ;Y )
F→ C((FXi)i∈I ;FY )

]
.

Proof. Consider the diagram in C

(C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)
µ
C
ϕ→ C((Xi)i∈I ;Z)

(FC((Xi)i∈ϕ−1j;Yj))j∈J , FC((Yj)j∈J ;Z)

(uF )J ,uF↓
Fµ

C
ϕ→ FC((Xi)i∈I ;Z)

uF↓

(C((FXi)i∈ϕ−1j;FYj))j∈J ,C((FYj)j∈J ;FZ)

(F (Xi);Yj
)j∈J ,F (Yj);Z↓

µ
C
ϕ→ C((FXi)i∈I ;FZ)

F (Xi);Z↓

The upper square commutes by multinaturality of uF , the lower square is commutative
due to (4.21.1). The exterior of this diagram is the following equation in C for an arbitrary
map ϕ : I → J in MorO (resp. in Mor S):

(C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)
µ
C
ϕ→ C((Xi)i∈I ;Z)

(C((FXi)i∈ϕ−1j;FYj))j∈J ,C((FYj)j∈J ;FZ)

(F ′
(Xi);Yj

)j∈J ,F
′
(Yj);Z↓

µ
C
ϕ→ C((FXi)i∈I ;FZ)

F ′
(Xi);Z↓

(4.30.1)

This is condition (4.3.2) for F ′.
For each objectX ∈ ObC there is a distinguished unit element ηX = 1̇X ∈ C(;C(X;X)),

the unique element that is taken to 1X ∈ C(X;X) by the bijection φ : C(;C(X;X)) →
C(X;X). We claim that the morphism F ′ maps units to units:[

()
ηX→ C(X;X)

F ′

→ C(FX;FX)
]
= ηFX .

First of all, note that due to multinaturality condition (3.15.1)

− · uF = C(1;uF ) = F : C(;C(X;X))→ C(;FC(X;X)).

The following diagram commutes by Corollary 4.20:

C(;C(X;X))
−·uF
F
→ C(;FC(X;X))

−·FX;X

C(;FX;X)
→ C(;C(FX;FX))

C(X;X)

φ();X;X↓
F → C(FX;FX)

φ();FX;FX↓
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The upper line composes to − · F ′X;X : C(;C(X;X)) → C(;C(FX;FX)). Starting with
the element ηX of the source we get φ();FX;FX(η · F ′X;X) = Fφ();X;X(ηX) = F1X = 1FX ,
therefore η · F ′X;X = ηFX . Thus, condition (4.3.1) holds for F ′.

4.31 Definition. Amultinatural transformation of augmented multifunctors λ : (F, uF )→
(G, uG) : C→ C is a multinatural transformation λ : F → G : C→ C such that

uG =
(
Id

uF→ F
λ→G

)
. (4.31.1)

4.32 Proposition. Suppose that λ : (F, uF ) → (G, uG) : C → C is a multinatural
transformation of augmented multifunctors. Then r = λ̇ : F ′ → G′ : C → C is a
multinatural transformation of C-multifunctors.

Proof. The elements rX ∈ C(;C(FX;GX)) are mapped by bijection φ to the morphisms
λX ∈ C(FX;GX), X ∈ ObC.

The following diagram commutes due to (4.31.1) and multinaturality of λ:

(FXi)i∈I ,C((Xi)i∈I ;Y )
(1)I ,uF→ (FXi)i∈I , FC((Xi)i∈I ;Y )

F evC→ FY

(GXi)i∈I ,C((Xi)i∈I ;Y )

(λXi)i∈I ,1↓
(1)I ,uG→ (GXi)i∈I , GC((Xi)i∈I ;Y )

(λXi)i∈I ,λY ↓
G evC→GY

λY
↓

(4.32.1)

We claim that commutativity of its exterior is equivalent to r being a multinatural trans-
formation of C-multifunctors. Indeed, the former is equivalent to commutativity of the
exterior of the diagram:

(FXi)i∈I ,C((Xi)i∈I ;Y )
(1)I ,uF → (FXi)i∈I , FC((Xi)i∈I ;Y )

(FXi)i∈I , GC((Xi)i∈I ;Y )

(1)I ,uG↓
(FXi)i∈I ,C((FXi)i∈I ;FY )

(1)I ,F↓

evC
→ FY

F evC

= →

=

(FXi)i∈I ,C((GXi)i∈I ;GY )

(1)I ,G↓
(1)I ,C((λXi)i∈I ;1)→ (FXi)i∈I ,C((FXi)i∈I ;GY )

(1)I ,C(▷;λY )↓

=

(GXi)i∈I ,C((GXi)i∈I ;GY )

(λXi)i∈I ,1↓
evC →GY

λY

↓
evC

→

Universality of evaluation implies the equation (see left–top hexagon)

C((Xi)i∈I ;Y )
uF→ FC((Xi)i∈I ;Y )

F → C((FXi)i∈I ;FY )

=

GC((Xi)i∈I ;Y )

uG↓
G→ C((GXi)i∈I ;GY )

C((λXi)i∈I ;1)→ C((FXi)i∈I ;GY )

C(▷;λY )↓
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In short form, we obtained the equation in C

C((Xi)i∈I ;Y )
F ′

→ C((FXi)i∈I ;FY )

=

C((GXi)i∈I ;GY )

G′

↓
C((λXi)i∈I ;1)→ C((FXi)i∈I ;GY )

C(▷;λY )↓

Lemmata 4.16 and 4.17 allow to rewrite this equation as follows:

C((Xi)i∈I ;Y )
F ′,rY→ C((FXi)i∈I ;FY ),C(FY ;GY )

=

(C(FXi;GXi))i∈I ,C((GXi)i∈I ;GY )

(rXi)i∈I ,G
′

↓
µ
C
idI → C((FXi)i∈I ;GY )

µ
C
▷↓

(4.32.2)

This is precisely condition (4.4.1) of r being a multinatural transformation of C-multi-
functors.

Notice also that conversely, equation (4.32.2) implies commutativity of the exterior of
diagram (4.32.1). Its particular case of I = ∅ implies condition (4.31.1).

Composition of augmented multifunctors (F, uF ) : C → C and (G, uG) : C → C is
defined as (G ◦ F, uG◦F ), where

uG◦F =
(
Id

uF→ F
uG→G ◦ F

)
=
(
Id

uG→G
GuF→G ◦ F

)
. (4.32.3)

Clearly, it is strictly associative.

4.33 Proposition. Composition (4.32.3) of augmented (symmetric) multifunctors and
usual left and right multiplication of multifunctors and multinatural transformations make
the category of augmented multifunctors AugMltFun(C) into a strictly monoidal one. The
correspondence AugMltFun(C)→ C-MCatm(C,C), F 7→ F ′, λ 7→ λ̇ is a strictly monoidal
functor with values in the category of (symmetric) C-multifunctors and their multinatural
transformations.

Proof. Let λ : (F, uF )→ (G, uG) : C→ C be a multinatural transformation of augmented
(symmetric) multifunctors, and let (H, uH) : C → C be an augmented (symmetric) mul-
tifunctor. Then the multinatural transformation Hλ : H ◦ F → H ◦ G : C → C satisfies
condition (4.31.1) due to(

Id
uH◦F→H ◦ F Hλ→H ◦G

)
=
(
Id

uH→H
HuF→H ◦ F Hλ→H ◦G

)
=
(
Id

uH→H
HuG→H ◦G

)
= uH◦G.
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The multinatural transformation λ = λH− : F ◦ H → G ◦ H : C → C satisfies
condition (4.31.1) due to(

Id
uF◦H→ F ◦H λ→G ◦H

)
=
(
Id

uH→H
uF→ F ◦H λ→G ◦H

)
=
(
Id

uH→H
uG→G ◦H

)
= uG◦H .

Thus, these operations equip the category of augmented multifunctors with the strictly
associative monoidal product, the composition. The unit object is (Id, id).

Let us verify compatibility of the map F 7→ F ′ with the composition of multifunctors:

F ′ ·G′ =
[
C((Xi)i∈I ;Y )

uF→ FC((Xi)i∈I ;Y )
F→ C((FXi)i∈I ;FY )

uG→GC((FXi)i∈I ;FY )
G→ C((GFXi)i∈I ;GFY )

]
=
[
C((Xi)i∈I ;Y )

uF→ FC((Xi)i∈I ;Y )
uG→GFC((Xi)i∈I ;Y )

GF→GC((FXi)i∈I ;FY )
G→ C((GFXi)i∈I ;GFY )

]
=
[
C((Xi)i∈I ;Y )

uG◦F→GFC((Xi)i∈I ;Y )
G◦F→ C((GFXi)i∈I ;GFY )

]
= (F ·G)′.

One can prove compatibility with left and right multiplication of multifunctors and
transformations and with composition of transformations.

Not all natural transformations of interest are multinatural. That is why we consider
also transformations subject to less conditions.

4.34 Definition. A natural transformation of augmented multifunctors λ : (F, uF ) →
(G, uG) : C → C is a natural transformation (of ordinary functors) λ : F → G : C → C
such that condition (4.31.1) is satisfied and the following equation holds in C for an
arbitrary morphism e : X,W → Y in C:

FX,W
1,uF→ FX,FW

Fe → FY

=

GX,W

λX ,1
↓

1,uG→GX,GW
Ge →GY

λY
↓

(4.34.1)

Notice that if λ : F → G : C → C is a multinatural transformation and satisfies
(4.31.1), then it automatically satisfies (4.34.1). If (F, uF )

λ−→ (G, uG)
µ−→ (H, uH) : C→ C

are two natural transformations of augmented multifunctors, then their composition λ ·µ
satisfies both conditions (4.31.1) and (4.34.1). Taking such natural transformations as
morphisms we get wider category of augmented multifunctors C→ C.
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4.35 Corollary. Composition (4.32.3) of augmented multifunctors and usual left and
right multiplication of ordinary functors and natural transformations make the category
of augmented multifunctors into a strictly monoidal one. It is mapped by the strictly
monoidal functor F 7→ F ′, λ 7→ λ̇ to the category of C-functors and their natural trans-
formations.

Proof. The reasoning of Propositions 4.30, 4.32 and 4.33 goes through for the particular
case of I = 1. Notice that the following particular case of (4.34.1)

FX,C(X;Y )
1,uF→ FX,FC(X;Y )

F evC→ FY

=

GX,C(X;Y )

λX ,1↓
1,uG→GX,GC(X;Y )

G evC→GY

λY
↓

(4.35.1)

is equivalent to equation

C(X;Y )
F ′

→ C(FX;FY )

=

C(GX;GY )

G′

↓
C(λX ;1)→ C(FX;GY )

C(1;λY )↓
(4.35.2)

required for natural transformations of C-functors.

For any algebra (monad) ((F, uF ),mF , ηF ) in the monoidal category of augmented
multifunctors the unit ηF : (Id, id)→ (F, uF ) coincides with uF due to (4.31.1). We may
describe all such monads as ordinary monads (F,mF , uF ) in ordinary category C which
satisfy additional properties:

– F is a multifunctor and uF : Id→ F is multinatural;

– for any morphism e : X,W → Y in C the exterior of the following diagram commutes:

F 2X,W
1,uF→ F 2X,FW

1,FuF→ F 2X,F 2W
F 2e→ F 2Y

FX,W

mF ,1
↓

1,uF→ FX,FW

mF ,1
↓

Fe → FY

mF

↓
(4.35.3)

The pentagon containing the dashed arrow is not required to commute, however, it
does commute in our main example of Proposition 10.20.
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4.36 Proposition. Let E : C→ D be a (symmetric) multifunctor, and let (F, uF ) : C→
C, (G, uG) : D→ D be augmented (symmetric) multifunctors. Suppose that(

C
F→ C

E→D
)
=
(
C

E→D
G→D

)
,(

C
Id→
uF⇓
F
→

C
E→D

)
=
(
C

E→D
Id→
uG⇓
G
→

D
)
.

Then the following equation holds

EC((Xi)i∈I ;Y )
EF ′

→EC((FXi)i∈I ;FY )

=

D((EXi)i∈I ;EY )

E
↓

G′

→D((GEXi)i∈I ;GEY )

E
↓

Proof. This equation is the exterior of the following diagram

EC((Xi)i∈I ;Y )
EuF
∥
uG

→EFC((Xi)i∈I ;Y )
EF→EC((FXi)i∈I ;FY )

= =

D((EXi)i∈I ;EY )

E
↓

uG→GD((EXi)i∈I ;EY )

GE
↓

G→D((GEXi)i∈I ;GEY )

E
↓

The left square commutes by naturality of uG, and the right square commutes by
Lemma 4.25.
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Kleisli multicategories

We consider the multicategory of T -coalgebras, where T is a multicomonad in a closed
multicategory. It gives rise to a closed multicategory of free T -coalgebras, isomorphic
to Kleisli multicategory of T . The particular case of lax representable multicategories is
described in detail.

5.1 Coalgebras for a multicomonad. Let (T,∆, ε) be a multicomonad on a closed
symmetric multicategory C. This means that T : C→ C is a multifunctor, ∆ : T → TT :
C→ C and ε : T → Id : C→ C are multinatural transformations, and the triple (T,∆, ε)
is a coalgebra in the strict monoidal category MCat(C,C). The following definition is
analogous to the case of ordinary categories, treated by Beck [Bec03].

5.2 Definition. A T -coalgebra is a morphism δ : X → TX in C such that the following
diagrams commute:

X
δ → TX

TX

δ
↓

∆→ TTX

Tδ
↓

X
δ → TX

X

ε
↓

===========

A morphism of T -coalgebras (δ1 : X1 → TX1), . . . , (δn : Xn → TXn) to a T -coalgebra
β : Y → TY is a map f ∈ C(X1, . . . , Xn;Y ) such that f · β = (δ1, . . . , δn) · (Tf).
T -coalgebras and their morphisms form a multicategory denoted CT . The composition
and the units of CT are those of C.

5.3 Lemma. The forgetful functor CT → C has the right adjoint T : for any Y ∈ ObC
the morphism ∆ : TY → TTY is a T -coalgebra; and for T -coalgebras (δ1 : X1 → TX1),
. . . , (δn : Xn → TXn) there is a pair of mutually inverse natural isomorphisms

C(X1, . . . , Xn;Y )→ CT (X1, . . . , Xn;TY ), f 7→ f̂ = (δ1, . . . , δn) · (Tf) (5.3.1)

CT (X1, . . . , Xn;TY )→ C(X1, . . . , Xn;Y ), g 7→ ǧ = g · ε

Proof. First of all, f̂ is a morphism of T -coalgebras. Indeed, the following compositions

143
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in C are equal:

f̂ ·∆ =
[
(Xi)

(δi)→ (TXi)
Tf→ TY

∆→ TTY
]

=
[
(Xi)

(δi)→ (TXi)
(∆)i→ (TTXi)

TTf→ TTY
]

=
[
(Xi)

(δi)→ (TXi)
(Tδi)→ (TTXi)

TTf→ TTY
]

= (δ1, . . . , δn) · (T f̂).

To show that the discussed maps are inverse to each other, we write

ˇ̂
f =

[
(Xi)

(δi)→ (TXi)
Tf→ TY

ε→ Y
]

=
[
(Xi)

(δi)→ (TXi)
(ε)→ (Xi)

f→ Y
]
= f.

We also have

ˆ̌g =
[
(Xi)

(δi)→ (TXi)
T ǧ→ TY

]
=
[
(Xi)

(δi)→ (TXi)
Tg→ TTY

Tε→ TY
]

=
[
(Xi)

g→ TY
∆→ TTY

Tε→ TY
]
= g,

so the lemma is proven.

For each T -coalgebra Z the equation δ ·Tδ = δ ·∆ : Z → TTZ shows that δ : Z → TZ
is a morphism of T -coalgebras.

In the above assumptions consider an example of multinatural transformation (4.18.2).
Denote by

T : TC((Xi)i∈I ;Y )→ C((TXi)i∈I ;TY ) (5.3.2)

the closing multinatural transformation of the multifunctor T : C → C. It is determined
by equation

T ev(Xi);Y =
[
(TXi)i∈I , TC((Xi)i∈I ;Y )

(1)I ,T→ (TXi)i∈I ,C((TXi)i∈I ;TY )
ev(TXi);TY→ TY

]
.

Given T -coalgebrasXi, i ∈ I, and an objectB of C denote by Θ(Xi);B : TC((Xi)i∈I ;B)→
C((Xi)i∈I ;TB) the unique morphism that satisfies the equation

(Xi)i∈I , TC((Xi)i∈I ;B)
(δ)I ,1→ (TXi)i∈I , TC((Xi)i∈I ;B)

=

(Xi)i∈I ,C((Xi)i∈I ;TB)

(1)I ,Θ(Xi);B↓ evC(Xi)i∈I ;TB → TB

T evC(Xi);B↓
(5.3.3)

Its existence and uniqueness follows from closedness of C.
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5.4 Lemma. So defined Θ(Xi);B can be decomposed as follows:

Θ(Xi);B =
[
TC((Xi)i∈I ;B)

T→ C((TXi)i∈I ;TB)
C((δ)I ;1)→ C((Xi)i∈I ;TB)

]
.

Proof. There is a commutative diagram

(Xi)i∈I , TC((Xi)i∈I ;B)
(δ)I ,1 → (TXi)i∈I , TC((Xi)i∈I ;B)

(Xi)i∈I ,C((TXi)i∈I ;TB)

(1)I ,T↓
(δ)I ,1→ (TXi)i∈I , TC((TXi)i∈I ;TB)

(1)I ,T↓

(Xi)i∈I ,C((Xi)i∈I ;TB)

(1)I ,C((δ)I ;1)↓ evC(Xi)i∈I ;TB → TB

evC(TXi);TB↓
←

T evC(Xi);B

Uniqueness implies the claimed equation.

5.5 Definition. A diagram X
e→ Y

f→
g
→Z in a multicategory C is an equalizer, if for

any family (Wk)k∈K of objects of C the induced diagram

C((Wk)k∈K ;X)
C(▷;e)→ C((Wk)k∈K ;Y )

C(▷;f)→
C(▷;g)
→ C((Wk)k∈K ;Z)

is an equalizer in Set. In particular, ef = eg. We say that a multicategory C has equalizers
if each pair f, g : Y → Z of morphisms in C can be completed to an equalizer diagram.

A lax representable multicategory Ĉ has equalizers if and only if category C has.

5.6 Lemma. For an arbitrary T -coalgebra (X, δ) in a multicategory C the diagram

X
δ→ TX

Tδ→
∆
→ TTX is an equalizer in C.

Proof. Let (Wk)k∈K be any family of objects of C. In the induced diagram

C((Wk)k∈K ;X)
C(▷;δ)→ C((Wk)k∈K ;TX)

C(▷;Tδ)→
C(▷;∆)
→ C((Wk)k∈K ;TTX)

both paths are equal. Since δ : X → TX is a split embedding with the splitting ε : TX →
X, the first mapping C(▷; δ) is a split embedding with the splitting C(▷; ε).

Assume that both images of an element g ∈ C((Wk)k∈K ;TX) coincide:[
(Wk)k∈K

g→ TX
Tδ→ TTX

]
=
[
(Wk)k∈K

g→ TX
∆→ TTX

]
.
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Then

g =
[
(Wk)k∈K

g→ TX
∆→ TTX

ε→ TX
]

=
[
(Wk)k∈K

g→ TX
Tδ→ TTX

ε→ TX
]

=
[
(Wk)k∈K

g→ TX
ε→X

δ→ TX
]

(by naturality of ε)

comes from the element f =
[
(Wk)k∈K

g→ TX
ε→X

]
of C((Wk)k∈K ;X).

5.7 Lemma. Let Xi be T -coalgebras, and let B be an object of C. Use the notation
C′T ((Xi)i∈I ;TB) = TC((Xi)i∈I ;B) and define

ev
C′
T

(Xi)i∈I ;TB
=
[
(Xi)i∈I , TC((Xi)i∈I ;B)

(δ)I ,1→ (TXi)i∈I , TC((Xi)i∈I ;B)
T evC→ TB

]
=
[
(Xi)i∈I , TC((Xi)i∈I ;B)

(1)I ,Θ→ (Xi)i∈I ,C((Xi)i∈I ;TB)
evC→ TB

]
.

Then φ
C′
T

(Yj)j∈J ;(Xi)i∈I ;TB
, given by (4.7.1) with CT resp. C′T in place of C resp. C, is a

bijection.

Proof. Being a composition of T -coalgebra morphisms, ev
C′
T

(Xi)i∈I ;TB
is a morphism of

T -coalgebras itself.
Given a morphism of T -coalgebras f : (Xi)i∈I , (Yj)j∈J → TB, let us show that there

exists a unique T -coalgebra morphism g : (Yj)j∈J → TC((Xi)i∈I ;B) such that

f =
[
(Xi)i∈I , (Yj)j∈J

(1)I ,g→ (Xi)i∈I , TC((Xi)i∈I ;B)
ev

C′T
(Xi)i∈I ;TB→ TB

]
=
[
(Xi)i∈I , (Yj)j∈J

(1)I ,g·Θ→ (Xi)i∈I ,C((Xi)i∈I ;TB)
evC(Xi)i∈I ;TB→ TB

]
=
[
(Xi)i∈I , (Yj)j∈J

(δ)I ,g→ (TXi)i∈I , TC((Xi)i∈I ;B)
T evC→ TB

]
. (5.7.1)

Assuming that such g exists we obtain:

f̌ = f · ε =
[
(Xi)i∈I , (Yj)j∈J

(δ)I ,g→ (TXi)i∈I , TC((Xi)i∈I ;B)
T evC→ TB

ε→B
]

(5.7.2)

=
[
(Xi)i∈I , (Yj)j∈J

(δ·ε)I ,g·ε→ (Xi)i∈I ,C((Xi)i∈I ;B)
evC→B

]
=
[
(Xi)i∈I , (Yj)j∈J

(1)I ,ǧ→ (Xi)i∈I ,C((Xi)i∈I ;B)
evC→B

]
.

By Lemma 5.3 T -coalgebra morphisms g : (Yj)j∈J → TC((Xi)i∈I ;B) are in bijective
correspondence with morphisms ǧ = g · ε : (Yj)j∈J → C((Xi)i∈I ;B). Therefore, the above
equation determines g uniquely.

Let p : (Yj)j∈J → C((Xi)i∈I ;B) be a morphism that satisfies the following equation:

f · ε =
[
(Xi)i∈I , (Yj)j∈J

(1),p→ (Xi)i∈I ,C((Xi)i∈I ;B)
evC→B

]
.
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It exists by closedness of C. Put g = p̂ = (δ)J · Tp : (Yj)j∈J → TC((Xi)i∈I ;B). So defined
g is a T -coalgebra morphism and ǧ = p by Lemma 5.3. Thus for this g equation (5.7.2)
holds. It implies equations (5.7.1) again by Lemma 5.3. The claim is proven.

5.8 Definition. T -coalgebras of the form (TB,∆) for some object B of C are called

free. Multicategory CfT of free T -coalgebras has the same objects as C. Its morphisms,

compositions and units are taken from CT : C
f
T ((Ai)i∈I ;B)

def
= CT ((TAi)i∈I ;TB).

5.9 Corollary (to Lemma 5.7). If multicategory C is closed, then the multicategory CfT
of free T -coalgebras is closed as well. The inner homomorphisms objects can be chosen
as CfT ((Ai)i∈I ;B) = C((TAi)i∈I ;B) and the evaluations as

ev
CfT
(Ai)i∈I ;B

= ev
C′
T

(TAi)i∈I ;TB

=
[
(TAi)i∈I , TC((TAi)i∈I ;B)

(1)I ,Θ→ (TAi)i∈I ,C((TAi)i∈I ;TB)
evC→ TB

]
.

5.10 Proposition. The split embedding

e =
[
C′T ((Xi)i∈I ;TB) = TC((Xi)i∈I ;B)

∆→ TTC((Xi)i∈I ;B)
TΘ→ TC((Xi)i∈I ;TB)

]
is the equalizer in C of a pair of T -coalgebra morphisms

C′T ((Xi)i∈I ;TB)
equalizer of the pair

e
→ TC((Xi)i∈I ;TB)

TC(▷;∆)→ TC((Xi)i∈I ;TTB),

TTC((Xi)i∈I ;TB)

TΘ

→
∆ →

(5.10.1)

where Xi, i ∈ I, are T -coalgebras. Diagram (5.10.1) is nothing else but the equalizer

C′T ((Xi)i∈I ;TB)
e→ C′T ((Xi)i∈I ;TTB)

C′
T (▷;T∆)
→

C′
T (▷;∆)
→ C′T ((Xi)i∈I ;TTTB).

The embedding e is split by the morphism TC(▷; ε) : TC((Xi)i∈I ;TB)→ TC((Xi)i∈I ;B).

Proof. We have

TC(▷; ∆) · TC(▷; ε) = TC(▷; ∆ · ε) = TC(▷; id) = id

due to Lemma 4.13. Thus, the morphism TC(▷; ∆) is an embedding, split by the morphism
TC(▷; ε).

Let us prove that the composition

TC((Xi)i∈I ;Z)
∆→ TTC((Xi)i∈I ;Z)

TΘ→ TC((Xi)i∈I ;TZ)
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is an embedding, split by the morphism TC(▷; ε) : TC((Xi)i∈I ;TZ) → TC((Xi)i∈I ;Z).
This immediately follows from the equation

[
TC((Xi)i∈I ;Z)

Θ→ C((Xi)i∈I ;TZ)
C(▷;ε)→ C((Xi)i∈I ;Z)

]
= ε, (5.10.2)

which we are going to prove now. Indeed, we have a commutative diagram

(1)I ,ε

(Xi)i∈I , TC((Xi)i∈I ;Z)
(δ)I ,1→ (TXi)i∈I , TC((Xi)i∈I ;Z)

(Xi)i∈I ,C((Xi)i∈I ;TZ)

(1)I ,Θ(Xi);Z↓ evC(Xi)i∈I ;TZ → TZ

T evC(Xi);Z↓
(Xi)i∈I ,C((Xi)i∈I ;Z)

↓
(ε)I ,ε

→

(Xi)i∈I ,C((Xi)i∈I ;Z)

(1)I ,C(▷;ε)↓ evC(Xi)i∈I ;Z →Z

ε
↓ evC(Xi);Z←

Uniqueness implies the required equation (5.10.2). Thus, ∆ · TΘ : TC((Xi)i∈I ;Z) →
TC((Xi)i∈I ;TZ) is an embedding, split by TC(▷; ε).

Let us prove that for an arbitrary morphism g : B → A in C we have C′T (▷;Tg) =

TC(▷; g) : TC((Xi)i∈I ;B) → TC((Xi)i∈I ;A). Indeed, there is only one top arrow which
makes commutative exterior of the diagram

(Xi)i∈I , TC((Xi)i∈I ;B)
(1)I ,C

′
T (▷;Tg)

(1)I ,TC(▷;g)
→ (Xi)i∈I , TC((Xi)i∈I ;A)

(TXi)i∈I , TC((Xi)i∈I ;B)

(δ)I ,1↓
(T1)I ,TC(▷;g)→ (TXi)i∈I , TC((Xi)i∈I ;A)

(δ)I ,1↓

TB

T evC

↓
Tg → TA

T evC

↓

In particular, C′T (▷;T∆) = TC(▷; ∆) : TC((Xi)i∈I ;Z)→ TC((Xi)i∈I ;TZ).

Let us prove now that C′T (▷; ∆) = ∆ · TΘ : TC((Xi)i∈I ;Z) → TC((Xi)i∈I ;TZ) for an
arbitrary object Z of C. In fact, substituting the right hand side in the defining diagram
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of the left hand side we get the exterior of the following diagram:

(Xi)i∈I , TC((Xi)i∈I ;Z)
(1)I ,∆→ (Xi)i∈I , TTC((Xi)i∈I ;Z)

(1)I ,TΘ→ (Xi)i∈I , TC((Xi)i∈I ;TZ)

(TXi)i∈I , TTC((Xi)i∈I ;Z)
(1)I ,TΘ→

(δ)I ,∆ →
(TXi)i∈I , TC((Xi)i∈I ;TZ)

(δ)I ,1↓

(TXi)i∈I , TC((Xi)i∈I ;Z)

(δ)I ,1

↓
(∆)I ,∆→ (TTXi)i∈I , TTC((Xi)i∈I ;Z)

(Tδ)I ,1↓

TZ

T evC

↓
∆ → TTZ

T evC

↓
TT evC

→

Clearly, the diagram commutes, and the claimed equation is proven.
Let us verify that e gives an equalizer. We begin with proving that both left–to–right

paths in the diagram of T -coalgebra morphisms

TC((Xi)i∈I ;B) TC((Xi)i∈I ;TB)
TC(▷;∆) → TC((Xi)i∈I ;TTB)

TTC((Xi)i∈I ;B)

TΘ

→
∆ →

TTC((Xi)i∈I ;TB)
TΘ

→
∆ →

(5.10.3)

compose to the same morphism. Notice that this diagram is nothing else but

C′T ((Xi)i∈I ;TB)
C′
T (▷;∆)
→ C′T ((Xi)i∈I ;TTB)

C′
T (▷;T∆)
→

C′
T (▷;∆)
→ C′T ((Xi)i∈I ;TTTB).

Lemma 5.7 allows to conclude just as in Lemma 4.15 that these arrows compose to C′T (▷; ∆·
T∆) and C′T (▷; ∆ ·∆), respectively. However, these two morphisms are equal. Hence the
two compositions above coincide. One can prove this also directly using the following
identity[
TC((Xi)i∈I ;B)

Θ→ C((Xi)i∈I ;TB)
C(▷;∆)→ C((Xi)i∈I ;TTB)

]
=
[
TC((Xi)i∈I ;B)

∆→ TTC((Xi)i∈I ;B)
TΘ→ TC((Xi)i∈I ;TB)

Θ→ C((Xi)i∈I ;TTB)
]
,

whose proof we omit.
To prove that diagram (5.10.3) is an equalizer in C, we apply to it the functor

C((Wk)k∈K ;−) for an arbitrary family (Wk)k∈K of objects of C. It remains to prove
that an arbitrary morphism g : (Wk)k∈K → TC((Xi)i∈I ;TB) in C such that[

(Wk)k∈K
g→ TC((Xi)i∈I ;TB)

TC(▷;∆)→ TC((Xi)i∈I ;TTB)
]

=
[
(Wk)k∈K

g→ TC((Xi)i∈I ;TB)
∆→ TTC((Xi)i∈I ;TB)

TΘ→ TC((Xi)i∈I ;TTB)
]

(5.10.4)
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comes from an element f ∈ C((Wk)k∈K , TC((Xi)i∈I ;B)).
Due to Lemma 4.15 we have[

C((Xi)i∈I ;TB)
C(▷;∆)→ C((Xi)i∈I ;TTB)

C(▷;Tε)→ C((Xi)i∈I ;TB)
]
= C(▷; id) = id .

Therefore, composing equation (5.10.4) with TC(▷;Tε) we get the presentation

g =
[
(Wk)k∈K

g→ TC((Xi)i∈I ;TB)
∆→ TTC((Xi)i∈I ;TB)

TΘ→ TC((Xi)i∈I ;TTB)
TC(▷;Tε)→ TC((Xi)i∈I ;TB)

]
. (5.10.5)

Due to Lemma 5.4 the last two arrows can be transformed as follows:[
TC((Xi)i∈I ;TB)

Θ→ C((Xi)i∈I ;TTB)
C(▷;Tε)→ C((Xi)i∈I ;TB)

]
=
[
TC((Xi)i∈I ;TB)

T−→ C((TXi)i∈I ;TTB)
C((δ)I ;1)→ C((Xi)i∈I ;TTB)

C(▷;Tε)→ C((Xi)i∈I ;TB)
]

=
[
TC((Xi)i∈I ;TB)

T−→ C((TXi)i∈I ;TTB)
C(▷;Tε)→ C((TXi)i∈I ;TB)

C((δ)I ;1)→ C((Xi)i∈I ;TB)
]

=
[
TC((Xi)i∈I ;TB)

TC(▷;ε)→ TC((Xi)i∈I ;B)
T→ C((TXi)i∈I ;TB)

C((δ)I ;1)→ C((Xi)i∈I ;TB)
]

=
[
TC((Xi)i∈I ;TB)

TC(▷;ε)→ TC((Xi)i∈I ;B)
Θ→ C((Xi)i∈I ;TB)

]
.

We have used also Lemmata 4.13 and 4.22.
Thus, presentation (5.10.5) can be rewritten as follows:

g =
[
(Wk)k∈K

g→ TC((Xi)i∈I ;TB)
∆→ TTC((Xi)i∈I ;TB)
TTC(▷;ε)→ TTC((Xi)i∈I ;B)

TΘ→ TC((Xi)i∈I ;TB)
]

=
[
(Wk)k∈K

g→ TC((Xi)i∈I ;TB)
TC(▷;ε)→ TC((Xi)i∈I ;B)

∆→ TTC((Xi)i∈I ;B)
TΘ→ TC((Xi)i∈I ;TB)

]
.

Therefore, g comes from the element

f =
[
(Wk)k∈K

g→ TC((Xi)i∈I ;TB)
TC(▷;ε)→ TC((Xi)i∈I ;B)

]
.

Hence, diagram (5.10.3) is an equalizer.

5.11 Example. Let (T,∆, ε, η) be a multicomonad and an augmented comonad on a
symmetric multicategory C. It means that (T,∆, ε) is a multicomonad, and natural
transformation of ordinary functors η : Id → T : C → C is a morphism of coalgebras in
the strict monoidal category Cat(C,C). In other terms, equations(

X
η→ TX

ε→X
)
= id,(

X
η→ TX

∆→ TTX
)
=
(
X

η→ TX
η→ TTX

)
,
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hold true for all objects X of C. Notice that the latter composition is equal also to the

composition
(
X

η→ TX
Tη→ TTX

)
due to naturality of η. Hence, (X, η : X → TX) is

a T -coalgebra. Bijection (5.3.1) for such T -coalgebra (X, η) turns into bijection

C(X;Y )→ CT ((X, η); (TY,∆)), f 7→ η · (Tf) =
(
X

f→ Y
η→ TY

)
with an inverse map

CT ((X, η); (TY,∆))→ C(X;Y ), g 7→ g · ε.

5.12 Remark. Let C = (C,⊗I , λf) be a symmetric closed Monoidal category. Let

((T, τ I),∆, ε) : C→ C be a lax symmetric Monoidal comonad. Then C = Ĉ is a symmetric

multicategory and the symmetric multifunctor T = (̂T, τ I) extends to a multicomonad

(T,∆, ε) : C → C. We abuse the notation by writing ∆, ε in place of ∆̂, ε̂. We claim
that T -coalgebras form a symmetric Monoidal category (CT ,⊗I , λf). Indeed, the tensor
product of T -coalgebras (δi : Xi → TXi)i∈I is given by the composition

δ =
[
⊗i∈IXi

⊗i∈Iδi→ ⊗i∈I TXi
τ I→ T ⊗i∈I Xi

]
. (5.12.1)

This comultiplication is counital, since

[
⊗i∈IXi

⊗i∈Iδi→ ⊗i∈I TXi
τ I→ T ⊗i∈I Xi

ε→ ⊗i∈I Xi

]
=
[
⊗i∈IXi

⊗i∈Iδi→ ⊗i∈I TXi
⊗Iε→ ⊗i∈I Xi

]
= id,

due to ε being a Monoidal transformation. The comultiplication δ is coassociative, since
the diagram

⊗i∈IXi
⊗i∈Iδi →⊗i∈ITXi

τ I → T ⊗i∈I Xi

= =

⊗i∈ITXi

⊗i∈Iδi↓
⊗I∆ →⊗i∈ITTXi

⊗i∈ITδi↓
τ I → T ⊗i∈I TXi

T⊗i∈Iδi↓

=

T ⊗i∈I Xi

τ I↓
∆ → TT ⊗i∈I Xi

T τ I↓

commutes. Indeed, the left top square expresses coassociativity of δi, the right top square
commutes by naturality of τ I , the bottom pentagon commutes by ∆ being a Monoidal
transformation.

Let us verify that ⊗I : CIT → CT induced by ⊗I : CI → C is a functor. It takes a family
(fi : Xi → Yi)i∈I of T -coalgebra morphisms to the morphism ⊗i∈Ifi : ⊗i∈IXi → ⊗i∈IYi of
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C. Let us prove that this is a T -coalgebra morphism. Indeed, diagram

⊗i∈IXi
⊗Iδ →⊗i∈ITXi

τ → T ⊗i∈I Xi

= =

⊗i∈IYi

⊗i∈Ifi↓
⊗Iδ →⊗i∈ITYi

⊗i∈ITfi↓
τ → T ⊗i∈I Yi

T⊗i∈Ifi↓

commutes due to naturality of τ .

Given T -coalgebras Xi, the structure morphism λϕ : ⊗i∈IXi → ⊗j∈J ⊗i∈ϕ
−1j Xi is a

T -coalgebra morphism for any ϕ : I → J . Indeed, diagram

⊗i∈IXi
⊗Iδ →⊗i∈ITXi

τ → T ⊗i∈I Xi

= =

⊗j∈J ⊗i∈ϕ−1j Xi

λϕ

↓
⊗j∈J⊗ϕ−1jδ→⊗j∈J ⊗i∈ϕ−1j TXi

λϕ

↓

⊗j∈JT ⊗i∈ϕ−1j Xi

⊗Jτ
↓

τ→ T ⊗j∈J ⊗i∈ϕ−1jXi

Tλϕ

↓

commutes due to naturality of λϕ and (T, τ) being a lax Monoidal functor. Hence,
(CT ,⊗I , λf) is a symmetric Monoidal category.

5.13 Remark. Let C = (C,⊗I , λf) be a lax symmetric Monoidal category, and let
((T, τ I),∆, ε) : C→ C be a lax symmetric Monoidal comonad. It gives rise to a symmetric

multicomonad (T̂ , ∆̂, ε̂) : Ĉ→ Ĉ. The mapping

T̂ : Ĉ((Xi)i∈I ;Y ) = C(⊗i∈IXi, Y )→ Ĉ((TXi)i∈I ;TY ) = C(⊗i∈ITXi, TY )

is given by T̂ f = τ I · Tf .
Note that the categories ĈT and ĈT̂ have the same set of objects. Namely, an object

of both categories is a morphism δ : X → TX = T̂X in C that satisfies equations
δ ·∆ = δ · Tδ = δ · T̂ δ and δ · ε = idX , that is, a T -coalgebra in C. Let Xi, i ∈ I and Y be

T -coalgebras in C. Then the set ĈT ((Xi)i∈I ;Y ) = CT (⊗i∈IXi, Y ) consists of morphisms
f : ⊗i∈IXi → Y in C such that f · δ = (⊗i∈Iδi) · τ I · Tf . On the other hand, the set

ĈT̂ ((Xi)i∈I ;Y ) consists of morphisms f : (Xi)i∈I → Y in Ĉ such that f · δ = (δi) · T̂ f ,
equivalently, of morphisms f : ⊗i∈IXi → Y in C such that f · δ = (⊗i∈Iδi) · τ I · Tf . This
implies that ĈT ((Xi)i∈I ;Y ) = ĈT̂ ((Xi)i∈I ;Y ). Since compositions in both multicategories

are induced by the composition in C, we obtain ĈT = ĈT̂ .
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5.14 Kleisli multicategories. Let (T,∆, ε) be a symmetric multicomonad in a sym-
metric multicategory C, not necessarily closed. We are going to define Kleisli multicate-
gories, which is a more familiar way to represent free T -coalgebras. This is a multicategory
version of the well known notion of Kleisli category.

5.15 Definition. The Kleisli multicategory CT is the symmetric multicategory with the
same objects as in C, with the space of morphisms

CT (X1, . . . , Xn;Y ) = C(TX1, . . . , TXn;Y )

(that is isomorphic to CT (TX1, . . . , TXn;TY ) via (5.3.1)); a composition (f1, . . . , fn)g in

CT is the composition (f̂1, . . . , f̂n)g in C; a unit 1X in CT is the map ε : TX → X in C.

5.16 Remark. Kleisli multicategory CT is isomorphic to the multicategory CfT of free

T -coalgebras. The isomorphism CT → CfT is the identity map on objects. The bijective
map on morphisms is given by

−̂ : CT ((Xi)i∈I ;Y ) = C((TXi)i∈I ;Y ) −→ CT ((TXi)i∈I ;TY ) = CfT ((Xi)i∈I ;Y ),

f : (TXi)→ Y 7−→ f̂ =
[
(TXi)

(∆)i→ (TTXi)
Tf→ TY

]
.

It agrees with the composition µϕ for a map ϕ : I → J ∈ S, because the composition

µC
T

ϕ ((fj)j∈J , g) = µCϕ((f̂j)j∈J , g) of fj : (TXi)i∈ϕ−1(j) → Yj ∈ C and g : (TYj)j∈J → Z ∈ C

is mapped by −̂ to

[µC
T

ϕ ((fj)j∈J , g)]̂

=
[
(TXi)i∈I

(∆)i→ (TTXi)i∈I
(T∆)i→ (TTTXi)i∈I

(TTfj)j→ (TTYj)j∈J
Tg→ TZ

]
=
[
(TXi)i∈I

(∆)i→ (TTXi)i∈I
(∆T )i→ (TTTXi)i∈I

(TTfj)j→ (TTYj)j∈J
Tg→ TZ

]
=
[
(TXi)i∈I

(∆)i→ (TTXi)i∈I
(Tfj)j→ (TYj)j∈J

(∆)j→ (TTYj)j∈J
Tg→ TZ

]
= µCϕ((f̂j)j∈J , ĝ).

The map −̂ agrees with the units, because the unit ε : TX → X ∈ C is mapped to

ε̂ =
[
(TX)

∆→ TTX
Tε→ TX

]
= 1TX .

We already know the following statement by Corollary 5.9.

5.17 Proposition. For a symmetric closed multicategory C, Kleisli multicategory CT is

closed. The inner hom-objects are CT ((Xi)i∈I ;Z)
def
= C((TXi)i∈I ;Z). The evaluation

evC
T

(Xi);Z
∈ CT

(
(Xi)i∈I ,C

T ((Xi)i∈I ;Z);Z
)
= C

(
(TXi)i∈I , TC((TXi)i∈I ;Z);Z

)



154 5. Kleisli multicategories

is given by the following composition in C:

evC
T

(Xi);Z

=
[
(TXi)i∈I , TC((TXi)i∈I ;Z)

(1TXi),ε→ (TXi)i∈I ,C((TXi)i∈I ;Z)
evC(TXi);Z→Z

]
. (5.17.1)

One can give a direct proof of this statement, which is left to the reader as an exercise.

5.18 Multiplication in a closed Kleisli multicategory. According to Proposi-
tion 4.10, for an arbitrary tree of height 2

t = (I
ϕ→ J → 1|(Xi)i∈I , (Yj)j∈J , Z ∈ ObC) (5.18.1)

there are morphisms

µCϕ : (C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)→ C((Xi)i∈I ;Z) ∈ C,

µC
T

ϕ : (CT ((Xi)i∈ϕ−1j;Yj))j∈J ,C
T ((Yj)j∈J ;Z)→ CT ((Xi)i∈I ;Z) ∈ CT .

They are the only solutions of the following equations in C (resp. in CT ):

(Xi)i∈I , (C((Xi)i∈ϕ−1j;Yj))j∈J ,C((Yj)j∈J ;Z)
(evC(Xi);Yj

)j∈I ,1

→ (Yj)j∈J ,C((Yj)j∈J ;Z)

=

(Xi)i∈I ,C((Xi)i∈I ;Z)

1,µ
C
ϕ↓

evC(Xi);Z →Z

evC(Yj);Z↓
(5.18.2)

(Xi)i∈I , (C
T ((Xi)i∈ϕ−1j;Yj))j∈J ,C

T ((Yj)j∈J ;Z)
(evC

T

(Xi);Yj
)j∈I ,1

→ (Yj)j∈J ,C
T ((Yj)j∈J ;Z)

=

(Xi)i∈I ,C
T ((Xi)i∈I ;Z)

1,µ
CT

ϕ ↓
evC

T

(Xi);Z →Z

evC
T

(Yj);Z↓
(5.18.3)

Equation (5.18.3) is equivalent to the following equation in C:[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(∆)I ,(∆)J ,∆→ (TTXi)i∈I , (TTC((TXi)i∈ϕ−1j;Yj))j∈J , TTC((TYj)j∈J ;Z)
(1)I ,(Tε)J ,ε→ (TTXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(T evC(TXi);Yj
)j∈J ,1

→ (TYj)j∈J , TC((TYj)j∈J ;Z)
(1)J ,ε→ (TYj)j∈J ,C((TYj)j∈J ;Z)

evC(TYj);Z→Z
]

=
[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(∆)I ,(∆)J ,∆→ (TTXi)i∈I , (TTC((TXi)i∈ϕ−1j;Yj))j∈J , TTC((TYj)j∈J ;Z)

(ε)I ,Tµ
CT

ϕ→ (TXi)i∈I , TC((TXi)i∈I ;Z)
(1)I ,ε→ (TXi)i∈I ,C((TXi)i∈I ;Z)

evC(TXi);Z→Z
]
.



5.18. Multiplication in a closed Kleisli multicategory. 155

Using multinaturality of ε and the identities ∆ · ε = 1, ∆ · Tε = 1, which are implied by
the axioms of comonad, we reduce this equation to[

(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)
(∆)I ,(1)J ,1→ (TTXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(T evC(TXi);Yj
)j∈J ,ε

→ (TYj)j∈J ,C((TYj)j∈J ;Z)
evC(TYj);Z→Z

]
=
[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(1)I ,µ
CT

ϕ→ (TXi)i∈I ,C((TXi)i∈I ;Z)
evC(TXi);Z→Z

]
. (5.18.4)

5.19 Remark. The Kleisli multicategory CT is isomorphic to the multicategory CfT of
free T -coalgebras (see Remark 5.16). Both are closed, thus, one can choose the in-
ner homomorphisms objects and evaluations in a coherent way. Namely, we choose
CT ((Xi)i∈I ;Z) = CfT ((Xi)i∈I ;Z) = C((TXi)i∈I ;Z) for arbitrary objects Xi, Z. Evaluation

in CT given by (5.17.1) induces a composition in C, which is a T -coalgebra morphism:

(evC
T

(Xi);Z
)̂= [(TXi)i∈I , TC

T ((Xi)i∈I ;Z)
(∆)I⊔1→ (TTXi)i∈I , TTC

T ((Xi)i∈I ;Z)
T evC

T

(Xi);Z→ TZ
]

=
[
(TXi)i∈I , TC((TXi)i∈I ;Z)

(∆)I ,1→ (TTXi)i∈I , TC((TXi)i∈I ;Z)
T evC(TXi);Z→ TZ

]
= ev

C′
T

(TXi);TZ
(5.19.1)

by Lemma 5.7. The above morphism is also denoted ev
CfT
(Xi);Z

. The isomorphism CT
∼→ CfT

of Remark 5.16 has identity closing transformation.
Denote by T ′ : CfT → CT the multifunctor X 7→ TX given by identity map on mor-

phisms. There are multifunctors E =
(
CfT

T ′

→ CT
F→ C

)
. The multifunctor F with

ObF = id forgets the T -coalgebra structure and gives inclusion on morphisms. Given
Ak, B ∈ ObC, k ∈ K, we can write the closing transformation for E

θ(Ak);B = E(Ak);B : TCfT ((Ak)k∈K ;B) = TC((TAk)k∈K ;B)→ C((TAk)k∈K ;TB). (5.19.2)

This is the unique morphism that satisfies the equation

(TAk)k∈K , TC((TAk)k∈K ;B)
(∆)K ,1 → (TTAk)k∈K , TC((TAk)k∈K ;B)

=

(TAk)k∈K ,C((TAk)k∈K ;TB)

(1)K ,θ(Ak);B↓ evC(TAk)k∈K ;TB → TB

T evC(TAk);B↓

By (5.3.3) the morphism θ(Ak);B coincides with Θ(TAk);B.
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5.20 Corollary (to Lemma 5.4). The morphism θ(Ak);B can be decomposed as follows:

θ(Ak);B =
[
TC((TAk)k∈K ;B)

T→ C((TTAk)k∈K ;TB)
C((∆)K ;1)→ C((TAk)k∈K ;TB)

]
.

With this notation we can write the left hand side of (5.18.4) as follows:[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(1)I ,(θ(Xi);Yj ),ε→ (TXi)i∈I , (C((TXi)i∈ϕ−1j;TYj))j∈J ,C((TYj)j∈J ;Z)
(evC(TXi);TYj

)j∈J ,1

→ (TYj)j∈J ,C((TYj)j∈J ;Z)
evC(TYj);Z→Z

]
=
[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(1)I ,(θ(Xi);Yj )j∈J ,ε→ (TXi)i∈I , (C((TXi)i∈ϕ−1j;TYj))j∈J ,C((TYj)j∈J ;Z)

(1)I ,µ
C

→ (TXi)i∈I ,C((TXi)i∈I ;Z)
evC(TXi);Z→Z

]
. (5.20.1)

The last transformation is due to equation (5.18.2). Comparing (5.20.1) with the right
hand side of (5.18.4) we conclude that

µC
T

ϕ =
[
(TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)

(θ(Xi);Yj )j∈J ,ε→

(C((TXi)i∈ϕ−1j;TYj))j∈J ,C((TYj)j∈J ;Z)
µ
C
ϕ→ C((TXi)i∈I ;Z)

]
. (5.20.2)

5.21 Remark. We choose the closed structure data for the Kleisli multicategory CT and
the isomorphic to it multicategory CfT of free T -coalgebras coherent as in Remark 5.19.

Therefore, for any map ϕ : I → J in S the composition map µ
CfT
ϕ coincides with the

T -coalgebra morphism (µC
T

ϕ ) ,̂ because both are unique arrows which make commutative
the diagram

(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J , TC((TYj)j∈J ;Z)
(evC

f
T )J ,1

∥
((evC

T
)̂ )J ,1

→ (TYj)j∈J , TC((TYj)j∈J ;Z)

(TXi)i∈I , TC((TXi)i∈I ;Z)

(1)I ,µ
C
f
T
ϕ = (1)I ,(µ

CT

ϕ )̂

↓ (evC
T
)̂

∥

evC
f
T

→ TZ

(evC
T
)̂ = evC

f
T

↓
(5.21.1)

This is a particular case of equation (4.10.1).
Furthermore, writing down diagram (4.12.2) for Kleisli multicategory CT , and applying

isomorphism of multicategories CT → CfT of Remark 5.16 to it, we get the equation

CT (ϕ; g)̂ = CfT (ϕ; ĝ). Similarly, writing down diagram (4.12.3) for CT , and applying

isomorphism CT → CfT to it, we get the equation CT (f ; 1)̂= CfT (f̂ ; 1).



5.22. Left and right multiplications in closed Kleisli multicategories. 157

5.22 Left and right multiplications in closed Kleisli multicategories. Let f :
(Yj)j∈J → Z be a morphism in CT , equivalently, a morphism f : (TYj)j∈J → Z in C. Let
us compute the morphisms CT (f ; 1) and CT (ϕ; f) in terms of the multicategory C.

The morphism CT (f ; 1) : CT (Z;W )→ CT ((Yj)j∈J ;W ) is uniquely determined via the
diagram in CT :

(Yj)j∈J ,C
T (Z;W )

(1)J ,C
T (f ;1)→ (Yj)j∈J ,C

T ((Yj)j∈J ;W )

Z,CT (Z;W )

f,1↓
evC

T

Z;W →Z

evC
T

(Yj);W↓

Let g = CT (f ; 1). Commutativity of the above diagram is equivalent to the following
equation in C:[

(TYj)j∈J , TC(TZ;W )
(∆)J ,∆→ (TTYj)j∈J , TTC(TZ;W )

(Tε),T g→ (TYj)j∈J , TC((TYj)j∈J ;W )
(1)I ,ε→ (TYj)j∈J ,C((TYj)j∈J ;W )

evC(TYj);W→W
]

=
[
(TYj)j∈J , TC(TZ;W )

(∆)J ,∆→ (TTYj)j∈J , TTC(TZ;W )

Tf,ε→ TZ, TC(TZ;W )
1,ε→ TZ,C(TZ;W )

evCTZ;W→W
]
.

Using the identities ∆·ε = 1, ∆·Tε = 1 implied by the axioms of comonad, and naturality
of ε, we can rewrite this equation as follows:

[
(TYj)j∈J , TC(TZ;W )

(1)J ,g→ (TYj)j∈J ,C((TYj)j∈J ;W )
evC(TYj);W→W

]
=
[
(TYj)j∈J , TC(TZ;W )

(∆)J ,ε→ (TTYj)j∈J ,C(TZ;W )

Tf,1→ TZ,C(TZ;W )
evCTZ;W→W

]
. (5.22.1)

Since (∆)J · Tf = f̂ , the right hand side of the above equation can be written as

[
(TYj)j∈J , TC(TZ;W )

(1)J ,ε→ (TYj)j∈J ,C(TZ;W )
f̂ ,1→ TZ,C(TZ;W )

evCTZ;W→W
]

=
[
(TYj)j∈J , TC(TZ;W )

(1)J ,ε→ (TYj)j∈J ,C(TZ;W )

(1)J ,C(f̂ ;1)→ (TYj)j∈J ,C((TYj);W )
evC(TYj);W→W

]
.

The last transformation is due to equation (4.12.3). Comparing the obtained expression
with the left hand side of (5.22.1) we conclude that

CT (f ; 1) =
[
TC(TZ;W )

ε→ C(TZ;W )
C(f̂ ;1)→ C((TYj)j∈J ;W )

]
. (5.22.2)
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Let Xi ∈ ObC, i ∈ I be a family of objects, ϕ : I → J a map in Mor S. The morphism
C(ϕ; f) is uniquely determined via the diagram in CT :

(Xi)i∈I , (C
T ((Xi)i∈ϕ−1j;Yj))j∈J

(1)I ,C
T (ϕ;f)→ (Xi)i∈I ,C

T ((Xi)i∈I ;Z)

(Yj)j∈J

(evC
T

(Xi);Yj
)j∈J↓

f →Z

evC
T

(Xi);Z↓

Let h = CT (ϕ; f). Similarly to the above computations, the diagram can be expanded to
the following equation in C:[

(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J
(1)I ,h→ (TXi)i∈I ,C((TXi)i∈I ;Z)

evC(TXi);Z→Z
]

=
[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J

(∆)I ,(1)J→

(TTXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J
(T evC(TXi);Yj

)

→ (TYj)j∈J
f→Z

]
. (5.22.3)

Using equation (5.3.3) we can transform the right hand side of (5.22.1) into[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J

(1)I ,(θ(Xi);Yj )j∈J→

(TXi)i∈I , (C((TXi)i∈ϕ−1j;TYj))j∈J
(evC(TXi);Yj

)j∈J
→ (TYj)j∈J

f→Z
]

=
[
(TXi)i∈I , (TC((TXi)i∈ϕ−1j;Yj))j∈J

(1)I ,(θ(Xi);Yj )j∈J→

(TXi)i∈I , (C((TXi)i∈ϕ−1j;TYj))j∈J
(1)I ,C(ϕ;f)→

(TXi)i∈I ,C((TXi)i∈I ;Z)
evC(TXi);Z→Z

]
.

Comparing the obtained expression with the left hand side of (5.22.1) we conclude that

CT (ϕ; f) =
[
(TC((TXi)i∈ϕ−1j;Yj))j∈J

(θ(Xi)i∈ϕ−1j
;Yj

)j∈J

→

(C((TXi)i∈ϕ−1j;TYj))j∈J
C(ϕ;f)→ C((TXi)i∈I ;Z)

]
. (5.22.4)

5.23 Lax Monoidal case. Let C = (C,⊗I , λf) be a symmetric closed Monoidal cat-

egory. Let ((T, τ I),∆, ε) : C → C be a lax symmetric Monoidal comonad. Then C = Ĉ

is a symmetric multicategory and the symmetric multifunctor T = (̂T, τ I) extends to a
multicomonad (T,∆, ε) : C → C. We abuse the notation by writing ∆, ε in place of

∆̂, ε̂. Since C is closed, the symmetric multicategories C, CT are closed as well. Inner
homomorphism objects in C, CT are

C((Xi)i∈I ;Y ) = C(⊗i∈IXi, Y ),

CT ((Xi)i∈I ;Y ) = C((TXi)i∈I ;Y ) = C(⊗i∈ITXi, Y ).
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Evaluation morphism in C is

evC(Xi);Y
= evC⊗IXi,Y

: (⊗i∈IXi)⊗ C(⊗i∈IXi, Y )→ Y.

Evaluation morphism in CT is

evC
T

(Xi);Y

=
[
(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

1⊗ε→ (⊗i∈ITXi)⊗ C(⊗i∈ITXi, Y )
evC⊗ITXi,Y→ Y

]
.

The corresponding T -coalgebra morphism is given by (5.3.1):

(evC
T

(Xi);Y
)̂= [(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

(⊗I∆)⊗∆→

(⊗i∈ITTXi)⊗ TTC(⊗i∈ITXi, Y )
(τ I⊗1)·τ2→

T
[
(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

] T evC
T

(Xi);Y→ TY
]

=
[
(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

(⊗I∆)⊗∆→ (⊗i∈ITTXi)⊗ TTC(⊗i∈ITXi, Y )

1⊗Tε→ (⊗i∈ITTXi)⊗ TC(⊗i∈ITXi, Y )

(τ I⊗1)·τ2→ T
[
(⊗i∈ITXi)⊗ C(⊗i∈ITXi, Y )

] T evC⊗ITXi,Y→ TY
]

=
[
(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

(⊗I∆)⊗1→ (⊗i∈ITTXi)⊗ TC(⊗i∈ITXi, Y )

(τ I⊗1)·τ2→ T
[
(⊗i∈ITXi)⊗ C(⊗i∈ITXi, Y )

] T evC⊗ITXi,Y→ TY
]

=
[
(⊗i∈ITXi)⊗ TC(⊗i∈ITXi, Y )

1⊗θ(Xi);Y→ (⊗i∈ITXi)⊗ C(⊗i∈ITXi, TY )
evC⊗ITXi,TY→ TY

]
. (5.23.1)

The unique morphism

θ(Xi);Y : TC(⊗i∈ITXi, Y )→ C(⊗i∈ITXi, TY )

which satisfies the above equation, exists by closedness of C.
The closing multinatural transformation (4.18.2)

T (Xi);Y : TC(⊗i∈IXi, Y )→ C(⊗i∈ITXi, TY ),

for the multifunctor T : C→ C is determined by equation

(⊗i∈ITXi)⊗ TC(⊗i∈IXi, Y )
1⊗T→ (⊗i∈ITXi)⊗ C(⊗i∈ITXi, TY )

=

T
[
(⊗i∈IXi)⊗ C(⊗i∈IXi, Y )

](τ I⊗1)·τ2↓
T evC → TY

evC

↓
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In particular, for I = 1 the equation reads:

TX ⊗ TC(X, Y )
1⊗TX,Y → TX ⊗ C(TX, TY )

=

T
[
X ⊗ C(X, Y )

]τ↓
T evC → TY

evC

↓

5.24 Lemma. We have

T (Xi);Y =
[
TC(⊗i∈IXi, Y )

T⊗i∈IXi,Y→ C(T ⊗i∈I Xi, TY )
C(τ,TY )→ C(⊗i∈ITXi, TY )

]
.

Proof. By closedness, the equation in question is equivalent to the commutativity of the
exterior of the following diagram

(⊗i∈ITXi)⊗ TC(⊗i∈IXi, Y )

(T ⊗i∈I Xi)⊗ TC(⊗i∈IXi, Y )

τ I⊗1

←
(⊗i∈ITXi)⊗ C(T ⊗i∈I Xi, TY )

1⊗T

→

(T ⊗i∈I Xi)⊗ C(T ⊗i∈I Xi, TY )

τ I⊗1

←

1⊗T

→

T
[
(⊗i∈IXi)⊗ C(⊗i∈IXi, Y )

]
τ

↓
(⊗i∈ITXi)⊗ C(⊗i∈ITXi, TY )

1⊗C(τ,1)

↓

TY

evC

↓ evC←T evC →

Here the left parallelogram is the definition of T , and the right parallelogram is the
definition of C(τ, 1).

5.25 Corollary. Morphisms Θ(Xi);Y : T Ĉ((Xi)i∈I ;Y ) → Ĉ((Xi)i∈I ;TY ) and Θ⊗i∈IXi,Y :

TC(⊗i∈IXi, Y )→ C(⊗i∈IXi, TY ) coincide.

Proof. Lemma 5.4 gives the decomposition which can be transformed via Lemma 5.24
to:

Θ(Xi);Y =
[
T Ĉ((Xi)i∈I ;Y )

T (Xi);Y→ Ĉ((TXi)i∈I ;TY )
Ĉ((δi)i∈I ;1)→ Ĉ((Xi)i∈I ;TY )

]
=
[
TC(⊗i∈IXi, Y )

T⊗i∈IXi,Y→ C(T ⊗i∈I Xi, TY )
C(τ,1)→ C(⊗i∈ITXi, TY )

C(⊗i∈Iδi,1)→ C(⊗i∈IXi, TY )
]

=
[
TC(⊗i∈IXi, Y )

T⊗i∈IXi,Y→ C(T ⊗i∈I Xi, TY )
C(δ,1)→ C(⊗i∈IXi, TY )

]
= Θ⊗i∈IXi,Y

due to formula (5.12.1).
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5.26 Monads for Kleisli multicategories. Let C be a V-multicategory. Let (T :
C → C,∆, ε) be a multicomonad in C, see Section 5.1. In particular, ∆ and ε are
multinatural transformations. Let (M : C → C,m : MM → M,u : Id → M) be a
monad in C. Namely, M : C → C is a multifunctor, m : MM → M : C → C is a
natural transformation and u : Id → M : C → C is a multinatural transformation. Let
ξ :MT → TM : C→ C be a multinatural transformation. If it satisfies certain properties,
then the monadM generates a monad (MT ,mT , uT ) in the Kleisli multicategory CT . These
properties resemble distributivity laws between two monads, introduced by Beck [Bec69].
Let us describe the components of the new monad.

Let M : C → C be a (symmetric) V-multifunctor, and let ξ : MT → TM : C → C be
a multinatural V-transformation. Composition in C is denoted · = ·C. Composition in CT

is denoted ·CT . We are going to define a (symmetric) multifunctor MT : CT → CT acting
on objects in the same way as M , so ObMT = ObM . It will act on morphisms via

MT : CT ((Xi)i∈I ;Y ) = C((XiT )i∈I ;Y )
M→ C((XiTM)i∈I ;YM)

(ξ)i·C−→ C((XiMT )i∈I ;YM) = CT ((XiM)i∈I ;YM).

5.27 Proposition. If the diagram

MT
ξ → TM

=

MTT

∆
↓

ξT→ TMT
ξ → TTM

∆M
↓

(5.27.1)

commutes and the equation (
MT

ξ→ TM
εM→M

)
= ε (5.27.2)

holds true, then MT : CT → CT defined above is a multifunctor.

Proof. Let ϕ : I → J be a non-decreasing map of finite totally ordered sets (arbitrary
map for symmetric multicategory case). The equation to prove is

⊗J⊔1
[(
CT ((Xi)i∈ϕ−1j;Yj)

)
j∈J ,C

T ((Yj)j∈J ;Z)
]

CT ((Xi)i∈I ;Z)
µCT

ϕ →

⊗J⊔1
[(
CT ((XiM

T )i∈ϕ−1j;YjM
T )
)
j∈J ,C

T ((YjM
T )j∈J ;ZM

T )
]

⊗J⊔1MT

↓

CT ((XiM
T )i∈I ;ZM

T )

MT

↓
µCT

ϕ →
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The top–right path composes to the morphism〈
⊗J⊔1

[(
C((XiT )i∈ϕ−1j;Yj)

)
j∈J ,C((YjT )j∈J ;Z)

] ⊗J⊔1[((ξ·∆M)i∈ϕ−1j ·( TM))j∈J ,( M)]
→

⊗J⊔1
[(
C((XiMT )i∈ϕ−1j;YjTM)

)
j∈J ,C((YjTM)j∈J ;ZM)

]
µC
ϕ→ C((XiMT )i∈I ;ZM)

〉
The left–bottom path gives〈
⊗J⊔1

[(
C((XiT )i∈ϕ−1j;Yj)

)
j∈J ,C((YjT )j∈J ;Z)

]
⊗J⊔1[((∆·(ξT ))i∈ϕ−1j ·( MT ))j∈J ,(ξ)J ·( M)]

→
⊗J⊔1

[(
C((XiMT )i∈ϕ−1j;YjMT )

)
j∈J ,C((YjMT )j∈J ;ZM)

]
µC
ϕ→ C((XiMT )i∈I ;ZM)

〉
=
〈
⊗J⊔1

[(
C((XiT )i∈ϕ−1j;Yj)

)
j∈J ,C((YjT )j∈J ;Z)

]
⊗J⊔1[((∆·(ξT ))i∈ϕ−1j ·( MT )·ξ)j∈J ,( M)]

→
⊗J⊔1

[(
C((XiMT )i∈ϕ−1j;YjTM)

)
j∈J ,C((YjTM)j∈J ;ZM)

]
µC
ϕ→ C((XiMT )i∈I ;ZM)

〉
=
〈
⊗J⊔1

[(
C((XiT )i∈ϕ−1j;Yj)

)
j∈J ,C((YjT )j∈J ;Z)

]
⊗J⊔1[((∆·(ξT )·ξ)i∈ϕ−1j ·( MT ))j∈J ,( M)]

→
⊗J⊔1

[(
C((XiMT )i∈ϕ−1j;YjTM)

)
j∈J ,C((YjTM)j∈J ;ZM)

]
µC
ϕ→ C((XiMT )i∈I ;ZM)

〉
,

since the composition is associative, and due to multinaturality of ξ. Condition (5.27.1)
implies that the two obtained compositions coincide.

M sends units to units if the composite

C(XT ;X)
M−→ C(XTM ;XM)

ξ·C−−−→ C(XMT ;XM)

sends ε to ε. This is precisely equation (5.27.2).

5.28 Proposition. Let N : C → C be another (symmetric) V-multifunctor, and let ψ :
NT → TN : C→ C be a multinatural V-transformation. Assume that the pair (N,ψ) sat-
isfies the same equation (5.27.1) as the pair (M, ξ) does. Then the composite multifunctor

MN : C→ C and the multinatural transformation χ =
(
MNT

ψ→MTN
ξN→ TMN

)
also satisfy equations (5.27.1) and (5.27.2). Furthermore, the equation

(M, ξ)T · (N,ψ)T = (MN,χ)T : CT → CT (5.28.1)
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holds true. Notice also that (Id, id)T = Id.

Proof. Equation (5.27.1) for (MN,χ) is the exterior of the following commutative diagram

MNT
ψ →MTN

ξN → TMN

MNTT

∆
↓

ψT→MTNT
ψ→MTTN

∆N
↓

ξTN→ TMTN
ξN→ TTMN

∆MN
↓

TMNT

χ

→
ψ

→ξNT

→χT →

Equation (5.28.1) follows from the computation

MT ·NT =
[
C((XiT )i∈I ;Y )

M→ C((XiTM)i∈I ;YM)
(ξ)i·C−→ C((XiMT )i∈I ;YM)

N→ C((XiMTN)i∈I ;YMN)
(ψ)i·C−→ C((XiMNT )i∈I ;YMN)

]
=
[
C((XiT )i∈I ;Y )

M→ C((XiTM)i∈I ;YM)
N→ C((XiTMN)i∈I ;YMN)

(ξN)i·C−→ C((XiMTN)i∈I ;YMN)
(ψ)i·C−→ C((XiMNT )i∈I ;YMN)

]
= (MN)T .

The composite of pairs (M, ξ) and (N,ψ) satisfies condition (5.27.2), as the following
computation shows:(

MNT
ψ−→MTN

ξN−→ TMN
εMN−−−→MN

)
=
(
MNT

ψ−→MTN
εN−→MN

)
= ε.

The last statement is obvious.

5.29 Proposition. Let pairs (M, ξ : MT → TM), (N,ψ : NT → TN) satisfy condi-
tions (5.27.1) and (5.27.2). Let p : M → N : C → C be a (multi)natural transformation
such that the equation

MT
ξ → TM

=

NT

pT
↓

ψ → TN

p
↓

(5.29.1)

holds. Then the formula pT = ε ·C p ∈ C(XMT ;XN) = CT (XMT ;XNT ), X ∈ ObC,
gives a (multi)natural transformation pT :MT → NT : CT → CT .

Proof. The equation to prove reads as follows:

CT ((Xi)i∈I ;Y )
MT

→ CT ((XiM)i∈I ;YM)

=

CT ((XiN)i∈I ;Y N)

NT

↓
(pT )I ·CT−→ CT ((XiM)i∈I ;Y N)

−·CT p
T

↓
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where I = 1 if p is a natural transformation. Expanding out the top-right path yields[
C((XiT )i∈I ;Y )

M−→ C((XiTM)i∈I ;YM)
(ξ)I ·C−−−−−→ C((XiMT )i∈I ;YM)

(∆)I ·C( T )−−−−−−→ C((XiMT )i∈I ;YMT )
−·Cε·Cp−−−−→ C((XiMT )i∈I ;Y N)

]
=
[
C((XiT )i∈I ;Y )

M−→ C((XiTM)i∈I ;YM)
(ξ)I ·C−·Cp−−−−−→ C((XiMT )i∈I ;Y N)

]
,

due to the identity

(∆)I ·C ( T ) ·C ε = (∆)I ·C (ε)I ·C − = id : C((XiMT )i∈I ;YM)→ C((XiMT )i∈I ;YM)

implied by the naturality of ε and axioms of a comonad. The left-bottom path is equal
to[

C((XiT )i∈I ;Y )
N−→ C((XiTN)i∈I ;Y N)

(ψ)I ·C−−−−−→

C((XiNT )i∈I ;Y N)
(p̂T )I ·C−−−−−−→ C((XiMT )i∈I ;Y N)

]
=
[
C((XiT )i∈I ;Y )

N−→ C((XiTN)i∈I ;Y N)
(p)I ·C−−−−−→

C((XiTM)i∈I ;Y N)
(ξ)I ·C−−−−−→ C((XiMT )i∈I ;Y N)

]
,

due to the equation

p̂T =
[
XMT

∆−→ XMTT
εT−→ XMT

pT−→ XNT
]
= pT

and assumption (5.29.1). The obtained expressions coincide by the (multi)naturality of
p.

5.30 Proposition. Let (M, ξ : MT → TM), (N,ψ : NT → TN), (K,χ : KT → TK)

be pairs satisfying conditions (5.27.1) and (5.27.2). Suppose M
p−→ N

q−→ K : C → C are
(multi)natural transformations that satisfy condition (5.29.1). Then the following hold.

(a) The composite p · q satisfies condition (5.29.1) and pT · qT = (p · q)T : MT → KT :
C→ C.

(b) The transformation M · q :MN →MK : C→ C satisfies condition (5.29.1) and(
C

(M,ξ)−−−→ C

(N,ψ)→
⇓ q

(K,χ)
→

C

)T
=

(
CT

MT

−−→ CT
NT

→
⇓ qT

KT
→

CT
)
.

(c) The transformation p ·K :MK → NK : C→ C satisfies condition (5.29.1) and(
C

(M,ξ)→
⇓ p

(N,ψ)
→

C
(K,χ)−−−→ C

)T
=

(
CT

MT

→
⇓ pT

NT
→

CT
KT

−−→ CT
)
.
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Proof. For the proof of (a), substitute the definitions of pT and qT into the equation in
question. We obtain

pT · qT =
[
XMT

∆−→ XMTT
εT−→ XMT

pT−→ XNT
ε−→ XN

q−→ XK
]

=
[
XMT

pT−→ XNT
ε−→ XN

q−→ XK
]

=
[
XMT

ε−→ XM
p−→ XN

q−→ XK
]
= (p · q)T ,

by axioms of a comonad and by the naturality of ε.
The first claim in part (b) is clear. The equation holds by definition, as

(MT · qT )X = (qT )XMT = (qT )XM = εXM · qXM = (M · q)TX ,

for each X ∈ ObC.
The first claim in part (c) is clear. To prove the equation, note that

pT ·KT =
[
XMKT

χ−→ XMTK
εK−→ XMK

pK−→ XNK
]

=
[
XMKT

ε−→ XMK
pK−→ XNK

]
= (p ·K)T ,

by condition (5.27.2). The proposition is proven.

5.31 Corollary. There is a strict monoidal category whose objects are pairs (M, ξ) con-
sisting of a (symmetric) multifunctor M : C → C and a multinatural transformation
ξ :MT → TM satisfying conditions (5.27.1) and (5.27.2). A morphism (M, ξ)→ (N,ψ)
is a (multi)natural transformation p :M → N : C→ C satisfying condition (5.29.1). The
tensor product is composition, see Proposition 5.28. The correspondence (M, ξ) 7→ MT

is a strict monoidal functor from this category to (S)MCat(C,C).

Proof. The proof follows from Propositions 5.28–5.30.

5.32 Theorem. Assume that equations (5.27.1), (5.27.2), and the equations

MMT
ξ→MTM

ξM→ TMM

=

MT

mT
↓

ξ → TM

m
↓

(5.32.1)

(
T

uT→MT
ξ→ TM

)
= u (5.32.2)

hold. Then uT = ε ·C u ∈ C(XT ;XM) = CT (X;XMT ) is a multinatural transformation
uT : Id→MT : CT → CT , and mT = ε ·m ∈ C(XMMT ;XM) is a natural transformation
mT :MTMT →MT : CT → CT . The triple (MT ,mT , uT ) is a monad in CT . Furthermore,
if m is multinatural, then mT is multinatural as well, and (MT ,mT , uT ) is a multimonad.

Proof. Conditions (5.32.1) and (5.32.2) are precisely condition (5.29.1) form and u respec-
tively. The strict monoidal functor −T sends an algebra in one strict monoidal category
to an algebra in the other one.
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Chapter 6

The tensor comonad on quivers

Let V = (V,⊗I , λf) be a symmetric closed Monoidal abelian U -category. We assume in
addition that arbitrary U -small limits and colimits1 exist in V, that U -small filtering
colimits in V commute with finite projective limits. Closedness of V implies that the
tensor product commutes with arbitrary U -small colimits. The endomorphism ring k =
V(1V,1V) of the unit object 1V is U -small and commutative. Notice that the category V

is k-linear.
Actually, we are interested only in two examples: V = gr = gr(k-Mod) is the category

of all U -small graded k-modules and V = dg = dg(k-Mod) is the category of all U -small
differential graded k-modules (complexes). Commutation of filtering colimits with finite
limits follows from [GV73, Corollaire 2.9]. The symmetric Monoidal structure comes from
Example 3.26. The reader may assume that V means one of these two categories. By
abuse of notation we shall denote the unit object of V also by k. This is convenient in
both examples.

We construct two symmetric Monoidal structures in the category of V-quivers and a
lax symmetric Monoidal comonad T⩾1 in this category. This is the tensor module without
the 0-th term. Coalgebras over this comonad are described in this chapter. We discuss
also their relationship with augmented counital coassociative coalgebras in the category
of V-quivers.

From now on we suppose that in all Monoidal categories encountered in the
sequel ⊗L = Id and ρL : ⊗L → Id is the identity morphism, for each 1-element
set L. One can manage to fulfill this condition for all categories below.

6.1 The symmetric Monoidal category of quivers. The category of V-quivers
defined in Section 3.2 is denoted VQ. When V = gr, the category of graded k-linear quivers
grQ is denoted simply Q. When V = dg, the category of differential graded k-linear quivers
dgQ is denoted also dQ. The category VQ has a natural symmetric Monoidal structure VQp =
(VQ,⊠I , λf). For given V-quivers Qi the quiver⊠i∈IQi has the set of objects

∏
i∈I ObQi and

the objects of morphisms (⊠i∈IQi)((Xi)i∈I , (Yi)i∈I) = ⊗i∈IQi(Xi, Yi). Isomorphisms λf are
those of V. When V = gr or V = dg we use the notation Qp =

grQp and
dQp =

dgQp. The
unit object 1p = ⊠∅() of Qp and dQp is the (differential) graded k-quiver with a unique
object ∗ and the module of homomorphisms 1p(∗, ∗) = k.

An arbitrary U -small set S generates a V-quiver kS, whose set of objects is S, and

1limits and colimits of functors D→ V, where the category D is U -small

169
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the object of morphisms is kS(X, Y ) = k if X = Y ∈ S and kS(X, Y ) = 0 if X ̸= Y .
A map f : R → S induces the k-quiver morphism kf : kR → kS, Ob kf = f , kf =
idk : kR(X,X) → kS(Xf,Xf) for all X ∈ R, and kf = 0 : kR(X, Y ) → kS(Xf, Y f)
if X ̸= Y ∈ R. Given a quiver C, we abbreviate the quiver kObC to kC. For a quiver
morphism f : A→ B we denote by kf the quiver map kOb f : kA→ kB.

Let S be a U -small set. Let VQ/S be the category of V-quivers C with the set of objects
S, whose morphisms are morphisms of V-quivers f : A → B such that Ob f = idS. The
k-linear abelian category VQ/S admits the following structure of a Monoidal category
(VQ/S,⊗I , λf):

(⊗i∈nQi)(X,Z) =
Y0=X,Yn=Z⊕
Yi∈S, 0⩽i⩽n

⊗i∈nQi(Yi−1, Yi).

In particular, ⊗0() = kS is the unit object. Isomorphisms λf extend totally those of V.
Given a family of quivers Ai ∈ VQ/S, i ∈ I, we can form their direct sum ⊕i∈IAi ∈

VQ/S. The same conclusion applies when we have bijections ObAi ≃ S, along which the
quiver structure can be transported to the set S. Such bijections will be obvious and
implicit in our applications.

Recall that a V-quiver is a particular case of a V-span. LetA, B be V-quivers. A V-span
morphism r : A→ B is by Section 3.5 a pair of maps f = Obs r, g = Obt r : ObA→ ObB
and a collection of morphisms r : A(X, Y ) → B(Xf, Y g) in V, given for each pair X, Y
of objects of A. In particular, if f i : A → B is a finite family of quiver morphisms
such that Ob f i = ϕ does not depend on i, then there is their sum, the quiver morphism∑

i f
i : A→ B.

The Monoidal categories VQ/S can be included into a bicategory of V-spans, however,
we shall use only part of this picture. We shall need tensor products of V-span morphisms
(not in maximal generality), so we start to define them now.

Let Ai, Bi, i ∈ n, be V-quivers with ObAi = S, ObBi = R for all i ∈ n. Let
fi : Ai → Bi, i ∈ n, be V-span morphisms such that Obt fi = Obs fi+1 : S → R for all
1 ⩽ i < n. (In the case n = 0 a map Ob : S → R has to be given.) Define a V-span
morphism f = ⊗i∈nfi : ⊗i∈nS Ai → ⊗i∈nR Bi with object maps Obs f = Obs f1 : S → R,
Obt f = Obt fn : S → R by the mappings

(⊗i∈nS Ai)(X,Z) =

Y0=X,Yn=Z⊕
Yi∈S, 0⩽i⩽n

⊗i∈nAi(Yi−1, Yi)

⊕⊗i∈nfi→
Y0=X,Yn=Z⊕
Yi∈S, 0⩽i⩽n

⊗i∈nBi(Yi−1.(Obs fi), Yi.(Obt fi)) →

W0=X.(Obs f1),Wn=Z.(Obt fn)⊕
Wi∈R, 0⩽i⩽n

⊗i∈nBi(Wi−1,Wi) = (⊗i∈nR Bi)(X.(Obs f), Z.(Obt f)),
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where the last mapping is induced by identity mappings of direct summands indexed by
(Y0, . . . , Yn) and by (Y0.(Obs f1), . . . , Yn−1.(Obs fn), Yn.(Obt fn)) (by (Y0) and by (Y0.Ob)
if n = 0 and X = Y ).

When all fi : Ai → Bi are quiver morphisms with Ob fi = ϕ : S → R, the resulting
⊗i∈nfi is a quiver morphism again. In particular, if f : A → B is a V-quiver morphism,
then the V-quiver morphism

T nf = f⊗n = ⊗i∈nf : T nA = A⊗n = ⊗i∈nObAA→ T nB = B⊗n = ⊗i∈nObBB

is defined for n ⩾ 0. For example, T 1f = f : T 1A = A → T 1B = B and T 0f = kOb f :
T 0A = kObA→ T 0B = kObB. So the functors T n : VQ → VQ are defined for n ⩾ 0.

6.1.1 The tensor monad in VQ/S. For a V-quiver A consider the V-quivers T nA =
A⊗n = ⊗nA, n ⩾ 0, the tensor powers of A in VQ/ObA. Thus,

T nA(A,B) =
⊕

A0,...,An∈ObA
A0=A,An=B

A(A0, A1)⊗ · · · ⊗A(An−1, An)

for n > 0. We define also the functors T, T⩾1, T⩽1 : VQ → VQ as direct sums of T n:

TA(A,B) =
∞⊕
n=0

T nA(A,B), T⩾1A(A,B) =
∞⊕
n=1

T nA(A,B), T⩽1A = kA⊕A

on objects. On quiver morphisms f : A→ B they are defined by

Tf =
∞⊕
n=0

T nf : TA→ TB, T⩾1f =
∞⊕
n=1

T nf : T⩾1A→ T⩾1B, T⩽1f = kf ⊕ f.

Notice that T can be chosen equal to T⩽1 ◦ T⩾1, which we assume from now on.
Thus, the functor T : VQ → VQ is given by the formula

TC(X, Y ) =

m⩾0⊕
X0,...,Xm∈ObC
X0=X,Xm=Y

⊗j∈mC(Xj−1, Xj).

Therefore, its square is

TTC(X, Y ) =

g:m→n∈O⊕
X0,...,Xm∈ObC
X0=X,Xm=Y

⊗p∈n ⊗j∈g−1p C(Xj−1, Xj),
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where the summation extends over all isotonic maps g : m→ n. In general,

(T )kC(X, Y ) =

m1
g1→m2

g2→...
gk−1−→mk⊕

X0,...,Xm1
∈ObC

X0=X,Xm1
=Y

⊗jk∈mk ⊗jk−1∈g−1
k−1jk · · · ⊗j1∈g

−1
1 j2 C(Xj1−1, Xj1).

The summation extends over composable sequences of isotonic maps gp : mp → mp+1,
1 ⩽ p < k.

The endofunctor T : VQ → VQ has a structure of a monad. The multiplication is given
by the natural transformation µ : TT → T which is the sum of morphisms

(λg)−1 : ⊗p∈n ⊗j∈g−1p C(Xj−1, Xj)→ ⊗j∈mC(Xj−1, Xj).

Associativity of µ on the summand of TTTC labeled by k
f→m

g→ n is guaranteed
by equation (2.10.3). The unit η : Id → T is given by in1 : C = T 1C ↪→ TC. In the left
hand side of (

T
η◦T→ TT

µ→ T
)
= id

the image of η ◦ T is labeled by maps g : m→ 1. Such a map is unique and λm→1 = id.
This proves the above equation. In the left hand side of(

T
T◦η→ TT

µ→ T
)
= id

the image of T ◦ η is labeled by id : m → m, and λid = id. So the above equation is
proven. Thus, (T, µ, η) : VQ → VQ is a monad.

Recall that a T -algebra is an object C of VQ, equipped with a morphism α : TC → C

(the action) such that

TTC
T (α) → TC

=

TC

µ
↓

α → C

α
↓

C
η → TC

C

α
↓

=

============

For the monad T described above T -algebras are precisely V-categories.
Suppose that Aj

i are graded quivers, i ∈ I, j ∈ m. Assume that ObAj
i = Si does not

depend on j. Define S =
∏

i∈I Si. Denote by ⊗Si the tensor product in VQ/Si. There is
an isomorphism of graded quivers

κ : ⊗j∈mS ⊠i∈I A
j
i → ⊠i∈I ⊗j∈mSi

A
j
i , (6.1.1)

identity on objects, which is a direct sum of permutation isomorphisms

σ(12) : ⊗j∈m ⊗i∈I Aj
i (X

j−1
i , Xj

i )→ ⊗
i∈I ⊗j∈m A

j
i (X

j−1
i , Xj

i ),
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where Xj
i ∈ Si, 0 ⩽ j ⩽ m. In the particular case A

j
i = Ai we get the isomorphisms

κ : Tm ⊠i∈I Ai → ⊠i∈ITmAi.

They are the only non-trivial matrix elements of the embedding of functors

κI : T ⊠i∈I Ai → ⊠i∈ITAi.

6.1.2 Biunital V-quivers. A biunital quiver is a V-quiver C together with a pair of

morphisms kC η→ C
ε→ kC in VQ/ObC, whose composition is ηε = idkC. Biunital

gr-quivers are called augmented quivers by Keller [Kel06a], who studied them indepen-
dently of the present work, while analyzing [Lyu03].

Biunital quivers with arbitrary U -small sets of objects form a category denoted VQbu.
A morphism from a biunital quiver ε : A ⇄ kA : η to a biunital quiver ε : B ⇄ kB : η
is a V-quiver morphism f : A → B such that fε = ε(kf), ηf = (kf)η. The category
VQbu is equivalent to the category of V-quivers VQ via functors VQbu → VQ, (ε : C ⇄ kC :
η) 7→ C = Im(1− εη) = Ker ε, and VQ → VQbu, A 7→ T⩽1A = (pr1 : kA⊕A ⇄ kA : in1),
quasi-inverse to each other. Nevertheless, the category VQbu is technically useful.

There is a faithful (forgetful) functor F : VQbu → VQ, (ε : C ⇄ kC : η) 7→ C. The
category VQbu inherits a symmetric Monoidal structure from VQ via F , namely,

⊠i∈I
bu (Ai

ε→←
η

kAi)
def
=
(
⊠i∈IAi

⊠Iε→←
⊠Iη

⊠i∈I kAi←
λ∅→I
V

∼
k(⊠i∈IAi)

)
.

The unit object is the one-object quiver ε : k==== k : η, and the tensor product of
morphisms fi of biunital quivers is ⊠i∈Ifi. The structure isomorphism λfbu is determined
by the condition: the pair

(F, id) : VQbu = (VQbu,⊠
I
bu, λ

f
bu)→ (VQ,⊠I , λf) = VQp

is a symmetric Monoidal functor. Thus, we must have

λfbu = λf : ⊠i∈I
bu (Ai

ε→←
η

kAi)→ ⊠j∈J
bu ⊠i∈f−1j

bu (Ai

ε→←
η

kAi).

One can easily show that this is a morphism of biunital quivers. Clearly, equation (2.5.4) is
satisfied, and VQbu is, indeed, a symmetric Monoidal category, equipped with a symmetric
Monoidal functor (F, id) : VQbu → VQp.

This symmetric Monoidal structure (VQbu,⊠I
bu, λ

f
bu) translates via the equivalence T

⩽1 :
VQ → VQbu to a new symmetric Monoidal structure VQu = (VQ,⊠I

u, λ
f
u) on

VQ. Explicitly
it is given by

⊠i∈I
u Ai =

∑
i ji>0⊕

ji∈{0,1}, i∈I

⊠i∈IT jiAi =
⊕

∅ ̸=S⊂I

⊠i∈IT χ(i∈S)Ai,



174 6. The tensor comonad on quivers

where χ(i ∈ S) = 1 if i ∈ S, and χ(i ∈ S) = 0 if i /∈ S. In particular, Ob⊠i∈I
u Ai =

Ob⊠i∈IAi =
∏

i∈I ObAi. The following canonical isomorphism is implied by additivity
of ⊠,

ϑI =
[
⊠i∈I(T⩽1Ai)

∼−→
⊕

ji∈{0,1}, i∈I

⊠i∈IT jiAi
∼−→ T 0(⊠i∈IAi)⊕⊠i∈I

u Ai = T⩽1(⊠i∈I
u Ai)

]
,

and by the isomorphism⊠i∈IT 0Ai
∼→ T 0(⊠i∈IAi), consisting of identifications (λ

∅→I
V )−1 :

⊗Ik ∼→ k. Actually, ϑI : ⊠i∈I
bu T

⩽1Ai → T⩽1⊠i∈I
u Ai is an isomorphism of biunital quivers.

Therefore, for an arbitrary map f : I → J the following composition

T⩽1(⊠i∈I
u Ai)

(ϑI)−1

→ ⊠i∈I (T⩽1Ai)
λf→ ⊠j∈J ⊠i∈f−1j(T⩽1Ai)

⊠j∈Jϑf
−1j

→ ⊠j∈J T⩽1(⊠i∈f−1j
u Ai)

ϑJ→ T⩽1(⊠j∈J
u ⊠i∈f−1j

u Ai) (6.1.2)

is an isomorphism of biunital quivers. Hence, it equals T⩽1(λfu) for some uniquely deter-
mined isomorphism

λfu : ⊠
i∈I
u Ai → ⊠j∈J

u ⊠i∈f−1j
u Ai.

Uniqueness implies that it satisfies (2.10.3). Therefore, VQu = (VQ,⊠I
u, λ

f
u) is a symmetric

Monoidal category. The above equation has the form (2.17.2), so it implies that

(T⩽1, ϑI) : VQu = (VQ,⊠I
u, λ

f
u)→ (VQ,⊠I , λf) = VQp (6.1.3)

is a symmetric Monoidal functor.
In particular, the unit object 1u = ⊠∅

u () of
VQu is the V-quiver with a unique object ∗

and zero object of homomorphisms, and

(A⊠u B)
(
(A,B), (A′, B′)

)
≃


A(A,A′)⊗B(B,B′) , A ̸= A′, B ̸= B′ ,

A(A,A′)⊗B(B,B′)⊕ k⊗B(B,B′) , A = A′, B ̸= B′ ,

A(A,A′)⊗B(B,B′)⊕A(A,A′)⊗ k , A ̸= A′, B = B′ ,

A(A,A′)⊗B(B,B′)⊕A(A,A′)⊗ k⊕ k⊗B(B,B′) , A = A′, B = B′ .

(6.1.4)

The equivalence T⩽1 : VQ → VQbu is, by construction, a symmetric Monoidal equiva-
lence. Its second component is the same isomorphism ϑI in VQ, so we denote it by the
same symbol, abusing notation:

(T⩽1, ϑI) : VQu = (VQ,⊠I
u, λ

f
u)→ (VQbu,⊠

I
bu, λ

f
bu) =

VQbu.

Functor (6.1.3) decomposes as

(T⩽1, ϑI) =
(
VQu

(T⩽1,ϑI)→ VQbu
(F,id)→ VQp

)
.
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6.2 Lemma. The functor T : VQ → VQ admits a lax symmetric Monoidal structure

(T, τ̃ I) : VQu = (VQ,⊠I
u, λ

f
u)→ (VQ,⊠I , λf) = VQp.

Proof. We are going to define morphisms τ̃ I : ⊠i∈I(TAi)→ T (⊠i∈I
u Ai). Given quivers Ai

we find that
⊠i∈I(TAi) =

⊕
(mi)∈ZI⩾0

⊠i∈ITmiAi

is a direct sum over (mi) ∈ ZI⩾0. On the other hand,

T (⊠i∈I
u Ai) =

∞⊕
m=0

Tm(⊠i∈I
u Ai) =

∞⊕
m=0

pr2 S=m⊕
S⊂I×m

⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai

decomposes into direct sum over pairs (m,S), where m ∈ Z⩾0, and subset S ⊂ I ×m
satisfies the condition pr2 S = m.

Define τ̃ I : ⊠i∈I(TAi)→ T (⊠i∈I
u Ai) to be the identity map on objects (Xi)i∈I . Define

the only non-trivial matrix coefficients of τ̃ I to be the isomorphisms

τ̃ I : ⊠i∈ITmiAi
⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)Ai
κ−1

→ ⊗p∈m ⊠i∈IT χ((i,p)∈S)Ai, (6.2.1)

where Si = {p ∈ m | (i, p) ∈ S} satisfy the condition |Si| = mi for all i ∈ I. Here κ
is given by (6.1.1). If |Si| ̸= mi for some i, the corresponding matrix coefficient of τ̃ I

vanishes.
Let f : I → J be a map of finite sets. We want to verify equation (2.17.2) for (T, τ̃ I).

For a given family (Ai)i∈I of quivers it reads:

[
⊠i∈I(TAi)

λf

∼
→ ⊠j∈J ⊠i∈f−1jTAi

⊠j∈J τ̃f
−1j

→ ⊠j∈J T (⊠i∈f−1j
u Ai)

τ̃J→ T (⊠j∈J
u ⊠i∈f−1j

u Ai)
]

=
[
⊠i∈I(TAi)

τ̃ I→ T ⊠i∈I
u Ai

Tλfu

∼
→ T (⊠j∈J

u ⊠i∈f−1j
u Ai)

]
.

Given non-negative integers (mi)i∈I and m, we restrict the above equation to the corre-
sponding direct summands:[

⊠i∈I(TmiAi)
λf→ ⊠j∈J ⊠i∈f−1jTmiAi

⊠j∈J τ̃f
−1j

→
⊕

(pj)∈ZJ⩾0

⊠j∈JT pj(⊠i∈f−1j
u Ai)

τ̃J→ Tm(⊠j∈J
u ⊠i∈f−1j

u Ai)
]

=
[
⊠i∈I(TmiAi)

τ̃ I→ Tm ⊠i∈I
u Ai

Tmλfu→ Tm(⊠j∈J
u ⊠i∈f−1j

u Ai)
]
. (6.2.2)



176 6. The tensor comonad on quivers

The right hand side projects via permutation isomorphisms to summands of the middle
term, corresponding to subsets S ⊂ I×m such that pr2 S = m and mi = |S ∩ ({i}×m)|.
The left hand side uses permutation isomorphisms to summands indexed by (pj)j ∈ ZJ⩾0,
subsets Sj ⊂ f−1j × pj such that pr2 Sj = pj and mi = |Sj ∩ ({i} × pj)| for all i ∈ f−1j,
and by a subset R ⊂ J ×m such that pr2R = m and pj = |R ∩ ({j} ×m)|. Define
subsets Pj = pr2[R∩ ({j}×m)] ⊂m, then |Pj| = pj. Using the unique isotonic bijection
Pj ≃ pj we can replace Sj ⊂ f−1j ×pj with subsets S ′j ⊂ f−1j ×Pj such that pr2 S

′
j = Pj

and mi = |S ′j ∩ ({i} × Pj)|. Notice that families (R, S ′j)j∈J and subsets S ⊂ I ×m with
the required properties are in bijection. Indeed, given S we define

R = {(j, k) ∈ J ×m | ∃i ∈ f−1j : (i, k) ∈ S},
S ′j = S ∩ (f−1j ×m) ⊂ f−1j × Pj = f−1j × pr2[R ∩ ({j} ×m)].

Vice versa, given (R, S ′j)j∈J we define

S = {(i, k) ∈ I ×m | (fi, k) ∈ R, (i, k) ∈ S ′fi}.

Let i ∈ I and j = fi. Then

|S ′j ∩ ({i} × Pj)| = |S ′j ∩ ({i} ×m)| = |S ∩ (f−1j ×m) ∩ ({i} ×m)| = |S ∩ ({i} ×m)|,

so these numbers are not equal or equal to mi simultaneously. Correspondingly, the
matrix elements of both sides of (6.2.2) simultaneously vanish or give the following natural
transformations:

[
⊠i∈I ⊗mi Ai

λf→ ⊠j∈J ⊠i∈f−1j ⊗mi Ai
⊠j∈J⊠i∈f

−1jλSj∩({i}×pj)↪→pj

→

⊠j∈J ⊠i∈f−1j ⊗qj∈pj T χ((i,qj)∈Sj)Ai
⊠j∈Jκ−1

→ ⊠j∈J ⊗qj∈pj ⊠i∈f−1j T χ((i,qj)∈Sj)Ai

⊠j∈JλPj↪→m

→ ⊠j∈J ⊗k∈mT χ((j,k)∈R) ⊠i∈f−1j T χ((i,k)∈S
′
j)Ai

κ−1

→ ⊗k∈m ⊠j∈JT χ((j,k)∈R) ⊠i∈f−1j T χ((i,k)∈S
′
j)Ai

]
=
[
⊠i∈I ⊗mi Ai

⊠i∈IλS∩({i}×m)↪→m

→ ⊠i∈I ⊗k∈mT χ((i,k)∈S)Ai
κ−1

→

⊗k∈m ⊠i∈IT χ((i,k)∈S)Ai
⊗mλf→ ⊗k∈m ⊠j∈J ⊠i∈f−1j T χ((fi,k)∈R)T χ((i,k)∈S

′
j)Ai

= ⊗k∈m ⊠j∈J T χ((j,k)∈R) ⊠i∈f−1j T χ((i,k)∈S
′
j)Ai

]
.

The above maps can be specified on objects Xn
i ∈ ObAi for i ∈ I, 0 ⩽ n ⩽ mi. Using

objects An
i = Ai(X

n−1
i , Xn

i ) ∈ ObV, 1 ⩽ n ⩽ mi, one can rewrite the above equation in
terms of symmetric Monoidal category (V,⊗, λf) only. By Lemma 2.33 and Remark 2.34
the obtained equation between natural transformations holds automatically. Therefore,
(T, τ̃ I) is a lax symmetric Monoidal functor.
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6.3 Proposition. The endofunctor T⩾1 : VQ → VQ admits a unique lax symmetric
Monoidal structure (T⩾1, τ I) : VQu = (VQ,⊠I

u, λ
f
u)→ (VQ,⊠I

u, λ
f
u) =

VQu such that

(T, τ̃ I) = (T⩽1, ϑI) ◦ (T⩾1, τ I) : (VQ,⊠I
u, λ

f
u)→ (VQ,⊠I , λf). (6.3.1)

Proof. The lax symmetric Monoidal functor (T, τ̃ I) : VQu → VQp of Lemma 6.2 admits a
lifting (T, τ̃ I) : VQu → VQbu such that

(T, τ̃ I) =
(
VQu

(T,τ̃ I)→ VQbu
(F,id)→ VQp

)
.

We abuse the notation because the already defined transformation τ̃ I : ⊠i∈I(TAi) →
T (⊠i∈I

u Ai) is a morphism of biunital quivers. Hence, it is a natural transformation between
functors VQu → VQbu. Equations (2.6.1) for new and old transformations coincide. Thus,
(T, τ̃ I) : VQu → VQbu is a lax symmetric Monoidal functor.

Since (T⩽1, ϑI) : VQu → VQbu is a symmetric Monoidal equivalence, it has a quasi-
inverse (Ker ε, γ) : VQbu → VQu, (ε : C ⇄ kC : η) 7→ Ker ε, which gives (T⩾1, τ I) up to
an isomorphism. Actually, since T = T⩽1 ◦ T⩾1 and ϑI is invertible, there is a unique
natural transformation τ I : ⊠i∈I

u (T⩾1Ai)→ T⩾1(⊠i∈I
u Ai) such that equation (6.3.1) holds.

In particular, the composition

T⩽1 ⊠i∈I
u (T⩾1Ai)

(ϑI)−1

→ ⊠i∈I (TAi)
τ̃ I→ T (⊠i∈I

u Ai) = T⩽1T⩾1(⊠i∈I
u Ai) (6.3.2)

equals T⩽1(τ I). Clearly, (T⩾1, τ I) is a lax symmetric Monoidal functor.

6.4 Remark. The presentation

(T⩾1, τ I) =
(
VQu

(T,τ̃ I)→ VQbu
(Ker ε,id)→ VQu

)
implies that

τ =
(
⊠i∈I
u T⩾1Ai =

⊕
0̸=(mi)∈ZI⩾0

⊠i∈ITmiAi

∑
τ̃→ T⩾1 ⊠i∈I

u Ai

)
. (6.4.1)

6.5 The tensor comonad T⩾1. The functor T⩾1 : VQ → VQ is given by the formula

T⩾1C(X, Y ) =
m>0⊕

X0,...,Xm∈ObC
X0=X,Xm=Y

⊗j∈mC(Xj−1, Xj). (6.5.1)

Therefore, its square is

T⩾1T⩾1C(X, Y ) =

n>0
g:m↠n∈O⊕

X0,...,Xm∈ObC
X0=X,Xm=Y

⊗p∈n ⊗j∈g−1p C(Xj−1, Xj), (6.5.2)



178 6. The tensor comonad on quivers

where the summation extends over all isotonic surjections g : m ↠ n with non-empty n.
In general,

(T⩾1)kC(X, Y ) =

m1

g1
↠m2

g2
↠...

gk−1
↠ mk

mk>0⊕
X0,...,Xm1

∈ObC
X0=X,Xm1

=Y

⊗jk∈mk ⊗jk−1∈g−1
k−1jk · · · ⊗j1∈g

−1
1 j2 C(Xj1−1, Xj1).

The summation extends over composable sequences of isotonic surjections gp : mp ↠
mp+1, 1 ⩽ p < k, mk > 0, that is, over non-empty plane staged trees with k stages.

The endofunctor T⩾1 : VQ → VQ has a structure of an augmented comonad (T⩾1,∆, ε, η).
The comultiplication is given by the natural transformation ∆ : T⩾1 → T⩾1T⩾1 which is
a sum of morphisms

λg : ⊗j∈mC(Xj−1, Xj)→ ⊗p∈n ⊗j∈g
−1p C(Xj−1, Xj). (6.5.3)

That is, for each summand of (6.5.2) labeled by an isotonic surjection g : m ↠ n there
exists a unique summand of (6.5.1) which is mapped to it by λg, namely, the summand
labeled by the source m of g. Coassociativity of ∆[⊕

k>0

⊗j∈k(C)j
∆→

⊕
h:k↠n̸=0

⊗p∈n ⊗j∈h−1p (C)j
T⩾1(∆)→

⊕
k
f
↠m

g
↠n̸=0

⊗p∈n ⊗q∈g−1p ⊗j∈f−1q(C)j

]
=
[⊕
k>0

⊗j∈k(C)j
∆→

⊕
f :k↠m̸=0

⊗q∈m⊗j∈f−1q (C)j
∆→

⊕
k
f
↠m

g
↠n̸=0

⊗p∈n⊗q∈g−1p⊗j∈f−1q(C)j

]
(6.5.4)

is proven as follows. Only summand labeled by h = g ◦f : k ↠ n and no other is mapped

to the summand labeled by k
f
↠ m

g
↠ n in the left hand side. Therefore the required

equation reduces to[
⊗j∈k(C)j

λg◦f→ ⊗p∈n ⊗j∈f−1g−1p(C)j
⊗p∈nλf :f

−1g−1p→g−1p

→ ⊗p∈n ⊗q∈g−1p ⊗j∈f−1q (C)j
]

=
[
⊗j∈k(C)j

λf→ ⊗q∈m ⊗j∈f−1q(C)j
λg→ ⊗p∈n ⊗q∈g−1p ⊗j∈f−1q (C)j

]
.

This is precisely property (2.10.3) for λ.
The counit is given by the transformation ε = pr1 : T⩾1 → Id, pr1 : T⩾1A → A ∈

VQ/ObA. We have (
T⩾1 ∆→ T⩾1T⩾1 ε→ T⩾1

)
= id,

because for each m ∈ Z>0 there exists only one isotonic surjection g : m ↠ 1. Further-
more, λm→1 = id. Also (

T⩾1 ∆→ T⩾1T⩾1 T⩾1(ε)→ T⩾1
)
= id, (6.5.5)
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because for each m ∈ Z>0 there exists only one isotonic surjection g : m ↠ n such that
|g−1p| = 1 for each p ∈ n, namely, id : m → m. Furthermore, λidm = id. Therefore,
(T⩾1,∆, ε) is a comonad.

The morphism of comonads η : Id → T⩾1 : VQ → VQ is given by the transformation
η = in1 : A→ T⩾1A ∈ VQ/ObA. Clearly, η · ε = in1 · pr1 = idA and(

A
η→ T⩾1A

∆→ T⩾1T⩾1A
)
=
(
A

η→ T⩾1A
η→ T⩾1T⩾1A

)
,

because there is only one surjection g : 1 ↠ n, namely, id1. Thus, (T⩾1,∆, ε, η) is an
augmented comonad.

6.6 The T⩾1-comodule T . The functor T : VQ → VQ, given by the formula

TC = ⊕m⩾0 ⊗j∈m C,

has a T⩾1-comodule structure (coaction)

∆̃ = T⩽1(∆) : T → TT⩾1 = T ◦ T⩾1 = T⩾1 · T.

Indeed, applying T⩽1 to (6.5.4) we get

[
TC

∆̃→ TT⩾1C
T (∆)→ TT⩾1T⩾1C

]
=
[
TC

∆̃→ TT⩾1C
∆̃(T⩾1)→ TT⩾1T⩾1C

]
,

so coaction is coassociative. Applying T⩽1 to (6.5.5) we get

(
TC

∆̃→ TT⩾1C
T (ε)→ TC

)
= idC,

so coaction is counital.
Notice that

TT⩾1C = ⊕g:m↠n ⊗p∈n ⊗j∈g
−1pC,

where the summation extends over all isotonic surjections g : m ↠ n. The components
of ∆̃ are again given by (6.5.3).

In general,

T (T⩾1)k−1C =
⊕

m1

g1
↠m2

g2
↠...

gk−1
↠ mk

⊗jk∈mk ⊗jk−1∈g−1
k−1jk · · · ⊗j1∈g

−1
1 j2 C.

The summation extends over composable sequences of isotonic surjections gp : mp ↠
mp+1, 1 ⩽ p < k, that is, over all plane staged trees with k stages.
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6.7 Coalgebras over the comonad T⩾1. Let us describe coalgebras δ : C → T⩾1C

over T⩾1 : VQ → VQ (see Definition 5.2). Since in equation
(
C

δ→ T⩾1C
ε→ C

)
= idC the

morphism ε is in VQ/ObC, we find that Ob δ = idObC, that is, δ ∈ VQ/ObC. Therefore,
the class of all T⩾1-coalgebras is the union over all U -small sets S of classes of coalgebras
over the comonad T⩾1 : VQ/S → VQ/S.

A T⩾1-coalgebra structure δ : C → T⩾1C of an object C of VQ gives a sequence of

morphisms δ pr1 = ∆
(1)

= idC : C → C, δ pr2 = ∆
(2)

= ∆ : C → C ⊗ C, δ pr3 = ∆
(3)

=
∆(1⊗∆) = ∆(∆⊗1) : C→ C⊗3, etc. In the other words, a T⩾1-coalgebra is a coassociative
coalgebra (C,∆) in VQ/ObC together with a morphism δ : C→ T⩾1C such that

δ prk = ∆
(k)

: C→ C⊗k (6.7.1)

for all k ⩾ 1, where ∆
(k)

is an iteration of ∆.
The countable direct sums ⊕∞i=1Ai in

VQ/S are given by

(⊕∞i=1Ai)(X, Y ) =
∞⊕
i=1

(
Ai(X, Y )

)
, X, Y ∈ S.

For a given coassociative coalgebra (C,∆) there exists a morphism δ : C → T⩾1C which
satisfies (6.7.1) if and only if for all objects X, Y of C the map

∆
(•)

= (∆
(1)
,∆

(2)
, . . . ,∆

(k)
, . . . ) : C(X, Y )→

∞∏
k=1

C⊗k(X, Y )

factors through β : ⊕∞k=1C
⊗k(X, Y ) ↪→

∏∞
k=1 C

⊗k(X, Y ). In the cases V = gr or V = dg
this condition means that for each z ∈ C(X, Y )d there exists a positive integer k such

that z∆
(k)

= 0 (thus, z∆
(m)

= 0 for all m ⩾ k). In these cases the following statement
becomes obvious.

6.8 Proposition. A T⩾1-coalgebra C in VQ is a coassociative coalgebra (C,∆ : C→ C⊗C)
in the monoidal category VQ/ObC such that for each pair X, Y of objects of C

C(X, Y ) = colim
k→∞

Ker
(
∆

(k)
: C(X, Y )→ C⊗k(X, Y )

)
. (6.8.1)

The class of coalgebras in Q which satisfy (6.8.1) is studied by Keller [Kel06a] under
the name of cocomplete cocategories.

Proof. Let (C,∆ : C → C ⊗ C) be a coassociative coalgebra in the monoidal category
VQ/ObC. Denote by prk :

∏∞
m=1 C

⊗m(X, Y ) → C⊗k(X, Y ) and by ink : C⊗k(X, Y ) →
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∏∞
m=1 C

⊗m(X, Y ) the natural projection and injection. Consider the idempotent endo-
morphism ϕn = 1 −

∑n
k=1 prk · ink :

∏∞
k=1 C

⊗k(X, Y ) →
∏∞

k=1 C
⊗k(X, Y ). Its kernel is

Kerϕn = ⊕nk=1C
⊗k(X, Y ). We have∐

k⩾1

C⊗k(X, Y ) ≃ ⊕∞k=1C
⊗k(X, Y ) = colim

n→∞
⊕nk=1C

⊗k(X, Y ) = colim
n→∞

Kerϕn.

By definition of kernel there is a pull-back square

Ker(∆
(•) · ϕn)

∆
(•)

→Kerϕn

C(X, Y )
↓

∩

∆
(•)

→
∏∞

k=1 C
⊗k(X, Y )

↓

∩

ϕn →
∏∞

k=1 C
⊗k(X, Y ).

Since countable filtering colimits in V commute with finite limits it induces the pull-back
square

colim
n→∞

Ker(∆
(•) · ϕn) →⊕∞k=1C

⊗k(X, Y )

C(X, Y )

α
↓
∩

∆
(•)→
δ

........
........

........
........

.....→

∏∞
k=1 C

⊗k(X, Y )

β↓

∩

We claim that α is an isomorphism if and only if there exists δ : C(X, Y ) →
⊕∞k=1C

⊗k(X, Y ) such that ∆
(•)

= δ · β. Clearly, the first implies the second. Conversely,
the second implies that

C(X, Y )
δ →⊕∞k=1C

⊗k(X, Y )

C(X, Y )
⇃⇂

www
∆

(•)

→
∏∞

k=1 C
⊗k(X, Y )

β↓

∩

is another pull-back square, since β is a monomorphism. Thus, α is an isomorphism.
Therefore, C is a T⩾1-coalgebra if and only if α is an isomorphism, that is,

C(X, Y ) = colim
n→∞

Ker
(
(0, . . . , 0,∆

(n+1)
,∆

(n+2)
, . . . ) : C(X, Y )→

∏∞
k=1 C

⊗k(X, Y )
)

= colim
n→∞

Ker
(
(0, . . . , 0,∆

(n+1)
, 0, 0, . . . ) : C(X, Y )→

∏∞
k=1 C

⊗k(X, Y )
)
.

This implies the proposition.
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Definition 5.2 tells that morphisms of T⩾1-coalgebras are V-quiver morphisms f : C→
D such that (

C
f→D

δ→ T⩾1D
)
=
(
C

δ→ T⩾1C
T⩾1f→ T⩾1D

)
.

Equivalently, (
C

f→D
∆→D⊗D

)
=
(
C

∆→ C⊗ C
f⊗f→D⊗D

)
. (6.8.2)

This describes the category VQT⩾1 of T⩾1-coalgebras.

6.9 Example. Any quiver C ∈ Ob VQ can be turned into a coassociative coalgebra with
zero comultiplication (C,∆ = 0 : C → C⊗ C). The corresponding T⩾1-coalgebra (C, in1 :
C→ T⩾1C) is that of Example 5.11. It uses the augmentation homomorphism in1 : Id→
T⩾1.

6.10 Remark. Let C, D be T⩾1-coalgebras, and let ∆ : C → C ⊗ C, ∆ : D → D ⊗ D

be the corresponding coassociative comultiplications. Let f, g : C→ D be T⩾1-coalgebras
morphisms such that Ob f = Ob g. Then the morphism of quivers f + g : C→ D is well
defined. It is a T⩾1-coalgebra morphism if and only if

(C
f+g→D

∆→D⊗D) = (C
∆→ C⊗ C

(f+g)⊗(f+g)→D⊗D).

This equation is equivalent to

(C
∆→ C⊗ C

f⊗g+g⊗f→D⊗D) = 0.

In particular, if the structure of a T⩾1-coalgebra on C is given by the augmentation
morphism as in Example 6.9, then ∆ = 0 : C → C ⊗ C and the above equation holds
independently of f, g. In this case, the sum of any two T⩾1-coalgebra morphisms is a
T⩾1-morphism as well.

The following result is a corollary of Lemma 5.3. It is independently obtained for
graded k-linear quivers by Keller [Kel06a, Lemma 5.2], who omits the proof.

6.11 Corollary (cf. Keller [Kel06a]). Let C be a T⩾1-coalgebra, and let A be a V-quiver.
Then there is a natural bijection

VQT⩾1(C, T⩾1A)→ VQ(C,A), (f : C→ T⩾1A) 7→
(
C

f→ T⩾1A
pr1→A

)
.

Given a coassociative coalgebra (C,∆ : C→ C⊗C) in the monoidal category VQ/ObC
we construct a coassociative coalgebra structure ∆′ on the object T⩽1C = kC ⊕ C of the
category VQ/ObC, namely,

∆′ =
(
T⩽1C

pr1→ C
∆→ C⊗ C

in1⊗ in1→ T⩽1C⊗ T⩽1C
)
. (6.11.1)
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The above ∆′ satisfies conditions

η∆′ = 0, ∆′(1⊗ ε) = 0, ∆′(ε⊗ 1) = 0, (6.11.2)

where η = in0 : kC→ T⩽1C, ε = pr0 : T
⩽1C→ kC.

On the other hand, if ε : A ⇄ kA : η satisfies ηε = idkA in VQ/ObA, then A

decomposes as kC⊕ C. Any coassociative comultiplication ∆′ : A→ A⊗A in VQ/ObA
which satisfies equations (6.11.2) has a unique presentation of the form

∆′ =
(
A

pr2→ C
∆→ C⊗ C

in2⊗ in2→A⊗A
)

with

∆ = ∆′
∣∣
C
: C→ C⊗ C. (6.11.3)

Furthermore, such ∆′ gives rise to the coassociative comultiplication

∆0 = ∆′ + idA⊗η + η ⊗ idA−εη ⊗ η, (6.11.4)

so that (A,∆0, ε) is a counital coassociative coalgebra in VQ/ObA, and η : kA→ A is a
homomorphism of counital coalgebras. In other words, the object (A, ε, η) is a counital
coassociative coalgebra in VQbu/ObA. All these statements are straightforward.

Vice versa, a counital coassociative coalgebra in VQbu/ObA can be interpreted as
a homomorphism of counital coalgebras η : kA → (A,∆0, ε) in VQ/ObA, that is, an
augmented counital coassociative coalgebra (A,∆0, ε, η). It gives rise to the coassociative
comultiplication

∆′ = ∆0 − idA⊗η − η ⊗ idA+εη ⊗ η (6.11.5)

which satisfies equations (6.11.2). It corresponds in turn to the coassociative comultipli-
cation ∆ = ∆0

∣∣
C
: C→ C⊗ C in VQ/ObC.

Morphisms f : A→ B of considered coalgebras are required to preserve comultiplica-
tion: (

A
f→B

∆0→B⊗B
)
=
(
A

∆0→A⊗A
f⊗f→B⊗B

)
(and similarly for ∆′), and to preserve ε, η:(

A
f→B

ε→ kB
)
=
(
A

ε→ kA kf→ kB
)
,(

kA η→A
f→B

)
=
(
kA kf→ kB η→B

)
.

This gives categories of coalgebras of various kinds. In particular, we have the category
acVQ of augmented counital coassociative coalgebras (A,∆0, ε, η) in

VQ, whose morphisms
are required to satisfy all three identities.

We summarize the above remarks in the following lemma.
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6.12 Lemma. Formulas (6.11.1), (6.11.3)–(6.11.5) define equivalences f 7→ T⩽1f , C 7→
(pr0 : T

⩽1C ⇄ T 0C : in0) of the category cVQ of coassociative coalgebras (C,∆) in VQ with
the category acVQ and the following two categories

{(A,∆′, ε, η) ∈ VQ | ηε = 1, η∆′ = 0, ∆′(1⊗ ε) = 0, ∆′(ε⊗ 1) = 0,

∆′ – coassociative},
cVQbu = {counital coassociative coalgebras A in VQbu}.

In particular, categories of coalgebras with fixed set of objects of the four above types are
equivalent.

This statement is dual to the usual procedure of adjoining a unit to an associative
algebra.

6.13 Example. Let B be a V-quiver. Then A = TB = T⩽1T⩾1B has comultiplication
∆0 : A→ A⊗A, whose iterations

∆
(0)
0 = pr0 : TB→ kB, ∆

(1)
0 = idA, ∆

(2)
0 = ∆0,

∆
(r)
0 = ∆0(∆

(r−1)
0 ⊗ 1) : A→ T rA for r ⩾ 2

are described as follows. Their matrix coefficients are given by the isomorphisms (∆
(r)
0 )m1...mr

n

= λf : T nB → ⊗i∈rTmiB, where (f : n → r) ∈ O has |f−1i| = mi for all i ∈ r. The
V-quiver A = TB also has the non-counital comultiplication ∆′ : A→ A⊗A (see (6.11.1))
whose iterations can be defined as ∆′(0) = pr0 : TB→ kB, ∆′(1) = idA− pr0 · in0 : TB→
TB, ∆′(2) = ∆′, ∆′(r) = ∆′(∆′(r−1) ⊗ 1) : A→ T rA for r ⩾ 2. The reason for such a defi-
nition of ∆′(0), ∆′(1) is that matrix coefficients of all ∆′(r) are given by the isomorphisms
(∆′(r))m1...mr

n = λf : T nB → ⊗i∈rTmiB, if f is surjective, where (f : n → r) ∈ O has
|f−1i| = mi for all i ∈ r. If f is not surjective, the coefficient (∆′(r))m1...mr

n vanishes.

6.14 Proposition. The category acVQ of augmented counital coassociative coalgebras in
VQ has a symmetric Monoidal structure. The tensor product of a family ((Ai,∆0, ε, η))i∈I
is ⊠i∈IAi equipped with the operations

∆0 =
[
⊠i∈IAi

⊠i∈I∆0→ ⊠i∈I (Ai ⊗Ai)
κ−1

→ (⊠i∈IAi)⊗ (⊠i∈IAi)
]
,

ε =
[
⊠i∈IAi

⊠i∈Iε→ ⊠i∈I T 0Ai
κ−1

→ T 0 ⊠i∈I Ai

]
,

η =
[
T 0 ⊠i∈I Ai

κ→ ⊠i∈I T 0Ai
⊠i∈Iη→ ⊠i∈I Ai

]
.

The isomorphisms λf : ⊠i∈IAi → ⊠j∈J ⊠i∈f−1j Ai are those of VQp. The symmetric
Monoidal category (acVQ,⊠I , λf) is denoted acVQp.

Proof. The proof is by direct computations. It is left as an exercise to the reader.
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6.15 Lax symmetric Monoidal comonad T⩾1. Now we combine the lax symmetric
Monoidal structure of the functor T⩾1 with its comonad structure.

6.16 Proposition. The data ((T⩾1, τ I),∆, ε) : (VQ,⊠I
u, λ

f
u) → (VQ,⊠I

u, λ
f
u) constitute a

lax symmetric Monoidal comonad.

Proof. Let us prove that ε = pr1 : T
⩾1 → Id : VQu → VQu is a Monoidal transformation.

Equation (2.20.1) reads:

⊠I
uε =

[
⊠I
u(T

⩾1Ai)
τ I→ T⩾1(⊠I

uAi)
ε→ ⊠I

u Ai

]
for all quivers Ai. Applying T

⩽1 we rewrite this equation in equivalent form

⊠i∈I pr0,1 =
[
⊠i∈ITAi

τ̃ I→ T (⊠i∈I
u Ai)

pr0,1→ T⩽1 ⊠i∈I
u Ai

(ϑI)−1

→ ⊠i∈I T⩽1Ai

]
,

where pr0,1 = T⩽1ε : TA → T⩽1A is the natural projection. That is, for all (mi) ∈ ZI⩾0

and m ∈ {0, 1}

τ̃ I · prm =
(
⊠i∈ITmiAi

⊠I pr0,1→ ⊠i∈I T⩽1Ai
ϑI−→ T⩽1 ⊠i∈I

u Ai
prm→ Tm ⊠i∈I

u Ai

)
.

The target decomposes over subsets S ⊂ I ×m such that pr2 S = m. The non-trivial
components of τ̃ I satisfy the equation mi = |S ∩ ({i} ×m)|. In this case the inequalities
mi ⩽ m ⩽ |S| ⩽

∑
i∈Imi imply the following. If some of mi are greater than 1, then both

sides vanish. If mi ⩽ 1 for all i ∈ I, the equation can be written in short form

τ̃ I = ϑI : ⊠i∈ITmiAi → Tm ⊠i∈I
u Ai.

If all mi = 0, then the only non-vanishing component of τ̃ I corresponds to m = 0, S = ∅,
and both sides are identity maps. If all mi ∈ {0, 1} and mj = 1 for some j ∈ I, then
the only non-vanishing component from (6.2.1) corresponds to m = 1, and S ⊂ I × 1
such that i × 1 ∈ S if and only if mi = 1. Such component of τ̃ I is an embedding, that
coincides with ϑI . Therefore, ε is a Monoidal transformation.

Let us prove that comultiplication ∆ : T⩾1 → T⩾1T⩾1 : VQu → VQu is a Monoidal

transformation. Equivalently, coaction ∆̃
def
= T⩽1∆ : T → T ◦ T⩾1 : VQu → VQp is a

Monoidal transformation. Equation (2.20.1) takes the form

VQ
I

T I →
∆̃I⇓

(T⩾1)I ·T I
→

VQ
I

VQ

⊠Iu↓

T⩾1·T
→

ψI

⇐=
==
==
==
==
=

VQ

⊠I↓
=

VQ
I T I → VQ

I

τ̃ I

⇐=
==
==
==
==
==

VQ

⊠Iu

↓ T→̃
∆⇓

T⩾1·T
→

VQ

⊠I

↓
(6.16.1)
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for each I ∈ Ob S, where the transformation

ψI =

VQ
I (T⩾1)I→ VQ

I T I → VQ
I

VQ

⊠Iu↓

T⩾1
→

τ I

⇐=
==
==
==
==

VQ

⊠Iu↓

T
→

τ̃ I

⇐=
==
==
==
==

VQ

⊠I↓

turns (T⩾1 · T, ψI) into a lax symmetric Monoidal functor.

6.17 Lemma. The natural transformation

ψI =
[
⊠I(TT⩾1Ai)

τ̃ I→ T (⊠I
u(T

⩾1Ai))
T (τ I)→ TT⩾1(⊠I

uAi)
]

is the map

⊠i∈I
⊕

gi:mi↠ni

⊗t∈niT g
−1
i tAi

τ̃ I→
⊕
n⩾0

⊗q∈n
∀q ∃i ri(q)>0⊕
ri(q)⩾0

⊠i∈IT ri(q)Ai

T (τ I)→
⊕
g:m↠n

⊗q∈n ⊗p∈g−1q

pr2 S=m⊕
S⊂I×m

⊠i∈IT χ((i,p)∈S)Ai.

For each summand of the target there is only one summand of the source mapped into it
non-trivially. Namely, for each isotonic surjection g : m ↠ n and subset S ⊂ I ×m such
that pr2 S = m, there is a unique family of isotonic surjections (gi : mi ↠ ni)i∈I and the
permutation isomorphism[

⊠i∈I ⊗t∈ni T g
−1
i tAi

⊠i∈Iλ[(1×g)S]∩({i}×n)↪→n

→

⊠i∈I ⊗q∈nT χ((i,q)∈(1×g)S) ⊗S∩({i}×g−1q) Ai
κ−1

→ ⊗q∈n ⊠i∈I ⊗S∩({i}×g−1q) Ai

⊗q∈n⊠i∈IλS∩({i}×g−1q)↪→g−1q

→ ⊗q∈n ⊠i∈I ⊗p∈g−1q T χ((i,p)∈S)Ai

⊗q∈nκ−1

→ ⊗q∈n ⊗p∈g−1q ⊠i∈I T χ((i,p)∈S)Ai

]
(6.17.1)

giving all non-trivial matrix elements of ψI .

Proof. For each summand of the third term, labeled by (g : m ↠ n, S), there is only
one summand of the second term non-trivially mapped into it, namely, the one labeled
by (n, (ri(q))q∈n), where ri(q) = |S ∩ ({i} × g−1q)|. For each summand of the second
term, labeled by (n, (ri(q))q∈n), there is only one summand of the first term non-trivially
mapped into it, namely, the one labeled by(

mi =
∑
q∈n

ri(q), ni = |{q ∈ n | ri(q) > 0}|, gi
)
i∈I ,
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where

gi : mi ≃ S ∩ ({i} ×m)
1×g
▷
[
(1× g)S

]
∩ ({i} × n) ≃ ni

corresponds to the partition of mi =
∑

q∈n ri(q) into ni non-vanishing summands ri(q).
The discussed matrix element is given by (6.17.1).

Equation (6.16.1) that we are proving can be rewritten as follows:

⊠I(TAi)
τ̃ I→ T (⊠I

uAi)

=

⊠I(TT⩾1Ai)

⊠I(∆̃)i↓
ψI→ TT⩾1(⊠I

uAi)

∆̃↓

where ∆̃ = T⩽1(∆). For each summand of the target labeled by
(
g : m ↠ n, S ⊂ I ×m |

pr2 S = m
)
, there is a unique summand of the source mapped non-trivially to it by

ψI ◦ (⊠I(∆̃)i), namely, the one labeled by (mi)i∈I in

⊠I(TAi) =
⊕

(mi)∈ZI⩾0

⊠i∈ITmiAi.

The corresponding matrix element is a functorial isomorphism. Its explicit form can be
obtained by Lemma 6.17 and by formula (6.5.3) for matrix elements of ∆̃.

For the same summand of the target there is a unique summand of

T (⊠I
uAi) =

∞⊕
m=0

pr2 S=m⊕
S⊂I×m

⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai,

namely, the one labeled by (m,S) which is mapped to it by ∆̃ non-trivially. The cor-
responding matrix element is a functorial isomorphism. Furthermore, there is a unique
summand of the source mapped non-trivially to the previous one by τ̃ I , namely, the one
labeled by (m′i)i∈I , where

m′i = |S ∩ ({i} ×m)| =
∑
q∈n
|S ∩ ({i} × g−1q)| =

∑
q∈n

ri(q) = mi.

The non-trivial matrix elements of both sides of equation ψI ◦ (⊠I(∆̃)i) = ∆̃ ◦ τ̃ I are
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functorial isomorphisms presented below:[
⊠i∈I ⊗mi Ai

⊠i∈Iλgi→ ⊠i∈I ⊗t∈niT g
−1
i tAi

⊠i∈Iλ[(1×g)S]∩({i}×n)↪→n

→

⊠i∈I ⊗q∈nT χ((i,q)∈(1×g)S) ⊗S∩({i}×g−1q) Ai
κ−1

→ ⊗q∈n ⊠i∈I ⊗S∩({i}×g−1q) Ai

⊗q∈n⊠i∈IλS∩({i}×g−1q)↪→g−1q

→ ⊗q∈n ⊠i∈I ⊗p∈g−1q T χ((i,p)∈S)Ai

⊗q∈nκ−1

→ ⊗q∈n ⊗p∈g−1q ⊠i∈I T χ((i,p)∈S)Ai

]
=
[
⊠i∈I ⊗mi Ai

⊠i∈IλS∩({i}×m)↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)Ai
κ−1

→

⊗p∈m ⊠i∈IT χ((i,p)∈S)Ai
λg→ ⊗q∈n ⊗p∈g−1q ⊠i∈I T χ((i,p)∈S)Ai

]
.

The above maps can be specified on objects Xn
i ∈ ObAi for i ∈ I, 0 ⩽ n ⩽ mi. Using

objects An
i = Ai(X

n−1
i , Xn

i ) of V, 1 ⩽ n ⩽ mi, one can rewrite the above equation in
terms of symmetric Monoidal category (V,⊗, λf) only. By Lemma 2.33 and Remark 2.34
the obtained equation between natural transformations holds automatically. Therefore,
all matrix elements of ψI ◦(⊠I(∆̃)i) and ∆̃◦ τ̃ I coincide, and the proposition is proven.

6.18 Corollary. The category VQuT⩾1 = (VQT⩾1,⊠I
u, λ

f
u) of T

⩾1-coalgebras in VQ is sym-
metric Monoidal.

We shall often use T⩾1-coalgebras in the sequel. Let us describe in more familiar terms
the symmetric Monoidal structure of the category VQuT⩾1 obtained in Remark 5.12. As
noticed in Section 6.7 a T⩾1-coalgebra δ : C → T⩾1C in VQ determines a coassociative
coalgebra ∆ = δ · pr2 : C → C ⊗ C. From ∆ we obtain via Lemma 6.12 a counital
coassociative comultiplication ∆0 : T

⩽1C→ T⩽1C⊗T⩽1C on T⩽1C = (ε = pr0 : kC⊕C ⇄
kC : in0 = η) with the counit ε. In particular, a T⩾1-coalgebra C in VQ gives rise to
a counital coassociative coalgebra T⩽1C in VQ/ObC with the augmentation coalgebra
homomorphism η : kC→ T⩽1C.

Using decompositions T⩽1C = kC⊕ C and

T⩽1C⊗ T⩽1C = kC⊗ kC⊕ kC⊗ C⊕ C⊗ kC⊕ C⊗ C

we can represent the comultiplication ∆0 in T
⩽1C by the matrix

∆0 =

(
λ∅→2 0 0 0
0 λ . I λI . ∆

)
.

6.19 Proposition. The full and faithful functor T⩽1 : VQT⩾1 → acVQ gives rise to a
symmetric Monoidal functor (T⩽1, ϑI) : VQuT⩾1 → acVQp.

Proof. The considered functor is a composition of the full and faithful embedding ι :
VQT⩾1 ↪→ cVQ and the equivalence T⩽1 : cVQ → acVQ due to Lemma 6.12. Thus, it is full
and faithful itself.
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Let Ci be T
⩾1-coalgebras for i ∈ I. The quiver ⊠i∈I

u Ci has a structure of a T⩾1-coalge-
bra, described in Remark 5.12. The augmented counital coalgebra (T⩽1 ⊠i∈I

u Ci,∆0, ε, η)
is associated with it. Let us prove that ϑI : ⊠i∈IT⩽1Ci → T⩽1 ⊠i∈I

u Ci is an isomorphism
in acVQ, where the first augmented counital coalgebra structure ⊠i∈I(T⩽1Ci,∆0, ε, η) is
obtained via Proposition 6.14.

We have ε =
(
T⩽1Ci

pr0→ T 0Ci = T 0T⩽1Ci
)
and η =

(
T 0T⩽1Ci = T 0Ci

in0→ T⩽1Ci
)
.

First of all ϑI preserves the counit ε:

⊠i∈IT⩽1Ci
ϑI → T⩽1 ⊠i∈I

u Ci
pr0 → T 0 ⊠i∈I

u Ci

=

⊠i∈IT 0Ci

⊠I pr0↓
===⊠i∈IT 0T⩽1Ci κ−1

→ T 0 ⊠i∈I T⩽1Ci ===
T 0ϑI

ε

→
T 0T⩽1 ⊠i∈I

u Ci

wwwwwε

→

Indeed, both paths give identity map on ⊠i∈IT 0Ci, and vanish on other direct summands
of the source. Inverting arrows and replacing ε with η, pr0 with in0, we conclude that ϑI

preserves the augmentation η.
Let us prove that ϑI agrees with the comultiplication ∆0. This is expressed by the left

pentagon of the diagram:

⊠i∈IT⩽1Ci
ϑ → T⩽1 ⊠i∈I

u Ci

⊠i∈I(T⩽1Ci ⊗ T⩽1Ci)

⊠I∆0↓
⊠i∈I
u Ci

pr1↓

(⊠i∈IT⩽1Ci)⊗ (⊠i∈IT⩽1Ci)

κ−1

↓
T⩾1 ⊠i∈I

u Ci

δ↓

=

(T⩽1 ⊠i∈I
u Ci)⊗ (T⩽1 ⊠i∈I

u Ci)

ϑ⊗ϑ↓
pr1⊗pr1→

∆0

← (⊠i∈I
u Ci)⊗ (⊠i∈I

u Ci)

pr2↓

(6.19.1)

Composing the left pentagon with the quiver maps

(ε⊗ 1)(λ . I)−1, (1⊗ ε)(λI . )−1 : (T⩽1 ⊠i∈I
u Ci)⊗ (T⩽1 ⊠i∈I

u Ci)→ T⩽1 ⊠i∈I
u Ci

we get the map ϑ in both sides of the obtained equation. Thus, it remains to compose
the left pentagon with the projection

pr1⊗ pr1 : (T
⩽1 ⊠i∈I

u Ci)⊗ (T⩽1 ⊠i∈I
u Ci)→ (⊠i∈I

u Ci)⊗ (⊠i∈I
u Ci).

Precisely that is done in the above diagram. We have only to show commutativity of its
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exterior. The top–right path can be computed via the following commutative diagram:

⊠i∈IT⩽1Ci
ϑ → T⩽1 ⊠i∈I

u Ci
pr1 →⊠i∈I

u Ci

⊠i∈IT⩽1T⩾1Ci

⊠IT⩽1δ↓
ϑ→ T⩽1 ⊠i∈I

u T⩾1Ci

T⩽1⊠Iuδ↓
pr1→⊠i∈I

u T⩾1Ci

⊠Iuδ↓

⊠i∈ITCi

wwwww
τ̃ → T ⊠i∈I

u Ci

T⩽1τ↓
pr2→ T 2 ⊠i∈I

u Ci

τ ·pr2↓
←

δ·pr2

It equals the above left–down path. We have to prove that the latter equals the left–down
path of diagram (6.19.1). We shall prove the equation between matrix elements. Fix a
direct summand ⊠i∈IT niCi of the source, ni ∈ {0, 1} for i ∈ I. Fix a direct summand
⊗p∈2 ⊠i∈I T χ((i,p)∈S)Ci of the target. Here the subset S ⊂ I × 2 satisfies the condition
pr2 S = 2. Denote Si = {p ∈ 2 | (i, p) ∈ S} and mi = |Si| ⩽ 2. The required equation
between matrix elements takes the form

⊠i∈IT niCi
⊠i∈I(T⩽1δ)ni,mi →⊠i∈ITmiCi

⊠i∈I ⊗p∈2 T χ(p∈Si)Ci

⊠i∈I(∆0)ni,Si↓
===========⊠i∈I ⊗p∈2 T χ((i,p)∈S)Ci

⊠i∈IλSi↪→2

↓

=

⊗p∈2 ⊠i∈I T χ(p∈Si)Ci

κ−1

↓
===========⊗p∈2 ⊠i∈I T χ((i,p)∈S)Ci

κ−1

↓

due to (6.2.1). The top square is implied by the following equation, which holds true for
each i ∈ I

1⊕
ni=0

⊠i∈IT niCi

(
1 0 0
0 1 ∆

)
T⩽1δ

→
2⊕

mi=0

⊠i∈ITmiCi

⊕
Si⊂2

⊗p∈2T χ(p∈Si)Ci

(
λ∅→2 0 0 0

0 λ . I λI . ∆

)
∆0

↓
========

⊕
Si⊂2

⊗p∈2T χ(p∈Si)Ci

λSi↪→2

(
λ∅→2 0 0 0

0 λ . I λI . 0
0 0 0 1

)
↓

It is obvious once written in matrix form.
The constructed natural isomorphisms ϑI : ⊠I ◦ T⩽1 → T⩽1 ◦ ⊠I

u satisfy necessary
equations (2.6.1) because (T⩽1, ϑI) : VQu → VQp is a symmetric Monoidal functor due to
considerations preceding (6.1.3).



Chapter 7

Closedness of the Kleisli multicategory of quivers

Let V = (V,⊗I , λf) be a symmetric closed Monoidal abelian U -category. As in Chapter 6
we assume that arbitrary U -small limits and colimits exist in V, that U -small filtering
colimits in V commute with finite projective limits. Closedness of V implies that the
tensor product commutes with arbitrary U -small colimits. The reader may assume that
V means gr or dg.

In this chapter we prove that closedness of V implies closedness of symmetric Monoidal
categories of quivers VQp and

VQu. Moreover, left and right actions of quiver morphisms
in VQp and

VQu are determined by such actions for morphisms of V in V. Compositions

in VQp and VQu are related with the composition in V by simple formulas. The lax

symmetric Monoidal comonad T⩾1 provides the closed symmetric multicategory Q̂u

T⩾1

.
An isomorphic multicategory Q is obtained from it via shift of the objects by [1]. This is
a precursor without differentials of the multicategory of A∞-categories considered in the
next chapter. The composition in Q is expressed via composition in Qu. We introduce
the notion of T⩾1-coderivations and show that these are ordinary coalgebra coderivations.

7.1 Closedness of symmetric Monoidal category VQp. Let us prove that sym-
metric Monoidal category of V-quivers VQp is closed. Let A, C be V-quivers. De-
fine the V-quiver V-span(A,C) as follows. Its set of objects is Ob(V-span(A,C)) =
Set(ObA,ObC), the set of mappings ObA→ ObC. The objects of morphisms are

V-span(A,C)(f, g) =
∏

X,Y ∈ObA

V
(
A(X, Y ),C(Xf, Y g)

)
∈ ObV.

For example, when V = gr, objects of gr -span(A,B) are maps f : ObA→ ObB, and the
graded component gr -span(A,B)(f, g)d of the k-module of morphisms consists of k-span
morphisms r : A→ B with Obs r = f , Obt r = g of degree deg r = d, that is,

gr -span(A,B)(f, g) =
∏

X,Y ∈ObA

gr
(
A(X, Y ),B(Xf, Y g)

)
∈ Obgr .

7.2 Proposition. The symmetric Monoidal category VQp = (VQ,⊠I , λf) is closed with

191
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the inner homomorphisms objects VQp(A,C) = V-span(A,C) and evaluations

ev
VQp : A⊠ V-span(A,C)→ C, (X, f) 7→ Xf,

ev
VQp =

[
A(X, Y )⊗ V-span(A,C)(f, g)

1⊗pr(X,Y )→A(X, Y )⊗ V
(
A(X, Y ),C(Xf, Y g)

)
evV→ C(Xf, Y g)

]
, a⊗ r 7→ a.rX,Y .

Proof. Let A, B, C be V-quivers. Consider the morphism

φVQp
: VQ(B, VQp(A,C)) −→ VQ(A⊠B,C),[
f : B→ VQp(A,C)

]
7−→

[
A⊠B

1⊠f→A⊠ VQp(A,C)
ev

VQp

→ C
]
.

We have to prove that it is invertible. The inverse morphism is constructed as follows.
Let g : A⊠B→ C be a V-quiver morphism. Define the map

Ob f : ObB→ Ob VQp(A,C) = Set(ObA,ObC), U 7−→ (Uf : X 7→ (X,U)g).

Thus X.(Uf) = (X,U)g. The morphisms in V

g(X,U),(Y,V ) : A(X, Y )⊗B(U, V )→ C((X,U)g, (Y, V )g)

can be presented in the form

φ−1V g(X,U),(Y,V ) : B(U, V )→ V
(
A(X, Y ),C((X,U)g, (Y, V )g)

)
.

Thus for any pair U , V of objects of B there is a morphism in V

fU,V =
[
B(U, V )

(φ−1
V g(X,U),(Y,V ))X,Y→

∏
X,Y ∈ObA

V
(
A(X, Y ),C(X.(Uf), Y.(V f))

)
= VQp(A,C)(Uf, V f)

]
.

The collection of such morphisms gives a V-quiver morphism φ−VQp
g = f : B→ VQp(A,C).

This defines a morphism φ−VQp
: VQ(A⊠B,C)→ VQ(B, VQp(A,C)).

Closedness of Set implies that Set(ObB,Ob VQp(A,C)) and Set(Ob(A⊠B),ObC) are

in bijection. Closedness of V extends this bijection to objects of morphisms. One can
verify directly that the morphisms φVQp

and φ−VQp
are inverse to each other.

Let h : A → B be a morphism in VQp. It gives rise to the morphism VQp(h, 1) :
VQp(B,C)→ VQp(A,C) in

VQp. It is described by the following equation

VQp(B,C)(f, g)
VQp(h,1)

→ VQp(A,C)(hf, hg)

=

V(B(Xh, Y h),C(Xhf, Y hg))

pr
↓

V(h,1)→V(A(X, Y ),C(Xhf, Y hg))

pr
↓
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Let h : B → C be a morphism in VQp. It gives rise to the morphism VQp(1, h) :
VQp(A,B)→ VQp(A,C) uniquely determined by the following equation

VQp(A,B)(f, g)
VQp(1,h)

→ VQp(A,C)(fh, gh)

=

V(A(X, Y ),B(Xf, Y g))

pr
↓

V(1,h)→V(A(X, Y ),C(Xfh, Y gh))

pr
↓

Being a closed Monoidal category VQp has associative multiplication, the quiver mor-
phism

µ
VQp : VQp(A,B)⊠ VQp(B,C)→ VQp(A,C)

given for arbitrary V-quivers A, B, C. It takes a pair of maps (f, h) to their composition
fh : ObA→ ObC. On morphisms it is determined by the following equation

VQp(A,B)(f, g)⊗ VQp(B,C)(h, k)

VQp(A,C)(fh, gk)

µ
VQp

→

V(A(X, Y ),B(Xf, Y g))⊗ V(B(Xf, Y g),C(Xfh, Y gk))

pr⊗pr

↓

V(A(X, Y ),C(Xfh, Y gk))

pr

↓
µV →

Proof of these facts is left to the reader. More complicated reasoning of Sections 7.6.1–
7.6.3 can serve as a model.

7.3 Example. Let us describe the category of differential graded quivers dQ in terms of
symmetric closed Monoidal category Qp of graded k-linear quivers. An object C of dQ is
a graded quiver C equipped with degree 1 maps d : C(X, Y ) → C(X, Y ), d2 = 0 for all
pairs X, Y of objects of C. Equivalently, an element d ∈ Qp(C,C)(idObC, idObC)

1 is given

such that µQp(d ⊗ d) = 0. A morphism f : A → B of differential graded quivers is a

morphism of graded quivers that commutes with the differential,
(
A

f→B
d→B

)
=(

A
d→A

f→B
)
. Equivalently, the following equation holds:

[
1p[−1]

d→Qp(B,B)
Qp(f,1)
→Qp(A,B)

]
=
[
1p[−1]

d→Qp(A,A)
Qp(1,f)
→Qp(A,B)

]
.

Here 1p[−1] is the graded quiver with the unique object ∗ and the module of morphisms
1p[−1](∗, ∗) = k[−1] concentrated in degree 1.
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7.4 Closedness of symmetric Monoidal category VQu. Let us prove that sym-
metric Monoidal category of quivers VQu with modified tensor product is also closed.

7.5 Proposition. The symmetric Monoidal category VQu = (VQ,⊠I
u, λ

f
u) of V-quivers is

closed with VQu(A,C) being a V-quiver, whose objects are morphisms of V-quivers A→ C

and the object of morphisms between f, g : A→ C is given by

VQu(A,C)(f, g) =
VQp(T

⩽1A,C)(Ob f,Ob g) ∈ ObV .

Proof. To establish a bijection

ψ : VQ(B, VQu(A,C))
∼→ VQ(A⊠u B,C) (7.5.1)

note that due to (6.1.4) the second functor assigns to a triple (A,B,C) of V-quivers the
following data: a function ObA×ObB ∋ (A,B) 7→ (A,B)f ∈ ObC, and morphisms

fA,A′;B,B′ : A(A,A′)⊗B(B,B′)→ C((A,B)f, (A′, B′)f), (7.5.2)

fA,A′;B : A(A,A′)⊗ k→ C((A,B)f, (A′, B)f), (7.5.3)

fA;B,B′ : k⊗B(B,B′)→ C((A,B)f, (A,B′)f) (7.5.4)

in V for all A,A′ ∈ ObA, B,B′ ∈ ObB.
On the other hand, a morphism B→ VQu(A,C) is given by the following data: a map

on objects ObB → Ob VQu(A,C), B 7→
(
A 7→ (A,B)f

)
together with (7.5.3) and a map

on morphisms

B(B,B′)→
∏

A,A′∈ObA

V
(
T⩽1A(A,A′),C((A,B)f, (A′, B′)f)

)
,

which is equivalent to a pair consisting of collection of maps (7.5.4) and of the map

B(B,B′)→
∏

A,A′∈ObA

V
(
A(A,A′),C((A,B)f, (A′, B′)f)

)
.

The latter map is the same as collection of maps (7.5.2). Therefore, bijection (7.5.1) is
constructed. Let us describe the corresponding evaluations.

Denote by Υ : VQu(A,C) → VQp(T
⩽1A,C) the quiver morphism which gives the map

f 7→ Ob f on objects and identity map on morphisms. Take B = VQu(A,C) and consider

the evaluation morphism ev
VQu

A,C : A ⊠u
VQu(A,C) → C, corresponding to idB : B →

VQu(A,C). The identity morphism idB is described by the assignment on objects (g : A→
C) 7→ (X 7→ Xg) together with gX,Y : A(X, Y ) → C(Xg, Y g), and on morphisms it is
given by the identity morphism

VQu(A,C)(f, g) =
VQp(T

⩽1A,C)(Ob f,Ob g) =
∏

X,Y ∈ObA

V
(
T⩽1A(X, Y ),C(Xf, Y g)

)
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in V. Therefore, on objects evaluation acts as ev
VQu

A,C(X, f) = Xf , and on morphisms via

ev′A,C =
[
T⩽1A⊠ VQu(A,C)

1⊠Υ→ T⩽1A⊠ VQp(T
⩽1A,C)

ev
VQp

→ C
]
, (7.5.5)

ev′′A,C : A⊠ T 0VQu(A,C)→ C,

ev′′A,C =
[
A(X, Y )⊗ T 0VQu(A,C)(f, f)

(λI . )−1

∼
→A(X, Y )

fX,Y→ C(Xf, Y f)
]
. (7.5.6)

The map φB;A;C given by (4.7.1) can be written as

VQ(B, VQu(A,C))
A⊠u−→ VQ(A⊠u B,A⊠u

VQu(A,C))
−·ev

VQu
A,C→ VQ(A⊠u B,C),

f → idA⊠uf → (idA⊠uf) · ev
VQu

A,C .

Explicit computation shows that it coincides with the bijection ψ given by (7.5.1), as it has
to be for an arbitrary closed monoidal category. Indeed, Obφ(f) = Obψ(f). Restricting
φ(f), ψ(f) : A⊠u B = (T⩽1A⊠B)⊕ (A⊠ T 0B)→ C to T⩽1A⊠B we get

φ(f) = (idT⩽1A⊠f) · ev′A,C

=
[
T⩽1A⊠B

1⊠f→ T⩽1A⊠ VQu(A,C)
1⊠Υ→ T⩽1A⊠ VQp(T

⩽1A,C)
ev

VQp

→ C
]
.

Restricted further to A⊠B this gives (7.5.2), and restricted to T 0A⊠B this gives (7.5.4),
which coincides with ψ(f). Restriction to A⊠ T 0B gives

φ(f) = (idA⊠T 0f) · ev′′A,C

=
[
A(A,A′)⊗ T 0B(B,B) ===

1⊗T 0f
⇀⇁A(A,A′)⊗ T 0VQu(A,C)(( , B)f, ( , B)f)

(λI . )−1

∼
→A(A,A′)

fA,A′;B→ C((A,B)f, (A′, B)f)
]
.

Being just (7.5.3) this coincides with ψ(f). Therefore, φB;A;C is bijective and the Monoidal
category VQu is closed.

7.6 Multiplications in VQu. Let us describe various multiplications in the closed
Monoidal category VQu. They are obtained as a result of computations directly from the
definitions. The details are left to the reader.

7.6.1 Left multiplication in VQu. Let h : A→ B be a morphism in VQu. It gives rise
to a morphism VQu(h, 1) :

VQu(B,C)→ VQu(A,C) in
VQu found from the following diagram

A⊠u
VQu(B,C)

1⊠uVQu(h,1)→A⊠u
VQu(A,C)

B⊠u
VQu(B,C)

h⊠u1↓
ev

VQu

→ C

ev
VQu

↓
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An object f of the graded quiver VQu(B,C), that is, a quiver morphism f : B → C, is
mapped by VQu(h, 1) to the composite hf . For a pair of quiver morphisms f, g : B → C,

the k-linear map VQu(h, 1) :
VQu(B,C)(f, g)→ VQu(A,C)(hf, hg) fits into the commutative

diagram

VQu(B,C)(f, g)
pr→V(T⩽1B(Xh, Y h),C(Xhf, Y hg))

VQu(A,C)(hf, hg)

VQu(h,1)↓
pr→V(T⩽1A(X, Y ),C(Xhf, Y hg))

V(T⩽1h,1)↓ (7.6.1)

for each pair of objects X, Y ∈ ObB. In other notation,

VQu(h, 1) = VQp(T
⩽1h, 1) : VQp(T

⩽1B,C)(Ob f,Ob g) → VQp(T
⩽1A,C)(Obhf,Obhg).

Equivalently, VQu(h, 1) satisfies the equation

[
VQu(B,C)

VQu(h,1)→ VQu(A,C)
Υ→ VQp(T

⩽1A,C)
]

=
[
VQu(B,C)

Υ→ VQp(T
⩽1B,C)

VQp(T
⩽1h,1)
→ VQp(T

⩽1A,C)
]
. (7.6.2)

7.6.2 Right multiplication in VQu. Let h : B→ C be a morphism in VQu. It gives rise
to a morphism VQu(1, h) :

VQu(A,B) → VQu(A,C) uniquely determined by the following
diagram

A⊠u
VQu(A,B)

1⊠uVQu(1,h)→A⊠u
VQu(A,C)

B

ev
VQu

↓
h → C

ev
VQu

↓

A quiver morphism f : A→ B is mapped by VQu(1, h) to the composite fh. For a pair of
quiver morphisms f, g : A→ B, the diagram

VQu(A,B)(f, g)
VQu(1,h) → VQu(A,C)(fh, gh)

V(T⩽1A(X, Y ),B(Xf, Y g))

pr↓
V(1,h)→V(T⩽1A(X, Y ),C(Xfh, Y gh))

pr↓ (7.6.3)

commutes, for each pair of objects X, Y ∈ ObA, thus determining the top k-linear map
unambiguously. In other notation,

VQu(1, h) =
VQp(1, h) :

VQp(T
⩽1A,B)(Ob f,Ob g)→ VQp(T

⩽1A,C)(Ob fh,Ob gh).

(7.6.4)
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Equivalently, VQu(1, h) satisfies the equation

[
VQu(A,B)

VQu(1,h)→ VQu(A,C)
Υ→ VQp(T

⩽1A,C)
]

=
[
VQu(A,B)

Υ→ VQp(T
⩽1A,B)

VQp(1,h)
→ VQp(T

⩽1A,C)
]
. (7.6.5)

7.6.3 Composition in the closed Monoidal category VQu. For arbitrary quivers
A, B, C there is a quiver morphism

µ
VQu : VQu(A,B)⊠u

VQu(B,C)→ VQu(A,C)

uniquely determined by the following equation in VQu:

A⊠u
VQu(A,B)⊠u

VQu(B,C)
λIVu→A⊠u (

VQu(A,B)⊠u
VQu(B,C))

(A⊠u
VQu(A,B))⊠u

VQu(B,C)

λVIu ↓
= A⊠u

VQu(A,C)

1⊠uµ
VQu

↓

B⊠u
VQu(B,C)

ev
VQu ⊠u1↓

ev
VQu

→ C

ev
VQu

↓
(7.6.6)

It is not difficult to conclude that µ
VQu maps a pair of quiver morphisms f : A → B,

g : B→ C to their composite fg : A→ C. The k-linear maps

µ
VQu : (VQu(A,B)⊠u

VQu(B,C))((f, h), (g, k))→ VQu(A,B)(fh, gk)

are found unambiguously from the following diagrams:

VQu(A,B)(f, g)⊗ VQu(B,C)(h, k)
µ
VQu

→ VQu(A,C)(fh, gk)

=

V(T⩽1A(X, Y ),B(Xf, Y g))⊗
V(T⩽1B(Xf, Y g),C(Xfh, Y gk))

pr⊗pr↓
−·in1 ·−→V(T⩽1A(X, Y ),C(Xfh, Y gk))

pr

↓
(7.6.7)

for arbitrary objects X, Y ∈ ObA and quiver maps f, g : A→ B, h, k : B→ C;

T 0VQu(A,B)(f, f)⊗VQu(B,C)(h, k)
µ
VQu

→ VQu(A,C)(fh, fk)

V(T⩽1B(Xf,Y f),C(Xfh,Y fk))

pr↓
V(T⩽1f,1)→V(T⩽1A(X,Y ),C(Xfh,Xfk))

pr↓ (7.6.8)
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for arbitrary objects X, Y ∈ ObA and quiver maps f : A→ B, h, k : B→ C;

VQu(A,B)(f, g)⊗ T 0VQu(B,C)(h, h)
µ
VQu

→ VQu(A,C)(fh, gh)

V(T⩽1A(X, Y ),B(Xf, Y g))

pr↓
V(1,hXf,Y g)→V(T⩽1A(X, Y ),C(Xfh, Y gh))

pr↓ (7.6.9)

for arbitrary objects X, Y ∈ ObA and quiver maps f, g : A→ B, h : B→ C.

7.7 Example. The closing transformation T⩽1 : T⩽1VQu(A,B) → VQp(T
⩽1A, T⩽1B) for

the symmetric Monoidal functor (T⩽1, ϑ) : VQu → VQp can be found from the commutative
diagram

T⩽1A⊠ T⩽1VQu(A,B)
1⊠T⩽1

→ T⩽1A⊠ VQp(T
⩽1A, T⩽1B)

T⩽1[A⊠u
VQu(A,B)]

ϑ2↓
T⩽1 ev

VQu

→ T⩽1B

ev
VQp

↓ (7.7.1)

see Section 4.18. It takes f ∈ VQ(A,B) to Ob f = ObT⩽1f : ObT⩽1A → ObT⩽1B by
Corollary 4.20. Its restriction to T 1VQu(A,B) is

T⩽1 =
[
VQu(A,B)(f, g) = VQp(T

⩽1A,B)(Ob f,Ob g)
VQp(1,in1)

→ VQp(T
⩽1A, T⩽1B)(ObT⩽1f,ObT⩽1g)

]
. (7.7.2)

Its restriction to T 0VQu(A,B) is

T⩽1 : T 0VQu(A,B)(f, f) −→ VQp(T
⩽1A, T⩽1B)(ObT⩽1f,ObT⩽1g),

1 7−→
(
T⩽1f : (T⩽1A)(X, Y )→ (T⩽1B)(Xf, Y f)

)
X,Y ∈ObA

. (7.7.3)

7.8 Closing transformation for the functor ⊠I
u. The tensor multiplication func-

tors ⊠I : VQ
I
p → VQp, ⊠I

u :
VQ

I
u → VQu determine the closing transformations

⊠I : ⊠i∈IVQp(Ai,Bi)→ VQp(⊠
i∈IAi,⊠

i∈IBi),

⊠I
u : ⊠

i∈I
u

VQu(Ai,Bi)→ VQu(⊠
i∈I
u Ai,⊠

i∈I
u Bi),

as for arbitrary closed symmetric Monoidal category, see Example 4.26. In the case of
VQp the closing transformation ⊠I coincides with the closing transformation ⊗I for V on
objects of morphisms, see the end of Example 4.26.
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The transformation ⊠I
u satisfies the commutative diagram

(⊠i∈I
u Ai)⊠u (⊠

i∈I
u

VQu(Ai,Bi))
σ(12)→⊠i∈I

u (Ai ⊠u
VQu(Ai,Bi))

(⊠i∈I
u Ai)⊠u

VQu(⊠
i∈I
u Ai,⊠

i∈I
u Bi)

1⊠u⊠Iu↓
ev

VQu

→⊠i∈I
u Bi

⊠Iu ev
VQu

↓

By Corollary 4.20 Ob⊠I
u = ⊠I

u. This map takes a family (fi : Ai → Bi)i∈I of quiver

morphisms to the quiver morphism ⊠i∈I
u fi : ⊠i∈I

u Ai → ⊠i∈I
u Bi.

The Monoidal isomorphism of symmetric Monoidal functors ϑ : ⊠i∈I(T⩽1)I →
T⩽1⊠i∈I

u : VQ
I
u → VQp (see Example 4.26) implies by Lemmata 4.24 and 4.25 that the

following equation holds:

T⩽1 ⊠i∈I
u

VQu(Ai,Bi)
T⩽1⊠Iu→ T⩽1VQu(⊠

i∈I
u Ai,⊠

i∈I
u Bi)

T⩽1

→ VQp(T
⩽1 ⊠i∈I

u Ai, T
⩽1 ⊠i∈I

u Bi)

=

⊠i∈IT⩽1VQu(Ai,Bi)

ϑ ≀
↑

⊠IT⩽1

→⊠i∈IVQp(T
⩽1Ai, T

⩽1Bi)
⊠I→ VQp(⊠

i∈IT⩽1Ai,⊠
i∈IT⩽1Bi)

VQp(ϑ
−1,ϑ) ≀
↑

(7.8.1)

A solution ⊠I
u of this equation exists by construction. Its uniqueness is guaranteed by

injectivity of T⩽1. By (7.7.2) the solution ⊠I
u is determined by the equation

⊠i∈I
u

VQu(Ai,Bi)
⊠Iu → VQu(⊠

i∈I
u Ai,⊠

i∈I
u Bi)

T⩽1 ⊠i∈I
u

VQu(Ai,Bi)

in1↓
∩

VQp(T
⩽1 ⊠i∈I

u Ai,⊠
i∈I
u Bi)

Υ↓

=

⊠i∈IT⩽1VQu(Ai,Bi)

ϑ−1 ≀↓
VQp(T

⩽1 ⊠i∈I
u Ai, T

⩽1 ⊠i∈I
u Bi)

VQp(1,in1)↓
∩

⊠i∈IVQp(T
⩽1Ai, T

⩽1Bi)

⊠IT⩽1

↓
⊠I→ VQp(⊠

i∈IT⩽1Ai,⊠
i∈IT⩽1Bi)

≀ VQp(ϑ
−1,ϑ)

↑

Notice that the natural morphism of quivers Υ is faithful, moreover, gives identity maps
of objects of morphisms. It takes a quiver morphism f to Ob f .

7.9 Various multicategories of quivers. From now on we consider only Q = grQ

and later also dQ = dgQ. Multimaps f : (Ai)i∈I → B in Q̂u

T⩾1

are morphisms of quivers
f : ⊠i∈I

u T⩾1Ai → B, or equivalently, morphisms of quivers f : ⊠i∈ITAi → B such that
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f
∣∣
⊠i∈IT 0Ai

= 0. A bijection between the two presentations is established as follows. Given

f : ⊠i∈I
u T⩾1Ai → B, we construct

f =
[
⊠i∈ITAi

ϑI

∼
→ T⩽1 ⊠i∈I

u T⩾1Ai
T⩽1f→ T⩽1B

pr1→B
]
= T̂⩽1f · pr1 . (7.9.1)

Given f : ⊠i∈ITAi → B, we construct

f =
[
⊠i∈I
u T⩾1Ai

⊂
in1→ T⩽1 ⊠i∈I

u T⩾1Ai
(ϑI)−1

∼
→ ⊠i∈I TAi

f→B
]
. (7.9.2)

Let f : ⊠i∈I
u T⩾1Ai → B be a morphism of Qu. The corresponding T⩾1-coalgebra

morphism f̂ : ⊠i∈I
u T⩾1Ai → T⩾1B defined via (5.3.1) is given by the composition in the

upper row in the following commutative diagram

⊠i∈I
u T⩾1Ai

⊠Iu∆→⊠i∈I
u T⩾1T⩾1Ai

τ I→ T⩾1 ⊠i∈I
u T⩾1Ai

T⩾1f→ T⩾1B

⊠i∈ITAi

↓

∩

⊠I∆̃→⊠i∈ITT⩾1Ai

↓

∩

τ̃ I→ T ⊠i∈I
u T⩾1Ai

↓

∩

Tf → TB
↓

∩

(7.9.3)

The composition in the lower row is denoted f̃ . It restricts to 0-th component as[
⊠i∈IT 0Ai = ⊠i∈IT 0T⩾1Ai = T 0 ⊠i∈I

u T⩾1Ai
T 0f→ T 0B

]
= T 0f,

which gives Ob f on objects and identity map on morphisms. Together with dia-
gram (7.9.3) this proves that

f̃ =
(
⊠i∈ITAi

ϑ→ T⩽1 ⊠i∈I
u T⩾1Ai

T⩽1f̂→ TB
)
= T̂⩽1f̂ . (7.9.4)

7.10 Remark. According to Proposition 6.19 the first factor ϑ is an isomorphism of
augmented coalgebras in Qp. The second factor T⩽1f̂ is a morphism of augmented coal-

gebras by Lemma 6.12. Therefore, f̃ : ⊠i∈ITAi → TB is an augmented counital coalgebra
homomorphism in Qp as well (with respect to ∆0, ε = pr0, η = in0).

Notice also that

f̃ · pr1 =
(
⊠i∈ITAi

ϑ→ T⩽1 ⊠i∈I
u T⩾1Ai

pr1→ ⊠i∈I
u T⩾1Ai

f̂→ T⩾1B
pr1→B

)
=
(
⊠i∈ITAi

ϑ→ T⩽1 ⊠i∈I
u T⩾1Ai

pr1→ ⊠i∈I
u T⩾1Ai

f→B
)
= f (7.10.1)

due to Lemma 5.3.

7.11 Definition. Components of a morphism f : ⊠i∈ITAi → B in A
def
= Q̂u

T⩾1

are its
restrictions fj : ⊠i∈IT j

i

Ai → B to direct summands of the source, where j = (ji)i∈I ∈
(Z⩾0)

I ∖ {0}. Such a morphism f is strict if its arbitrary component fj vanishes unless
|j| = 1.
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If components of f : ⊠i∈ITAi → B are fj : ⊠i∈IT j
i

Ai → B, then matrix coefficients

of f̃ are given by∑
j1,...,jm∈(Z⩾0)

I∖{0}
j1+···+jm=(ℓi)i∈I

(
⊠i∈IT ℓ

i

Ai
⊠Iλgi→ ⊠i∈I ⊗p∈mT jipAi

κ−1

→ ⊗p∈m ⊠i∈IT j
i
pAi

fj1⊗···⊗fjm→ TmB
)
, (7.11.1)

where the isotonic maps gi : ℓ
i → m correspond to partition of ℓi into summands jip =

|g−1i (p)|, p ∈m.
If I = ∅, then ⊠i∈∅

u T⩾1Ai = 1u is the quiver with one object and zero module of
morphisms. Therefore, morphisms f : ⊠i∈∅

u T⩾1Ai → B of Qu and the corresponding

T⩾1-coalgebra morphisms f̂ : ⊠i∈∅
u T⩾1Ai → T⩾1B are identified with objects of B.

The structure of lax Monoidal comonad
(
(T⩾1, τ),∆, ε

)
on the symmetric closed

Monoidal category Qu of graded k-quivers implies by Proposition 5.17 that A is a sym-
metric closed multicategory with the inner homomorphisms objects

Q̂u

T⩾1

((Ai)i∈I ;B) = Qu(⊠
i∈I
u T⩾1Ai,B) = Qp(T

⩽1⊠i∈I
u T⩾1Ai,B)

Qp(ϑ
I ,1)

∼
→Qp(⊠

i∈ITAi,B).

Composition in A is described as follows. Let ϕ : I → J be a map in S. The
composition of given multimaps fj : ⊠i∈ϕ−1j

u T⩾1Ai → Bj, h : ⊠j∈J
u T⩾1Bj → C is found as

(fj) · h =
[
⊠i∈I
u T⩾1Ai

⊠Iu∆→ ⊠i∈I
u T⩾1T⩾1Ai

λϕu→ ⊠j∈J
u ⊠i∈ϕ−1j

u T⩾1T⩾1Ai

⊠j∈Ju τϕ
−1j

→ ⊠j∈J
u T⩾1 ⊠i∈ϕ−1j

u T⩾1Ai
⊠j∈Ju T⩾1fj→ ⊠j∈J

u T⩾1Bj
h→ C

]
. (7.11.2)

Using (6.1.2) and (6.3.2) we obtain the second presentation of composition:

(fj) · h =
[
⊠i∈ITAi

⊠I∆̃→ ⊠i∈I TT⩾1Ai
λϕ→ ⊠j∈J ⊠i∈ϕ−1jTT⩾1Ai

⊠j∈J τ̃ϕ
−1j

→ ⊠j∈J T ⊠i∈ϕ−1j
u T⩾1Ai

⊠j∈JTfj→ ⊠j∈J TBj
h→ C

]
. (7.11.3)

If I = ∅, then T⩽1 ⊠i∈∅
u T⩾1Ai = 1p and ⊠i∈∅TAi = 1p are quivers with one object

and the module k of morphisms. Therefore, A ( ;B) = Qp(1p,B) ≃ B as it has to be in
a closed multicategory.

Evaluation evA
(Ai);B

in A as a morphism in Q is the following composition

⊠I⊔1
u [(T⩾1Ai)i∈I , T

⩾1Qu(⊠
i∈I
u T⩾1Ai,B)]

λI⊔1→2
u → (⊠i∈I

u T⩾1Ai)⊠u T
⩾1Qu(⊠

i∈I
u T⩾1Ai,B)

1⊠upr1→ (⊠i∈I
u T⩾1Ai)⊠u Qu(⊠

i∈I
u T⩾1Ai,B)

evQu
⊠IuT

⩾1Ai,B→B.
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The notation sM = M [1] (for shifted grading) is extended from k-modules M to
graded k-linear quivers A. Thus, Ob sA = ObA[1] = ObA and sA(X, Y ) = A[1](X, Y ) =

(A(X, Y ))[1]. Denote Q = [1]Q̂u

T⩾1

the symmetric multicategory, whose objects are graded
k-linear quivers, and multimaps are

Q((Ai)i∈I ;B) = Q̂u

T⩾1

((Ai[1])i∈I ;B[1]) = Q(⊠i∈I
u T⩾1(Ai[1]),B[1])

≃ {f ∈ Q(⊠i∈IT (Ai[1]),B[1]) | f
∣∣
⊠i∈IT 0Ai

= 0}.

The multiquiver Q is isomorphic to Q̂u

T⩾1

via the shift map A 7→ sA = A[1]. We equip

Q with compositions coming from Q̂u

T⩾1

.
The above implies that Q is a symmetric closed multicategory with

Q((Ai)i∈I ;B) = s−1Q̂u

T⩾1

((sAi)i∈I ; sB) = Qu(⊠
i∈I
u T⩾1sAi, sB)[−1]

= Qp(T
⩽1 ⊠i∈I

u T⩾1sAi, sB)[−1]
sQp(ϑ

I ,1)s−1

∼
→Qp(⊠

i∈ITsAi, sB)[−1]. (7.11.4)

Its evaluation is the following composite morphism in Q:

evQ(Ai);B =
[
(⊠i∈I

u T⩾1sAi)⊠u T
⩾1Qu(⊠

i∈I
u T⩾1sAi, sB)

1⊠upr1→ (⊠i∈I
u T⩾1sAi)⊠u Qu(⊠

i∈I
u T⩾1sAi, sB)

evQu
⊠IuT

⩾1sAi,sB→ sB
]
.

We shall identify an arrow r : f → g in Q((Ai)i∈I ;B)[1] with the tuple (rk)k∈(Z⩾0)I ,

where rk : Ob f → Ob g is an arrow in Qp(⊠i∈IT kisAi, sB), k = (ki)i∈I . In particular, r0
is an element of

Qp(⊠
i∈IT 0sAi, sB)(f, g) ∼=

i∈I∏
Ai∈ObAi

sB(f(Ai)i∈I , g(Ai)i∈I).

The elements rk are components of r.

7.12 Proposition. The maps A 7→ TsA, f 7→ f̃ define a fully faithful multifunctor

Q = [1]Q̂u

T⩾1

→ âcQp.

Proof. We obtain the described multifunctor as the composition of four multifunctors:

Q
∼→ Q̂u

T⩾1 ∼→ Q̂u

f

T⩾1

T̂⩾1
′

→ Q̂uT⩾1 = Q̂uT⩾1

T̂⩽1

→ âcQp.

The first multifunctor is given by A 7→ sA = A[1], f 7→ f , it is an isomorphism of

multicategories by definition of Q. The second multifunctor sA 7→ sA, f 7→ f̂ is described
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in Remark 5.16, it is an isomorphism of multicategories. The third multifunctor sA 7→
T⩾1sA is identity on morphisms, see Remark 5.19. Finally, the fourth multifunctor comes
from the symmetric Monoidal functor (T⩽1, ϑI) : QuT⩾1 → acQp of Proposition 6.19, it
is fully faithful by the same proposition. Their composition is A 7→ T⩽1T⩾1sA = TsA,

f 7→ T̂⩽1f̂ = f̃ by (7.9.4).

7.13 Closing transformation for the multifunctor T⩾1. We shall work with
the lax symmetric Monoidal endofunctor (T⩾1, τ) : Qu → Qu of the symmetric closed
Monoidal category Qu. According to Section 4.18 there exists closing multinatural trans-

formation (5.3.2) for the multifunctor ̂(T⩾1, τ)

T⩾1 : T⩾1Qu(⊠
i∈I
u Ai,B)→ Qu(⊠

i∈I
u T⩾1Ai, T

⩾1B).

It is determined by equation

(⊠i∈I
u T⩾1Ai)⊠u T

⩾1Qu(⊠
i∈I
u Ai,B)

(⊠i∈I
u T⩾1Ai)⊠u Qu(⊠

i∈I
u T⩾1Ai, T

⩾1B)

1⊠uT⩾1

→

T⩾1
[
(⊠i∈I

u Ai)⊠u Qu(⊠
i∈I
u Ai,B)

]
τ

↓
=

T⩾1B

evQu

↓
T⩾1 evQu → (7.13.1)

An object of T⩾1Qu(⊠i∈I
u Ai,B), which is a morphism of quivers f : ⊠i∈I

u Ai →
B, is mapped to the morphism of quivers T⩾1f : ⊠i∈I

u T⩾1Ai → T⩾1B, an object of
Qu(⊠i∈I

u T⩾1Ai, T
⩾1B), computed via recipe of Proposition 7.5. On objects Xi ∈ ObAi

we have T⩾1f : (Xi)i∈I 7→ f(Xi)i∈I , hence, ObT⩾1f = Ob f . To find T⩾1f on morphisms
let us write restriction of the left bottom path of diagram (7.13.1) to the following direct
summand

(⊠i∈I
u T⩾1Ai)⊠ T 0T⩾1Qu(⊠

i∈I
u Ai,B)

τ⊠1→ ⊕m>0 (Tm ⊠i∈I
u Ai)⊠ T 0Qu(⊠

i∈I
u Ai,B)

⊕1⊠λ∅→m

∼
→ ⊕m>0 (Tm ⊠i∈I

u Ai)⊠ TmT 0Qu(⊠
i∈I
u Ai,B)

⊕κ−1

∼
→ ⊕m>0 Tm

[
(⊠i∈I

u Ai)⊠ T 0Qu(⊠
i∈I
u Ai,B)

] ⊕Tm ev′′→ ⊕m>0 TmB.

Clearly, its restriction to f gives

T⩾1f =
[
⊠i∈I
u T⩾1Ai

τ→ T⩾1 ⊠i∈I
u Ai

T⩾1f→ T⩾1B
]
.

To find T⩾1 on morphisms let us write restriction of equation (7.13.1) to the direct
summand (T⩽1⊠i∈I

u T⩾1Ai)⊠T⩾1Qu(⊠i∈I
u Ai,B). Replacing it with an isomorphic quiver
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we come to the following equation:[
(⊠i∈ITAi)⊠ T⩾1Qu(⊠

i∈I
u Ai,B)

τ̃ I⊠1→ (T ⊠i∈I
u Ai)⊠ T⩾1Qu(⊠

i∈I
u Ai,B)

τ̃2→ T⩾1
[
(⊠i∈I

u Ai)⊠u Qu(⊠
i∈I
u Ai,B)

] T⩾1 evQu

→ T⩾1B
]

=
[
(⊠i∈ITAi)⊠ T⩾1Qu(⊠

i∈I
u Ai,B)

ϑI⊠T⩾1

→

(T⩽1 ⊠i∈I
u T⩾1Ai)⊠ Qu(⊠

i∈I
u T⩾1Ai, T

⩾1B)
ev′→ T⩾1B

]
. (7.13.2)

For arbitrary quivers C, D we expand the transformation

τ̃2 : TC⊠ TD→ T (C⊠u D)

which occurs in the above equation, into

τ̃2 =
[
T kC⊠ T jD

(λg:k↪→m⊠λh:j↪→m)→
Im g∪Imh=m⊕

g:k↪→m
h:j↪→m

(⊗p∈mT χ(p∈Im g)C)⊠ (⊗p∈mT χ(p∈Imh)D)

⊕κ−1

∼
→

Im g∪Imh=m⊕
g:k↪→m
h:j↪→m

⊗p∈m(T χ(p∈Im g)C⊠ T χ(p∈Imh)D) = Tm(C⊠u D)
]
.

For an arbitrary quiver C ∈ ObQ and a positive integer M introduce a morphism of
quivers

ν⩽M : TC→ TT⩽1C,

ν⩽Mkn : T kC→ ⊕S⊂n ⊗p∈n T χ(p∈S)C = T nT⩽1C,

as follows. By definition, the matrix element ν⩽Mkn vanishes, if n > k +M . Its summand
corresponding to subset S ⊂ n vanishes unless |S| = k. If n ⩽ k +M and |S| = k, the

summand is defined as λg:k↪→n : T kC
∼→ ⊗p∈n T χ(p∈S)C, where the image of isotonic

embedding g : k ↪→ n is S. Thus, ν⩽M : T → TT⩽1 is a natural transformation. We shall
use it in such formulas, where dependence on M is irrelevant, provided the truncation
parameter M is large enough.

The only solution of (7.13.2) is the following. Let f p : ⊠i∈I
u Ai → B, 0 ⩽ p ⩽ n, n > 0,

be morphisms of quivers. Homogeneous elements

rp ∈ Qu(⊠
i∈I
u Ai,B)(f p−1, f p) = Qp(T

⩽1 ⊠i∈I
u Ai,B)(f p−1, f p),

where f p = Ob f p refer to quiver morphisms

f p =
[
T⩽1 ⊠i∈I

u Ai
pr1→ ⊠i∈I

u Ai
fp→B

]
,
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form a sequence

r =
(
f 0

r1→ f 1
r2→ . . . fn−1

rn→ fn
)
: ⊠i∈I

u Ai → B.

Up to an isomorphism ϑ, we may write f p as the quiver morphism f p : ⊠i∈IT⩽1Ai → B.
It is determined by its components f pj = f p(ji), f

p
0 = 0, j = (ji)i∈I , ji ∈ {0, 1}, i ∈ I. Each

rp can be viewed as an element of Qp(⊠i∈IT⩽1Ai,B)(f p−1, f p), so it is determined by its

components rpj = rp(ji), j = (ji)i∈I , ji ∈ {0, 1}, i ∈ I. The sequence r is mapped by T⩾1 to

T⩾1(r1 ⊗ · · · ⊗ rn) =
[
⊠i∈ITAi

τ̃ I→ T ⊠i∈I
u Ai

ν⩽M→ TT⩽1 ⊠i∈I
u Ai∑

f0
⊗p0⊗r1⊗f1

⊗p1⊗r2⊗···⊗fn−1
⊗pn−1⊗rn⊗fn⊗pn→ T⩾1B

]
, (7.13.3)

where M ⩾ n is an arbitrary integer. The last map can be specified as∑
p0+···+pn+n=m

f 0
⊗p0⊗r1⊗f 1⊗p1⊗r2⊗· · ·⊗fn−1⊗pn−1⊗rn⊗fn⊗pn : TmT⩽1⊠i∈I

u Ai → TmB.

7.14 T⩾1-coderivations. Let C, D be T⩾1-coalgebras. Complete the pair of mor-
phisms on the right to an equalizer diagram in Q:

E
equalizer of the pair

e
→ T⩾1Qu(C,D)

T⩾1Qu(1,δ) → T⩾1Qu(C, T
⩾1D)

T⩾1T⩾1Qu(C,D)
T⩾1Θ

→
∆ →

A quiver map f : C→ D is an object of the kernel E if and only if equation

f •T⩾1Qu(1, δ) = f •(∆ · T⩾1Θ) (7.14.1)

holds. By Lemma 5.4

Θ =
[
T⩾1Qu(C,D)

T⩾1

→Qu(T
⩾1C, T⩾1D)

Qu(δ,1)→Qu(C, T
⩾1D)

]
.

Using results of Sections 7.6.1, 7.6.2, and 7.13 we find that (7.14.1) is equivalent to

f · δ = δ · T⩾1f,

that is, f is an object of E if and only if f is a morphism of T⩾1-coalgebras. Equivalently,
f : (C,∆)→ (D,∆) is a morphism of coassociative coalgebras.
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We describe now part of the quiver E. Define the quiver of coderivations Coder(C,D)
via a pull-back square in the left part of the commutative diagram:

Coder(C,D) ⊂
e′ →Qu(C,D)

Qu(1,δ) →Qu(C, T
⩾1D)

T⩾1Qu(C,D)

Θ →in1

⊂

→

E

↓
⊂

e→ T⩾1Qu(C,D)

in1↓

∩

T⩾1Qu(1,δ)→ T⩾1Qu(C, T
⩾1D)

in1↓

∩

T⩾1T⩾1Qu(C,D)

in1↓

∩

T⩾1Θ

→
∆ →

Thus, Coder(C,D) is the intersection of subobjects E and Qu(C,D) of T⩾1Qu(C,D).
Objects of Coder(C,D) are again T⩾1-coalgebra morphisms C→ D. One can verify that
e′ is the equalizer of the upper pair of maps Qu(1, δ) and η ·Θ. Let us compute the graded
modules of morphisms of Coder(C,D).

Let f, g : C → D be T⩾1-coalgebra morphisms. An element r ∈ Qu(C,D)(f, g) =
Qp(T

⩽1C,D)(f, g) belongs to Coder(C,D)(f, g) if and only if equation

r•Qu(1, δ) = r•Θ (7.14.2)

holds. The left hand side of (7.14.2) equals r · δ by (7.6.3). The right hand side is
r•(T⩾1 ·Qu(δ, 1)). By (7.13.3) and (7.6.1) the latter is equal to[

T⩽1C
T⩽1δ→ T⩽1T⩾1C = TC

ν⩽1

→ TT⩽1C

∑
f
⊗p⊗r⊗g⊗q→ T⩾1D

]
,

where
f =

[
T⩽1C

pr1→ C
f→D

]
, g =

[
T⩽1C

pr1→ C
g→D

]
.

We conclude that equation (7.14.2) is equivalent to[
T⩽1C

r→D
δ→ T⩾1D

]
=
[
T⩽1C

T⩽1δ→ T⩽1T⩾1C = TC
ν⩽1

→ TT⩽1C

∑
f
⊗p⊗r⊗g⊗q→ T⩾1D

]
. (7.14.3)

Let us find all solutions r of this equation. We call them T⩾1-coderivations.
A k-span morphism r : T⩽1C→ D can be presented by a pair of k-span morphisms

r0 =
[
T 0C ⊂

in0→ T⩽1C
r→D

]
, r+ =

[
C ⊂

in1→ T⩽1C
r→D

]
.

Restricting equation (7.14.3) to T 0C we get[
T 0C

r0→D
δ→ T⩾1D

]
=
[
T 0C

r0→D ⊂
in1→ T⩾1D

]
.
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This property is satisfied if and only if[
T 0C

r0→D
∆→D⊗D

]
= 0. (7.14.4)

Restricting equation (7.14.3) to T 1C we get[
C

r+→D
δ→ T⩾1D

]
=
[
C

δ→ T⩾1C =
∞⊕
m=1

TmC

∑
p+1+q=m f

⊗p⊗r+⊗g⊗q→
∞⊕
m=1

TmD
]

+
[
C

δ→ T⩾1C =
∞⊕
m=1

TmC
⊕λm↪→m+1

→

∞⊕
m=1

⊕
p+q=m

T pC⊗ T 0C⊗ T qC
∑
p+q=m f

⊗p⊗r0⊗g⊗q→
∞⊕
m=1

Tm+1D
]
. (7.14.5)

Composing this equation with the projection pr1 : T
⩾1D→ D we get the identity r+ = r+,

which imposes no conditions on r. When we compose the equation with the projection
pr2 : T

⩾1D→ T 2D we obtain a non-trivial condition[
C

r+→D
∆→D⊗D

]
=
[
C

∆→ C⊗ C
f⊗r++r+⊗g→D⊗D

]
+
[
C

∼→ C⊗ T 0C
f⊗r0→D⊗D

]
+
[
C

∼→ T 0C⊗ C
r0⊗g→D⊗D

]
. (7.14.6)

We claim that compositions of (7.14.5) with projections prk : T⩾1D → T kD for k > 2
give equations which follow from already obtained conditions (7.14.4) and (7.14.6). Let
us prove this by induction on k ⩾ 2. Assume that equation (7.14.5) composed with prk
is satisfied:

r+ ·∆
(k)

= ∆
(k) ·

∑
p+1+q=k

f⊗p ⊗ r+ ⊗ g⊗q +∆
(k−1) ·

∑
p+q=k−1

f⊗p ⊗ r0 ⊗ g⊗q.

Together with (7.14.4) and (7.14.6) it implies that composition of (7.14.5) with prk+1 is
satisfied:

r+ ·∆
(k+1)

= r+ ·∆
(k) · (∆⊗ 1⊗(k−1))

= ∆
(k) ·

p>0∑
p+1+q=k

f∆⊗ f⊗(p−1) ⊗ r+ ⊗ g⊗q +∆
(k) · (r+∆⊗ g⊗k)

+ ∆
(k−1) ·

p>0∑
p+q=k−1

f∆⊗ f⊗(p−1) ⊗ r0 ⊗ g⊗q

= ∆
(k) · (∆⊗ 1) ·

∑
t+q=k

f⊗t ⊗ r+ ⊗ g⊗q +∆
(k) ·

∑
t+q=k

f⊗t ⊗ r0 ⊗ g⊗q.
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Therefore, equation (7.14.3) for T⩾1-coderivations is equivalent to the pair of equa-
tions (7.14.4) and (7.14.6). It admits another equivalent presentation. Namely, T⩾1-code-
rivations are in bijection with k-span morphisms r′ : T⩽1C → T⩽1D with Obs r

′ = Ob f ,
Obt r

′ = Ob g which satisfy the equation[
T⩽1C

r′→ T⩽1D
∆0→ T⩽1D⊗ T⩽1D

]
=
[
T⩽1C

∆0→ T⩽1C⊗ T⩽C
T⩽1f⊗r′+r′⊗T⩽1g→ T⩽1D⊗ T⩽1D

]
. (7.14.7)

Such r′ are called (T⩽1f, T⩽1g)-coderivations, or, for the sake of brevity, (f, g)-coderiva-
tions, as in [Lyu03, Section 2]. Notice that

T⩽1f, T⩽1g : (T⩽1C,∆0, pr0, in0)→ (T⩽1D,∆0, pr0, in0)

are homomorphisms of augmented coassociative counital coalgebras.
Let us prove equivalence of (7.14.7) with the pair of (7.14.4) and (7.14.6). Equa-

tion (7.14.7) implies immediately that

r′ =
[
T⩽1C

r→D ⊂
in1→ T⩽1D

]
for some k-span morphism r. Indeed, composing (7.14.7) with ε ⊗ ε : T⩽1D ⊗ T⩽1D →
T 0D ⊗ T 0D we get r′ · ε = r′ · ε + r′ · ε, hence r′ · ε = 0. This r = (r0, r+) satisfies
equations (7.14.4) and (7.14.6). Indeed, restriction of (7.14.7) to T 0C gives one equation[

T 0C
r0→D

∆→D⊗D
]
= 0,

which is (7.14.4), and two identities[
T 0C

r0→D
∼→ T 0D⊗D

]
=
[
T 0C

∼→ T 0C⊗ T 0C
T 0f⊗r0→ T 0D⊗D

]
,[

T 0C
r0→D

∼→D⊗ T 0D
]
=
[
T 0C

∼→ T 0C⊗ T 0C
r0⊗T 0g→D⊗ T 0D

]
.

Restriction of (7.14.7) to T 1C gives equation (7.14.6) and two more identities.
When D = T⩾1B we know by Proposition 5.10 that the split embedding

e =
[
T⩾1Qu(C,B)

∆→ T⩾1T⩾1Qu(C,B)
T⩾1Θ→ T⩾1Qu(C, T

⩾1B)
]

is the equalizer of the pair T⩾1Qu(1,∆) and ∆ · T⩾1Θ. The following diagram is commu-
tative:

Qu(C,B) ⊂
in1→ T⩾1Qu(C,B)

Θ →Qu(C, T
⩾1B)

T⩾1Qu(C,B)

in1↓
∩

∆→ T⩾1T⩾1Qu(C,B)

in1↓
∩

T⩾1Θ→ T⩾1Qu(C, T
⩾1B)

in1↓
∩

(7.14.8)

Due to (5.10.2) the composite upper row is an embedding split by the morphism Qu(1, ε).
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7.15 Proposition. Let C be a T⩾1-coalgebra, B a graded k-quiver. The exterior of
diagram (7.14.8)

Qu(C,B) ⊂
in1 ·Θ →Qu(C, T

⩾1B)

T⩾1Qu(C,B)

in1↓
∩

⊂
∆·T⩾1Θ→ T⩾1Qu(C, T

⩾1B)

in1↓
∩

is a pull-back square. Thus the subquiver of coderivations Coder(C, T⩾1B) identifies with
the image Θ(Qu(C,B)) of the embedding in1 ·Θ.

Proof. The image of Qu(C,B) is contained in Coder(C, T⩾1B) by definition of the latter.
The action of Θ on objects ObΘ : ObQu(C,B) → ObCoder(C, T⩾1B) is bijective by
Lemma 5.3 (see also Corollary 6.11). The inverse map is given by (f : C → T⩾1B) 7→
(f̌ = f · ε = f · pr1 : C→ B).

Let us prove that in1 ·Θ : Qu(C,B) → Coder(C, T⩾1B) is an isomorphism of quivers.
Proposition 5.10 implies that this is a split embedding with the splitting Qu(1, ε). We
have to show that an (f, g)-coderivation r : T⩽1C → T⩾1B is uniquely determined by

ř = rε =
(
T⩽1C

r→ T⩾1B
pr1→B

)
. Using equation (7.14.7) we get the commutative

diagram,

T⩾1B

T⩽1C

r
→

T lT⩾1B

∆
(l)
0 ↓

T l pr1 → T lB

prl

→

T lT⩽1C

∑
f⊗q⊗r⊗g⊗t
↑

∑
q+1+t=l f̌

⊗q⊗ř⊗ǧ⊗t

→

∆
(l)
0 →

(7.15.1)

which implies that r is recovered from r · pr1 via

r =
∑

q+1+t=l>0

(
T⩽1C

∆
(l)
0→ T lT⩽1C

f̌⊗q⊗ř⊗ǧ⊗t→ T lB
inl→ T⩾1B

)
.

The sum is finite on any element of (T⩽1C)(X, Y ) due to C being a T⩾1-coalgebra and
due to formulas (6.11.1) and (6.11.4) relating ∆ and ∆0. Hence, Θ : Qu(C,B) →
Coder(C, T⩾1B) is bijective on morphisms.

Let us consider now the case of several arguments. Let (Ci)i∈I , D be T⩾1-coalgebras.

Then the equalizer diagram in Q̂u

E
e→ T⩾1Q̂u((Ci)i∈I ;D)

T⩾1Q̂u(▷;δ)→
∆·T⩾1Θ(Ci);D

→ T⩾1Q̂u((Ci)i∈I ;T
⩾1D)
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coincides with the equalizer diagram in Q

E
e→ T⩾1Qu(⊠

i∈I
u Ci,D)

T⩾1Qu(1,δ)→
∆·T⩾1Θ

⊠i∈Iu Ci,D

→ T⩾1Qu(⊠
i∈I
u Ci, T

⩾1D).

Indeed, Q̂u(▷; δ) = Qu(1, δ) by Lemma 4.27 and Θ(Ci);D = Θ⊠i∈Iu Ci,D by Corollary 5.25.
Therefore, the coderivation quiver Coder((Ci)i∈I ;D) introduced similarly to Coder(C,D)
coincides with Coder(⊠i∈I

u Ci,D). Its objects are T⩾1-coalgebra morphisms f : (Ci)i∈I →
D, or equivalently, f : ⊠i∈I

u Ci → D. Let us describe the elements of Coder(⊠i∈I
u Ci,D)(f, g),

the (f, g)-coderivations, in equivalent form. The latter are k-span morphisms r′ :
T⩽1 ⊠i∈I

u Ci → T⩽1D with Obs r
′ = Ob f , Obt r

′ = Ob g which satisfy the equation[
T⩽1 ⊠i∈I

u Ci
r′→ T⩽1D

∆0→ T⩽1D⊗ T⩽1D
]

=
[
T⩽1 ⊠i∈I

u Ci
∆0→ (T⩽1 ⊠i∈I

u Ci)⊗ (T⩽1 ⊠i∈I
u Ci)

T⩽1f⊗r′+r′⊗T⩽1g→ T⩽1D⊗ T⩽1D
]
.

(7.15.2)

They are in bijection with the k-span morphisms

r′′ =
[
⊠i∈IT⩽1Ci

ϑI

∼
→ T⩽1 ⊠i∈I

u Ci
r′→ T⩽1D

]
.

Composing equation (7.15.2) with ϑI : ⊠i∈IT⩽1Ci → T⩽1⊠i∈I
u Ci, which is an isomorphism

of augmented counital coassociative algebras by Proposition 6.19, we get[
⊠i∈IT⩽1Ci

r′′→ T⩽1D
∆0→ T⩽1D⊗ T⩽1D

]
=
[
⊠i∈IT⩽1Ci

ϑI→ T⩽1 ⊠i∈I
u Ci

∆0→ (T⩽1 ⊠i∈I
u Ci)⊗ (T⩽1 ⊠i∈I

u Ci)
T⩽1f⊗r′+r′⊗T⩽1g→ T⩽1D⊗ T⩽1D

]
=
[
⊠i∈IT⩽1Ci

⊠i∈I∆0→ ⊠i∈I (T⩽1Ci ⊗ T⩽1Ci)
κ−1

→ (⊠i∈IT⩽1Ci)⊗ (⊠i∈IT⩽1Ci)
ϑI⊗ϑI→ (T⩽1 ⊠i∈I

u Ci)⊗ (T⩽1 ⊠i∈I
u Ci)

T⩽1f⊗r′+r′⊗T⩽1g→ T⩽1D⊗ T⩽1D
]

=
[
⊠i∈IT⩽1Ci

⊠i∈I∆0→ ⊠i∈I (T⩽1Ci ⊗ T⩽1Ci)
κ−1

→ (⊠i∈IT⩽1Ci)⊗ (⊠i∈IT⩽1Ci)

T̂⩽1f⊗r′′+r′′⊗T̂⩽1g→ T⩽1D⊗ T⩽1D
]
.

Therefore, (f, g)-coderivations are k-span morphisms r′′ : ⊠i∈IT⩽1Ci → T⩽1D with
Obs r

′′ = Ob f , Obt t
′′ = Ob g which satisfy the equation[

⊠i∈IT⩽1Ci
r′′→ T⩽1D

∆0→ T⩽1D⊗ T⩽1D
]

=
[
⊠i∈IT⩽1Ci

⊠i∈I∆0→ ⊠i∈I (T⩽1Ci ⊗ T⩽1Ci)
κ−1

→ (⊠i∈IT⩽1Ci)⊗ (⊠i∈IT⩽1Ci)

T̂⩽1f⊗r′′+r′′⊗T̂⩽1g→ T⩽1D⊗ T⩽1D
]
.
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7.16 Transformation θ. Formula (5.23.1) describes the T⩾1-coalgebra morphism

(evQ(Ai);B)
̂= [(⊠i∈I

u T⩾1sAi)⊠u T
⩾1Qu(⊠

i∈I
u T⩾1sAi, sB)

(⊠Iu∆)⊠u1→ (⊠i∈I
u T⩾1T⩾1sAi)⊠u T

⩾1Qu(⊠
i∈I
u T⩾1sAi, sB)

τ I⊔1

→

T⩾1
[
(⊠i∈I

u T⩾1sAi)⊠u Qu(⊠
i∈I
u T⩾1sAi, sB)

] T⩾1 evQu
⊠IuT

⩾1sAi,sB→ T⩾1sB
]

=
[
(⊠i∈I

u T⩾1sAi)⊠u T
⩾1Qu(⊠

i∈I
u T⩾1sAi, sB)

1⊠uθ(Ai);B→

(⊠i∈I
u T⩾1sAi)⊠u Qu(⊠

i∈I
u T⩾1sAi, T

⩾1sB)
evQu

⊠IuT
⩾1sAi,T

⩾1sB→ T⩾1sB
]
. (7.16.1)

According to bijection (7.5.1) the quiver map

θ(Ai);B : T⩾1Qu(⊠
i∈I
u T⩾1sAi, sB)→ Qu(⊠

i∈I
u T⩾1sAi, T

⩾1sB)

assigns to an object (a morphism of quivers) f : ⊠i∈I
u T⩾1sAi → sB, the object (a mor-

phism of quivers)[
⊠i∈I
u T⩾1sAi

⊠Iu∆→ ⊠i∈I
u T⩾1T⩾1sAi

τ I→ T⩾1 ⊠i∈I
u T⩾1sAi

T⩾1f→ T⩾1sB
]
= f̂ .

Indeed, denote C = ⊠i∈I
u T⩾1sAi, D = Qu(⊠i∈I

u T⩾1sAi, sB) and compute (7.5.3). The
matrix element

τ̃2 =
[
T kC⊠ T 0T⩾1D ⊂ → T kC⊠u T

⩾1D
τ2→ Tm(C⊠u D)

]
given by (6.2.1) produces the identity map (X, f) 7→ (X, f) on objects, and it does not
vanish only if k = m, being the isomorphism

TmC⊠ T 0D
1⊠λ∅→m

∼
→ TmC⊠ TmT 0D

κ−1

∼
→ Tm(C⊠ T 0D),

[⊗p∈mC(Xp−1, Xp)]⊗ T 0D(f, f)
∼→ ⊗p∈m [C(Xp−1, Xp)⊗ T 0D(f, f)]

on morphisms.
To compute the quiver map θ(Ai);B on morphisms via (7.5.2), (7.5.4), we find the

restriction of the left hand side of (7.16.1) in the form:[
T⩽1(⊠i∈I

u T⩾1sAi)⊠ T⩾1Qu(⊠
i∈I
u T⩾1sAi, sB) ≃ (⊠i∈ITsAi)⊠ T⩾1Qu(⊠

i∈I
u T⩾1sAi, sB)

(⊠I∆̃)⊠1→ (⊠i∈ITT⩾1sAi)⊠ T⩾1Qu(⊠
i∈I
u T⩾1sAi, sB)

τ̃ I⊠1→ (T ⊠i∈I
u T⩾1sAi)⊠ T⩾1Qu(⊠

i∈I
u T⩾1sAi, sB)

τ̃2→ T⩾1
[
(⊠i∈I

u T⩾1sAi)⊠u Qu(⊠
i∈I
u T⩾1sAi, sB)

] T⩾1 evQu
⊠IuT

⩾1sAi,sB→ T⩾1sB
]
.
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Starting from elements rt ∈ Qp(⊠i∈ITsAi, sB)(f t−1, f t), 1 ⩽ t ⩽ m, which can be col-
lected into a diagram

r =
(
f 0

r1→ f 1
r2→ . . . fm−1

rm→ fm
)
: ⊠i∈ITsAi → sB,

we can compute the element r̂ = (r1⊗· · ·⊗ rm)θ(Ai);B ∈ Qp(⊠i∈ITsAi, T
⩾1sB) as follows:

r̂ =
[
⊠i∈ITsAi

⊠I∆̃→ ⊠i∈I TT⩾1sAi
τ̃ I→ T ⊠i∈I

u T⩾1sAi
ν⩽M→ TT⩽1 ⊠i∈I

u T⩾1sAi

T (ϑI)−1

∼
→ T ⊠i∈I TsAi

∑
f0

⊗p0⊗r1⊗f1
⊗p1⊗r2⊗···⊗fm−1

⊗pm−1⊗rm⊗fm⊗pm

→ T⩾1sB
]
, (7.16.2)

where the objects are omitted. Respectively, linear maps

rt : ⊠i∈ITsAi((Xi), (Yi))→ sB((Xi)f
t−1, (Yi)f

t)

or quiver maps

f t =
[
⊠i∈ITsAi

ϑI

∼
→ T⩽1 ⊠i∈I

u T⩾1sAi
pr1→ ⊠i∈I

u T⩾1sAi
f t→ sB

]
are used. Here M ⩾ m is an arbitrary integer. Composition (7.16.2) does not depend on
M ∈ [m,∞[, since all f t vanish on T 0 ⊠i∈I

u T⩾1sAi ≃ ⊠i∈IT 0sAi.
The same element can be written as

r̂ =
[
⊠i∈ITsAi

⊠I∆̃→ ⊠i∈I TT⩾1sAi
τ̃ I→ T ⊠i∈I

u T⩾1sAi

ν⩽M→ TT⩽1 ⊠i∈I
u T⩾1sAi

T (ϑI)−1

∼
→ T n ⊠i∈I TsAi∑

k0+···+km+m=n f̂
0
k0p0
⊗r1⊗f̂1k1p1⊗···⊗r

m⊗ ˆfmkmpm→ T p0+···+pm+msB
]
,

where n = k0+· · ·+km+m, and f̂ qkqpq : T
kq⊠i∈I

u T⩾1sAi → T pqsB is the matrix coefficient

of f̂ q. Another presentation of this formula is

r̂ = (r1 ⊗ · · · ⊗ rm)θ(Ai);B = signed permutation and insertion of units ×
×

∑
ps⩾0

ist ,js∈(Z⩾0)
n; ist ̸=0

f 0i01 ⊗ · · · ⊗ f
0
i0p0
⊗ r1j1 ⊗ f

1
i11
⊗ · · · ⊗ f 1i1p1 ⊗ · · · ⊗ r

m
jm
⊗ fmim1 ⊗ · · · ⊗ f

m
impm
.

(7.16.3)

Important special case is m = 1; the element r : f → g : (Ai)i∈I → B is taken by
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θ(Ai);B to the element

r̂ = (r)θ(Ai);B =
[
⊠i∈ITsAi

⊠I∆̃→ ⊠i∈I TT⩾1sAi
τ̃ I→ T ⊠i∈I

u T⩾1sAi

ν⩽M→ TT⩽1 ⊠i∈I
u T⩾1sAi

T (ϑI)−1

∼
→ T ⊠i∈I TsAi

∑
f
⊗p⊗r⊗g⊗q→ T p+1+qsB

]
= signed permutation

& insertion of units
×

∑
p,q⩾0

is,j,kt∈(Z⩾0)
n; is,kt ̸=0

fi1 ⊗ · · · ⊗ fip ⊗ rj ⊗ gk1 ⊗ · · · ⊗ gkq . (7.16.4)

7.17 Multiplication in the closed multicategory Q. By Proposition 4.10, for an
arbitrary tree

t = (I
ϕ→ J → 1|(Ai)i∈I , (Bj)j∈J ,C ∈ ObQ)

of height 2 there is a morphism in Qu

µ
Q
ϕ : ⊠J⊔1[(T⩾1Qu(⊠

i∈ϕ−1j
u T⩾1sAi, sBj))j∈J , T

⩾1Qu(⊠
j∈J
u T⩾1sBj, sC)

]
→ Qu(⊠

i∈I
u T⩾1sAi, sC).

Using (5.20.2) we conclude that

µ
Q
ϕ =

[
⊠J⊔1
u

[
(T⩾1Qu(⊠

i∈ϕ−1j
u T⩾1sAi, sBj))j∈J , T

⩾1Qu(⊠
j∈J
u T⩾1sBj, sC)

]
⊠J⊔1
u [(θ(Ai)i∈ϕ−1j

;Bj
)j∈J ,pr1]

→ ⊠J⊔1
u

[
(Qu(⊠

i∈ϕ−1j
u T⩾1Ai, T

⩾1sBj))j∈J ,Qu(⊠
j∈J
u T⩾1sBj, sC)

]
µ

Qu
ϕ→Qu(⊠

i∈I
u T⩾1sAi, sC)

]
. (7.17.1)
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Chapter 8

A∞-categories

A∞-categories can be characterized as free T⩾1-coalgebras with a differential. The sym-
metric multicategory of graded quivers Q was constructed in Chapter 7. Adding differ-
entials to the picture we obtain the symmetric multicategory A∞ of A∞-categories and
A∞-functors. Besides a definition of multicategory type these admit a description in terms
of coalgebras. Namely, A∞-categories are augmented counital coassociative coalgebras in
the category dQp of differential graded quivers which come from free T⩾1-coalgebras in Q.
Respectively, A∞-functors are morphisms of such augmented differential coalgebras. One
of the main features of A∞-categories is that the multicategory A∞ is closed. Closedness of
A∞ has somewhat unexpected consequences, for instance, homotopy Gerstenhaber algebra
structure on the cohomological Hochschild complex of a differential graded category.

8.1 Differentials. According to Proposition 7.15 there is a quiver map

θ
∣∣
T 1 =

[
Qu(T

⩾1sA, sA)
∼→ Coder(T⩾1sA, T⩾1sA) ⊂ →Qu(T

⩾1sA, T⩾1sA)
]
.

It takes an arbitrary element b ∈ Qu(T
⩾1sA, sA)(pr1, pr1) to the T⩾1-coderivation bθ ∈

Qu(T
⩾1sA, T⩾1sA)(idT⩾1sA, idT⩾1sA).

8.2 Definition. An object of A∞ (an A∞-category) is a graded k-quiver A together
with a differential, i.e., an arrow b : idA → idA in the graded k-quiver sQ(A;A) =

Q̂u

T⩾1

(sA; sA) = Qu(T
⩾1sA, sA) of degree 1 such that (bθ) · in1 ·b = 0 in Qp, and with

additional condition b0 = 0.

Equivalently, b is given by a T⩾1-coalgebra morphism

b̂ =
[
1p[−1]

b→ sQ(A;A)
in1→ T⩾1sQ(A;A)

]
,

see Example 5.11. Here 1p[−1] is equipped with the T⩾1-coalgebra structure η = in1 :
1p[−1]→ T⩾11p[−1], which is the augmentation morphism of T⩾1.

Condition (b̂θ) · in1 ·b = 0 in Qp, or explicitly

[
1p[−1]⊠ 1p[−1]

b̂θ⊠b→Qp(TsA, T
⩾1sA)⊠ Qp(TsA, sA)

−·in1 ·−→Qp(TsA, sA)
]
= 0,

215
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is equivalent to the condition

[
1p[−1]⊠ 1p[−1] ⊂ → 1p[−1]⊠u 1p[−1]

b̂θ⊠ub→

Qu(T
⩾1sA, T⩾1sA)⊠u Qu(T

⩾1sA, sA)
µQu

→Qu(T
⩾1sA, sA)

]
= 0 (8.2.1)

due to (7.6.7). This can be written also as

[
1p[−1]⊠ 1p[−1] ⊂ → 1p[−1]⊠u 1p[−1]

b̂⊠ub̂→

T⩾1sQ(A;A)⊠u T
⩾1sQ(A;A)

µQ

→ sQ(A;A)
]
= 0 (8.2.2)

due to presentation (5.20.2) of µQ.
Formula (7.16.4) with M = 0 gives the composition in Qp

b̂θ =
[
TsA

∆̃→ TT⩾1sA
∑

pr⊗i1 ⊗b⊗pr
⊗k
1→ T⩾1sA

]
.

More explicit formula follows. Any integers i, k ⩾ 0, j > 0 define a summand of the
matrix element between TmsA and T nsA, where m = i+j+k and n = i+1+k. Namely,
they define the non-decreasing surjection g : m ↠ n, g(l) = l if l ⩽ i, g(l) = i + 1 if
i < l ⩽ i+ j, and g(l) = l − j + 1 if l > i+ j. We have the composition in Qp

(b̂θ)mn =
i+1+k=n∑
i+j+k=m

[
⊗msA

λg→ ⊗p∈n ⊗g−1psA
⊗n[(id)i,bj ,(id)k]→ ⊗p∈n sA

]
.

An easier way to write it is

b̂θ =
∑

i+j+k=n

1⊗i ⊗ bj ⊗ 1⊗k : T nsA→ T⩾1sA.

Equation (b̂θ) · in1 ·b = 0 in Qp has the explicit form:∑
i+j+k=n

(1⊗i ⊗ bj ⊗ 1⊗k)bi+1+k = 0 : T nsA→ sA, n > 0.

We also view the differential b as an element of Qp(TsA, sA)(idObA, idObA). Consider

the element b̃ = (b̂θ) in1 T
⩽1 ∈ Qp(TsA, T sA)(idObA, idObA). This is a (1,1)-coderivation

b̃ = b̂θ · in1 : (TsA,∆0)→ (TsA,∆0). It is determined by the equations

inn ·b̃ =
∑

i+j+k=n

1⊗i ⊗ bj ⊗ 1⊗k : T nsA→ TsA.
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We are going to prove that b̃2 = 0 in the sense of Qp.

Denote by ∠ the quiver embedding1 1p[−2]
∼→ 1p[−1]⊠1p[−1] ⊂ → 1p[−1]⊠u1p[−1].

8.3 Lemma. Condition (8.2.2) is equivalent to the condition

[
1p[−2] ⊂

∠→ 1p[−1]⊠u 1p[−1]
b̂⊠ub̂→

T⩾1sQ(A;A)⊠u T
⩾1sQ(A;A)

(µQ)̂→ T⩾1sQ(A;A)
]
= 0. (8.3.1)

For any quiver morphism b : 1p[−1]→ sQ(A;A) the composite left hand side is a T⩾1-coal-
gebra homomorphism, where the source is equipped with the T⩾1-coalgebra structure
(1p[−2], in1).

Proof. If equation (8.3.1) holds, then composing it with pr1 : T⩾1sQ(A;A) → sQ(A;A)
we obtain equation (8.2.2).

Assume now that condition (8.2.1) holds. Due to (5.20.2) the left hand side of (8.3.1)
expands to the following composition of quiver morphisms:

[
1p[−2]

∼→ 1p[−1]⊠ 1p[−1]
b⊠b→ sQ(A;A)⊠ sQ(A;A)

in1 ⊠ in1→ T⩾1sQ(A;A)⊠ T⩾1sQ(A;A)
∆⊠∆→ T⩾1T⩾1sQ(A;A)⊠ T⩾1T⩾1sQ(A;A)

⊂ → T⩾1T⩾1sQ(A;A)⊠u T
⩾1T⩾1sQ(A;A)

τ→ T⩾1
(
T⩾1sQ(A;A)⊠u T

⩾1sQ(A;A)
)

T⩾1(θ⊠upr1)→ T⩾1
(
Qu(T

⩾1sA, T⩾1sA)⊠u Qu(T
⩾1sA, sA)

) T⩾1µQu

→ T⩾1Qu(T
⩾1sA, sA)

]
.

Since in1 is an augmentation of the comonad T⩾1, we may replace ∆⊠∆ with in1⊠ in1.
This allows to rewrite the above composition as

[
1p[−2]

∼→ 1p[−1]⊠ 1p[−1]
b̂θ⊠b→Qu(T

⩾1sA, T⩾1sA)⊠ Qu(T
⩾1sA, sA)

⊂ → T⩾1Qu(T
⩾1sA, T⩾1sA)⊠u T

⩾1Qu(T
⩾1sA, sA)

τ→ T⩾1
(
Qu(T

⩾1sA, T⩾1sA)⊠u Qu(T
⩾1sA, sA)

) T⩾1µQu

→ T⩾1Qu(T
⩾1sA, sA)

]
. (8.3.2)

Applying formula (6.4.1) for I = 2, m1 = m2 = 1 we find that the composition is a sum of
three quiver morphisms. The first is indexed by S = 2×1, its target is T 1Qu(T

⩾1sA, sA),
see (6.2.1). The second and the third are indexed by S = {(1, 1), (2, 2)} ⊂ 2× 2 and by

1Warning: it is not a T⩾1-coalgebra morphism.



218 8. A∞-categories

S = {(1, 2), (2, 1)} ⊂ 2× 2, their target is T 2Qu(T
⩾1sA, sA). The second is[

1p[−2]
∼→ 1p[−1]⊠ 1p[−1]

b̂θ⊠b→Qu(T
⩾1sA, T⩾1sA)⊠ Qu(T

⩾1sA, sA)
λI . ⊠λ . I

→(
Qu(T

⩾1sA, T⩾1sA)⊗ T 0Qu(T
⩾1sA, T⩾1sA)

)
⊠
(
T 0Qu(T

⩾1sA, sA)⊗Qu(T
⩾1sA, sA)

)
κ−→
(
Qu(T

⩾1sA, T⩾1sA)⊠T 0Qu(T
⩾1sA, sA)

)
⊗
(
T 0Qu(T

⩾1sA, T⩾1sA)⊠Qu(T
⩾1sA, sA)

)
µQu⊗µQu

→Qu(T
⩾1sA, sA)⊗Qu(T

⩾1sA, sA)
]

=
[
1p[−2]

λ∅→2

∼
→ 1p[−1]⊠ 1p[−1]

b⊗b→Qu(T
⩾1sA, sA)⊗Qu(T

⩾1sA, sA)
]

due to (7.6.8) and (7.6.9), since b̂ ·θ ·pr1 = b. Similar computation for the third summand
gives the expression −λ∅→2 · (b ⊗ b). Thus, the second and the third summands cancel
each other. Therefore, (8.3.2) is equal to the first summand[
1p[−2]

∼→ 1p[−1]⊠ 1p[−1]
b̂θ⊠b→Qu(T

⩾1sA, T⩾1sA)⊠ Qu(T
⩾1sA, sA) ⊂ →

Qu(T
⩾1sA, T⩾1sA)⊠u Qu(T

⩾1sA, sA)
µQu

→Qu(T
⩾1sA, sA)

in1→ T⩾1Qu(T
⩾1sA, sA)

]
,

which vanishes by (8.2.1). Without this vanishing assumptions we see that this composi-
tion ends up with in1, hence, its image is contained in Ker∆. By (6.8.2) the whole above
expression is always a T⩾1-coalgebra homomorphism.

8.4 Remark. According to Remark 5.21 equation (8.3.1) is equivalent to the following
equation:[
1p[−2] ⊂

∠→ 1p[−1]⊠u 1p[−1]
b̂⊠ub̂→ T⩾1Q̂u(T

⩾1sA; sA)⊠u T
⩾1Q̂u(T

⩾1sA; sA)

µ
Q̂u

f

T⩾1

→ T⩾1Q̂u(T
⩾1sA; sA)

]
= 0.

Composing it with θ : T⩾1Q̂u(T
⩾1sA; sA)→ Q̂u(T

⩾1sA;T⩾1sA) and taking into account
equations (5.19.2) and (4.21.1) we obtain[
1p[−1]⊠ 1p[−1] ↪→ 1p[−1]⊠u 1p[−1]

b̂⊠ub̂→ T⩾1Q̂u(T
⩾1sA; sA)⊠u T

⩾1Q̂u(T
⩾1sA; sA)

θ⊠uθ→ Q̂u(T
⩾1sA;T⩾1sA)⊠u Q̂u(T

⩾1sA;T⩾1sA)
µQ̂u

→ Q̂u(T
⩾1sA;T⩾1sA)

]
= 0,

or equivalently:[
1p[−1]⊠1p[−1]

b̂θ⊠b̂θ→Qp(TsA, T
⩾1sA)⊠Qp(TsA, T

⩾1sA)
−·in1 ·−→Qp(TsA, T

⩾1sA)
]
= 0,

that is, (b̂θ) · in1 ·(b̂θ) = 0 in Qp. This equivalent to b̃2 = (b̂θ) · in1 ·(b̂θ) · in1 = 0 in Qp.

We have deduced this equation from the equation (b̂θ) · in1 ·b = 0 in Qp. Actually, they
are equivalent, since the latter can be obtained from the former by composing with pr1.
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Since b̂ : 1p[−1] → T⩾1Qu(T
⩾1sA, sA) = T⩾1sQ(A;A) is a T⩾1-coalgebra morphism,

morphism φ for Q̂u

′
T⩾1 gives another T⩾1-coalgebra morphism

φ(b̂) =
[
T⩾1sA⊠u 1p[−1]

1⊠ub̂→ T⩾1sA⊠u T
⩾1Qu(T

⩾1sA, sA)
ev

Q̂u
f

T⩾1

→ T⩾1sA
]

=
[
T⩾1sA,1p[−1]

∆,b̂→ T⩾1T⩾1sA, T⩾1Qu(T
⩾1sA, sA)

T⩾1 evQu

→ T⩾1sA
]

=
[
T⩾1sA⊠u 1p[−1]

1⊠ub̂θ→ T⩾1sA⊠u Qu(T
⩾1sA, T⩾1sA)

evQu

→ T⩾1sA
]
.

The formulas are due to Lemma 5.7. The last one shows that the restriction of φ(b̂) to
T⩾1sA⊠ T 01p[−1] coincides with (λI . )−1 by (7.5.6).

8.5 Lemma. Condition (8.3.1) on b is equivalent to the following one:

[
TsA⊠ 1p[−2]

∼→ TsA⊠ 1p[−1]⊠ 1p[−1]
φ(b̂)⊠1→ T⩾1sA⊠ 1p[−1]

φ(b̂)→ T⩾1sA
]
= 0.
(8.5.1)

Proof. According to equation (5.19.1) the morphism (evQ)̂identifies with the evaluation

evQ̂u

f

T⩾1 . The left hand side of equation (8.3.1) is a T⩾1-coalgebra morphism by Lemma 8.3.
Due to Lemma 5.7 this equation can be written in equivalent form as

[
T⩾1sA⊠u 1p[−2]

1⊠u∠→ T⩾1sA⊠u 1p[−1]⊠u 1p[−1]
1⊠ub̂⊠ub̂→

T⩾1sA⊠u T
⩾1sQ(A;A)⊠u T

⩾1sQ(A;A)
1⊠u(µQ)̂→ T⩾1sA⊠u T

⩾1sQ(A;A)
ev

Q̂u
f

T⩾1

→ T⩾1sA
]

=
[
T⩾1sA⊠u 1p[−2]

1⊠u0→ T⩾1sA⊠u T
⩾1sQ(A;A)

ev
Q̂u

f

T⩾1

→ T⩾1sA
]
, (8.5.2)

where zero morphism 0 : 1p[−2] → T⩾1sQ(A;A) takes the object ∗ to idQA = pr1 :
T⩾1sA→ sA. By Lemma 5.7 the right hand side equals

[
T⩾1sA⊠u 1p[−2]

1⊠u0→ T⩾1sA⊠u Qu(T
⩾1sA, T⩾1sA)

evQu

→ T⩾1sA
]
,

where 0 : ∗ 7→ idT⩾1sA. This composition equals (λI . )−1 on T⩾1sA⊠ T 01p[−2] by (7.5.6).
The left hand side of (8.5.2) also equals (λI . )−1 on T⩾1sA ⊠ T 01p[−2]. Therefore, it
suffices to consider restriction of equation (8.5.2) to TsA ⊠ 1p[−2], on which the right
hand side vanishes.
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Using diagram (5.21.1) the left hand side of (8.5.2) can be transformed to

[
T⩾1sA⊠u 1p[−2]

1⊠u∠→ T⩾1sA⊠u 1p[−1]⊠u 1p[−1]
1⊠ub̂⊠ub̂→

T⩾1sA⊠uT
⩾1sQ(A;A)⊠uT

⩾1sQ(A;A)
ev

Q̂u
f

T⩾1 ⊠u1→ T⩾1sA⊠uT
⩾1sQ(A;A)

ev
Q̂u

f

T⩾1

→ T⩾1sA
]

=
[
T⩾1sA⊠u 1p[−2]

1⊠u∠→ T⩾1sA⊠u 1p[−1]⊠u 1p[−1]

1⊠ub̂⊠u1→ T⩾1sA⊠u T
⩾1sQ(A;A)⊠u 1p[−1]

ev
Q̂u

f

T⩾1 ⊠u1→ T⩾1sA⊠u 1p[−1]

1⊠ub̂→ T⩾1sA⊠u T
⩾1sQ(A;A)

ev
Q̂u

f

T⩾1

→ T⩾1sA
]
.

Its restriction to TsA ⊠ 1p[−2] equals the left hand side of (8.5.1) and the lemma is
proven.

8.6 Lemma. Given φ(b̂) = φQ̂u

′
T⩾1(b̂), one can restore b : 1p[−1] → Qu(T

⩾1sA, sA) =

Qp(TsA, sA) from the following equations in Q̂u and Q:

[
T⩾1sA,1p[−1]

φQ̂u
′
T⩾1 (b̂)→ T⩾1sA

pr1→ sA
]

(8.6.1)

=
[
T⩾1sA,1p[−1]

1,b→ T⩾1sA,Qu(T
⩾1sA, sA)

evQ̂u

→ sA
]
= φQ̂u(b), (8.6.2)[

TsA⊠ 1p[−1] ⊂ → T⩾1sA⊠u 1p[−1]
φQ̂u

′
T⩾1 (b̂)→ T⩾1sA

pr1→ sA
]

(8.6.3)

=
[
TsA⊠ 1p[−1]

1⊠b→ TsA⊠ Qp(TsA, sA)
evQp

→ sA
]
= φQp(b). (8.6.4)

Proof. Expression (8.6.1) expands to the composition in Q̂u:

[
T⩾1sA,1p[−1]

∆,b̂→ T⩾1T⩾1sA, T⩾1Qu(T
⩾1sA, sA)

T⩾1 evQ̂u

→ T⩾1sA
pr1→ sA

]
=
[
T⩾1sA,1p[−1]

∆,b̂→ T⩾1T⩾1sA, T⩾1Qu(T
⩾1sA, sA)

pr1,pr1→ T⩾1sA,Qu(T
⩾1sA, sA)

evQ̂u

→ sA
]

by multinaturality of ε = pr1. Clearly, this is equal to (8.6.2).
By the above considerations expression (8.6.3) expands to a composition in Q:

[
TsA⊠ 1p[−1]

1⊠b→ T⩽1T⩾1sA⊠ Qp(TsA, sA) ⊂ → T⩾1sA⊠u Qp(TsA, sA)
evQu

→ sA
]
.

By (7.5.5) this composition is equal to (8.6.4).
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8.7 A∞-functors. In agreement with notation introduced just above Lemma 4.16 an
arbitrary morphism of quivers f : A→ B comes from a morphism of quivers ḟ = φ−1(f) :
1p → Qp(A,B), namely, Ob ḟ : ∗ 7→ Ob f and ḟ : 1 7→ f ∈ Qp(A,B)(Ob f,Ob f)0. By

abuse of notation ḟ can be also denoted f .
Recall that an element f ∈ Q((Ai)i∈n;B), that is, a quiver morphism f : ⊠i∈n

u T⩾1sAi →
sB, has associated quiver morphisms f = ϑI · T⩽1f · pr1 : ⊠i∈nTsAi → sB, see equa-

tion (7.9.1), f̂ : ⊠i∈I
u T⩾1sAi → T⩾1sB and f̃ : ⊠i∈ITsAi → TsB, see diagram (7.9.3).

8.8 Definition. A morphism in A∞((Ai)i∈n;B), called A∞-functor, is an element f ∈
Q((Ai)i∈n;B) commuting with the differentials. This means that the following composi-
tions in Qp are equal

(
⊠i∈nTsAi

˙̃
f−→ TsB

b−→ sB
)
=
(
⊠i∈nTsAi

∑n
i=1 1

⊠(i−1)⊠b̃⊠1⊠(n−i)

→ ⊠i∈n TsAi
ḟ−→ sB

)
. (8.8.1)

Due to (7.11.1) the above equation can be written in components as∑
i1,...,im∈(Z⩾0)

n∖{0}
i1+···+im=(ℓ1,...,ℓn)

⊠Iλ · κ−1 · (fi1 ⊗ · · · ⊗ fim)bm

=
n∑
q=1

∑
r+k+t=ℓq
r+1+t=p

(
1⊠(q−1)⊠ (1⊗r⊗ bk⊗1⊗t)⊠1⊠(n−q))f(ℓ1,...,ℓq−1,p,ℓq+1,...,ℓn) : ⊠

i∈nT ℓ
i

sAi → sB

for all (ℓ1, . . . , ℓn) ∈ (Z⩾0)
n ∖ {0}. If n = 0 the commutation with differentials holds true

automatically.

8.9 Definition. An A∞-functor f is strict if it is strict as a morphism in Q, that is, if its
arbitrary component fj vanishes for j ∈ Zn⩾0 unless |j| = 1.

Let f : X → Y be a morphism in an arbitrary closed Monoidal category C. It defines
the morphism ḟ = φ−1(f) : 1→ C(X, Y ). For an arbitrary object Z of C the equations

C(1, f) =
[
C(Z,X)

λI .
∼
→ C(Z,X)⊗ 1

1⊗ḟ→ C(Z,X)⊗ C(X, Y )
µC

→ C(Z, Y )
]
,

C(f, 1) =
[
C(Y, Z)

λ . I

∼
→ 1⊗ C(Y, Z)

ḟ⊗1→ C(X, Y )⊗ C(Y, Z)
µC

→ C(X,Z)
]
.

hold true (cf. Lemma 4.16 and Lemma 4.17). We shall use these identities to transform
equation (8.8.1) in Qp to an equation between quiver morphisms. The differential b can

be presented as the quiver morphism b : 1p[−1] → Qp(TsB, sB), ∗ 7→ idObB, 1 7→ (b :

TsB(X, Y ) → sB(X, Y ))X,Y ∈ObB of degree 0. Similarly, b̃ can be viewed as the quiver
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morphism b̃ : 1p[−1]→ Qp(TsAi, T sAi), ∗ 7→ idObAi. Commutation condition (8.8.1) can
be presented as[
1p[−1]

b→Qp(TsB, sB)
Qp(f̃ ,1)
→Qp(⊠

i∈nTsAi, sB)
]

=
[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
t( ˙id

⊠(i−1)
⊠b̃⊠ ˙id

⊠(n−i)
)i→⊠i∈nQp(TsAi, T sAi)

⊠n

→Qp(⊠
i∈nTsAi,⊠

i∈nTsAi)
Qp(1,f)
→Qp(⊠

i∈nTsAi, sB)
]
. (8.9.1)

Here summation over i ∈ n is implied by inner product of a row and a column. Let us
transform the left hand side of this equation.

Due to (7.9.4) the left hand side equals[
1p[−1]

b→Qu(T
⩾1sB, sB)

Υ→Qp(TsB, sB)
Qp(ϑ·T⩽1f̂ ,1)

→Qp(⊠
i∈nTsAi, sB)

]
=
[
1p[−1]

b→Qu(T
⩾1sB, sB)

Qu(f̂ ,1)→Qu(⊠
i∈n
u T⩾1sAi, sB)

Υ→Qp(T
⩽1 ⊠i∈n

u T⩾1sAi, sB)
Qp(ϑ,1)
→Qp(⊠

i∈nTsAi, sB)
]
,

where we have used (7.6.2).

Notation. Let X be an object of a graded k-linear quiver C. Then Ẋ denotes the
only quiver morphism 1u → C, ∗ 7→ X. This generalizes notation introduced above
Lemma 4.16.

The morphism Ẋ induces the morphism T 0Ẋ : 1p = T 01u → T 0C, ∗ 7→ X, which
gives identity map idk on morphisms. In the particular case of an object f : A → B of
C = Qu(A,B) there is ḟ : 1u → Qu(A,B), ∗ 7→ f . Using these notations we notice that

˙idTsAi =
[
1p

T 0 ˙idT⩾1sAi→ T 0Qu(T
⩾1sAi, T

⩾1sAi) ⊂
in0→ T⩽1Qu(T

⩾1sAi, T
⩾1sAi)

T⩽1

→Qp(TsAi, T sAi)
]

as formula (7.7.3) shows. This allows to rewrite commutation condition (8.9.1) as follows:[
1p[−1]

b→Qu(T
⩾1sB, sB)

Qu(f̂ ,1)→Qu(⊠
i∈n
u T⩾1sAi, sB)

Υ→Qp(T
⩽1⊠i∈n

u T⩾1sAi, sB)
]

=
[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
t(⊠n((T 0 ˙idT⩾1sAj

)j<i,bθ·in1,(T 0 ˙idT⩾1sAj
)j>i))i
→

⊠i∈n T⩽1Qu(T
⩾1sAi, T

⩾1sAi)
⊠nT⩽1

→ ⊠i∈n Qp(TsAi, T sAi)
⊠n

−→ Qp(⊠
i∈nTsAi,⊠

i∈nTsAi)

Qp(ϑ
−1,1)
→Qp(T

⩽1 ⊠i∈n
u T⩾1sAi,⊠

i∈nTsAi)
Qp(1,f)
→Qp(T

⩽1 ⊠i∈n
u T⩾1sAi, sB)

]
.
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Using (7.8.1) we rewrite the right hand side of the above equation as follows:

[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
⊕ni=1⊠

n((T 0 ˙idT⩾1sAj
)j<i,bθ,(T

0 ˙idT⩾1sAj
)j>i)

→

n⊕
i=1

⊠n((T 0Qu(T
⩾1sAj, T

⩾1sAj))j<i,Qu(T
⩾1sAi, T

⩾1sAi), (T
0Qu(T

⩾1sAj, T
⩾1sAj))j>i)

⊂ → ⊠i∈n T⩽1Qu(T
⩾1sAi, T

⩾1sAi)
ϑn→ T⩽1 ⊠i∈n

u Qu(T
⩾1sAi, T

⩾1sAi)
T⩽1⊠n

u→

T⩽1Qu(⊠
i∈n
u T⩾1sAi,⊠

i∈n
u T⩾1sAi)

T⩽1

→Qp(T
⩽1 ⊠i∈n

u T⩾1sAi, T
⩽1 ⊠i∈n

u T⩾1sAi)

Qp(1,ϑ
−1·f)
→Qp(T

⩽1 ⊠i∈n
u T⩾1sAi, sB)

]
.

Explicit formula (7.7.2) for T⩽1 allows to simplify this expression. We use also the identity

˙idT⩾1sAi =
(
1u

ṗr1→ T⩾1Qu(T
⩾1sAj, sAj)

θ−→ Qu(T
⩾1sAj, T

⩾1sAj)
)
.

The resulting composition is

[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
⊕ni=1⊠

n((T 0ṗr1)j<i,b̂,(T
0ṗr1)j>i)→

n⊕
i=1

⊠n((T 0T⩾1Qu(T
⩾1sAj, sAj))j<i, T

⩾1Qu(T
⩾1sAi, sAi), (T

0T⩾1Qu(T
⩾1sAj, sAj))j>i)

⊕ni=1⊠
n((T 0θ)j<i,θ,(T

0θ)j>i)→
n⊕
i=1

⊠n((T 0Qu(T
⩾1sAj, T

⩾1sAj))j<i,Qu(T
⩾1sAi, T

⩾1sAi), (T
0Qu(T

⩾1sAj, T
⩾1sAj))j>i)

⊂ → ⊠i∈n
u Qu(T

⩾1sAi, T
⩾1sAi)

⊠n
u→Qu(⊠

i∈n
u T⩾1sAi,⊠

i∈n
u T⩾1sAi)

Υ→Qp(T
⩽1 ⊠i∈n

u T⩾1sAi,⊠
i∈n
u T⩾1sAi)

Qp(1,in1 ·ϑ−1·f)
→Qp(T

⩽1 ⊠i∈n
u T⩾1sAi, sB)

]
.

Notice that in1 ·ϑ−1 · f = f by (7.9.2). Using equation (7.6.5) we transform commutation
condition (8.9.1) to the form:[
1p[−1]

b→Qu(T
⩾1sB, sB)

Qu(f̂ ,1)→Qu(⊠
i∈n
u T⩾1sAi, sB)

]
=
[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
⊕ni=1⊠

n((T 0ṗr1)j<i,b̂,(T
0ṗr1)j>i)→

n⊕
i=1

⊠n((T 0T⩾1Qu(T
⩾1sAj, sAj))j<i, T

⩾1Qu(T
⩾1sAi, sAi), (T

0T⩾1Qu(T
⩾1sAj, sAj))j>i)



224 8. A∞-categories

⊂ → ⊠i∈n
u T⩾1Qu(T

⩾1sAi, sAi)
⊠n
uθ→ ⊠i∈n

u Qu(T
⩾1sAi, T

⩾1sAi)
⊠n
u→Qu(⊠

i∈n
u T⩾1sAi,⊠

i∈n
u T⩾1sAi)

Qu(1,f)→Qu(⊠
i∈n
u T⩾1sAi, sB)

]
. (8.9.2)

Recall that the morphism Q(f ; 1) ∈ Q
(
Q(B;B);Q((Ai)i∈n;B)

)
coincides with the

morphism in Q̂u

T⩾1

:

Q̂u

T⩾1

(f ; 1) : sQ(B;B) = Q̂u

T⩾1

(sB; sB)→ Q̂u

T⩾1

((sAi)i∈n; sB) = sQ((Ai)i∈n;B).

Due to (5.22.2) the latter is given by the composition of quiver morphisms

Q̂u

T⩾1

(f ; 1) =
[
T⩾1Qu(T

⩾1sB, sB)
pr1→Qu(T

⩾1sB, sB)
Qu(f̂ ,1)→Qu(⊠

i∈n
u T⩾1sAi, sB)

]
.

Recall also that the morphism Q(1; f) ∈ Q((Q(Ai,Ai))i∈n;Q((Ai)i∈n;B)) coincides with

the morphism in Q̂u

T⩾1

:

(sQ(Ai;Ai))i∈n = (Q̂u

T⩾1

(sAi; sAi))i∈n
Q̂u

T⩾1

(1;f)
→ Q̂u

T⩾1

((sAi)i∈n; sB) = sQ((Ai)i∈n;B).

Due to (5.22.4) the latter is given by the composition in Q̂u

Q̂u

T⩾1

(1; f) =
[
(T⩾1Q̂u(T

⩾1sAi, sAi))i∈n
(θ)n→ (Q̂u(T

⩾1sAi, T
⩾1sAi))i∈n

Q̂u(1;f)→ Q̂u((T
⩾1sAi)i∈n, sB)

]
.

Due to Lemma 4.27 this coincides with the composition of quiver morphisms

Q̂u

T⩾1

(1; f) =
[
⊠i∈n
u T⩾1Qu(T

⩾1sAi, sAi)
⊠n
uθ→ ⊠i∈n

u Qu(T
⩾1sAi, T

⩾1sAi)
⊠n
u→

Qu(⊠
i∈n
u T⩾1sAi,⊠

i∈n
u T⩾1sAi)

Qu(1,f)→Qu(⊠
i∈n
u T⩾1sAi, sB)

]
.

This allows to rewrite commutation condition (8.9.2) as the composition of quiver
morphisms[
1p[−1]

b→ sQ(B;B)
in1→ T⩾1sQ(B;B)

Q(f ;1)
→ sQ((Ai)i∈n;B)

]
=
[
1p[−1]

(λi:1→n)i→
n⊕
i=1

⊠n((1p)j<i,1p[−1], (1p)j>i)
⊕ni=1⊠

n((T 0 ˙id
Q

Aj
)j<i,b,(T

0 ˙id
Q

Aj
)j>i)

→

n⊕
i=1

⊠n((T 0sQ(Aj;Aj))j<i, sQ(Ai;Ai), (T
0sQ(Aj;Aj))j>i)

⊂ → ⊠i∈n
u sQ(Ai;Ai)

⊠i∈n
u in1→ ⊠i∈n

u T⩾1sQ(Ai;Ai)
Q(1;f)
→ sQ((Ai)i∈n;B)

]
. (8.9.3)
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Compose this equation with in1 : sQ((Ai)i∈n;B)→ T⩾1sQ((Ai)i∈n;B). Notice that[
sQ(B;B)

in1→ T⩾1sQ(B;B)
Q(f ;1)
→ sQ((Ai)i∈n;B)

in1→ T⩾1sQ((Ai)i∈n;B)
]

=
[
sQ(B;B)

in1→ T⩾1sQ(B;B)
∆→ T⩾1T⩾1sQ(B;B)

T⩾1Q(f ;1)
→ T⩾1sQ((Ai)i∈n;B)

]
,

since in1 is an augmentation of the comonad T⩾1. The same reason and explicit for-
mula (6.4.1) for τ imply that

[ n⊕
i=1

⊠n((T 0sQ(Aj;Aj))j<i, sQ(Ai;Ai), (T
0sQ(Aj;Aj))j>i) ⊂ → ⊠i∈n

u sQ(Ai;Ai)

⊠i∈n
u in1→ ⊠i∈n

u T⩾1sQ(Ai;Ai)
Q(1;f)
→ sQ((Ai)i∈n;B)

in1→ T⩾1sQ((Ai)i∈n;B)
]

=
[ n⊕
i=1

⊠n((T 0sQ(Aj;Aj))j<i, sQ(Ai;Ai), (T
0sQ(Aj;Aj))j>i) ⊂ → ⊠i∈n

u sQ(Ai;Ai)

⊠i∈n
u in1→ ⊠i∈n

u T⩾1sQ(Ai;Ai)
⊠i∈n
u ∆→ ⊠i∈n

u T⩾1T⩾1sQ(Ai;Ai)
τ→ T⩾1 ⊠i∈n

u T⩾1sQ(Ai;Ai)
T⩾1Q(1;f)

→ T⩾1sQ((Ai)i∈n;B)
]
.

Hint: the inequalities mj ⩽ m ⩽
∑n

i=1mi for all j ∈ n imply for (mj)j∈n = ei that m = 1.
Taking these substitutions into account we obtain an equation in Q, equivalent to

commutation condition (8.9.3):[
1p[−1]

b̂→ T⩾1sQ(B;B)
∆→ T⩾1T⩾1sQ(B;B)

T⩾1Q(f ;1)
→ T⩾1sQ((Ai)i∈n;B)

]
=
[
1p[−1]

(λi:1→n
u )i→

n⊕
i=1

⊠n
u((1u)j<i,1p[−1], (1u)j>i)

⊕ni=1⊠
n
u((

˙id
Q

Aj
·in1)j<i,b̂,( ˙id

Q

Aj
·in1)j>i)
→

⊠i∈n
u T⩾1sQ(Ai;Ai)

⊠i∈n
u ∆→ ⊠i∈n

u T⩾1T⩾1sQ(Ai;Ai)
τ→ T⩾1 ⊠i∈n

u T⩾1sQ(Ai;Ai)
T⩾1Q(1;f)

→ T⩾1sQ((Ai)i∈n;B)
]
.

Notice that composition of quiver morphisms 1u
˙id
Q

Aj→ sQ(Aj;Aj)
in1→ T⩾1sQ(Aj;Aj),

which is a T⩾1-coalgebra morphism, represents a morphism ( ˙id
Q

Aj
)̂: ()→ T⩾1sQ(Aj;Aj)

in Q̂uT⩾1 = Q̂uT̂⩾1. Thus, a morphism f ∈ Q((Ai)i∈n;B) is an A∞-functor if and only if

the following equation between compositions in Q̂uT⩾1 holds:[
1p[−1]

b̂→ T⩾1sQ(B;B)
Q(f ;1)̂
→ T⩾1sQ((Ai)i∈n;B)

]
=

n∑
j=1

[
1p[−1]

(( ˙id
Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j
→ (T⩾1sQ(Ai;Ai))i∈n

Q(1;f )̂
→ T⩾1sQ((Ai)i∈n;B)

]
. (8.9.4)
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Notice that all summands are T⩾1-coalgebra morphisms, therefore by Remark 6.10 the
sum is also a T⩾1-coalgebra morphism. If n = 0, then ⊠i∈∅

u T⩾1sAi = 1u and elements
f ∈ Q( ;B) are identified with objects of B. In this case commutation with differentials
holds true automatically.

8.10 Remark. According to Remark 5.21 equation (8.9.4) is equivalent to the following

equation in Q̂uT⩾1:

[
1p[−1]

b̂→ T⩾1Q̂u(T
⩾1sB; sB)

Q̂u

f

T⩾1(f̂ ;1)
→ T⩾1Q̂u((T

⩾1sAi)i∈n; sB)
]

=
n∑
j=1

[
1p[−1]

( ˙pr1)i<j ,b̂,( ˙pr1)i>j→ (T⩾1Q̂u(T
⩾1sAi; sAi))i∈n

Q̂u

f

T⩾1(1;f̂)
→ T⩾1Q̂u((T

⩾1sAi)i∈n; sB)
]
,

where ˙pr1 : () → T⩾1Q̂u(T
⩾1sAi; sAi) is (φQ̂u

f

T⩾1)−1(id
Q̂u

f

T⩾1

sAi
). Composing both sides of

the equation with θ : T⩾1Q̂u((T
⩾1sAi)i∈n; sB) → Q̂u((T

⩾1sAi)i∈n;T
⩾1sB) and taking

into account equations (5.19.2), (4.22.1) and (4.23.1) we obtain an equation in Q̂u:

[
1p[−1]

b̂θ→ Q̂u(T
⩾1sB;T⩾1sB)

Q̂u(f̂ ;1)→ Q̂u((T
⩾1sAi)i∈n;T

⩾1sB)
]

=
n∑
j=1

[
1p[−1]

( ˙idT⩾1sAi
)i<j ,b̂θ,( ˙idT⩾1sAi

)i>j
→ (Q̂u(T

⩾1sAi;T
⩾1sAi))i∈n

Q̂u(1;f̂)→ Q̂u((T
⩾1sAi)i∈n;T

⩾1sB)
]
.

Applying the multifunctor T⩽1 : Q̂u → Q̂p to both sides and composing the source
with in1 : 1p[−1] → T⩽1(1p[−1]) and the target with the closing transformation T⩽1 :

T⩽1Q̂u((T
⩾1sAi)i∈n;T

⩾1sB)→ Q̂p((TsAi)i∈n;TsB) we get an equation in Q̂p:

[
1p[−1]

(b̂θ)·in1→ T⩽1Q̂u(T
⩾1sB;T⩾1sB)

T⩽1Q̂u(f̂ ;1)→

T⩽1Q̂u((T
⩾1sAi)i∈n;T

⩾1sB)
T⩽1

→ Q̂p((TsAi)i∈n;TsB)
]

=
n∑
j=1

[
1p[−1]

( ˙idT⩾1sAi
)i<j ,(b̂θ)·in1,( ˙idT⩾1sAi

)i>j
→ (T⩽1Q̂u(T

⩾1sAi;T
⩾1sAi))i∈n

T⩽1Q̂u(1;f̂)→ T⩽1Q̂u((T
⩾1sAi)i∈n;T

⩾1sB)
T⩽1

→ Q̂p((TsAi)i∈n;TsB)
]
.
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Using equations (4.22.1) and (4.23.1) we transform the above to:[
1p[−1]

b̃→ Q̂p(TsB;TsB)
Q̂p(T̂⩽1f̂ ;1)

→ Q̂p((TsAi)i∈n;TsB)
]

=
n∑
j=1

[
1p[−1]

( ˙idTsAi)i<j ,b̃,(
˙idTsAi)i>j→ (Q̂p(TsAi;TsAi))i∈n

Q̂p(1;T̂⩽1f̂)
→ Q̂p((TsAi)i∈n;TsB)

]
.

Due to (7.9.4) T̂⩽1f̂ = f̃ . Using Lemma 4.27 we can write the above equation in Qp via
symmetric Monoidal category data:[
1p[−1]

b̃→Qp(TsB, T sB)
Qp(f̃ ,1)
→Qp(⊠

i∈nTsAi, T sB)
]

=
n∑
j=1

[
1p[−1]

λj:1→n

→ ⊠i∈n [(1p)i<j,1p[−1], (1p)i>j]
⊠i∈n[( ˙idTsAi)i<j ,b̃,(

˙idTsAi)i>j ]→

⊠i∈n Qp(TsAi, T sAi)
⊠n

→Qp(⊠
i∈nTsAi,⊠

i∈nTsAi)
Qp(1,f̃)
→Qp(⊠

i∈nTsAi, T sB)
]
.

Another form of this equation in Qp is the following:(
⊠i∈nTsAi

˙̃
f→ TsB

b̃→ TsB
)
=
(
⊠i∈nTsAi

∑n
i=1 1

⊠(i−1)⊠b̃⊠1⊠(n−i)

→ ⊠i∈n TsAi

˙̃
f→ TsB

)
.

(8.10.1)
An element f ∈ Q((Ai))i∈I ;B) is an A∞-functor if and only if f̃ satisfies the above

equation. Indeed, we have seen that equation (8.8.1) implies (8.10.1). On the other hand,
due to (7.10.1) composing equation (8.10.1) with pr1 : TsB → sB we obtain (8.8.1),
which means that f is an A∞-functor.

8.11 Lemma. Let (Ai)i∈I , B be A∞-categories, and let f ∈ Q((Ai)i∈I ;B). Then both
quiver morphisms

Lf , Rf : ⊠I⊔1
u [(T⩾1sAi)i∈I ,1p[−1]]→ T⩾1sB,

defined (via restrictions) as compositions in Q:

Lf =
{
⊠I⊔1
u [(T⩾1sAi)i∈I ,1p[−1]]

λ▷⊔1:I⊔1→1⊔1
u → (⊠i∈I

u T⩾1sAi)⊠u 1p[−1]
f̂⊠u1→ T⩾1sB⊠u 1p[−1]

φ(b̂)→ T⩾1sB
}
,

Rf
∣∣
⊠I⊔1[(TsAi)i∈I ,1p[−1]]

=
∑
j∈I

{
⊠I⊔1[(TsAi)i∈I ,1p[−1]] ⊂ → ⊠I⊔1

u [(T⩾1sAi)i∈I ,1p[−1]]

λ
hj
u→ ⊠I

u [(T
⩾1sAi)

i∈I
i<j, T

⩾1sAj ⊠u 1p[−1], (T⩾1sAi)
i∈I
i>j]

⊠Iu[(1)i<j ,φ(b̂),(1)i>j ]→ ⊠i∈I
u T⩾1sAi

f̂→ T⩾1sB
}
,

Rf
∣∣
(⊠i∈Iu T⩾1sAi)⊠T 01p[−1]

=
{
(⊠i∈I

u T⩾1sAi)⊠ T 01p[−1]
(λI . )−1

→ ⊠i∈I
u T⩾1sAi

f̂−−→ T⩾1sB
}
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are T⩾1-coalgebra morphisms. Here hj : I ⊔ 1→ I is determined by hj
∣∣
I
= id, hj(1) = j.

The morphism f is an A∞-functor if and only if Lf = Rf . The restriction of this
equation to (⊠i∈I

u T⩾1sAi)⊠ T 01p[−1] always holds.

Proof. The element f is an A∞-functor if and only if condition (8.9.4) holds. An equivalent

condition can be obtained by applying bijection φ = φQ̂u

′
T⩾1 to both sides of this equation.

Denote by l (resp. r) the left (resp. right) hand side of (8.9.4). Define the T⩾1-coalgebra
morphisms Lf = φ(l) (resp. Rf = φ(r)). Thus, the morphism f is an A∞-functor if and
only if l = r, which is equivalent to equation Lf = Rf .

Let us prove that Lf , Rf can be presented by expressions given in the statement of
the lemma. Indeed, by Remark 5.21 Lf equals the composition in QuT⩾1

{
⊠I⊔1
u [(T⩾1sAi)i∈I ,1p[−1]]

⊠I⊔1
u [(1)I ,b̂]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sQ(B;B)]

⊠I⊔1
u [(1)I ,Q(f ;1)̂ ]

∥

⊠I⊔1
u [(1)I ,Q̂u

f

T⩾1(f̂ ;1)]

→ ⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)]
ev

Q̂u
f

T⩾1

→ T⩾1sB
}

=
{
⊠I⊔1
u [(T⩾1sAi)i∈I ,1p[−1]]

λ▷⊔1:I⊔1→1⊔1
u → (⊠i∈I

u T⩾1sAi)⊠u 1p[−1]

f̂⊠ub̂→ T⩾1sB⊠u T
⩾1sQ(B;B)

ev
Q̂u

f

T⩾1

→ T⩾1sB
}
,

which is the expression given in lemma.
Computing the restrictionRf

∣∣
⊠I⊔1[(TsAi)i∈I ,1p[−1]]

we get by additivity of ev′ in the second

argument and by Remark 5.21 the composition in Q∑
j∈I

{
⊠I⊔1[(TsAi)i∈I ,1p[−1]] ⊂ → (⊠i∈I

u T⩾1sAi)⊠u 1p[−1]

1⊠uλj:1→I
u → (⊠i∈I

u T⩾1sAi)⊠u ⊠
I
u[(1u)i<j,1p[−1], (1u)i>j]

1⊠u⊠Iu[(( ˙id
Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ]
→ (⊠i∈I

u T⩾1sAi)⊠u (⊠
i∈I
u T⩾1sQ(Ai;Ai))

1⊠uQ(id;f )̂
∥

1⊠uQ̂u

f

T⩾1(id;f̂)

→ (⊠i∈I
u T⩾1sAi)⊠u T

⩾1sQ((Ai)i∈I ;B)
ev

Q̂u
f

T⩾1

→ T⩾1sB
}

=
∑
j∈I

{
⊠I⊔1[(TsAi)i∈I ,1p[−1]] ⊂ → (⊠i∈I

u T⩾1sAi)⊠u 1p[−1]

1⊠uλj:1→I
u → (⊠i∈I

u T⩾1sAi)⊠u ⊠
I
u[(1u)i<j,1p[−1], (1u)i>j]

1⊠u⊠Iu[(( ˙id
Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ]
→ (⊠i∈I

u T⩾1sAi)⊠u (⊠
i∈I
u T⩾1sQ(Ai;Ai))

σ(12)→ ⊠i∈I
u [T⩾1sAi ⊠u T

⩾1sQ(Ai;Ai)]
⊠Iu ev

Q̂u
f

T⩾1

→ ⊠i∈I
u T⩾1sAi

f̂→ T⩾1sB
}
,
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which is the expression given in lemma.

The restriction

Rf
∣∣
(⊠i∈Iu T⩾1sAi)⊠T 01p[−1]

=
{
(⊠i∈I

u T⩾1sAi)⊠ T 01p[−1]
1⊠(T 0r·θ)→

(⊠i∈I
u T⩾1sAi)⊠ T 0Qu(⊠

i∈I
u T⩾1sAi, T

⩾1sB)
ev′′→ T⩾1sB

}
equals the expression given in lemma due to (7.5.6), since r takes the object ∗ to f .
Similarly, Lf

∣∣
(⊠i∈Iu T⩾1sAi)⊠T 01p[−1]

reduces to the same expression.

The lemma is proven.

8.12 Symmetric multicategory A∞. Let us prove that subsets A∞((Ai)i∈I ;B) ⊂
Q((Ai)i∈I ;B) form a symmetric multicategory. IfA is an A∞-category, then idQA ∈ Q(A;A)
is an A∞-functor, see (8.8.1) or (8.9.4). Let us prove that A∞-functors are closed with
respect to compositions µQϕ . Let ϕ : I → J be a map in S. Let Ai, i ∈ I, Bj, j ∈ J , C
be A∞-categories, and let f j : (Ai)i∈ϕ−1j → Bj, g : (Bj)j∈J → C be A∞-functors. Their

composition h = µQϕ ((f
j)j∈J , g) : (Ai)i∈I → C satisfies the following equation in Q̂uT⩾1

[
1p[−1]

b̂→ T⩾1sQ(C;C)
Q(h;1)̂
→ T⩾1sQ((Ai)i∈I ;C)

]
=
[
1p[−1]

b̂→ T⩾1sQ(C;C)
Q(g;1)̂
→ T⩾1sQ((Bj)j∈J ;C)

Q((f j)j∈J ;1)̂→ T⩾1sQ((Ai)i∈I ;C)
]

=
∑
k∈J

[
1p[−1]

(( ˙id
Q

Bj
)̂ )j<k,b̂,(( ˙id

Q

Bj
)̂ )j>k
→ (T⩾1sQ(Bj;Bj))j∈J

Q(idJ ;g)̂→ T⩾1sQ((Bj)j∈J ;C)

Q((f j)j∈J ;1)̂→ T⩾1sQ((Ai)i∈I ;C)
]

=
∑
k∈J

[
1p[−1]

(( ˙id
Q

Bj
)̂ )j<k,b̂,(( ˙id

Q

Bj
)̂ )j>k
→ (T⩾1sQ(Bj;Bj))j∈J

(Q(f j ;1)̂ )j∈J→ (T⩾1sQ((Ai)i∈ϕ−1j;Bj))j∈J
Q(ϕ;g)̂
→ T⩾1sQ((Ai)i∈I ;C)

]
(8.12.1)

by Lemma 4.14, equation (8.9.4) and Lemma 4.13. We have

˙id
Q

Bj
· Q(f j; 1) = ḟ j = ( ˙id

Q

Ai
)i∈ϕ−1j · Q(idϕ−1j; f

j),

thus,

( ˙id
Q

Bj
)̂· Q(f j; 1)̂= ̂̇f j = (( ˙id

Q

Ai
) )̂i∈ϕ−1j · Q(idϕ−1j; f

j) .̂
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Therefore, by (8.9.4) expression (8.12.1) can be written as

∑
k∈J

∑
l∈ϕ−1k

[
1p[−1]

((( ˙id
Q

Ai
)̂ )i∈ϕ−1j)j<k,((

˙id
Q

Ai
)̂ )ϕi=ki<l ,b̂,(( ˙id

Q

Ai
)̂ )ϕi=ki>l ,((( ˙id

Q

Ai
)̂ )i∈ϕ−1j)j>k→

((T⩾1sQ(Ai;Ai))i∈ϕ−1j)j∈J
(Q(idϕ−1j ;f

j )̂ )j∈J→ (T⩾1sQ((Ai)i∈ϕ−1j;Bj))j∈J
Q(ϕ;g)̂
→ T⩾1sQ((Ai)i∈I ;C)

]
=
∑
m∈I

[
1p[−1]

(( ˙id
Q

Ai
)̂ )i<m,b̂,(( ˙id

Q

Ai
)̂ )i>m
→ (T⩾1sQ(Ai;Ai))i∈I

Q(idI ;h)̂→ T⩾1sQ((Ai)i∈I ;C)
]

due to Lemma 4.15. Hence h satisfies (8.9.4) and it is an A∞-functor.

8.13 Closed multicategory A∞. Let us prove that multicategory A∞ is closed. First
of all, we make a step towards constructing the internal homomorphisms objects.

8.14 Lemma. Let (Ai)i∈I , B be A∞-categories. Then the quiver Q((Ai)i∈I ;B) has the
following differential. Define for all j ∈ I the maps gj : 2 → I ⊔ 1, gj(1) = 1 ∈ 1,
gj(2) = j ∈ I. There are T⩾1-coalgebra morphisms

0B̂ = (φQ̂u

′
T⩾1)−1

{
T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

1⊠ub̂→ T⩾1sQ((Ai)i∈I ;B)⊠u T
⩾1sQ(B;B)

(µ
Q
▷ )̂→ T⩾1sQ((Ai)i∈I ;B)

}
,

jB̂ = (φQ̂u

′
T⩾1)−1

{
T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

λ
gj
u→

⊠I⊔1
u [(1u)

i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B)]
⊠I⊔1
u [(( ˙id

Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ,1]
→

⊠I⊔1
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B)]
(µ

Q

id)̂→ T⩾1sQ((Ai)i∈I ;B)
}
.

Their linear combination

B̂ = 0B̂ −
∑
j∈I

jB̂ : 1p[−1]→ T⩾1sQ(Q((Ai)i∈I ;B);Q((Ai)i∈I ;B))

is a T⩾1-coalgebra morphism as well, see Remark 6.10. It is a differential in Q((Ai)i∈I ;B)
which satisfies equivalent equations (8.2.1), (8.2.2) and (8.3.1). The restriction of
T⩾1-coalgebra morphism

φQ̂u

′
T⩾1(B̂) : T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]→ T⩾1sQ((Ai)i∈I ;B)
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to T⩾1sQ((Ai)i∈I ;B) ⊠ T 01p[−1] gives (λI . )−1 and the restriction to TsQ((Ai)i∈I ;B) ⊠
1p[−1] gives

φ(B̂)
def
=
{
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

1⊠b̂→ TsQ((Ai)i∈I ;B)⊠ T⩾1sQ(B;B)

⊂ → T⩾1sQ((Ai)i∈I ;B)⊠u T
⩾1sQ(B;B)

(µ
Q
▷ )̂→ T⩾1sQ((Ai)i∈I ;B)

}
−
∑
j∈I

{
TsQ((Ai)i∈I ;B)⊠ 1p[−1] ⊂ → T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

λ
gj
u→ ⊠I⊔1

u [(1u)
i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B)]
⊠I⊔1
u [(( ˙id

Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ,1]
→

⊠I⊔1
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B)]
(µ

Q

id)̂→ T⩾1sQ((Ai)i∈I ;B)
}

(8.14.1)

The morphism φ(B̂) satisfies equation (8.5.1).

Proof. Additivity of ev′ in the second argument implies formula (8.14.1) for φ(B̂). Equa-

tion (8.5.1) for φ(B̂) reads:[
TsQ((Ai)i∈I ;B)⊠ 1p[−2]

∼→ TsQ((Ai)i∈I ;B)⊠ 1p[−1]⊠ 1p[−1]
φ(B̂)⊠1→ T⩾1sQ((Ai)i∈I ;B)⊠ 1p[−1]

φ(B̂)→ T⩾1sQ((Ai)i∈I ;B)
]
= 0.

Substituting (8.14.1) for φ(B̂) we shall take into account that (µQ)̂= (µQu
T⩾1

)̂ is a

particular case of µQ̂u

f

T⩾1 by (5.21.1). We get four summands (which are also sums).
The first summand is{
TsQ((Ai)i∈I ;B)⊠ 1p[−2] ⊂

1⊠∠→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]⊠u 1p[−1]
1⊠ub̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u T

⩾1sQ(B;B)⊠u 1p[−1]
(µ

Q
▷ )̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

1⊠ub̂→ T⩾1sQ((Ai)i∈I ;B)⊠u T
⩾1sQ(B;B)

(µ
Q
▷ )̂→ T⩾1sQ((Ai)i∈I ;B)

}
.

It vanishes due to associativity of (µQ)̂= µQ̂u

f

T⩾1 and due to equation (8.3.1).
The second and the third summands–sums are

−
∑
j∈I

{
TsQ((Ai)i∈I ;B)⊠ 1p[−2] ⊂

1⊠∠→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]⊠u 1p[−1]

1⊠ub̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u T
⩾1sQ(B;B)⊠u 1p[−1]

(µ
Q
▷ )̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

λ
gj
u→ ⊠I⊔1

u [(1u)
i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B)]
⊠I⊔1
u [(( ˙id

Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ,1]
→

⊠I⊔1
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B)]
(µ

Q

id)̂→ T⩾1sQ((Ai)i∈I ;B)
}
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−
∑
j∈I

{
TsQ((Ai)i∈I ;B)⊠ 1p[−2] ⊂

1⊠∠→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]⊠u 1p[−1]

λ
gj
u ⊠u1→ ⊠I⊔2

u [(1u)
i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
⊠I⊔2
u [(( ˙id

Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ,1,1]

→

⊠I⊔2
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
(µ

Q

id)̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]
1⊠ub̂→ T⩾1sQ((Ai)i∈I ;B)⊠u T

⩾1sQ(B;B)
(µ

Q
▷ )̂→ T⩾1sQ((Ai)i∈I ;B)

}
.

The second and the third summands cancel each other due to equation λ(12):2→2 =
−1 : 1p[−1]⊠ 1p[−1]→ 1p[−1]⊠ 1p[−1], which implies

{
1p[−2] ⊂

∠→ 1p[−1]⊠u 1p[−1]
λ
(12):2→2
u → 1p[−1]⊠u 1p[−1]

}
= −

{
1p[−2] ⊂

∠→ 1p[−1]⊠u 1p[−1]
}
, (8.14.2)

and due to associativity of µ = (µQ)̂ = µQ̂u

f

T⩾1 . Namely, we use the particular case

((1)I , µ▷) · µid = (µ
id
, 1) · µ

▷
of equation (4.2.2), written for the data I

id→ I
▷→ 1.

The fourth summand (double sum) is

+
∑
j∈I

∑
k∈I

{
TsQ((Ai)i∈I ;B)⊠ 1p[−2] ⊂

1⊠∠→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]⊠u 1p[−1]

λ
gk
u ⊠u1→⊠I⊔2

u [(1u)
i∈I
i<k,1p[−1], (1u)i∈Ii>k, T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
⊠I⊔2
u [(( ˙id

Q

Ai
)̂ )i<k,b̂,(( ˙id

Q

Ai
)̂ )i>k,1,1]

→

⊠I⊔2
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
(µ

Q

id)̂⊠u1→ T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]
λ
gj
u→ ⊠I⊔1

u [(1u)
i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B)]
⊠I⊔1
u [(( ˙id

Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j ,1]
→

⊠I⊔1
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B)]
(µ

Q

id)̂→ T⩾1sQ((Ai)i∈I ;B)
}
.

This expression can be transformed with the use of the particular case ((1)I , µid) · µid =

(µ
1→1

, 1) · µ
id

of equation (4.2.2), written for the data I
id→ I

id→ I. If j ̸= k, the
summands labeled by (j, k) and by (k, j) differ by the sign and cancel each other due
to property (8.14.2). The summands labeled by (j, j) vanish due to equation (8.5.1) for
the A∞-category Aj. Therefore, the double sum vanishes as well and the proposition is
proven.

8.15 Proposition. Let (Ai)i∈I , B be A∞-categories. The differential B : 1p[−1] →
sQ(Q((Ai)i∈I ;B);Q((Ai)i∈I ;B)) from Lemma 8.14 has the following properties. A mor-
phism f ∈ Q((Ai)i∈I ;B) satisfies equation fB0 = 0 if and only if f is an A∞-func-
tor. Therefore, B gives an A∞-category structure of the full subquiver A∞((Ai)i∈I ;B) ⊂
Q((Ai)i∈I ;B) consisting of A∞-functors.
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Proof. Let us obtain explicit formulae for B. For this sake we write equation between

(8.6.1) and (8.6.2) in Q̂u for B. Its restriction to TsQ((Ai)i∈I ;B)⊠1p[−1] coincides with
the restriction of any of the following expressions for φQ̂u(B):〈
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

⊂ →
{
T⩾1sQ((Ai)i∈I ;B),1p[−1]

φ(B̂)→ T⩾1sQ((Ai)i∈I ;B)
pr1→ sQ((Ai)i∈I ;B)

}〉
=
〈
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

↪→
{
T⩾1sQ((Ai)i∈I ;B),1p[−1]

1,b̂−→ T⩾1sQ((Ai)i∈I ;B), T⩾1sQ(B;B)
µ
Q
▷−→ sQ((Ai)i∈I ;B)

}〉
−
〈
TsQ((Ai)i∈I ;B)⊠ 1p[−1] ↪→

∑
j∈I

{
T⩾1sQ((Ai)i∈I ;B),1p[−1]

( ˙id
QuT⩾1
Ai

)i<j ,b̂,( ˙id
QuT⩾1
Ai

)i>j ,1
→

(T⩾1sQ(Ai;Ai))i∈I , T
⩾1sQ((Ai)i∈I ;B)

µ
Q

id→ sQ((Ai)i∈I ;B)
}〉

=
〈
TsQ((Ai)i∈I ;B)⊠ 1p[−1] ⊂ →

{
T⩾1sQ((Ai)i∈I ;B),1p[−1]

θ,b→Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB),Qu(T
⩾1sB, sB)

µ
Q̂u
▷→Qu(⊠

i∈I
u T⩾1sAi, sB)

}〉
−
〈
TsQ((Ai)i∈I ;B)⊠1p[−1] ↪→

∑
j∈I

{
T⩾1sQ((Ai)i∈I ;B),1p[−1]

( ˙id
Qu
T⩾1sAi

)i<j ,b̂θ,( ˙id
Qu
T⩾1sAi

)i>j ,pr1→

(Qu(T
⩾1sAi, T

⩾1sAi))i∈I ,Qu(⊠
i∈I
u T⩾1sAi, sB)

µ
Q̂u
id→Qu(⊠

i∈I
u T⩾1sAi, sB)

}〉
.

Compositions in braces are taken in Q̂uT⩾1. Here composition for j-th term of the sum is
indexed by the map gj : 2→ I ⊔ 1, gj(1) = 1 ∈ 1, gj(2) = j ∈ I.

The above equation is the equation between (8.6.3) and (8.6.4) in Q

φQp(B) =
[
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

1⊠B→

TsQ((Ai)i∈I ;B)⊠ Qp(TsQ((Ai)i∈I ;B), sQ((Ai)i∈I ;B))
evQp

→ sQ((Ai)i∈I ;B)
]

=
[
TsQ((Ai)i∈I ;B)⊠ 1p[−1] ⊂ → T⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]

φQu(B)→ sQ((Ai)i∈I ;B)
]

=
{
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

T⩽1θ⊠b→ T⩽1Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠ Qu(T
⩾1sB, sB)

⊂ →Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠u Qu(T
⩾1sB, sB)

µQu

→Qu(⊠
i∈I
u T⩾1sAi, sB)

}
−
∑
j∈I

{
TsQ((Ai)i∈I ;B)⊠ 1p[−1]

λgj→ ⊠I⊔1 [(1p)
i∈I
j<i,1p[−1], (1p)i∈Ij>i, T sQ((Ai)i∈I ;B)]

⊠I⊔1[(T 0 ˙id
Qu
T⩾1sAi

)i<j ,b̂θ,(T
0 ˙id

Qu
T⩾1sAi

)i>j ,pr0,1]→
⊠I⊔1 [(T 0Qu(T

⩾1sAi, T
⩾1sAi))i<j,Qu(T

⩾1sAj, T
⩾1sAj),

(T 0Qu(T
⩾1sAi, T

⩾1sAi))i>j, T
⩽1sQ((Ai)i∈I ;B)]
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↪→ ⊠I⊔1
u [(Qu(T

⩾1sAi, T
⩾1sAi))i∈I ,Qu(⊠

i∈I
u T⩾1sAi, sB)]

µ
Q̂u
id→Qu(⊠

i∈I
u T⩾1sAi, sB)

}
.

Due to Lemma 4.28 the multiplication in closed multicategory Q̂u is given by the compo-
sition in Q

µ
Q̂u

id =
[
⊠I⊔1
u [(Qu(T

⩾1sAi, T
⩾1sAi))i∈I ,Qu(⊠

i∈I
u T⩾1sAi, sB)]

λ▷⊔1:I⊔1→2

→ [⊠i∈I
u Qu(T

⩾1sAi, T
⩾1sAi)]⊠u Qu(⊠

i∈I
u T⩾1sAi, sB)

⊠Iu⊠u1→ (8.15.1)

Qu(⊠
i∈I
u T⩾1sAi,⊠

i∈I
u T⩾1sAi)⊠u Qu(⊠

i∈I
u T⩾1sAi, sB)

µQu

→Qu(⊠
i∈I
u T⩾1sAi, sB)

]
.

We may restrict the considered equation to TmsQ((Ai)i∈I ;B) ⊠ 1p[−1], m ⩾ 0, and
find the component Bm from it. Here we consider the case of m = 0. Then the equation
takes the form[
T 0sQ((Ai)i∈I ;B)⊠1p[−1]

1⊠B0→ T 0sQ((Ai)i∈I ;B)⊠Qp(T
0sQ((Ai)i∈I ;B), sQ((Ai)i∈I ;B))

evQp

→ sQ((Ai)i∈I ;B)
]

=
{
T 0sQ((Ai)i∈I ;B)⊠ 1p[−1]

T 0θ⊠b→ T 0Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠ Qu(T
⩾1sB, sB)

⊂ →Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠u Qu(T
⩾1sB, sB)

µQu

→Qu(⊠
i∈I
u T⩾1sAi, sB)

}
−
∑
j∈I

{
T 0sQ((Ai)i∈I ;B)⊠ 1p[−1]

λgj→ ⊠I⊔1 [(1p)
i∈I
j<i,1p[−1], (1p)i∈Ij>i, T

0sQ((Ai)i∈I ;B)]

⊠I⊔1[(T 0 ˙id
Qu
T⩾1sAi

)i<j ,b̂θ,(T
0 ˙id

Qu
T⩾1sAi

)i>j ,1]
→

⊠I⊔1 [(T 0Qu(T
⩾1sAi, T

⩾1sAi))i<j,Qu(T
⩾1sAj, T

⩾1sAj),

(T 0Qu(T
⩾1sAi, T

⩾1sAi))i>j, T
0sQ((Ai)i∈I ;B)]

↪→ ⊠I⊔1
u [(Qu(T

⩾1sAi, T
⩾1sAi))i∈I ,Qu(⊠

i∈I
u T⩾1sAi, sB)]

µ
Q̂u
id→Qu(⊠

i∈I
u T⩾1sAi, sB)

}
.

Let f ∈ Q((Ai)i∈I ;B) be a morphism. Then the value of

fB0 : 1p[−1]→ sQ((Ai)i∈I ;B) = Qu(⊠
i∈I
u T⩾1sAi, sB), ∗ 7→ f

is found from the above equation in the form:

fB0 =
{
1p[−1]

b→Qu(T
⩾1sB, sB)

Qu(f̂ ,1)→Qu(⊠
i∈I
u T⩾1sAi, sB)

}
−
∑
j∈I

{
1p[−1]

λj:1→I

→ ⊠I [(1p)i<j,1p[−1], (1p)i>j]
⊠I((T 0 ˙id

Qu
T⩾1sAi

)i<j ,b̂θ,(T
0 ˙id

Qu
T⩾1sAi

)i>j)
→

⊠I [(T 0Qu(T
⩾1sAi, T

⩾1sAi))i<j,Qu(T
⩾1sAj, T

⩾1sAj), (T
0Qu(T

⩾1sAi, T
⩾1sAi))i>j]
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⊂ → ⊠i∈I
u Qu(T

⩾1sAi, T
⩾1sAi)

⊠Iu→Qu(⊠
i∈I
u T⩾1sAi,⊠

i∈I
u T⩾1sAi)

Qu(1,f)→Qu(⊠
i∈I
u T⩾1sAi, sB)

}
.

This is the difference of left and right hand sides of equation (8.9.2), which holds if and
only if f is an A∞-functor. Thus, the said equation can be written as condition fB0 = 0.
This proves the proposition.

8.16 Components of the differential B. We consider the differential B in the
quiver Q((Ai)i∈I ;B). The components Bm for m > 1 are obtained from the equation,
obtained in the proof of Proposition 8.15:

φQp(Bm) =
[
TmsQ((Ai)i∈I ;B)⊠ 1p[−1]

1⊠Bm→

TmsQ((Ai)i∈I ;B)⊠ Qp(T
msQ((Ai)i∈I ;B), sQ((Ai)i∈I ;B))

evQp

→ sQ((Ai)i∈I ;B)
]

=
{
TmsQ((Ai)i∈I ;B)⊠ 1p[−1]

θ⊠b−−→ Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠ Qp(TsB, sB)
Υ⊠Qp(in1,1)

→

Qp(T
⩽1 ⊠i∈I

u T⩾1sAi, T
⩾1sB)⊠ Qp(T

⩾1sB, sB)
µ

Qp

→Qp(T
⩽1 ⊠i∈I

u T⩾1sAi, sB)
}
.

Thus, Bm takes an element r1 ⊗ · · · ⊗ rm ∈ TmsQ((Ai)i∈I ;B) to the composition in Qp

(r1 ⊗ · · · ⊗ rm)Bm =
[
T⩽1 ⊠i∈I

u T⩾1sAi
(r1⊗···⊗rm)θ→ T⩾1sB

b→ sB
]

∈ sQ((Ai)i∈I ;B). (8.16.1)

Now let us find the remaining component B1 from the equation

φQp(B1) =
{
sQ((Ai)i∈I ;B)⊠ 1p[−1]

θ⊠b→Qu(⊠
i∈I
u T⩾1sAi, T

⩾1sB)⊠ Qp(TsB, sB)

Υ⊠Qp(in1,1)
→Qp(T

⩽1⊠i∈I
u T⩾1sAi, T

⩾1sB)⊠Qp(T
⩾1sB, sB)

µ
Qp

−−→ Qp(T
⩽1⊠i∈I

u T⩾1sAi, sB)
}

−
∑
j∈I

{
sQ((Ai)i∈I ;B)⊠ 1p[−1]

λ(12):2→2

→ 1p[−1]⊠ sQ((Ai)i∈I ;B)
λj:1→I⊠1→

[⊠I((1p)
i∈I
j<i,1p[−1], (1p)i∈Ij>i)]⊠ sQ((Ai)i∈I ;B)

[⊠I((T 0 ˙id
Qu
T⩾1sAi

)i<j ,b̂θ,(T
0 ˙id

Qu
T⩾1sAi

)i>j)]⊠1
→

[⊠I((T 0Qu(T
⩾1sAi, T

⩾1sAi))i<j,Qu(T
⩾1sAj, T

⩾1sAj), (T
0Qu(T

⩾1sAi, T
⩾1sAi))i>j)]⊠

⊠ Qu(⊠
i∈I
u T⩾1sAi, sB)

⊂ → [⊠i∈I
u Qu(T

⩾1sAi, T
⩾1sAi)]⊠ Qp(T

⩽1 ⊠i∈I
u T⩾1sAi, sB)

⊠Iu⊠1
→

Qu(⊠
i∈I
u T⩾1sAi,⊠

i∈I
u T⩾1sAi)⊠ Qp(T

⩽1 ⊠i∈I
u T⩾1sAi, sB)

Qp(1,in1 ·ϑ−1)⊠Qp(ϑ,1)
→

Qp(T
⩽1 ⊠i∈I

u T⩾1sAi,⊠
i∈ITsAi)⊠ Qp(⊠

i∈ITsAi, sB)
µ

Qp

→Qp(T
⩽1 ⊠i∈I

u T⩾1sAi, sB)
}
.
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Here we have used expression (8.15.1) for µ
Q̂u

id . Using diagram (7.8.1) and the next after
it we transform the above j-th term to

{
sQ((Ai)i∈I ;B)⊠ 1p[−1]

λ(12):2→2

→ 1p[−1]⊠ sQ((Ai)i∈I ;B)
λj:1→I⊠1→

[⊠I((1p)
i∈I
j<i,1p[−1], (1p)i∈Ij>i)]⊠ sQ((Ai)i∈I ;B)

[⊠I((T 0 ˙id
Qu
T⩾1sAi

)i<j ,b̂θ,(T
0 ˙id

Qu
T⩾1sAi

)i>j)]⊠1
→

[⊠I((T 0Qu(T
⩾1sAi, T

⩾1sAi))i<j,Qu(T
⩾1sAj, T

⩾1sAj), (T
0Qu(T

⩾1sAi, T
⩾1sAi))i>j)]⊠

⊠ Qu(⊠
i∈I
u T⩾1sAi, sB)

[⊠IT⩽1]⊠Υ→ [⊠i∈IQp(TsAi, T sAi)]⊠ Qp(T
⩽1 ⊠i∈I

u T⩾1sAi, sB)

⊠I⊠Qp(ϑ,1)
→Qp(⊠

i∈ITsAi,⊠
i∈ITsAi)⊠ Qp(⊠

i∈ITsAi, sB)
µ

Qp

→Qp(⊠
i∈ITsAi, sB)

Qp(ϑ
−1,1)
→Qp(T

⩽1 ⊠i∈I
u T⩾1sAi, sB)

}
.

Therefore, the map B1 : sQ((Ai)i∈n;B) → sQ((Ai)i∈n;B) of degree 1 takes an element r
to the difference of compositions in Qp

(r)B1 =
[
T⩽1 ⊠i∈n

u T⩾1sAi
(r)θ→ T⩾1sB

b→ sB
]

− (−)r
[
T⩽1 ⊠i∈n

u T⩾1sAi
ϑ−1

→ ⊠i∈I TsAi

∑n
j=1 1

⊠(j−1)⊠(b̂θ)·in1 ⊠1⊠(n−j)

→ ⊠i∈n TsAi

ϑ→ T⩽1 ⊠i∈n
u T⩾1sAi

r→ sB
]
.

8.17 Proposition. The evaluations

evA∞
(Ai);B

=
[
(Ai)i∈I ,A∞((Ai)i∈I ;B) ⊂ → (Ai)i∈I ,Q((Ai)i∈I ;B)

evQ(Ai);B→B
]

(8.17.1)

are A∞-functors. Moreover, B is the only differential in Q((Ai)i∈I ;B) such that evQ(Ai);B :

(Ai)i∈I ,Q((Ai)i∈I ;B)→ B satisfies equation LevQ = RevQ from Lemma 8.11.

Proof. Indeed, equation LevQ = RevQ restricted to⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]
takes the form in Q̂uT⩾1{

⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]] ⊂ →[
⊠I⊔1
u ((T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B))
]
⊠u 1p[−1]

(evQ)̂⊠u1→ T⩾1sB⊠u 1p[−1]
φ(b̂)→ T⩾1sB

}
=
∑
j∈I

{
⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]

⊂ → ⊠I⊔2
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
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λ
kj
u→ ⊠I⊔1

u [(T⩾1sAi)
i∈I
i<j, T

⩾1sAj ⊠u 1p[−1], (T⩾1sAi)
i∈I
i>j, T

⩾1sQ((Ai)i∈I ;B)]

⊠I⊔1
u [(1)i<j ,φ(b̂),(1)i>j ,1]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sQ((Ai)i∈I ;B)]

(evQ)̂→ T⩾1sB
}

+
{
⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]

λidI ⊔▷:I⊔2→I⊔1

→

⊠I⊔1[(TsAi)i∈I , T sQ((Ai)i∈I ;B)⊠1p[−1]]
⊠I⊔1[(1)I ,φ(B̂)]→ ⊠I⊔1[(TsAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)]

⊂ → ⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)]
(evQ)̂→ T⩾1sB

}
. (8.17.2)

Here the j-th term is obtained with the composition µ
Q̂uT⩾1

kj
, where kj : I ⊔ 2 → I ⊔ 1

is determined by kj
∣∣
I
= id, kj(1) = 1, kj(2) = j. Invertibility of φQ̂u

′
T⩾1 implies that

there exists no more than one T⩾1-coalgebra morphism φ(B̂) which satisfies the above
equation. Let us verify that morphism (8.14.1) solves the above equation.

The contribution of the first term of (8.14.1) cancels with the left hand side of (8.17.2).
Indeed, this contribution{

⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]
⊂ → ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]]

⊠I⊔1
u [(1)I ,1⊠ub̂]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sQ((Ai)i∈I ;B)⊠u T

⩾1sQ(B;B)]

⊠I⊔1
u [(1)I ,µ

Q̂u
f

T⩾1
▷ ]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sQ((Ai)i∈I ;B)]

ev
Q̂u

f

T⩾1

→ T⩾1sB
}

=
{
⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]

⊂ → [⊠I⊔1
u ((T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B))]⊠u 1p[−1]

ev
Q̂u

f

T⩾1 ⊠ub̂→ T⩾1sB⊠u T
⩾1sQ(B;B)

ev
Q̂u

f

T⩾1

→ T⩾1sB
}

is equal to the left hand side of (8.17.2).
The contribution of the j-th term of (8.14.1) cancels with the j-th term of the sum in

(8.17.2). Indeed, this contribution

−
{
⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]

⊂ → ⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)⊠u 1p[−1]]
⊠I⊔1
u [(1)I ,λ

gj
u ]→ ⊠I⊔1

u

[
(T⩾1sAi)i∈I ,⊠

I⊔1
u [(1u)

i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sQ((Ai)i∈I ;B)]
]

⊠I⊔1
u [(1)I ,⊠I⊔1

u [( ˙id
Q̂u

f

T⩾1
sAi

)i<j ,b̂,( ˙id
Q̂u

f

T⩾1
sAi

)i>j ,1]]
→

⊠I⊔1
u

[
(T⩾1sAi)i∈I ,⊠

I⊔1
u [(T⩾1sQ(Ai;Ai))i∈I , T

⩾1sQ((Ai)i∈I ;B)]
]

⊠I⊔1
u [(1)I ,µ

Q̂u
f

T⩾1

id ]→ ⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)]
ev

Q̂u
f

T⩾1

→ T⩾1sB
}
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= −
{
⊠I⊔2[(TsAi)i∈I , T sQ((Ai)i∈I ;B),1p[−1]]

⊂ → ⊠I⊔2
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B),1p[−1]]
λ
lj
u→

⊠I⊔1
u [(T⩾1sAi ⊠u 1u)

i∈I
i<j, T

⩾1sAj ⊠u 1p[−1], (T⩾1sAi ⊠u 1u)
i∈I
i>j, T

⩾1sQ((Ai)i∈I ;B)]

⊠I⊔1
u [(1⊠u ˙id

Q̂u
f

T⩾1
sAi

)i<j ,1⊠ub̂,(1⊠u ˙id
Q̂u

f

T⩾1
sAi

)i>j ,1]
→

⊠I⊔1
u [(T⩾1sAi ⊠u T

⩾1sQ(Ai;Ai))i∈I , T
⩾1sQ((Ai)i∈I ;B)]

⊠I⊔1
u [(ev

Q̂u
f

T⩾1 )I ,1]→ ⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sQ((Ai)i∈I ;B)]
ev

Q̂u
f

T⩾1

→ T⩾1sB
}

differs only by sign from the j-th term in the right hand side of (8.17.2). The map
lj : I ⊔ 2 → I ⊔ 1 is given by its restrictions lj

∣∣
I
= idI , lj

∣∣
2
= gj : 2 → I ⊔ 1. Thus,

equation (8.17.2) is verified. As a corollary, evA∞
(Ai);B

is an A∞-functor.

8.18 Restriction of an A∞-functor to a subset of arguments. Let f : (Ai)i∈I →
B be an A∞-functor, and let J ⊂ I be a subset. Choose a family of objects (Xi)i∈I∖J ∈∏

i∈I∖J ObAi. We view them as A∞-functors Xi : () → Ai. Define an A∞-func-

tor f |(Xi)i∈I∖J
J : (Aj)j∈J → B, the restriction of f to arguments in J as the image of

((idAj)j∈J , (Xi)i∈I∖J , f) under the composition map

µA∞
J↪→I :

∏
j∈J

A∞(Aj;Aj)×
∏
i∈I∖J

A∞( ;Ai)× A∞((Ai)i∈I ;B)→ A∞((Aj)j∈J ;B). (8.18.1)

The A∞-functor f |(Xi)i∈I∖J
J takes an object (Xj)j∈J to the object ((Xi)i∈I)f ∈ ObB. Its

components are(
f |(Xi)i∈I∖J
J

)
k
: ⊗j∈JT kjsAj(Xj, Yj)

λJ↪→I

→ ⊗i∈I T kisAi(Xi, Yi)
fk−→ sB

(
((Xi)i∈I)f, ((Yi)i∈I)f

)
,

(8.18.2)
where k = (kj)j∈J ∈ ZJ⩾0, k = (ki)i∈I ∈ ZI⩾0, ki = ki if i ∈ J , ki = 0 and Yi = Xi if
i ∈ I ∖ J .

In particular, for J = {j} ↪→ I = n we have an A∞-functor f |
(Xi)i ̸=j
j : Aj → B,

the restriction of f to j-th argument. It takes an object Xj ∈ ObAj to the object
((Xi)i∈I)f ∈ ObB. The k-th component is(
f |(Xi)i ̸=j
j

)
k
: T ksAj(Xj, Yj)

≃ ⊗i∈I
[
(T 0sAi(Xi, Xi))i<j, T

ksAj(Xj, Yj), (T
0sAi(Xi, Xi))i>j

]
fkej→ sB

(
(X1, . . . , Xn)f, (X1, . . . , Xj−1, Yj, Xj+1, . . . , Xn)f

)
,

where kej = (0, . . . , 0, k, 0, . . . , 0) ∈ Zn has k on j-th place. The first component(
f |(Xi)i ̸=j
j

)
1
= fej commutes with b1 and for all families of objects (Xj)j∈I , (Yj)j∈I ∈
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∏
j∈I ObAj there are chain maps

sfejs
−1 : kAj(Xj, Yj)

→ kB
(
(Y1, . . . , Yj−1, Xj, Xj+1, . . . , Xn)f, (Y1, . . . , Yj−1, Yj, Xj+1, . . . , Xn)f

)
. (8.18.3)

8.19 Theorem. The A∞-categories A∞((Ai)i∈I ;B) together with evaluations evA∞
(Ai);B

turn

A∞ into a closed multicategory.

Proof. Let (Ai)i∈I , (Bj)j∈J , C be families of A∞-categories. There is a mapping

φA∞ : A∞((Bj)j∈J ;A∞((Ai)i∈I ;C))→ A∞((Ai)i∈I , (Bj)j∈J ;C), g 7→ [(idAi)i∈I , g] · ev
A∞
(Ai);B

,

where the composition is that of A∞. This is a restriction of φQ. Let us construct an
inverse mapping to φA∞.

An arbitrary element f ∈ A∞((Ai)i∈I , (Bj)j∈J ;C) ⊂ Q((Ai)i∈I , (Bj)j∈J ;C) determines
the element g = (f)(φQ)−1 ∈ Q((Bj)j∈J ;Q((Ai)i∈I ;C)). Let us study the range of values
of Ob g.

A family of objects Yj of A∞-categories Bj can be viewed as a family of A∞-functors
Yj : () → Bj. The object ((Yj)j∈J)g of Q((Ai)i∈I ;C) can be obtained as the composition

()
(Yj)j∈J→ (Bj)j∈J

g→Q((Ai)i∈I ;C) in Q. This is the element [((Yj)j∈J , g)µ
Q
∅→J ]φ

Q
();(Ai)i∈I ;C

∈
Q((Ai)i∈I ;C). By Proposition 4.11 applied to the map ∅ → J the same element can be
written as

[(idAi)i∈I , (Yj)j∈J , (g)φ
Q
(Bj)j∈J ;(Ai)i∈I ;C

]µQI↪→I⊔J =
(
f
∣∣(Yj)j∈J
I

: (Ai)i∈I → C
)
.

Being a restriction of the A∞-functor f this is an A∞-functor as well. Thus, g is an
element of Q((Bj)j∈J ;A∞((Ai)i∈I ;C)). Let us prove that it is an A∞-functor.

We start with equation Lf = Rf from Lemma 8.11, which holds for the A∞-functor
f = (g)φQ = [(idAi)i∈I , g] · ev

Q
(Ai);B

. In particular, it has a restriction:{
⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]] ⊂ →⟨⊠I⊔1

u [(T⩾1sAi)i∈I ,⊠
j∈J
u T⩾1sBj]⟩⊠u 1p[−1]

⟨⊠I⊔1
u [(1)I ,ĝ]⟩⊠u1→⟨⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]⟩⊠u 1p[−1]
(evA∞ )̂ ⊠u1→ T⩾1sC⊠u 1p[−1]

φ(b̂)→ T⩾1sC
}

=
∑
k∈I

{
⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]] ↪→ ⊠I⊔J⊔1

u [(T⩾1sAi)i∈I , (T
⩾1sBj)j∈J ,1p[−1]]

λ
pk
u−−→ ⊠I⊔J

u [(T⩾1sAi)
i∈I
i<k, T

⩾1sAk⊠u1p[−1], (T⩾1sAi)
i∈I
i>k, (T

⩾1sBj)j∈J ]
⊠I⊔Ju [(1)i<k,φ(b̂),(1)i>k,(1)J ]→

⊠I⊔J
u [(T⩾1sAi)i∈I , (T

⩾1sBj)j∈J ]
λid⊔▷:I⊔J→I⊔1
u → ⊠I⊔1

u [(T⩾1sAi)i∈I ,⊠
j∈J
u T⩾1sBj]

⊠I⊔1
u [(1)I ,ĝ]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]

(evA∞ )̂→ T⩾1sC
}



240 8. A∞-categories

+
∑
l∈J

{
⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]] ⊂ →

⊠I⊔1
u ⟨(T⩾1sAi)i∈I ,⊠

J⊔1
u [(T⩾1sBj)j∈J ,1p[−1]]⟩

⊠I⊔1
u [(1)I ,λ

ql
u ]→ ⊠I⊔1

u ⟨(T⩾1sAi)i∈I ,⊠
J
u [(T

⩾1sBj)
j∈J
j<l , T

⩾1sBl ⊠u 1p[−1], (T⩾1sBj)
j∈J
j>l ]⟩

⊠I⊔1
u ⟨(1)I ,⊠Ju [(1)j<l,φ(b̂),(1)j>l]⟩→ ⊠I⊔1

u [(T⩾1sAi)i∈I ,⊠
j∈J
u T⩾1sBj]

⊠I⊔1
u [(1)I ,ĝ]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]

(evA∞ )̂→ T⩾1sC
}
.

Here pk : I⊔J ⊔1→ I⊔J is determined by pk
∣∣
I⊔J = id, pk(1) = k ∈ I, and ql : J ⊔1→ J

is determined by ql
∣∣
J
= id, ql(1) = l. Plug in expression (8.17.2) for ((evA∞)̂⊠u 1) · φ(b̂).

Then sums over i ∈ I cancel each other and we obtain the following corollary in Q:{
⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]] ⊂ → ⊠I⊔J⊔1

u [(T⩾1sAi)i∈I , (T
⩾1sBj)j∈J ,1p[−1]]

λ1⊔▷⊔1:I⊔J⊔1→I⊔1⊔1
u ·λ1⊔▷:I⊔2→I⊔1

u → ⊠I⊔1
u [(T⩾1sAi)i∈I , (⊠

j∈J
u T⩾1sBj)⊠u 1p[−1]]

⊠I⊔1
u [(1)I ,ĝ⊠u1]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)⊠u 1p[−1]]

⊠I⊔1
u [(1)I ,φ(B̂)]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]

ev
Q̂u

f

T⩾1

→ T⩾1sC
}

=
∑
l∈J

{
⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]] ↪→ ⊠I⊔J⊔1

u [(T⩾1sAi)i∈I , (T
⩾1sBj)j∈J ,1p[−1]]

λ
idI ⊔▷:I⊔(J⊔1)→I⊔1
u → ⊠I⊔1

u ⟨(T⩾1sAi)i∈I ,⊠
J⊔1
u [(T⩾1sBj)j∈J ,1p[−1]]⟩

⊠I⊔1
u [(1)I ,λ

ql
u ]→ ⊠I⊔1

u ⟨(T⩾1sAi)i∈I ,⊠
J
u [(T

⩾1sBj)
j∈J
j<l , T

⩾1sBl ⊠u 1p[−1], (T⩾1sBj)
j∈J
j>l ]⟩

⊠I⊔1
u ⟨(1)I ,⊠Ju [(1)j<l,φ(b̂),(1)j>l]⟩→ ⊠I⊔1

u [(T⩾1sAi)i∈I ,⊠
j∈J
u T⩾1sBj]

⊠I⊔1
u [(1)I ,ĝ]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]

ev
Q̂u

f

T⩾1

→ T⩾1sC
}
.

Notice that this is the restriction of the equation{
⊠I⊔J⊔1
u [(T⩾1sAi)i∈I , (T

⩾1sBj)j∈J ,1p[−1]]
λ
idI ⊔▷:I⊔(J⊔1)→I⊔1
u →

⊠I⊔1
u ⟨(T⩾1sAi)i∈I ,⊠

J⊔1
u [(T⩾1sBj)j∈J ,1p[−1]]⟩

⊠I⊔1
u [(1)I ,L

g]→

⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sA∞((Ai)i∈I ;C)]
ev

Q̂u
f

T⩾1

→ T⩾1sC
}

=
{
⊠I⊔J⊔1
u [(T⩾1sAi)i∈I , (T

⩾1sBj)j∈J ,1p[−1]]
λ
idI ⊔▷:I⊔(J⊔1)→I⊔1
u →

⊠I⊔1
u ⟨(T⩾1sAi)i∈I ,⊠

J⊔1
u [(T⩾1sBj)j∈J ,1p[−1]]⟩

⊠I⊔1
u [(1)I ,R

g]→

⊠I⊔1
u [(T⩾1sAi)i∈I , T

⩾1sA∞((Ai)i∈I ;C)]
ev

Q̂u
f

T⩾1

→ T⩾1sC
}

(8.19.1)
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to ⊠I⊔J⊔1[(TsAi)i∈I , (TsBj)j∈J ,1p[−1]], where Lg, Rg are defined as in Lemma 8.11. The
restriction of this equation to the direct complement ⟨⊠I⊔J

u [(T⩾1sAi)i∈I , (T
⩾1sBj)j∈J ]⟩⊠

T 0(1p[−1]) holds as well. Indeed, both sides can be reduced to{
⟨⊠I⊔J

u [(T⩾1sAi)i∈I , (T
⩾1sBj)j∈J ]⟩⊠T 0(1p[−1])

(λI . )−1

→ ⊠I⊔J
u [(T⩾1sAi)i∈I , (T

⩾1sBj)j∈J ]

λ
idI ⊔▷:I⊔J→I⊔1
u → ⊠I⊔1

u [(T⩾1sAi)i∈I ,⊠
j∈J
u T⩾1sBj]

⊠I⊔1
u [(1)I ,ĝ]→ ⊠I⊔1

u [(T⩾1sAi)i∈I , T
⩾1sA∞((Ai)i∈I ;C)]

ev
Q̂u

f

T⩾1

→ T⩾1sC
}
.

Thus, equation (8.19.1) is verified. Since Q̂uT⩾1 is closed, we obtain Lg = Rg. By
Lemma 8.11 g is an A∞-functor. The obtained mapping

A∞((Ai)i∈I , (Bj)j∈J ;C)→ A∞((Bj)j∈J ;A∞((Ai)i∈I ;C)), f 7→ g = (f)(φQ)−1,

which is a restriction of (φQ)−1, is inverse to φA∞, which is a restriction of φQ. The
theorem is proven.

8.20 A coalgebra approach to the multicategory A∞. General statements of
Chapters 6 and 7 hold, in particular, for the category of cochain complexes V = dg. There-
fore, the categories dQp = (dQ,⊠I , λf) and dQu = (dQ,⊠I

u, λ
f
u) of differential graded quivers

are symmetric closed Monoidal by Propositions 7.2 and 7.5. The data ((T⩾1, τ I),∆, ε) :
dQu → dQu constitute a lax symmetric Monoidal comonad by Proposition 6.16. The
category dQuT⩾1 = (dQT⩾1,⊠I

u, λ
f
u) of T

⩾1-coalgebras in dQ is symmetric Monoidal by Re-
mark 5.12. The category acdQp = (acdQ,⊠I , λf) of augmented counital coassociative
coalgebras in dQ is symmetric Monoidal by Proposition 6.14. The full and faithful functor
T⩽1 : dQT⩾1 → acdQ gives rise to a symmetric Monoidal functor (T⩽1, ϑI) : dQuT⩾1 → acdQp,
see (6.1.3).

There is a symmetric Monoidal functor F : dg → gr, (X, d) 7→ X, which forgets the
differential d in a graded k-module X. Clearly, the forgetful functor F is faithful and
commutes with arbitrary U -small limits and colimits. The functor F induces faithful
symmetric Monoidal functors FQp :

dQp → Qp,
FQu :

dQu → Qu and acFQp : ac
dQp → acQp.

The correspondence ObG : A 7→ (TsA,∆0, pr0, in0, b̃) is a mapping ObA∞ →
ObacdQp. Indeed, b̃ is a (1, 1)-coderivation with respect to ∆0, and the necessary equation

b̃2 = 0 in Qp holds by Remark 8.4. Notice that any codifferential d : TsA→ TsA for the

augmented counital coalgebra (TsA,∆0, pr0, in0) is necessarily of the form
(
0 0
0 b̂θ

)
= b̃ in

the decomposition TsA = T 0sA⊕T⩾1sA for some differential b. Indeed, equations b̃2 = 0
and (b̂θ) · in1 ·b = 0 are equivalent by Remark 8.4. As augmentation in0 : T 0sA → TsA
is a chain map, it implies that d

∣∣
T 0sA

= 0, hence, b0 = 0.
Denote by T the composition of fully faithful symmetric multifunctors

T =
(
Q

∼→ Q̂u

T⩾1 ∼→ Q̂u

f

T⩾1

T̂⩾1
′

→ Q̂uT⩾1

)
.
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The above statements imply that there is a pull-back square

ObA∞
ObG →Ob âcdQp

ObQ
↓

ObT→Ob Q̂uT⩾1 ====Ob Q̂uT⩾1

Ob T̂⩽1

→Ob âcQp

Ob âcFQp↓ (8.20.1)

We claim that there is a unique symmetric multifunctor G : A∞ → âcdQp, given

by ObG : A 7→ (TsA,∆0, pr0, in0, b̃) on objects, which makes the following diagram of
symmetric multicategories and multifunctors commutative

A∞
G → âcdQp

Q
↓

T→ Q̂uT⩾1 ===== Q̂uT⩾1

T̂⩽1

→ âcQp

âcFQp↓ (8.20.2)

Indeed, the vertical arrows are faithful multifunctors, therefore G can be given on mor-
phisms only by the same correspondence (f : (Ai)i∈I → B) 7→ (f̃ : ⊠i∈ITsAi → TsB)
as the lower row, computed in Proposition 7.12. The lower row multifunctor is fully
faithful. It is proven in Remark 8.10 that an element f ∈ Q((Ai))i∈I ;B) is an A∞-func-
tor if and only if f̃ satisfies equation (8.10.1), that is, f̃ is a chain map, equivalently,

f̃ ∈ âcdQp((TsAi)i∈I ;TsB). Thus, multifunctor G : f 7→ f̃ exists and is fully faithful.
Diagram (8.20.2) commutes and its rows are fully faithful. On objects this diagram gives
pull-back square (8.20.1). Therefore, diagram (8.20.2) is a pull-back square itself.

Other pull-back squares of symmetric Monoidal categories and functors and of sym-
metric multicategories and multifunctors follow:

dQuT⩾1

T⩽1

→ acdQp
d̂QuT⩾1

T̂⩽1

→ âcdQp

QuT⩾1

FQuT⩾1

↓
T⩽1

→ acQp

acFQp

↓
Q̂uT⩾1

F̂QuT⩾1↓
T̂⩽1

→ âcQp

âcFQp↓ (8.20.3)

The vertical arrows come from the functor F : dQ → Q that forgets the differential.
Indeed, on objects these give the pasting of pull-back squares

Ob dQT⩾1
⊂ →Ob cdQ

ObT⩽1

→ObacdQ

ObQT⩾1

Ob FQT⩾1

↓
⊂ →Ob cQ

Ob cFQ
↓

ObT⩽1

→ObacQ

ObacFQ
↓
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due to Proposition 6.8, since F commutes with kernels and countable colimits. On mor-
phisms all horizontal arrows of (8.20.3) are bijective.

8.21 Proposition. There is a unique fully faithful symmetric multifunctor E : A∞ ↪→
d̂QuT⩾1 such that the composite full embedding

A∞
E→ d̂QuT⩾1 ==== d̂QuT⩾1

T̂⩽1

→ âcdQp

coincides with G : A 7→ (TsA,∆0, pr0, in0, b̃), G : (f : A→ B) 7→ (f̃ : TsA→ TsB). The
diagram

A∞
E → d̂QuT⩾1

Q

Φ
↓

T → Q̂uT⩾1

Ψ = F̂QuT⩾1

↓
(8.21.1)

is a pull-back square.

Proof. Comparing two pull-back squares (namely, (8.20.2) and the right of (8.20.3)) in
the category SMulticat of symmetric multicategories and multifunctors we deduce the

existence of E. Since both multifunctors T̂⩽1 : d̂QuT⩾1 → âcdQp and G are fully faithful,

so is E. Moreover, T̂⩽1 is a monomorphism in SMulticat and general category theory
implies that (8.21.1) is a pull-back square as well.

8.22 Differential B. Being a closed symmetric multicategory A∞ has the composition
morphism (an A∞-functor)

µ
A∞
ϕ : (A∞((Ai)i∈ϕ−1j;Bj))j∈J ,A∞((Bj)j∈J ;C)→ A∞((Ai)i∈I ;C)

for any map ϕ : I → J ∈ S. The corresponding morphisms (µ
A∞
ϕ )∼ of augmented

coalgebras in Qp are denoted

Mϕ =
{
⊠J⊔1[(TsA∞((Ai)i∈ϕ−1j;Bj))j∈J , T sA∞((Bj)j∈J ;C)]

ϑ

∼
→

T⩽1⊠J⊔1
u [(T⩾1sA∞((Ai)i∈ϕ−1j;Bj))j∈J , T

⩾1sA∞((Bj)j∈J ;C)]
T⩽1((µ

A∞
ϕ )̂ )
→ TsA∞((Ai)i∈I ;C)

}
.

When ϕ : I → J ∈ S is non-decreasing, this map can be restored unambiguously from the
list of arguments, and we abbreviate Mϕ to M .

In particular, we have augmented coalgebra homomorphisms

M =M▷ : TsA∞((Ai)i∈I ;B)⊠ TsA∞(B;B)→ TsA∞((Ai)i∈I ;B),

M =Mid : ⊠
I⊔1[(TsA∞(Ai;Ai))i∈I , T sA∞((Ai)i∈I ;B)]→ TsA∞((Ai)i∈I ;B).
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8.23 Proposition. Restriction of φ(B̂) can be expressed via composition M as follows:

{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1] ↪→ T⩾1sA∞((Ai)i∈I ;B)⊠u 1p[−1]

φ(B̂)→ T⩾1sA∞((Ai)i∈I ;B)
⊂ → TsA∞((Ai)i∈I ;B)

}
=
{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1]

1⊠b̂ in1→ TsA∞((Ai)i∈I ;B)⊠ TsA∞(B;B)
M▷→ TsA∞((Ai)i∈I ;B)

}
−
∑
j∈I

{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1]

λgj→ ⊠I⊔1 [(1p)
i∈I
i<j,1p[−1], (1p)i∈Ii>j, T sA∞((Ai)i∈I ;B)]

⊠I⊔1[(( ˙id
A∞
Ai

)∼ )i<j ,b̂,(( ˙id
A∞
Ai

)∼ )i>j ,1]
→ ⊠I⊔1 [(TsA∞(Ai;Ai))i∈I , T sA∞((Ai)i∈I ;B)]

Mid→ TsA∞((Ai)i∈I ;B)
}
. (8.23.1)

Proof. Substitute φ(B̂) from (8.14.1) in the left hand side:{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1] ⊂

1⊠in1→ TsA∞((Ai)i∈I ;B)⊠ T⩽11p[−1]
ϑ→ T⩽1[T⩾1sA∞((Ai)i∈I ;B)⊠u 1p[−1]]

T⩽1φ(B̂)→ TsA∞((Ai)i∈I ;B)
}

=
{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1] ⊂

1⊠in1→ TsA∞((Ai)i∈I ;B)⊠ T⩽11p[−1]
1⊠T⩽1b̂→ TsA∞((Ai)i∈I ;B)⊠ TsA∞(B;B)

ϑ→ T⩽1[T⩾1sA∞((Ai)i∈I ;B)⊠u T
⩾1sA∞(B;B)]

T⩽1((µ
A∞
▷ )̂ )→ TsA∞((Ai)i∈I ;B)

}
−
∑
j∈I

{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1] ⊂

1⊠in1→ TsA∞((Ai)i∈I ;B)⊠ T⩽11p[−1]

ϑ→ T⩽1[T⩾1sA∞((Ai)i∈I ;B)⊠u 1p[−1]]
T⩽1λ

gj
u→

T⩽1 ⊠I⊔1
u [(1u)

i∈I
i<j,1p[−1], (1u)i∈Ii>j, T

⩾1sA∞((Ai)i∈I ;B)]
T⩽1⊠I⊔1

u [(( ˙id
A∞
Ai

)̂ )i<j ,b̂,(( ˙id
A∞
Ai

)̂ )i>j ,1]
→

T⩽1 ⊠I⊔1
u [(T⩾1sA∞(Ai;Ai))i∈I , T

⩾1sA∞((Ai)i∈I ;B)]
T⩽1(µ

A∞
id )̂→ TsA∞((Ai)i∈I ;B)

}
=
{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1]

1⊠b̂→ TsA∞((Ai)i∈I ;B)⊠ T⩾1sA∞(B;B)

⊂
1⊠in1→ TsA∞((Ai)i∈I ;B)⊠ TsA∞(B;B)

M▷→ TsA∞((Ai)i∈I ;B)
}

−
∑
j∈I

{
TsA∞((Ai)i∈I ;B)⊠ 1p[−1] ⊂

1⊠in1→ TsA∞((Ai)i∈I ;B)⊠ T⩽11p[−1]
λgj→

⊠I⊔1 [(1p)
i∈I
i<j, T

⩽11p[−1], (1p)i∈Ii>j, T sA∞((Ai)i∈I ;B)]
⊠I⊔1[(( ˙id

A∞
Ai

)∼ )i<j ,T
⩽1b̂,(( ˙id

A∞
Ai

)∼ )i>j ,1]
→

⊠I⊔1 [(TsA∞(Ai;Ai))i∈I , T sA∞((Ai)i∈I ;B)]
Mid→ TsA∞((Ai)i∈I ;B)

}
.
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This is the right hand side of (8.23.1).

8.24 Remark. The formulas of the previous proposition are valid also in Q. The (1, 1)-

coderivation B̃ = B̂θ · in1 : TsQ((Ai)i∈n;B) → TsQ((Ai)i∈n;B) of degree 1 can be pre-
sented as the commutator in Q

B̃ = (1⊠ b̂ in1)M − (−)deg
n∑
i=1

(1⊠(i−1) ⊠ b̂ in1⊠1⊠(n−i) ⊠ 1)M,

rB̃ = (r1 ⊗ · · · ⊗ rm ⊠ b̂ in1)M − (−)r
n∑
i=1

(1⊠(i−1) ⊠ b̂ in1⊠1⊠(n−i) ⊠ r1 ⊗ · · · ⊗ rm)M,

(8.24.1)

for a diagram r =
(
f 0

r1−→ f 1
r2−→ . . . fm−1

rm−→ fm
)
in Q((Ai)i∈n;B)).

8.25 Components of the composition M . Sometimes we use the presentation of
A∞-functors f ∈ A∞(A1, . . . ,Ak;B) as augmented coalgebra homomorphisms f : TsA1⊠
· · ·⊠ TsAk → TsB (see Remark 7.10) of degree 0, commuting with the differentials:

f b̃ =
k∑
i=1

(
1⊠(i−1) ⊠ b̃⊠ 1⊠(k−i))f : TsA1 ⊠ · · ·⊠ TsAk → TsB,

such that the restriction of f to T 0sA1⊠ · · ·⊠T 0sAk vanishes. Here the cut comultiplica-
tion ∆0 applied to x includes the terms 1⊗ x and x⊗ 1. This coalgebra homomorphism,
written also as f : (A1, . . . ,Ak)→ B, can be expressed uniquely via its components, which
form a quiver map f̌ = f pr1 : TsA1 ⊠ · · ·⊠ TsAk → sB of degree 0. By assumption, the
restriction of f̌ to T 0sA1⊠ · · ·⊠T 0sAk vanishes. The homomorphism f is recovered from
f̌ via the exterior of the following commutative diagram:

TsA1 ⊠ · · ·⊠ TsAk
f → TsB

(TsB)⊗l

∆
(l)
0 ↓

pr⊗l1 → (sB)⊗l

prl

→

(TsA1)
⊗l ⊠ · · ·⊠ (TsAk)

⊗l

∆
(l)
0 ⊠···⊠∆

(l)
0

↓
σk,l

κ−1
→ (TsA1 ⊠ · · ·⊠ TsAk)

⊗l

f⊗l
↑

∆
(l)
0

→
f̌⊗l →

(8.25.1)

The symmetry σk,l = csk,l corresponds to the permutation sk,l of the set {1, 2, . . . , kl},

sk,l(1 + t+ nl) = 1 + n+ tk for 0 ⩽ t < l, 0 ⩽ n < k. (8.25.2)
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The morphisms r : f → g of A∞(A1, . . . ,Ak;B)(f, g) called A∞-transformations are
identified in Proposition 7.15 with (f, g)-coderivations, written also as r : f → g :
(A1, . . . ,Ak) → B. The coderivation r is recovered from its components, which form
a quiver map ř = r pr1 : TsA1 ⊠ · · · ⊠ TsAk → sB, via the exterior of the following
commutative diagram:

TsA1 ⊠ · · ·⊠ TsAk
r → TsB

(TsB)⊗l

∆
(l)
0

↓
pr⊗l1 → (sB)⊗l

prl

→

(TsA1)
⊗l ⊠ · · ·⊠ (TsAk)

⊗l

∆
(l)
0 ⊠···⊠∆

(l)
0

↓
σk,l

κ−1
→ (TsA1 ⊠ · · ·⊠ TsAk)

⊗l

∑
f⊗q⊗r⊗g⊗t
↑

∆
(l)
0

→ ∑
q+1+t=l f̌

⊗q⊗ř⊗ǧ⊗t

→

which is nothing else but diagram (7.15.1), written for the T⩾1-coalgebra C = ⊠i∈I
u T⩾1sAi.

This presentation of r implies that

r =
(
TsA1⊠· · ·⊠TsAk

∆
(3)
0→ (TsA1⊠· · ·⊠TsAk)

⊗3 f⊗ř⊗g→ TsB⊗sB⊗TsB µ→ TsB
)
,

where µ is the multiplication in tensor algebra of a k-linear quiver. This is a general form
of a (f, g)-coderivation.

Given a system of coderivations

r =
(
f 0

r1→ f 1
r2→ . . . fm−1

rm→ fm
)
: (A1, . . . ,Ak)→ B,

we consider (r1 ⊗ · · · ⊗ rm)θ ≡ θA1,...,Ak;B(r) given by (7.16.3), or, equivalently, by

(r1 ⊗ · · · ⊗ rm)θ =
(
TsA1 ⊠ · · ·⊠ TsAk

∆
(2m+1)
0 → (TsA1 ⊠ · · ·⊠ TsAk)

⊗(2m+1)

f0⊗ř1⊗f1⊗···⊗řm⊗fm→ TsB⊗ sB⊗ TsB⊗ · · · ⊗ sB⊗ TsB µ→ TsB
)
.

The properties of µ with respect to ∆0 imply that for each m ⩾ 0 the map θ satisfies the
equation

(r1 ⊗ r2 ⊗ · · · ⊗ rm)θ∆0 = ∆0

m∑
p=0

(r1 ⊗ · · · ⊗ rp)θ ⊗ (rp+1 ⊗ · · · ⊗ rm)θ. (8.25.3)

Let us write down explicitly the action A∞-functor α = evA∞
A1,...,Ak;B

from (8.17.1):

α : TsA1 ⊠ · · ·⊠ TsAk ⊠ TsA∞(A1, . . . ,Ak;B)→ TsB, (8.25.4)

a⊠ (r1 ⊗ · · · ⊗ rm) 7→ a[(r1 ⊗ · · · ⊗ rm)θ] = a∆
(2m+1)
0 (f 0 ⊗ ř1 ⊗ f 1 ⊗ · · · ⊗ řm ⊗ fm)µ,
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where a ∈ TsA1⊠ · · ·⊠TsAk and r
1⊗· · ·⊗rm ∈ TmsA∞(A1, . . . ,Ak;B). One can deduce

that α is an augmented coalgebra homomorphism directly from equation (8.25.3).
Closedness of multicategory A∞ implies, in particular, that for each A∞-functor f :

(A1, . . . ,Ak)→ B there exists an A∞-functor ψ : Ak → A∞(A1, . . . ,Ak−1;B) such that

f =
(
TsA1⊠· · ·⊠TsAk

1⊗ψ→ TsA1⊠· · ·⊠TsAk−1⊠TsA∞(A1, . . . ,Ak−1;B)
α→ TsB

)
.

A similar statement holds in Q for graded k-quivers A1, . . . , Ak, B and augmented
coalgebra homomorphisms f , ψ.

Universality of the action map gives, in particular, the components of the composition
M in the considered multicategories. Let Aj

i , Bi, C be graded k-linear quivers. Then

M : ⊠n⊔1[(TsQ(Ai
i, . . . ,A

mi

i ;Bi)
)
i∈n, T sQ(B1, . . . ,Bn;C)

]
→ TsQ(A1

1, . . . ,A
m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C),

is the only augmented coalgebra morphism such that the following equation holds:[
(⊠i∈n ⊠j∈mi TsAj

i )⊠
(
⊠i∈nTsQ((Aj

i )j∈mi
;Bi)

)
⊠ TsQ((Bi)i∈n;C)

σ(12)⊠1
→
(
⊠i∈n[(⊠j∈miTsAj

i )⊠ TsQ((Aj
i )j∈mi

;Bi)]
)
⊠ TsQ((Bi)i∈n;C)

(⊠nα)⊠1→ (⊠i∈nTsBi)⊠ TsQ((Bi)i∈n;C)
α→ TsC

]
=
[
(⊠i∈n ⊠j∈mi TsAj

i )⊠
(
⊠i∈nTsQ((Aj

i )j∈mi
;Bi)

)
⊠ TsQ((Bi)i∈n;C)

1⊠M→ (⊠i∈n ⊠j∈mi TsAj
i )⊠ TsQ(A1

1, . . . ,A
m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C)

α→ TsC
]
.

This equation is equivalent to the following:[(
⊠i∈nTsQ((Aj

i )j∈mi
;Bi)

)
⊠ TsQ((Bi)i∈n;C)

θ⊠(n+1)

→
(⊠i∈nQp(⊠

j∈miTsAj
i , T sBi))⊠ Qp(⊠

i∈nTsBi, T sC)

µ
Q̂p

→Qp(⊠
i∈n ⊠j∈mi TsAj

i , T sC)
]

=
[(
⊠i∈nTsQ((Aj

i )j∈mi
;Bi)

)
⊠ TsQ((Bi)i∈n;C)

M→ TsQ(A1
1, . . . ,A

m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C)

θ→Qp(⊠
i∈n ⊠j∈mi TsAj

i , T sC)
]
.

By abuse of notations, θ denotes here the composition θ ·Qp(1, in1).
Being a augmented coalgebra morphism, M is determined in a unique way by its

components:

Mk1...knl :
(
⊠i∈nT kisQ((Aj

i )j∈mi
;Bi)

)
⊠ T lsQ((Bi)i∈n;C)

→ sQ(A1
1, . . . ,A

m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C).
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Composing the above equation with pr1 : TsC→ sC we get the following equation[
(r11 ⊗ · · · ⊗ r1k1)θ ⊠ · · ·⊠ (rn1 ⊗ · · · ⊗ rnkn)θ

]
· (t1 ⊗ · · · ⊗ tl)θ pr1

= (r11 ⊗ · · · ⊗ r1k1 ⊠ · · ·⊠ rn1 ⊗ · · · ⊗ rnkn ⊠ t1 ⊗ · · · ⊗ tl)Mk1...knl pr1 :

TsA1
1 ⊠ · · ·⊠ TsAm1

1 ⊠ · · ·⊠ TsA1
n ⊠ · · ·⊠ TsAmn

n → sC, (8.25.5)

valid for an arbitrary element

r11 ⊗ · · · ⊗ r1k1 ⊠ · · ·⊠ rn1 ⊗ · · · ⊗ rnkn ⊠ t1 ⊗ · · · ⊗ tl

∈ ⊠n⊔1[(T kisQ(Ai
i, . . . ,A

mi

i ;Bi)
)
i∈n, T

lsQ(B1, . . . ,Bn;C)
]
. (8.25.6)

Since (r11 ⊗ · · · ⊗ r1k1 ⊠ · · ·⊠ rn1 ⊗ · · · ⊗ rnkn ⊠ t1 ⊗ · · · ⊗ tl)Mk1...knl is a coderivation, it
is determined in a unique way by its composition with pr1, that is by the left hand side
of equation (8.25.5). For l > 1 the map Mk1...knl vanishes due to (t1 ⊗ · · · ⊗ tl)θ pr1 = 0.
For l = 1 we have (t1)θ = t1, and for l = 0 the map ()θ = f 0 is an augmented coalgebra
homomorphism.

The general recipe of diagram (8.25.1) gives the following formula for matrix coeffi-
cients of Mϕ for a map ϕ : I → J ∈ S indexed by (kj)j∈J , l and m:

(Mϕ)
m
(kj)j∈J ;l

=
∑

fj :kj→m
g:l→m

{
⊠J⊔1[(T kjsA∞((Ai)i∈ϕ−1j;Bj))j∈J , T

lsA∞((Bj)j∈J ;C)]

⊠J⊔1[(λfj )j∈J ,λ
g]→ ⊠J⊔1 [(⊗p∈m ⊗f

−1
j p sA∞((Ai)i∈ϕ−1j;Bj))j∈J ,⊗p∈m ⊗g

−1p sA∞((Bj)j∈J ;C)]
κ−1

→ ⊗p∈m ⊠J⊔1[(⊗f
−1
j psA∞((Ai)i∈ϕ−1j;Bj))j∈J ,⊗g

−1psA∞((Bj)j∈J ;C)]
⊗p∈mM

(|f−1
j

p|)j∈J ;|g−1p|
→ TmsA∞((Ai)i∈I ;C)

}
,

where summation goes over all families of maps fj, g ∈ O, j ∈ J . Conditions on compo-
nents of M imply that only summands with injective g : l ⊂ →m have to considered. If
the condition Im g ∪

⋃
j∈J Im fj = m does not hold, then the summand corresponding to

(fj)j∈J , g vanishes.

8.26 Remark. By Lemma 8.6 we can find from (8.23.1) the component Bm of the differ-
ential B for any m ⩾ 0. Namely,

φQp(Bm)

=
{
TmsQ((Ai)i∈I ;B)⊠1p[−1]

1⊠b→ TmsQ((Ai)i∈I ;B)⊠T 1sQ(B;B)
Mm1→ sQ((Ai)i∈I ;B)

}
−
∑
j∈I

{
TmsQ((Ai)i∈I ;B)⊠ 1p[−1]

λgj→ ⊠I⊔1 [(1p)
i∈I
i<j,1p[−1], (1p)i∈Ii>j, T

msQ((Ai)i∈I ;B)]
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⊠I⊔1[(T 0 ˙id
Q

Ai
)i<j ,b,(T

0 ˙id
Q

Ai
)i>j ,1]
→

⊠I⊔1 [(T 0sQ(Ai;Ai))i<j, T
1sQ(Aj;Aj), (T

0sQ(Ai;Ai))i>j, T sQ((Ai)i∈I ;B)]
M0...010...0m→ sQ((Ai)i∈I ;B)

}
.

The sum over j ∈ I does not vanish only if m = 0, 1.
In short form, for r = r1 ⊗ · · · ⊗ rm we have

rB = (r1 ⊗ · · · ⊗ rm ⊠ b)Mm1 − (−)r
n∑
i=1

(1⊠(i−1) ⊠ b⊠ 1⊠(n−i) ⊠ r1 ⊗ · · · ⊗ rm)M0...010...0m.

For m = 0 we have (f 0)B0 = 0 iff f0 is an A∞-functor. In other cases

rB1 = (r ⊠ b)M11 − (−)r
∑n

i=1(1
⊠i−1 ⊠ b⊠ 1⊠n−i ⊠ r)M0...010...01 for m = 1,

(r1 ⊗ · · · ⊗ rm)Bm = (r1 ⊗ · · · ⊗ rm ⊠ b)Mm1 for m > 1.

8.27 Examples. 1. Let f i : (Ai
i, . . . ,A

mi

i ) → Bi, i ∈ n be A∞-functors and let r : g →
h : (B1, . . . ,Bn)→ C be a coderivation. The augmented coalgebra homomorphism

M : T 0sA∞(A
1
1, . . . ,A

m1
1 ;B1)⊠ · · ·⊠ T 0sA∞(A

1
n, . . . ,A

mn
n ;Bn)⊠ T 1sA∞(B1, . . . ,Bn;C)

→ TsA∞(A
1
1, . . . ,A

m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C)

applied to f 1 ⊠ · · · ⊠ fn ⊠ r gives only one summand (f 1 ⊠ · · · ⊠ fn ⊠ r)M0...01 ∈
T 1sA∞(A

1
1, . . . ,A

m1
1 , . . . ,A1

n, . . . ,A
mn
n ;C). Equation (8.25.5) in the form

(f 1 ⊠ · · ·⊠ fn) · r pr1 = (f 1 ⊠ · · ·⊠ fn ⊠ r)M0...01 pr1

implies that the
(
(f 1 ⊠ · · · ⊠ fn) · g, (f 1 ⊠ · · · ⊠ fn) · h

)
-coderivations (f 1 ⊠ · · · ⊠ fn) · r

and (f 1 ⊠ · · ·⊠ fn ⊠ r)M0...01 coincide. Thus,

(f 1 ⊠ · · ·⊠ fn ⊠ r)M = (f 1 ⊠ · · ·⊠ fn ⊠ r)M0...01 = (f 1 ⊠ · · ·⊠ fn) · r.

2. Let f 1 : (A1
1, . . . ,A

m1
1 ) → B1, . . . , f

n : (A1
n, . . . ,A

mn
n ) → Bn, g : (B1, . . . ,Bn) → C

and hi : (A1
i , . . . ,A

mi

i ) → Bi for some i, 1 ⩽ i ⩽ n, be A∞-functors. Suppose that
p : f i → hi : (A1

i , . . . ,A
mi

i ) → Bi is a coderivation. Then, similarly to the previous
example

(f 1 ⊠ · · ·⊠ f i−1 ⊠ p⊠ f i+1 ⊠ · · ·⊠ fn ⊠ g)M0...010...00

= (f 1⊠ · · ·⊠f i−1⊠p⊠f i+1⊠ · · ·⊠fn⊠ g)M = (f 1⊠ · · ·⊠f i−1⊠p⊠f i+1⊠ · · ·⊠fn) · g

is a
(
(f 1 ⊠ · · ·⊠ f i ⊠ · · ·⊠ fn) · g, (f 1 ⊠ · · ·⊠ hi ⊠ · · ·⊠ fn) · g

)
-coderivation.
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3. Let X, Y, W be A∞-categories. Let g : Y → W be an A∞-functor. It induces the
A∞-functor

A∞(X, g) = A∞(1, g)
def
= A∞(1; g) = (1, ġ) ·A∞ µ

A∞
1→1 : A∞(X,Y)→ A∞(X,W)

defined via (4.12.2) and computed in Lemma 4.16. As usual, we identify it with

A∞(1; g)̂= (1⊠u
ˆ̇g) ·Q (µ

A∞
1→1)̂: T⩾1sA∞(X,Y)→ T⩾1sA∞(X,W), or due to Section 8.22

with

(1⊠ g)M
def
= T⩽1(A∞(1; g)̂) = (1⊠ (T 0ġ) in0) ·Q M1→1 : TsA∞(X,Y)→ TsA∞(X,W).

It takes an A∞-functor h to h(1⊠ g)M = ĥg. The first component maps an A∞-transfor-
mation r to r[(1⊠ g)M ]1 = r̂g.

4. An A∞-functor f : X→ Y induces the strict A∞-functor

A∞(f,W) = A∞(f, 1)
def
= A∞(f ; 1) = (ḟ , 1) ·A∞ µ

A∞
1→1 : A∞(Y,W)→ A∞(X,W)

defined via (4.12.3) and computed in Lemma 4.17. We shall identify it with A∞(f ; 1)̂=
( ˆ̇f ⊠u 1) ·Q (µ

A∞
1→1)̂: T⩾1sA∞(Y,W)→ T⩾1sA∞(X,W), or due to Section 8.22 with

(f ⊠ 1)M
def
= T⩽1(A∞(f ; 1)̂) = ((T 0ḟ) in0⊠1) ·Q M1→1 : TsA∞(Y,W)→ TsA∞(X,W).

It takes an A∞-functor h to h(f ⊠ 1)M = f̂h. The first component maps an A∞-trans-

formation r to r[(f ⊠ 1)M ]1 = f̂ r.

8.28 Cohomological Hochschild complex. Particular cases of operationsMk1 were
introduced and used by Kadeishvili [Kad88], Getzler [Get93], Getzler and Jones [GJ94],
and by Gerstenhaber and Voronov [GV95, VG95]. They considered an A∞-algebra A, its

identity endomorphism andA∞-transformations c, c1, . . . , ck ∈ sC(A) def
= sA∞(A,A)(id, id)

=
∏

n⩾0 Ck((sA)
⊗n, sA). When A is a differential graded algebra, this complex is nothing

else but the Hochschild cochain complex of A. If A is a non-unital associative alge-
bra, or an A∞-algebra, such interpretation might be doubtful, nevertheless, the complex
(sC(A), B1) still might be called the Hochschild cochain complex [Get93]. The mentioned
authors defined operations c{c1, . . . , ck} = m1,k(c; c

1, . . . , ck) in this complex called, in par-
ticular, braces which in our conventions are written asMk1 : T

ksC(A)⊗sC(A)→ sC(A),
c1 ⊗ · · · ⊗ ck ⊗ c 7→ (c1 ⊗ · · · ⊗ ck ⊠ c)Mk1, where

[(c1 ⊗ · · · ⊗ ck ⊠ c)Mk1]n =
∑
l⩾0

(c1 ⊗ · · · ⊗ ck)θnlcl

=
∑

i0+···+ik+j1+···+jk=n
(1⊗i0 ⊗ c1j1 ⊗ 1⊗i1 ⊗ · · · ⊗ ckjk ⊗ 1⊗ik)ci0+···+ik+k. (8.28.1)
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The operation ◦ = M11 : sC(A) ⊗ sC(A) → sC(A) was originally introduced by Ger-
stenhaber and [ , ] : sC(A) ⊗ sC(A) → sC(A), [p, q] = (p ⊠ q)M11 − (−)pq(q ⊠ p)M11

is precisely his bracket [Ger63]. It turns sC(A) into a graded Lie algebra. Together

with isomorphisms M10 = (λI . )−1 : sC(A) ⊗ T 0sC(A)
∼→ sC(A) the operations Mk1

are the only non-vanishing components of the differential coalgebra homomorphism M :
TsC(A) ⊗ TsC(A) → TsC(A), as noticed by Getzler and Jones [GJ94, Section 5.2]. It
makes TsC(A) into a differential graded bialgebra. Graded k-modules C(A) with this
property are called B∞-algebras by definition 5.2 of Getzler and Jones [GJ94] based on
work of Baues [Bau81]. See Tamarkin [Tam98] for the usage of B∞-algebras. Vanishing of
Mkl for l > 1 makes C(A) a special kind of a B∞-algebra, namely, a homotopy Gersten-
haber algebra (see Voronov and Gerstenhaber [VG95] and Voronov [Vor00], who clarified
the history of the subject).

Instead of an A∞-algebra A one can consider an A∞-category A without too many

changes. Again the complex sC(A)
def
= (sA∞(A,A)(id, id), B1) might be called the

Hochschild cochain complex of A (when A is differential graded category this terminology
is well motivated). The cut comultiplication ∆0, the counit ε = pr0 and the differen-
tial B : TsC(A) → TsC(A) turn C(A) into an A∞-algebra. Indeed, for an arbitrary
A∞-category C the endomorphism complexes C(X,X) are A∞-algebras, in particular, for
C = A∞(A,A) and for X = idA. The graded k-module C(A) carries operations Mk1

given by (8.28.1) and isomorphisms M10, which are the only non-vanishing components
of the differential coalgebra homomorphism M : TsC(A) ⊗ TsC(A) → TsC(A). This is
an associative multiplication with the unit η = in0 : k = T 0sC(A) → TsC(A). Together
these structures make (TsC(A),∆0, pr0,M, in0, B) into a differential graded bialgebra.
Thus, C(A) is a B∞-algebra, and even a homotopy Gerstenhaber algebra.

These statements follow immediately from the described enriched multicategory pic-
ture. In fact, the multicategory A∞ is enriched in the multicategory A∞ which is a full

submulticategory of âcdQp, where acdQp stands for the symmetric Monoidal category of
augmented differential counital coassociative coalgebras.

Thus, A∞ is a âcdQp-multicategory which is precisely the same as a acdQp-multicategory.

In particular, TsA∞(A;A) is a unital associative algebra in acdQp for any A∞-category A.

Its unit is given by the morphism η =
(
1p

T 0 ˙id→ T 0sA∞(A;A)
in0→ TsA∞(A;A)

)
, ∗ 7→ idA

of acdQp. This quiver map acts as

〈
k===⇀⇁ [T 0sA∞(A;A)](id, id)

in0→ [TsA∞(A;A)](id, id)
〉

=
〈
k===⇀⇁T 0s[A∞(A;A)(id, id)]

in0→ Ts[A∞(A;A)(id, id)] ⊂ → [TsA∞(A;A)](id, id)
〉

on morphisms. The graded k-module Ts[A∞(A;A)(id, id)] has the induced differential
coalgebra structure. This k-submodule is also closed under associative multiplication M
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which is a differential coalgebra homomorphism:

M : Ts[A∞(A;A)(id, id)]⊗ Ts[A∞(A;A)(id, id)]→ Ts[A∞(A;A)(id, id)].

This k-subalgebra contains also the two-sided unit η = in0 : k → Ts[A∞(A;A)(id, id)].
Thus, TsC(A) = Ts[A∞(A;A)(id, id)] is a differential graded k-bialgebra.

Let us denote by K the symmetric closed Monoidal category of differential graded
k-modules, whose morphisms are chain maps modulo homotopy. It is a quotient of the
symmetric closed Monoidal category Ck = dg of complexes (see Example 3.27) by ho-
motopy equivalence relation. Thus, the tensor product in K is the tensor product of
complexes, the unit object is k, viewed as a complex concentrated in degree 0, and the
symmetry is the standard symmetry c : X ⊗ Y → Y ⊗ X, x ⊗ y 7→ (−)xyy ⊗ x. For
each pair of complexes X and Y , the inner hom-object K(X, Y ) is the complex Ck(X, Y ).
The evaluation morphism evK : X ⊗ K(X, Y ) → Y and the coevaluation morphism
coevK : Y → K(X,X ⊗ Y ) in K are the homotopy classes of the evaluation morphism
evCk : X ⊗ Ck(X, Y )→ Y and the coevaluation morphism coevCk : Y → Ck(X,X ⊗ Y ) in
Ck, respectively. Therefore, K-category K coincides with Ck viewed as a K-category via
the projection functor dg→ K.

Gerstenhaber algebras with commutative or non-commutative associative operation
are defined e.g. by Ginzburg [Gin05, Section 6.6].

The following proposition is essentially proven by Getzler and Jones in [GJ94, Sec-
tion 5.2], although these authors do not formulate it in the same way as we do.

8.29 Proposition. For any graded k-module C and any differential bialgebra structure
of the form (TsC,∆0, pr0,M, in0, B) with the cut comultiplication ∆0, the operations
B2 : k[−1] → Ck(T

2sC, sC) and [ , ] : k → Ck(T
2sC, sC) (that is, B2 = in2 ·B · pr1 :

T 2sC → sC, [ , ] =M − (12)∼M : T 2sC → sC has degree 1, respectively, 0) turn sC into
a non-unital Gerstenhaber algebra in the K-category K with associative multiplication
m2 = (s⊗ s)B2s

−1 : T 2C → C of degree 0 which is commutative.

Proof. First of all, the equation 1B = 0 implies that the component B0 vanishes, and
B turns C into an A∞-algebra. Since in0 : k → TsC is the unit of the associative
algebra (TsC,M), we have, obviously, (1 ⊗ 1)M = 1, (1 ⊗ x)M = x and (x ⊗ 1)M = x
for all x ∈ T nsC, n ⩾ 0. This imposes the following constraints on the components
Mkl =M · pr1 : T ksC ⊗ T lsC → sC of the coalgebra homomorphism M :

M00 = 0, M01 = (λ . I)−1, M10 = (λI . )−1, M0n =Mn0 = 0 for n > 1.

Since (TsC,M,B) is a differential graded associative algebra, the commutator [ , ] =
M − (12)∼M : (TsC)⊗2 → TsC, [x, y] = (x ⊠ y)M − (−)xy(y ⊠ x)M , x, y ∈ TsC turns
(TsC, [ , ], B) into a differential graded Lie algebra. In particular, [ , ]B = (1⊗B+B⊗1)[ , ],
that is, [x, y]B = [x, yB] + (−)y[xB, y].
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The graded k-submodule sC is closed under the bracket. Indeed, for x, y ∈ sC we
have (x⊠ y)M = x⊗ y + (−)xyy ⊗ x+ (x⊠ y)M11, or in other notation

M = 1 + (12)∼ +M11 : sC ⊗ sC → TsC. (8.29.1)

This implies the equation (12)∼M = (12)∼+1+ (12)∼M11 : sC ⊗ sC → TsC. Hence, the
commutator [ , ] =M − (12)∼M =M11− (12)∼M11 : sC ⊗ sC → TsC takes values in sC,
[x, y] = (x⊠ y)M11− (−)xy(y⊠ x)M11 ∈ sC. Thus sC is a graded Lie subalgebra of TsC.
The differential B restricts to sC as B = B1 : sC → sC, and (sC, [ , ], B1) is a differential
graded Lie subalgebra of TsC.

Being an A∞-algebra C has the binary multiplication m2 = (s⊗ s)B2s
−1 : C⊗C → C

(a chain map with respect to the differential m1 = sB1s
−1 : C → C), which is associative

in K. Let us prove that it is also commutative in K. Equation (8.29.1) implies that

MB = 1⊗B1 +B1 ⊗ 1 +B2 + (12)∼(1⊗B1 +B1 ⊗ 1 +B2) +M11B1

= (1⊗B1 +B1 ⊗ 1)(M −M11) +B2 + (12)∼B2 +M11B1

= (1⊗B +B ⊗ 1)M +B2 + (12)∼B2 +M11B1 − (1⊗B1 +B1 ⊗ 1)M11 :

sC ⊗ sC → TsC.

Since M is a chain map we have MB = (1 ⊗ B + B ⊗ 1)M . Therefore, B2 + (12)∼B2 :
sC ⊗ sC → TsC is homotopic to 0 (with the homotopy −M11). This implies that

m2 − (12)∼m2 + (s⊗ s)M11s
−1m1 + (1⊗m1 +m1 ⊗ 1)(s⊗ s)M11s

−1 = 0 : C ⊗ C → C,

in other words, m2 is homotopy commutative (with the homotopy −(s⊗ s)M11s
−1).

Let us prove a relation between the multiplication and the bracket in sC. Restriction
of M to the summands T 2sC ⊗ T 1sC and T 1sC ⊗ T 2sC equals

M = 1 + (23)∼ + (123)∼ + 1⊗M11 + (23)∼(M11 ⊗ 1) +M21 : T
2sC ⊗ T 1sC → TsC,

M = 1 + (12)∼ + (321)∼ +M11 ⊗ 1 + (12)∼(1⊗M11) +M12 : T
1sC ⊗ T 2sC → TsC.

Composing the second line with (123)∼ and subtracting it from the first line we get the
formula

M−(123)∼M = 1⊗[ , ]+(23)∼([ , ]⊗1)+M21−(123)∼M12 : T
2sC⊗T 1sC → TsC. (8.29.2)

Composed with B it gives

MB − (123)∼MB

= (1⊗[ , ])(1⊗B1+B1⊗1+B2)+(23)∼([ , ]⊗1)(1⊗B1+B1⊗1+B2)+M21B1−(123)∼M12B1

= (1⊗ 1⊗B1 + 1⊗B1 ⊗ 1 +B1 ⊗ 1⊗ 1){1⊗ [ , ] + (23)∼([ , ]⊗ 1)}+ (1⊗ [ , ])B2

+ (23)∼([ , ]⊗ 1)B2 +M21B1 − (123)∼M12B1 : T
2sC ⊗ T 1sC → TsC. (8.29.3)
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Replacing MB with (1⊗B +B ⊗ 1)M we transform the left hand side to

[1⊗1⊗B1+(1⊗B1+B1⊗1+B2)⊗1]M−(123)∼[1⊗(1⊗B1+B1⊗1+B2)+B1⊗1⊗1]M
= (1⊗ 1⊗B1 + 1⊗B1 ⊗ 1 +B1 ⊗ 1⊗ 1)(M − (123)∼M) + (B2 ⊗ 1)(M − (12)∼M)

= (1⊗1⊗B1+1⊗B1⊗1+B1⊗1⊗1){1⊗[ , ]+(23)∼([ , ]⊗1)+M21−(123)∼M12}+(B2⊗1)[ , ].

Comparing this with the last expression from (8.29.3) we get the equation between quiver
maps (cycles of degree 1)

(B2 ⊗ 1)[ , ]− (1⊗ [ , ])B2 − (23)∼([ , ]⊗ 1)B2

= (M21−(123)∼M12)B1−(1⊗1⊗B1+1⊗B1⊗1+B1⊗1⊗1)(M21−(123)∼M12) : T
3sC → sC.

Thus, the left hand side is the boundary of M21 − (123)∼M12 in Ck(T
3sC, sC). In other

words, the corresponding chain map k[−1]→ Ck(T
3sC, sC) is null-homotopic.

8.30 Corollary. The Hochschild cohomology H•(C) is a non-unital Gerstenhaber algebra
with associative multiplication which is commutative.

For any graded k-module C we have defined in Example 6.13 mappings ∆′(r) : TsC →
(TsC)⊗r for r ⩾ 0. Their matrix coefficients are given by the isomorphisms (∆′(r))m1...mr

n =
λf : T nsC → ⊗i∈rTmisC, if f is surjective, where (f : n → r) ∈ O has |f−1i| = mi

for all i ∈ r. If f is not surjective, the matrix coefficient (∆′(r))m1...mr
n vanishes. The

comultiplication ∆′ = ∆′(2) : TsC → (TsC)⊗2 is coassociative.
Let M r : (TsC)⊗r → TsC, r ⩾ 0, be an associative unital graded algebra structure of

TsC with the unit M0 = in0. Assume that the multiplication M =M2 and a differential
B make H = (TsC,∆0, pr0,M, in0, B) into a differential graded bialgebra.

8.31 Proposition. The differential graded bialgebra H admits an antipode

γ =
∑
r⩾0

(−1)r∆′(r) ·M r,

and a skew antipode (an antipode for the graded bialgebra Hcoop = (TsC,∆op
0 , pr0,M, in0)

with the opposite comultiplication)

γ′ =
∑
r⩾0

(−1)r∆′op(r) ·M r.

Thus,

(1)γ = 1, (x1 . . . xk)γ =
k∑
r=1

(−1)r(x1 . . . xk)∆′(r) ·M r for k > 0,

(1)γ′ = 1, (x1 . . . xk)γ
′ =

k∑
r=1

(−1)r(x1 . . . xk)∆′op(r) ·M r for k > 0.
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Proof. The degree 0 map ∆′ = ∆0 − idA⊗η − η ⊗ idA+εη ⊗ η is a chain map. Let us
prove one of antipode axioms ∆0(id⊗γ)M = εη. On T 0sC = k both parts are identity
maps. And on T⩾1sC we have

∆0(id⊗γ)M = (η ⊗ id+∆′ + id⊗η)(id⊗γ)M

= γ +∆′
(
id⊗

∑
r⩾1

(−1)r∆′(r) ·M r
)
M + id

=
∑
r⩾1

(−1)r∆′(r) ·M r +
∑
r⩾1

(−1)r∆′(r+1) ·M r+1 + id

= −∆′(1) ·M1 + id = 0.

The other axiom for γ and axioms for γ′ are proved similarly.

The maps γ : H → H, γ′ : H → H are inverse to each other by general bialgebra
theory. Thus the considered H is a differential graded Hopf algebra. In particular,
TsA∞(A;A) is a differential graded Hopf algebra.
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Chapter 9

Multicategory of unital A∞-categories

In this chapter we add the missing notion of unit morphisms to the picture of A∞-cate-
gories. Ordinary categories are required to have unit (or identity) morphisms. This re-
quirement is imposed also on unital A∞-categories. However, unit morphisms in A∞-cat-
egory are units only up to homotopy. Similarly, unital functors have to preserve unit
morphisms up to a boundary.

Before introducing weak notions, we recall the notion of strictly unital A∞-category.
We introduce also strictly unital A∞-functors (with many entries) and the corresponding
A∞-transformations. We shall prove that these form a closed symmetric multicategory.

Unital A∞-categories and unital A∞-functors form a symmetric multicategory Au
∞.

There is a multifunctor k : Au
∞ → K̂-Cat, where K is the homotopy category of complexes

of k-modules. We prove that the multicategory Au
∞ is closed.

With an A∞-category A a strictly unital category Asu and an embedding eA : A ↪→ Asu

are associated in a natural way. We prove that the A∞-functor A∞(eA,C) = (eA ⊠ 1)M :
Au
∞(A

su,C) → A∞(A,C) is an A∞-equivalence for an arbitrary unital A∞-category C. In
other words, the pair (Asu, eA) is a unital envelope of an A∞-category A.

9.1 Strictly unital A∞-categories and A∞-functors. Recall that an A∞-category
A is called strictly unital if for each object X ∈ ObA there is a strict unit, that is, a
k-linear map Xi

A
0 : k → (sA)−1(X,X) such that Xi

A
0 b1 = 0 and the following conditions

are satisfied: for all pairs X, Y of objects of A the chain maps (1⊗ Y i
A
0 )b2,−(XiA0 ⊗ 1)b2 :

sA(X, Y )→ sA(X, Y ) are equal to the identity map and (· · ·⊗iA0 ⊗· · · )bn = 0 if n ⩾ 3 (cf.
[Fuk02, Kel01]). For example, differential graded categories are strictly unital. Strictly
unital A∞-categories are unital in the sense of [Lyu03, Definition 7.3] and Section 9.10.

Recall the notation

ei = eIi = (χ(i′ = i))i′∈I = (0, . . . , 0, 1, 0, . . . , 0) ∈ ZI .

9.2 Definition. An A∞-functor f : (Ai)i∈I → B between strictly unital A∞-categories is

strictly unital, when all its components vanish if any of its entries is iAi0 , except iAi0 fei = iB0 .

For an arbitrary strictly unital A∞-functor f : (Ai)i∈I → B all its restrictions f |(Xi)i∈I∖J
J

are strictly unital as well. In particular, the restriction g = f |(Xi)i ̸=j
j : Aj → B of f to

j-th argument is strictly unital. By definition above it is unital in the sense of [Lyu03,
Definition 8.1] (see also Definition 9.11). As we shall see, this implies that a strictly unital
A∞-functor f is unital.

257
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9.3 Proposition. Composition in A∞ of strictly unital A∞-functors is strictly unital.

Proof. Let ϕ : I → J be a map in S. Let f j : (Ai)i∈ϕ−1j → Bj, g : (Bj)j∈J → C be strictly
unital A∞-functors. Then the components hk of the composition h = (f j) ·g : (Ai)i∈I → C

with |k| > 1 are polynomials of components f jp , gp, where necessarily |p| > 1 for some
of them. Therefore, hk vanish if any of its entries is i0. Let i ∈ I and let j = ϕi. The
component heIi = f j

eϕ
−1j
i

· geJj gives

iAi0 heIi = iAi0 f
j

eϕ
−1j
i

geJj = i
Bj
0 geJj = iC0 .

Hence, h is strictly unital.

9.4 Corollary. There is a symmetric submulticategory Asu
∞ ⊂ A∞, whose objects are

strictly unital A∞-categories and morphisms are strictly unital A∞-functors.

9.5 Proposition. The multicategory Asu
∞ is closed with the inner object of morphisms

Asu
∞((Ai)i∈I ;B), whose objects are strictly unital A∞-functors f : (Ai)i∈I → B and mor-

phisms r ∈ sAsu
∞((Ai)i∈I ;B)(f, g) are r ∈ sA∞((Ai)i∈I ;B)(f, g) such that all components

of r vanish if any of its entries is iAi0 . Evaluation is obtained by restriction:

evA
su
∞ =

[
(Ai)i∈I ,A

su
∞((Ai)i∈I ;B) ⊂

(1)I ,ι→ (Ai)i∈I ,A∞((Ai)i∈I ;B)
evA∞→B

]
. (9.5.1)

Proof. First of all we show that so defined subquiver Asu
∞((Ai)i∈I ;B) is closed underA∞-op-

erations.

9.6 Lemma. The quiver Asu
∞((Ai)i∈I ;B) is a strictly unital A∞-subcategory of the strictly

unital A∞-category A∞((Ai)i∈I ;B).

Proof. For a strictly unital A∞-category B and arbitrary A∞-categories Ai, i ∈ I, the
A∞-category A∞((Ai)i∈I ;B) is strictly unital. Indeed, for I = ∅ we have an isomorphism
A∞(;B) ≃ B, for 1-element I this is shown in [Lyu03, Section 8.11], for other I this
follows by induction from the isomorphism

A∞((Ai)i∈1⊔I ;B) ≃ A∞((Ai)i∈I ;A∞(A1;B)).

Consider the element

r1 ⊗ · · · ⊗ rm ∈ sAsu
∞((Ai)i∈I ;B)(f 0, f 1)⊗ · · · ⊗ sAsu

∞((Ai)i∈I ;B)(fm−1, fm)

for m ⩾ 1. We are going to prove that (r1 ⊗ · · · ⊗ rm)Bm ∈ sAsu
∞((Ai)i∈I ;B)(f 0, fm).

Suppose first that m ⩾ 2. Then

(r1 ⊗ · · · ⊗ rm)Bm =
[
⊠i∈ITsAi

(r1⊗···⊗rm)θ→ T⩾1sB
b→ sB

]
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due to (8.16.1). Explicit formula (7.16.3) for (r1 ⊗ · · · ⊗ rm)θ gives for I = n that
(r1 ⊗ · · · ⊗ rm)Bm is a sum of terms (f 0k0,p0 ⊗ r

1
j1
⊗ f 1k1,p1 ⊗ · · · ⊗ r

m
jm
⊗ fmkm,pm)bN , where

pq ⩾ 0, kq, jq ∈ (Z⩾0)
I , N = p0+· · ·+pm+m, and f qkqpq : ⊠

i∈IT k
q
i sAi → T pqsB, kq ̸= 0, are

matrix coefficients of f q. If i0 occurs as entry of rqjq the term vanishes. If i0 is an entry of

f qkqpq , the output of it vanishes or gives i0, in which case bN vanishes, since N ⩾ 1+m ⩾ 3.

Consider the case of m = 1:

(r)B1 = (rθ) · b− (−)r
n∑
i=1

(1⊠(i−1) ⊠ b̃⊠ 1⊠(n−i)) · r

= signed permutation
& insertion of units

×
∑
p,q⩾0

is,j,kt∈(Z⩾0)
n; is,kt ̸=0

(fi1 ⊗ · · · ⊗ fip ⊗ rj ⊗ gk1 ⊗ · · · ⊗ gkq)bp+1+q

− (−)r
∑

i,ai,ti,ci

(1⊠(i−1) ⊠ (1⊗ai ⊗ bti ⊗ 1⊗ci)⊠ 1⊠(n−i)) · rl1,...,li−1,ai+1+ci,li+1,...,ln

due to (7.16.4).
Composing it with 1⊠(i−1) ⊠ (1⊗a ⊗ i0 ⊗ 1⊗c)⊠ 1⊠(n−i) we get no more than two terms

from the first and the second sums:

χ(c = 0)[1⊗ (1⊠(i−1) ⊠ i0 ⊠ 1⊠(n−i))](rl−ei ⊗ gei)b2
+ χ(a = 0)[(1⊠(i−1) ⊠ i0 ⊠ 1⊠(n−i))⊗ 1](fei ⊗ rl−ei)b2

− (−)rχ(a > 0)rl−ei + (−)rχ(c > 0)rl−ei
= (−)r[−χ(a = 0) + χ(c = 0)− χ(a > 0) + χ(c > 0)]rl−ei = 0,

because insertion of unit and signed permutation for the two terms of the first sum
produce the same sign. Therefore, Asu

∞((Ai)i∈I ;B) is an A∞-subcategory of A∞((Ai)i∈I ;B).

Since the strict unit elements f iB of A∞((Ai)i∈I ;B)(f, f) have only zeroth components,
they belong to Asu

∞((Ai)i∈I ;B)(f, f). Thus, the A∞-category Asu
∞((Ai)i∈I ;B) is strictly

unital.

Let us prove that evaluation (9.5.1) is a strictly unital A∞-functor. Indeed, its com-
ponents evn,m vanish if m > 1. The component

evn,0 : ⊠
i∈IT nisAi(Xi, Yi)→ sB((Xi)f, (Yi)f), ⊠i∈Iai 7→ (⊠i∈Iai)f(ni)I

vanishes for |n| > 1 if one of the factors of ai is i
Ai
0 for some i ∈ I, because f is strictly

unital. For the same reason the output is iB, when |n| = 1, one of ai is i
Ai
0 and other ai

equal 1.
The component

evn,1 : ⊠
i∈IT nisAi(Xi, Yi)⊠ sAsu

∞((Ai)i∈I ;B)(f, g)→ sB((Xi)f, (Yi)g),

⊠i∈Iai ⊠ r 7→ (⊠i∈Iai)r(ni)I
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vanishes for n ̸= 0 if one of the factors of ai is iAi0 for some i ∈ I, because r ∈
Asu
∞((Ai)i∈I ;B)(f, g). When n = 0, all ai = 1, f = g and r = f iB is the strict unit, then

the output is (Xi)f i
B
0 , as required. Thus, evaluation (9.5.1) is a strictly unital A∞-functor.

Since evA
su
∞ is obtained by restriction from evA∞, we have a commutative diagram

Asu
∞
(
(Bj)j∈J ;A

su
∞((Ai)i∈I ;C)

) φAsu∞
→ Asu

∞
(
(Ai)i∈I , (Bj)j∈J ;C

)

A∞
(
(Bj)j∈J ;A

su
∞((Ai)i∈I ;C)

)ι↓
∩

A∞
(
(Bj)j∈J ;A∞((Ai)i∈I ;C)

)A∞(1;ι)↓
∩

φA∞

∼
→ A∞

(
(Ai)i∈I , (Bj)j∈J ;C

)
,

ι

↓

∩

which implies that φAsu
∞ is injective.

To prove that it is surjective, consider a strictly unitalA∞-functor f : (Ai)i∈I , (Bj)j∈J →
C. It is the image (g)φA∞ of a unique A∞-functor g : (Bj)j∈J → A∞((Ai)i∈I ;C). It takes

objects Yj of Bj, j ∈ J to the A∞-functor (Yj)g = f |(Yj)j∈JI : (Ai)i∈I → C. Due to (8.18.2)

its components are [(Yj)g]m =
(
f |(Yj)j∈JI

)
m

= fm,0, m ∈ (Z⩾0)
I . Thus, (Yj)g is strictly

unital. The n-th component, n = (nj)j∈J , n ̸= 0,

gn : ⊗j∈JT njsBj(Xj, Yj)→ sA∞((Ai)i∈I ;C)((Xj)g, (Yj)g)

takes an element β ∈ ⊗j∈JT njsBj(Xj, Yj) to (β)gn with the components

[(β)gn]m = (1⊠ β)fm,n.

Thus, (β)gn ∈ sAsu
∞((Ai)i∈I ;C)((Xj)g, (Yj)g). Therefore, g lifts to an A∞-functor g :

(Bj)j∈J → Asu
∞((Ai)i∈I ;C).

Let us prove that g is strictly unital. If |n| > 1 and i0 is a factor of β, then [(β)gn]m =

(1 ⊠ β)fm,n vanish for all m, that is, (β)gn = 0. If n = ej, and β = i
Bj
0 , then all

m-th components of (β)gn vanish except [(β)gej ]0 = (i
Bj
0 )f0,ej = iC0 . Therefore, (β)gej =

i
Asu
∞((Ai)i∈I ;C)

0 . This defines a map f 7→ g inverse to φAsu
∞. The proposition is proven.

We have a multicategory embedding Asu
∞

⊂ → A∞ (on objects and on morphisms). It
induces the closing transformation

Asu
∞((Ai)i∈I ;B) ⊂ → A∞((Ai)i∈I ;B),

which is a natural embedding.
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9.7 Multifunctor k. Now we are going to define the main subject of this chapter,
unital A∞-categories and unital A∞-functors. In order to do this, we begin by constructing
a (multi)functor k which forgets all components of the differential of an A∞-category
except the first and the second ones.

We denote by K the symmetric closed Monoidal category of differential graded k-mod-
ules, whose morphisms are chain maps modulo homotopy. See discussion preceding Propo-
sition 8.29. We shall consider non-unital categories and functors, enriched in K. They
form a category K-Catnu. Unital K-categories and K-functors form a smaller category
K-Cat. Thus, K-Cat(A,B) ⊂ K-Catnu(A,B) for all unital K-categories A, B. There
is a functor k : A∞ → K-Catnu, constructed in [Lyu03, Proposition 8.6]. It assigns to
an A∞-category C the K-category kC with the same set of objects Ob kC = ObC, the
same graded k-module of morphisms kC(X, Y ) = C(X, Y ), equipped with the differential
m1 = sb1s

−1. Composition µ2kC in kC is given by (the homotopy equivalence class of)
m2 = (s ⊗ s)b2s−1 : C(X, Y ) ⊗ C(Y, Z) → C(X,Z). We are going to extend the functor

k to a sort of multifunctor k : A∞ → K̂-Catnu. The mapping Ob k which assigns the
K-category kC to an A∞-category C is described above.

Let f : (Aj)j∈J → B be an A∞-functor. Define a (non-unital) K-functor kf :
⊠j∈JkAj → kB on objects as Ob kf = Ob f :

∏
j∈J ObAj → ObB. On morphisms

we set

kf =
[
⊗j∈JkAj(Xj, Yj)

⊗j∈J(sfejs
−1)
→

⊗j∈J kB
(
((Yi)i<j, (Xi)i⩾j)f, ((Yi)i⩽j, (Xi)i>j)f

) µJkB→ kB
(
(Xi)i∈Jf, (Yi)i∈Jf

)]
, (9.7.1)

where chain maps sfejs
−1 are given by (8.18.3), and µJkB is the composition of |J | com-

posable arrows in kB.

9.8 Proposition. kf is a (non-unital) K-functor.

Proof. Let Xi, Yi, Zi be objects of Ai, i ∈ I. We must prove the following equation in K:

[
⊗i∈IAi(Xi, Yi)⊗⊗i∈IAi(Yi, Zi)

⊗i∈Isfeis
−1⊗⊗i∈Isfeis

−1

→
⊗i∈I B

(
((Yj)j<i, (Xj)j⩾i)f, ((Yj)j⩽i, (Xj)j>i)f

)
⊗⊗i∈IB

(
((Zj)j<i, (Yj)j⩾i)f, ((Zj)j⩽i, (Yj)j>i)f

)
µIkB⊗µIkB→B((Xi)i∈If, (Yi)i∈If)⊗B((Yi)i∈If, (Zi)i∈If)

µ2
kB→B((Xi)i∈If, (Zi)i∈If)

]
=
[
⊗i∈IAi(Xi, Yi)⊗⊗i∈IAi(Yi, Zi)

σ(12)→ ⊗i∈I (Ai(Xi, Yi)⊗Ai(Yi, Zi))
⊗i∈Iµ2

kAi→ ⊗i∈I Ai(Xi, Zi)
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⊗i∈Isfeis
−1

→ ⊗i∈I B
(
((Zj)j<i, (Xj)j⩾i)f, ((Zj)j⩽i, (Xj)j>i)f

)
µIkB→B((Xi)i∈If, (Zi)i∈If)

]
, (9.8.1)

In particular case I = 1 it takes the form

[
A(X, Y )⊗A(Y, Z)

sf1s
−1⊗sf1s−1

→B(Xf, Y f)⊗B(Y f, Zf)
µ2
kB→B(Xf,Zf)

]
=
[
A(X, Y )⊗A(Y, Z)

µ2
kA→A(X,Z)

sf1s
−1

→B(Xf,Zf)
]
. (9.8.2)

This equation in K is proven in [Lyu03, Proposition 8.6]. In fact, the difference of the
right and the left hand sides is the boundary of (s⊗ s)f2s−1.

Since fei : Ai → B, i ∈ I, are A∞-functors, they satisfy equation (9.8.2). Therefore,
(9.8.1) is equivalent to the following equation in K:

[
⊗i∈IAi(Xi, Yi)⊗⊗i∈IAi(Yi, Zi)

⊗i∈Isfeis
−1⊗⊗i∈Isfeis

−1

→
⊗i∈I B

(
((Yj)j<i, (Xj)j⩾i)f, ((Yj)j⩽i, (Xj)j>i)f

)
⊗⊗i∈IB

(
((Zj)j<i, (Yj)j⩾i)f, ((Zj)j⩽i, (Yj)j>i)f

)
µIkB⊗µIkB→B((Xi)i∈If, (Yi)i∈If)⊗B((Yi)i∈If, (Zi)i∈If)

µ2
kB→B((Xi)i∈If, (Zi)i∈If)

]
=
[
⊗i∈IAi(Xi, Yi)⊗⊗i∈IAi(Yi, Zi)

⊗i∈Isfeis
−1⊗⊗i∈Isfeis

−1

→
⊗i∈I B(((Zj)j<i, (Xj)j⩾i)f, ((Zj)j<i, Yi, (Xj)j>i)f)

⊗⊗i∈IB(((Zj)j<i, Yi, (Xj)j>i)f, ((Zj)j⩽i, (Xj)j>i)f)
σ(12)→

⊗i∈I
(
B(((Zj)j<i, (Xj)j⩾i)f, ((Zj)j<i, Yi, (Xj)j>i)f)

⊗B(((Zj)j<i, Yi, (Xj)j>i)f, ((Zj)j⩽i, (Xj)j>i)f)
) ⊗i∈Iµ2

kB→

⊗i∈I B(((Zj)j<i, (Xj)j⩾i)f, ((Zj)j⩾i, (Xj)j>i)f)
µIkB→B((Xi)i∈If, (Zi)i∈If)

]
, (9.8.3)

which we are going to prove. We may assume that I = n. Two parts of equation (9.8.3)
are particular cases of the following construction.

Consider staircases defined as connected subsets S of the plane which are unions of 2n
segments of the form [(k−1, i−1), (k−1, i)] or [(k−1, i), (k, i)] for integers 1 ⩽ k ⩽ i ⩽ n.
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We assume also that (0, 0) ∈ S and (n, n) ∈ S, see examples with n = 5 below.

(a)

(n, n)
• • • • • •
•
•
•
•
•

(0, 0)

(b)

(n, n)
• • •

• • •
•
• •
•
•

(0, 0)

(c)

(n, n)
• •
• •
• •
• •
• •
•

(0, 0)
(9.8.4)

Associate with a staircase S two non-decreasing functions l, k : n → n. Namely, l(p) =
lS(p) is the smallest l such that (p, l) ∈ S, and k(i) = kS(i) is the smallest k such that
(k−1, i) ∈ S. Notice that lS(p) ⩾ p and kS(i) ⩽ i. Moreover, any non-decreasing function
k : n → n (resp. l : n → n) such that k(i) ⩽ i (resp. l(p) ⩾ p) determines a unique
staircase S such that kS = k (resp. lS = l). Thus, the sets of such functions k, staircases
S, and such functions l are in bijection.

Let (Wp,l)0⩽p⩽l⩽n be objects of B. The staircase S gives rise to a map

⊗i∈n B(Wk(i)−1,i−1,Wk(i)−1,i)⊗⊗p∈nB(Wp−1,l(p),Wp,l(p))
shS→ ⊗2n B(W••,W••)

µ2n
kB→B(W0,0,Wn,n), (9.8.5)

where the signed (n, n)-shuffle shS is associated with the staircase S. Namely, if the
m-th segment of S, 1 ⩽ m ⩽ 2n (starting from the segment [(0, 0), (0, 1)]) is vertical
(resp. horizontal), then the m-th factor of ⊗2nB(W••,W••) comes from the first (resp.
the last) n factors of the source. Thus the intermediate tensor product has the form
⊗m∈2nB(Wv(m−1),Wv(m)), where (v(m))2nm=0 ⊂ Z2 is the list of all adjacent integer vertices
belonging to S, v(0) = (0, 0), v(2n) = (n, n). In particular, the composition mapping µ2nkB
makes sense.

Let us take Wp,l = ((Zj)j⩽p, (Yj)p<j⩽l, (Xj)j>l)f , 0 ⩽ p ⩽ l ⩽ n. Given a staircase S,
we extend mapping (9.8.5) to the following:

κ(f, S) =
[
⊗i∈nA(Xi, Yi)⊗⊗p∈nAp(Yp, Zp)

⊗i∈nsfeis
−1⊗⊗p∈nsfeps

−1

→
⊗i∈n B

(
((Zj)j<k(i), (Yj)

j<i
j⩾k(i), (Xj)j⩾i)f, ((Zj)j<k(i), (Yj)

j⩽i
j⩾k(i), (Xi)j>i)f

)
⊗⊗p∈nB

(
((Zj)j<p, (Yj)

j⩽l(p)
j⩾p , (Xj)j>l(p))f, ((Zj)j⩽p, (Yj)

j⩽l(p)
j>p , (Xj)j>l(p))f

)
= ⊗i∈nB(Wk(i)−1,i−1,Wk(i)−1,i)⊗⊗p∈nB(Wp−1,l(p),Wp,l(p))

shS→ ⊗2n B(Wv(m−1),Wv(m))
µ2n
kB→B(W0,0,Wn,n) = B((Xj)j∈nf, (Zj)j∈nf)

]
.

The left hand side of (9.8.3) equals κ(f, Sa), where Sa from (9.8.4)(a) gives shSa = id,
k(i) = 1, l(p) = n. The right hand side of (9.8.3) equals κ(f, Sc), where Sc from (9.8.4)(c)
gives shSc = κ, k(i) = i, l(p) = p.
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We claim that the composition κ(f, S) does not depend on the staircase S. Indeed,
consider two staircases S, S ′ which coincide everywhere except in m-th and (m + 1)-st
segments, 0 < m < 2m− 1, as drawn:

S ∋ v(m) v(m+ 1)
• •

• •
v(m− 1) v′(m) ∈ S ′

Then the corresponding shuffles are related by the equation shS′ = shS ·(m,m+ 1)∼. Let
i ∈ n (resp. p ∈ n) index the factors which come to m-th (resp (m + 1)-st) place after
application of shS. Expressions

B(Wk(i)−1,i−1,Wk(i)−1,i)⊗B(Wp−1,l(p),Wp,l(p))

and
B(Wv(m−1),Wv(m))⊗B(Wv(m),Wv(m+1))

are identical. This implies p = k(i) and i = l(p) and gives coordinates of the four points:

(p− 1, i) = v(m) • • v(m+ 1) = (p, i)

(p− 1, i− 1) = v(m− 1) • • v′(m) = (p, i− 1)

In particular, p ⩽ i − 1. The expression for κ(f, S ′) differs from that for κ(f, S) by an
extra factor

(12)∼ : B(Wv′(m),Wv(m+1))⊗B(Wv(m−1),Wv′(m))

→ B(Wv(m−1),Wv′(m))⊗B(Wv′(m),Wv(m+1)).

Thus, equation κ(f, S) = κ(f, S ′) follows from the equation in K

[
Ai(Xi, Yi)⊗Ap(Yp, Zp)

sfeis
−1⊗sfeps−1

→

B(Wp−1,i−1,Wp−1,i)⊗B(Wp−1,i,Wp,i)
µ2
kB→B(Wp−1,i−1,Wp,i)

]
=
[
Ai(Xi, Yi)⊗Ap(Yp, Zp)

sfeis
−1⊗sfeps−1

→B(Wp,i−1,Wp,i)⊗B(Wp−1,i−1,Wp,i−1)
(12)∼→B(Wp−1,i−1,Wp,i−1)⊗B(Wp,i−1,Wp,i)

µ2
kB→B(Wp−1,i−1,Wp,i)

]
,

which we are going to prove now.
Introduce the A∞-functor of two variables

g = f |(Zj)j<p,(Yj)p<j<i,(Xj)j>i
{p,i} : Ap,Ai → B.
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Recall that p < i. In terms of g the above equation in K can be rewritten as follows:[
Ai(Xi, Yi)⊗Ap(Yp, Zp)

sg01s
−1⊗sg10s−1

→

B((Yp, Xi)g, (Yp, Yi)g)⊗B((Yp, Yi)g, (Zp, Yi)g)
µ2
kB→B((Yp, Xi)g, (Zp, Yi)g)

]
=
[
Ai(Xi, Yi)⊗Ap(Yp, Zp)

(12)∼→Ap(Yp, Zp)⊗Ai(Xi, Yi)
sg10s

−1⊗sg01s−1

→

B((Yp, Xi)g, (Zp, Xi)g)⊗B((Zp, Xi)g, (Zp, Yi)g)
µ2
kB→B((Yp, Xi)g, (Zp, Yi)g)

]
. (9.8.6)

In order to prove it we recall that g̃b = (1 ⊠ b̃ + b̃ ⊠ 1)g by (8.8.1). Restriction of this
equation to sAi ⊠ sAp gives

(g10 ⊗ g01)b2 + (12)∼(g01 ⊗ g10)b2 + g11b1 = (1⊗ b1 + b1 ⊗ 1)g11 :

sAi(Xi, Yi)⊗ sAp(Yp, Zp)→ sB((Yp, Xi)g, (Zp, Yi)g).

Thus, (g10 ⊗ g01)b2 + (12)∼(g01 ⊗ g10)b2 is a boundary. Therefore,

(s⊗ s)(g01 ⊗ g10)b2s−1 = (12)∼(s⊗ s)(g10 ⊗ g01)b2s−1

in K. This implies equation (9.8.6).
Since any two staircases S ′ and S ′′ can be connected by a finite sequence of elementary

modifications as above, we have κ(f, S ′) = κ(f, S ′′). In particular, equation (9.8.3) holds
and kf is a (non-unital) functor.

9.9 Proposition. The maps Ob k : ObA∞ → Ob K̂-Catnu, C 7→ kC, k : A∞((Aj)j∈J ;B)→
K̂-Catnu(⊠j∈JkAj, kB), f 7→ kf (given by (9.7.1) for non-empty J only!) are compatible
with composition and identity functors, and define a kind of plain multifunctor k : A∞ →
K̂-Catnu.

Proof. Let ϕ : I → J be a isotonic surjection with non-empty J . We shall prove that
k is compatible with the composition µϕ. Let f j : (Ai)i∈ϕ−1j → Bj, g : (Bj)j∈J → C be
A∞-functors. They are taken by k to

kf j =
[
⊗i∈ϕ−1jAi(Xi, Yi)

⊗i∈ϕ−1j(sf j

e
ϕ−1j
i

s−1)

→
⊗i∈ϕ−1j Bj

(
((Yk)

ϕk=j
k<i , (Xk)

ϕk=j
k⩾i )f j, ((Yk)

ϕk=j
k⩽i , (Xk)

ϕk=j
k>i )f j

)
µϕ

−1j
kBj→Bj

(
(Xi)i∈ϕ−1jf

j, (Yi)i∈ϕ−1jf
j
)]
,

kg =
[
⊗j∈JBj(Uj,Wj)

⊗j∈J(sg
eJ
j
s−1)

→

⊗j∈J C
(
((Wl)l<j, (Ul)l⩾j)g, ((Wl)l⩽j, (Ul)l>j)g

) µJkC→ C
(
(Uj)j∈Jg, (Wj)j∈Jg

)]
.
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Composition µϕ of these morphisms in K̂-Catnu is

(kf j)j∈J · kg =
[
⊗i∈IAi(Xi, Yi)

λϕ→ ⊗j∈J ⊗i∈ϕ−1jAi(Xi, Yi)
⊗j∈Jkf j→ ⊗j∈J Bj

(
(Xi)i∈ϕ−1jf

j, (Yi)i∈ϕ−1jf
j
)

kg→ C
(
((Xi)i∈ϕ−1jf

j)j∈Jg, ((Yi)i∈ϕ−1jf
j)j∈Jg

)]
=
[
⊗i∈IAi(Xi, Yi)

λϕ→ ⊗j∈J ⊗i∈ϕ−1jAi(Xi, Yi)

⊗j∈J⊗i∈ϕ−1j(sf j

e
ϕ−1j
i

s−1)

→
⊗j∈J ⊗i∈ϕ−1jBj

(
((Yk)

ϕk=j
k<i , (Xk)

ϕk=j
k⩾i )f j, ((Yk)

ϕk=j
k⩽i , (Xk)

ϕk=j
k>i )f j

)
⊗j∈Jµϕ

−1j
kBj→ ⊗j∈J Bj

(
(Xi)i∈ϕ−1jf

j, (Yi)i∈ϕ−1jf
j
)

⊗j∈J(sg
eJ
j
s−1)

→ ⊗j∈J C
(
(((Yi)i∈ϕ−1lf

l)l<j, ((Xi)i∈ϕ−1lf
l)l⩾j)g,

(((Yi)i∈ϕ−1lf
l)l⩽j, ((Xi)i∈ϕ−1lf

l)l>j)g
)

µJkC→ C
(
((Xi)i∈ϕ−1jf

j)j∈Jg, ((Yi)i∈ϕ−1jf
j)j∈Jg

)]
. (9.9.1)

Since kg
∣∣(Wl)l<j ,(Ul)l>j
j

: Bj → C, V 7→ ((Wl)l<j, V, (Ul)l>j)g, given on morphisms by

sgeJj s
−1 : Bj(Uj,Wj) → C

(
((Wl)l<j, (Ul)l⩾j)g, ((Wl)l⩽j, (Ul)l>j)g

)
is a K-functor, we have

an equation in K:

[
⊗i∈PBj(V

j
i−1, V

j
i )

µPBj→Bj(Uj,Wj)
sg
eJ
j
s−1

→ C
(
((Wl)l<j, (Ul)l⩾j)g, ((Wl)l⩽j, (Ul)l>j)g

)]
=
[
⊗i∈PBj(V

j
i−1, V

j
i )
⊗i∈P sg

eJ
j
s−1

→ ⊗i∈P C
(
((Wl)l<j, V

j
i−1, (Ul)l>j)g, ((Wl)l<j, V

j
i , (Ul)l>j)g

)
µPC→ C

(
((Wl)l<j, (Ul)l⩾j)g, ((Wl)l⩽j, (Ul)l>j)g

)]
, (9.9.2)

where P = p, Uj = V j
0 , Wj = V j

p . Applying this identity to P = ϕ−1j, we turn (9.9.1)
into:

[
⊗i∈IAi(Xi, Yi)

λϕ→ ⊗j∈J ⊗i∈ϕ−1jAi(Xi, Yi)

⊗j∈J⊗i∈ϕ−1j(sf j

e
ϕ−1j
i

s−1)

→

⊗j∈J ⊗i∈ϕ−1jBj

(
((Yk)

ϕk=j
k<i , (Xk)

ϕk=j
k⩾i )f j, ((Yk)

ϕk=j
k⩽i , (Xk)

ϕk=j
k>i )f j

) ⊗j∈J⊗i∈ϕ−1j(sg
eJ
j
s−1)

→
⊗j∈J ⊗i∈ϕ−1jC

{(
((Yk)ϕk=lf

l)l<j, ((Yk)
ϕk=j
k<i , (Xk)

ϕk=j
k⩾i )f j, ((Xk)ϕk=lf

l)l>j
)
g,(

((Yk)ϕk=lf
l)l<j, ((Yk)

ϕk=j
k⩽i , (Xk)

ϕk=j
k>i )f j, ((Xk)ϕk=lf

l)l>j
)
g
}

⊗j∈Jµϕ
−1j

kC→ ⊗j∈J C
(
(((Yk)ϕk=lf

l)l<j, ((Xk)ϕk=lf
l)l⩾j)g, (((Yk)ϕk=lf

l)l⩽j, ((Xk)ϕk=lf
l)l>j)g

)
µJkC→ C

(
((Xi)i∈ϕ−1jf

j)j∈Jg, ((Yi)i∈ϕ−1jf
j)j∈Jg

)]
. (9.9.3)
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Denote by h the composition (f j)j∈J · g : (Ai)i∈I → C in A∞. We have f j
eϕ

−1j
i

· geJj = heIi if

ϕi = j. Furthermore, λϕ ·⊗j∈J ⊗i∈ϕ−1j heIi = ⊗
i∈IheIi ·λ

ϕ by naturality of λϕ. Thus, (9.9.3)
equals

[
⊗i∈IAi(Xi, Yi)

⊗i∈I(sh
eI
i
s−1)

→ ⊗i∈I C
(
((Yk)k<i, (Xk)k⩾i)h, ((Yk)k⩽i, (Xk)k>i)h

)
= ⊗i∈IC

{(
((Yk)ϕk=lf

l)l<ϕi, ((Yk)
ϕk=ϕi
k<i , (Xk)

ϕk=ϕi
k⩾i )fϕi, ((Xk)ϕk=lf

l)l>ϕi
)
g,(

((Yk)ϕk=lf
l)l<ϕi, ((Yk)

ϕk=ϕi
k⩽i , (Xk)

ϕk=ϕi
k>i )fϕi, ((Xk)ϕk=lf

l)l>ϕi
)
g
} λϕ→

⊗j∈J ⊗i∈ϕ−1jC
{(

((Yk)ϕk=lf
l)l<j, ((Yk)

ϕk=j
k<i , (Xk)

ϕk=j
k⩾i )f j, ((Xk)ϕk=lf

l)l>j
)
g,(

((Yk)ϕk=lf
l)l<j, ((Yk)

ϕk=j
k⩽i , (Xk)

ϕk=j
k>i )f j, ((Xk)ϕk=lf

l)l>j
)
g
} ⊗j∈Jµϕ−1j

kC→
⊗j∈J C

(
(((Yk)ϕk=lf

l)l<j, ((Xk)ϕk=lf
l)l⩾j)g, (((Yk)ϕk=lf

l)l⩽j, ((Xk)ϕk=lf
l)l>j)g

)
µJkC→ C

(
((Xi)i∈ϕ−1jf

j)j∈Jg, ((Yi)i∈ϕ−1jf
j)j∈Jg

)]
. (9.9.4)

Any k-linear category is an algebra in the monoidal category Qp. In particular, equa-
tion (2.25.1) holds for C. Hence, we may replace the last three arrows in (9.9.4) with one
and get

[
⊗i∈IAi(Xi, Yi)

⊗i∈I(sh
eI
i
s−1)

→ ⊗i∈I C
(
((Yk)k<i, (Xk)k⩾i)h, ((Yk)k⩽i, (Xk)k>i)h

)
µIkC→ C

(
(Xi)i∈Ih, (Yi)i∈Ih

)]
= kh.

This proves compatibility of k with compositions. Compatibility with identity functors is
obvious.

When n = 1, an A∞-functor f : A → B is mapped to the K-functor kf : kA → kB
with kf = sf1s

−1 : A(X, Y )→ B(Xf, Y f) as was defined in [Lyu03, Proposition 8.6].

9.10 Unital A∞-categories and A∞-functors. An A∞-category C is called unital if
kC is unital, that is, for each object X of C there is a unit element 1X : k→ C(X,X) ∈ K

such that equations (id⊗1Y )m2 = 1 = (1X ⊗ id)m2 : C(X, Y ) → C(X, Y ) hold in K. In
other terms, for each object X of C there is a unit element Xi

C
0 : k → (sC)−1(X,X) –

a cycle defined up to a boundary, such that the chain maps (1 ⊗ Y i
C
0)b2, −(XiC0 ⊗ 1)b2 :

sC(X, Y )→ sC(X, Y ) are homotopic to the identity map. This definition is equivalent to
unitality in the sense of [Lyu03, Definition 7.3], see also [ibid, Lemma 7.4].

If B is a unital A∞-category and f ∈ A∞( ;B) (such f is identified with an object
X = ()f of B), then we define kf : ⊠∅() → kB, ()i∈∅ 7→ ()f = X, on morphisms via
(9.7.1) for n = 0. That is,

kf =
[
⊗∅() = k

µ0
kB

1X
→ kB(X,X)

]
, 1 7→ 1X . (9.10.1)
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9.11 Definition. Let (Ai)i∈I , B be unital A∞-categories. An A∞-functor f : (Ai)i∈I → B

is called unital if theK-functor kf : ⊠i∈IkAi → kB is unital. The set of unital A∞-functors
is denoted Au

∞((Ai)i∈I ;B) ⊂ A∞((Ai)i∈I ;B).

Due to (9.10.1) for I = ∅ any A∞-functor f : () → B is unital (if B is unital).
For one-element I an A∞-functor f : A → B between unital A∞-categories is unital
if and only if Xi

A
0 f1 − Xf i

B
0 ∈ Im b1 for all objects X of A. This criterion coincides

with [Lyu03, Definition 8.1]. Since K̂-Cat is a submulticategory of K̂-Catnu, the subsets
Au
∞((Ai)i∈I ;B) ⊂ A∞((Ai)i∈I ;B) form a submulticategory Au

∞ ⊂ A∞ with unital A∞-cat-
egories as objects, and unital A∞-functors as multimorphisms.

In unital case the statement of Proposition 9.9 extends to empty set J of arguments,
and to compositions µϕ for arbitrary isotonic maps ϕ : I → J . Proof repeats the proof of
Proposition 9.9 word by word.

Summary. There is a plain multifunctor k : Au
∞ → K̂-Cat.

Consider a change of symmetric Monoidal base, the lax symmetric Monoidal functor
H0 : K → k -mod, C 7→ K(k, C) = Ker(d : C0 → C1)/ Im(d : C−1 → C0) = H0(C),
cf. (2.7.2). Here k = 1K is the graded k-module k concentrated in degree 0. According
to [Man07] H0 provides a lax symmetric Monoidal Cat-functor H0

∗ : K-Cat → k-Cat,
which we have denoted also B 7→ B in Section 2.7. Thus, ObB = ObB and B(X, Y ) =

H0(B(X, Y )). Hence, there is a symmetric multifunctor Ĥ0
∗ : K̂-Cat→ k̂-Cat. Composing

it with k : Au
∞ → K̂-Cat we get a plain multifunctor, denoted

H0 = Ĥ0
∗ ◦ k : Au

∞ → k̂-Cat

by abuse of notation. It assigns to a unital A∞-category C the k-linear category
H0(C) = kC with the same set of objects ObH0(C) = ObC, the k-module of morphisms
H0(C)(X, Y ) = H0

(
C(X, Y ),m1

)
, with the composition induced by m2.

9.12 Definition (Fukaya). Objects X, Y of a unital A∞-category C are called isomorphic
if they are isomorphic as objects of the ordinary category H0(C). In detail, X and Y are
isomorphic if there are elements q ∈ sC(X, Y ), t ∈ sC(Y,X) of degree −1 (isomorphisms)
such that qb1 = 0, tb1 = 0, (q ⊗ t)b2 − Xi

C
0 ∈ Im b1, (t⊗ q)b2 − Y i

C
0 ∈ Im b1.

Assume that C is an A∞-category and k is a field. Then unitality of graded k-linear
category H(C) (cohomological unitality [Kel01, LH03, Sei08]) is equivalent to unitality of
A∞-category C itself. Indeed, any chain complex of k-vector spaces is homotopy isomor-
phic to its homology, the graded k-vector space equipped with zero differential. Therefore,
any two chain maps inducing the same map in homology are homotopic. Certainly, this
does not hold for arbitrary complexes of modules over an arbitrary commutative ring k.
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9.13 Proposition. Let (Ai)i∈I , B be unital A∞-categories, and let f : (Ai)i∈I → B be

an A∞-functor. It is unital if and only if A∞-functors f |
(Xi)i ̸=j
j : Aj → B are unital for all

j ∈ I.

Proof. If I = ∅, the statement holds true. Let j ∈ I, and let Xi ∈ ObAi for i ∈ I, i ̸= j.
The composition map

µA∞
j↪→I : A∞(Aj;Aj)×

∏
i ̸=j

A∞( ;Ai)× A∞((Ai)i∈I ;B)→ A∞(Aj;B)

takes ((Xi)i̸=j, idAj , f) to f |(Xi)i ̸=j
j . We have seen that A∞-functors Xi : () → Ai and

id : Aj → Aj are unital. If f is unital, then f |(Xi)i̸=j
j = ((Xi)i̸=j, idAj , f)µ

A∞
j↪→I is unital due

to Au
∞ being a submulticategory.

Assume that A∞-functors f |
(Xi)i ̸=j
j : Aj → B are unital for all j ∈ n. Then for any

family (Xi)i∈n, Xi ∈ ObAi, we have

1(Xj)j∈n
.kf = (⊗j∈n1Xj

sfejs
−1)µnkB = [⊗j∈n1Xj

s(f |(Xi)i ̸=j
j )1s

−1]µnkB

= [⊗j∈n⟨1Xj
.(kf |(Xi)i ̸=j

j )⟩]µnkB = (⊗j∈n1(X1,...,Xn)f)µ
n
kB = 1(X1,...,Xn)kf .

Thus kf is unital, hence, f is unital.

9.14 Corollary. If f : (Ai)i∈I → B is a unital A∞-functor, and J ⊂ I, then f |(Xi)i∈I∖J
J :

(Aj)j∈J → B is unital for all families of objects (Xi)i∈I∖J ∈
∏

i∈I∖J ObAi.

Indeed, restrictions of f |(Xi)i∈I∖J
J to j-th argument coincide with those of f .

9.15 Closedness of multicategory of unital A∞-categories. Let B be a unital
A∞-category. Then A∞((Ai)i∈I ;B) is unital as well. Indeed, for I = ∅ this follows
from the isomorphism A∞( ;B) = Qp(k, sB)[−1] ≃ B, due to closedness of A∞, or to

(7.11.4). For I = 1 the A∞-category A∞(A;B) = A∞(A;B) is unital due to [Lyu03,
Proposition 7.7]. For I = n, n > 1, we have an isomorphism of Proposition 4.12

φ : A∞
(
(Ai)

n
i=2;A∞(A1;B)

)
→ A∞((Ai)

n
i=1;B). (9.15.1)

By induction assumption we may assume that the source is unital. By [Lyu03, Theo-
rem 8.8] the target is unital and φ is a unital A∞-equivalence. The claim follows by
induction on n. For what follows, we need to flesh out the unit elements.

9.16 Proposition. Let Ai, B, i ∈ I, be A∞-categories. Suppose that B is unital. Then
the A∞-category A∞((Ai)i∈I ;B) is unital with unit elements

f i
A∞((Ai)i∈I ;B)
0 = f iB ∈ sA∞((Ai)i∈I ;B)(f, f),

for each A∞-functor f : (Ai)i∈I → B.
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The proof of the proposition repeats the proof of [Lyu03, Proposition 7.7] mutatis
mutandis and hence is omitted here.

According to general definition, A∞-functors f, g : (Ai)i∈I → B with values in a unital
A∞-category B are isomorphic if they are isomorphic as objects of the unital A∞-category
A∞((Ai)i∈I ;B).

9.17 Lemma. Let r : f → g : (Ai)i∈I → B be a natural A∞-transformation, that is,
deg r = −1 and rB1 = 0, and let B be unital. Assume that for all families (Xi)i∈I of
objects Xi ∈ ObAi there are elements (Xi)i∈Ip0 : k → (sB)−1

(
((Xi)i∈I)g, ((Xi)i∈I)f

)
such

that (Xi)i∈Ip0b1 = 0 and

((Xi)i∈Ir0 ⊗ (Xi)i∈Ip0)b2 − ((Xi)i∈I)f i
B
0 ∈ Im b1,

((Xi)i∈Ip0 ⊗ (Xi)i∈Ir0)b2 − ((Xi)i∈I)gi
B
0 ∈ Im b1.

Then given (Xi)i∈Ip0 extend to a natural A∞-transformation p : g → f : (Ai)i∈I → B

inverse to r, that is,

(r ⊗ p)B2 − f iB ∈ ImB1, (p⊗ r)B2 − giB ∈ ImB1.

Proof. If I = ∅, then p = p0 is inverse to r = r0. If |I| = 1, the statement is
proven in [Lyu03, Proposition 7.15]. For I = n, n > 1, isomorphism φ

1
from (9.15.1)

takes some coderivation t̂ : ⊠n
i=2TsAi → TsA∞(A1;B) to the given transformation

r =
[
⊠i∈nTsAi

1⊠t̂→ TsA1 ⊠ TsA∞(A1;B)
ev→ sB

]
. Restricting t̂ to 1 ∈ ⊠n

i=2T
0sAi

we get q
def
= t0 ∈ T 1sA∞(A1;B). Restricting r to 1 ∈ ⊠i∈nT 0sAi we get r0 = q0 by

(8.25.4). Therefore, invertibility of q0 = r0 implies invertibility of t0 = q with some in-
verse w, w0 = p0. By induction on n > 0 it implies invertibility of t with an inverse z
such that z0 = w.

Since the A∞-functor φ is unital, its first component φ
1
takes a pair of inverse to each

other cycles t, z to a pair of inverse to each other cycles tφ
1
= r, p

def
= zφ

1
. The 0-th

component p0 = (z0)0 = w0 of p coincides with the given collection p0.

Let us show that multicategory Au
∞ is closed. If (Ai)i∈I , B are unital A∞-categories,

we set Au
∞((Ai)i∈I ;B) ⊂ A∞((Ai)i∈I ;B) to be the full A∞-subcategory, whose objects are

unital A∞-functors f : (Ai)i∈I → B. Since A∞((Ai)i∈I ;B) is unital, so is Au
∞((Ai)i∈I ;B).

The evaluation A∞-functor ev
Au
∞ : (Ai)i∈I ,A

u
∞((Ai)i∈I ;B)→ B is taken to be the restric-

tion of evA∞ : (Ai)i∈I ,A∞((Ai)i∈I ;B)→ B. We have to show that the A∞-functor ev
Au
∞ is

unital.
If I = ∅, then evA

u
∞ : Au

∞( ;B)→ B is the natural isomorphism, hence, it is unital by

[Lyu03, Corollary 8.9]. If j ∈ I = n, Xi ∈ ObAi for i ̸= j, and g ∈ Au
∞((Ai)i∈n;B), then

due to (8.25.4)

ev |(Xi)i ̸=j ,g
j = g|(Xi)i̸=j

j : TsAj ≃
(
⊠i∈n∖{j}T 0sAi

)
⊠ TsAj ⊠ T 0sAu

∞((Ai)i∈n;B)→ sB
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is unital, since g|(Xi)i ̸=j
j is unital by Proposition 9.13. If Xi ∈ ObAi for i ∈ n, the first

component
(
ev |(Xi)i∈n

n+1

)
1
: T 1sAu

∞((Ai)i∈n;B) → sB of A∞-functor ev |(Xi)i∈n

n+1 takes, due to

(8.25.4), an A∞-transformation r : g → h : (Ai)i∈n → B to its 0-th component r0...0 ∈
sB((X1, . . . , Xn)g, (X1, . . . , Xn)h). In particular, the unit element giB : g → g of g goes
to the unit element (X1,...,Xn)gi

B
0 ∈ sB((X1, . . . , Xn)g, (X1, . . . , Xn)g). By Proposition 9.13

we conclude that evA
u
∞ is unital.

9.18 Proposition. So defined Au
∞((Ai)i∈I ;B), evA

u
∞ turn Au

∞ into a closed multicategory.

Proof. Let (Ai)i∈I , (Bj)j∈J , C be unital A∞-categories. Denote by e : Au
∞((Ai)i∈I ;C) ↪→

A∞((Ai)i∈I ;C) the full embedding. Mappings (4.7.1) for Au
∞ and A∞ are related by em-

beddings:

Au
∞
(
(Bj)j∈J ;A

u
∞((Ai)i∈I ;C)

) φAu∞
→ Au

∞
(
(Ai)i∈I , (Bj)j∈J ;C

)

A∞
(
(Bj)j∈J ;A

u
∞((Ai)i∈I ;C)

)↓
∩

A∞
(
(Bj)j∈J ;A∞((Ai)i∈I ;C)

)A∞((Bj)j∈J ;e)↓
∩

φA∞

∼
→ A∞

(
(Ai)i∈I , (Bj)j∈J ;C

)↓

∩

Therefore, φAu
∞ is injective. Let us prove its surjectivity.

Let g : (Bj)j∈J → A∞((Ai)i∈I ;C) be an A∞-functor such that f = φA∞(g) : (Ai)i∈I ,
(Bj)j∈J → C is unital. Let (Yj)j∈J be a family of objects Yj ∈ ObBj. Then A∞-functor(
(Yj)j∈J

)
g = f |(Yj)j∈JI : (Ai)i∈I → C is unital by Corollary 9.14. Therefore, g = he for an

A∞-functor h : (Bj)j∈J → Au
∞((Ai)i∈I ;C).

Let us prove that h is unital. This is obvious if J = ∅. Assume that J ̸= ∅ and
consider an arbitrary k ∈ J , a family (Xi)i∈I ∈

∏
i∈I ObAi and a family (Yj)j ̸=k ∈∏

j ̸=kObBj. The restriction of

f =
[
(⊠i∈ITsAi)⊠ (⊠j∈JTsBj)

(⊠I id)⊠h̃→ (⊠i∈ITsAi)⊠ TsAu
∞((Ai)i∈I ;C)

ev→ sC
]

to the k-th argument

f |(Xi)i∈I ,(Yj)j ̸=k
k

=
[
(⊠i∈IT 0sAi)⊠ TsBk

(⊠I id)⊠(h|
(Yj)j ̸=k
k )∼→ (⊠i∈IT 0sAi)⊠ TsAu

∞((Ai)i∈I ;C)
ev−→ sC

]
is unital by Proposition 9.13. It depends only on restriction h|(Yj)j ̸=kk : Bk → Au

∞((Ai)i∈I ;C).

Its first component
(
h|(Yj)j ̸=kk

)
1
: sBk(Yk, Yk) → sAu

∞((Ai)i∈I ;C)
(
((Yj)j∈J)h, ((Yj)j∈J)h

)
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takes the unit element Yki
Bk
0 to some element rk. Applying k we find that rk is a cycle,

idempotent modulo boundary:

(rk)B1 = 0, (rk ⊗ rk)B2 − rk ∈ ImB1.

The first component

(
f |(Xi)i∈I ,(Yj)j ̸=k
k

)
1
=
[
sBk(Yk, Yk)

(h|
(Yj)j ̸=k
k )1→ sAu

∞((Ai)i∈I ;C)
(
((Yj)j∈J)h, ((Yj)j∈J)h

)
(ev |(Xi)i∈I|I|+1 )1

→ sC
(
((Xi)i∈I)((Yj)j∈J)h, ((Xi)i∈I)((Yj)j∈J)h

)]
takes Yki

Bk
0 to (Xi)i∈Ir

k
0...0 ∈ sC

(
((Xi)i∈I , (Yj)j∈J)f, ((Xi)i∈I , (Yj)j∈J)f

)
due to (8.25.4). Uni-

tality of f |k implies that

(Xi)i∈Ir
k
0...0 − ((Xi)i∈I ,(Yj)j∈J)f i

C
0 ∈ Im b1.

By Lemma 9.17 this implies invertibility of rk. Being also idempotent, rk is equal to
the unit transformation ((Yj)j∈J)hi

C of the A∞-functor ((Yj)j∈J)h : (Ai)i∈I → C modulo

boundary. Thus, h|(Yj)j ̸=kk is unital. By Proposition 9.13 h ∈ Au
∞
(
(Bj)j∈J ;A

u
∞((Ai)i∈I ;C)

)
,

hence, φAu
∞ is surjective, and, moreover, bijective. Therefore, the multicategory Au

∞ is
closed.

9.19 Remark. If A is a unital A∞-category, then the Gerstenhaber algebra C = C(A) =
A∞(A;A)(id, id) in the K-category K from Proposition 8.29 has a homotopy unit iAs−1.
Also the Gerstenhaber algebra H•(C(A)) from Corollary 8.30 is unital in this case.

9.20 Au
∞-2-functors and Au

∞-2-transformations. Here we relate the 2-category
approach to A∞-categories of [Lyu03, LM06a, LM08c] with the closed multicategory ap-
proach.

From the point of view of [Lyu03] unital A∞-categories form a kind of category, en-
riched in itself. For practical use this recursive picture is truncated at the second step. So
from this point of view Au

∞ is a kind of category, whose objects are unital A∞-categories.
Instead of sets of homomorphisms it has unital A∞-categories A

u
∞(A,B) = Au

∞(A;B).
Composition in Au

∞ is given by the unital A∞-functor

µ
Au
∞

1→1 : A
u
∞(A;B),Au

∞(B;C)→ Au
∞(A;C),

or, equivalently, by the differential augmented coalgebra morphism

M : TsAu
∞(A,B)⊠ TsAu

∞(B,C)→ TsAu
∞(A,C),

see [Lyu03, Sections 4, 6]. Associativity of µ
Au
∞

1→1 presented by equation (4.2.2) for the
maps 1 → 1 → 1 implies associativity of the A∞-functor M in the sense of [Lyu03,
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Proposition 4.1]. The units are identity A∞-functors idA : A → A, corresponding to the
quiver morphism pr1 : T

⩾1sA→ sA. Thus, the Au
∞-2-category structure of Au

∞ coincides
with the Au

∞-category structure of Au
∞.

Functors F : Au
∞ → Au

∞ compatible with these structures are called strict Au
∞-2-

functors in [LM06a]. They are precisely Au
∞-functors Au

∞ → Au
∞ in the sense of Defini-

tion 4.3.

Some Au
∞-2-functors come from augmented multifunctors as shown in Proposition 4.30.

Let F : Au
∞ → Au

∞ be a multifunctor together with a multinatural transformation uF :
Id→ F . This gives an element as in Section 4.29

F ′ =
[
Au
∞(A;B)

uF→ FAu
∞(A;B)

F→ Au
∞(FA;FB)

]
,

that is, a unital A∞-functor F
′ : Au

∞(A,B)→ Au
∞(FA;FB) which satisfies equation

Au
∞(A,B), Au

∞(B,C)
F ′,F ′

→Au
∞(FA, FB), Au

∞(FB, FC)

Au
∞(A,C)

µ1→1↓
F ′

→Au
∞(FA, FC),

µ1→1↓

due to diagram (4.30.1). This is nothing else but equation (3.1.1) of [LM06a], which is
one of the conditions of F ′ being an Au

∞-2-functor. Also F ′ : Au
∞(A;B) → Au

∞(FA;FB)
maps the unit idA to the unit idFA due to Proposition 4.30. Hence, a multifunctor
F : Au

∞ → Au
∞ together with a multinatural transformation uF : Id → F produces an

Au
∞-2-functor F

′ : Au
∞ → Au

∞.

Thus Au
∞-2-notions are the same as Au

∞-notions. This holds not only for categories
and functors, but also for strict Au

∞-2-transformations λ : G → F : Au
∞ → Au

∞ defined
in [LM06a, Definition 3.2]. They are collections of unital A∞-functors λA : GA → FA,
A ∈ ObAu

∞, such that the following equation holds:

Au
∞(C,D)

G →Au
∞(GC, GD)

=

Au
∞(FC, FD)

F
↓ (λC⊠1)M

∥
Au
∞(λC;1)

→Au
∞(GC, FD)

(1⊠λD)M = Au
∞(1;λD)

↓
(9.20.1)

Here different expressions give the same arrows due to Lemmata 4.16 and 4.17 as shown in
Examples 8.27.3–4. Thus, an Au

∞-2-transformation is precisely a natural transformation
of Au

∞-functors in the sense of Definition 4.4.

Let λ : G→ F : Au
∞ → Au

∞ be a natural transformation of multifunctors (not necessar-
ily a multinatural transformation!). This is a collection of elements λA ∈ Au

∞(GA;FA),
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or simply of unital A∞-functors λA : GA→ FA. Under condition (4.35.1) in the form

FC,Au
∞(C;D)

1,uF→ FC, FAu
∞(C;D)

F evA
u
∞
→ FD

=

GC,Au
∞(C;D)

λC,1↓
1,uG→GC, GAu

∞(C;D)
G evA

u
∞
→GD

λD↓

this collection is also a strict Au
∞-2-transformation λ : G′ → F ′ : Au

∞ → Au
∞. Proposi-

tion 10.20 gives an example in which the above condition holds true.
As follows from Proposition 4.5 Au

∞-functors Au
∞ → Au

∞ and their natural transfor-
mations form a strict monoidal category, the endomorphisms category in a 2-category.
Another way to describe this category is to say that its objects are strict Au

∞-2-functors
and morphisms are strict Au

∞-2-transformations. Thus we can denote this strict monoidal
category by Au

∞-2. The composition of Au
∞-2-transformations λC : FC → GC and

µC : GC → HC is (λµ)C =
(
FC

λC→GC
µC→HC

)
. The monoidal product of objects of

Au
∞-2 is given by the composition of Au

∞-2-functors

F ·G = G ◦ F =
(
Au
∞(C,D)

F→Au
∞(FC, FD)

G→Au
∞(GFC, GFD)

)
.

The monoidal products of an object H with a morphism λ : F → G are given by the
following formulas:

H · λ : H · F → H ·G, (H · λ)C = λHC : FHC→ GHC,

λ ·H : F ·H → G ·H, (λ ·H)C = H(λC) : HFC→ HGC.

Algebras in the monoidal category Au
∞-2 are called Au

∞-2-monads.
One way to obtain Au

∞-2-monads is described in Section 4.35. Assume that (F,mF , uF )
is a monad in the ordinary category Au

∞, where F is a multifunctor and uF : Id → F is
multinatural. Suppose that for all unital A∞-categories C and D the exterior of the
following diagram commutes:

F 2C,Au
∞(C;D)

1,uF→ F 2C, FAu
∞(C;D)

1,FuF→ F 2C, F 2Au
∞(C;D)

F 2 evA
u
∞
→ F 2D

FC,Au
∞(C;D)

mF ,1↓
1,uF→ FC, FAu

∞(C;D)

mF ,1↓

....

F evA
u
∞

→ FD

mF↓

These assumptions imply that (F ′,mF , uF ) is an A
u
∞-2-monad. The pentagon containing

the dotted arrow is not required to commute, however, it does commute in our main
example of the shift multifunctor F = S = −[ ], see Section 10.30.
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9.21 2-category structure of Au
∞. View the multifunctor H0 : Au

∞ → k̂-Cat, in-
troduced in Section 9.11, as a change of multicategory base. It turns the Au

∞-cate-
gory Au

∞ into a k-Cat-category Au
∞, that is, a 2-category, whose 2-morphism sets are

k-modules, and vertical and horizontal compositions of 2-morphisms are (poly)linear.
Namely, objects of Au

∞ are unital A∞-categories, 1-morphisms are unital A∞-functors,
2-morphisms rs−1 are equivalence classes of natural A∞-transformations r. An A∞-trans-
formation r : f → g : A → B, r ∈ A∞(A,B)(f, g)[1] is natural, if deg r = −1
and rB1 = 0. Natural A∞-transformations p, r : f → g : A → B are equivalent
(p ≡ r) if they are homologous, that is, differ by a B1-boundary. If A∞-transforma-

tions f
r→ g

p→ h : A→ B are natural, the vertical composition of 2-morphisms rs−1

and ps−1 is represented by (r⊗ p)B2s
−1. Unit transformations iB : id→ id : B→ B (unit

elements in sA∞(B,B)(id, id)) provide for any unital A∞-functor f : A→ B the natural
A∞-transformations f iB ≡ iAf : f → f : A → B, representing the identity 2-morphism
1f , cf. [Lyu03, Sections 7, 8].

The following proposition generalizes theorem 8.8 of [Lyu03], see also [Fuk02, Theo-
rem 8.6]. It means that a ‘partial’ quasi-inverse to an A∞-equivalence defined on a full
A∞-subcategory can be extended to a quasi-inverse on the whole A∞-category.

9.22 Proposition. Let C, B be unital A∞-categories, let ι : D ⊂ →B be embedding
of a full A∞-subcategory, let ϕ : C → B be an A∞-equivalence, let w : D → C be an
A∞-functor, and let q : ι→ wϕ : D→ B be an invertible natural A∞-transformation. Let
h : ObB → ObC be a mapping such that Xιh = Xw for all X ∈ ObD. Assume that
for each object X of B a cycle Xr0 ∈ B(X,Xhϕ)[1]−1 is given such that the morphism
[Xr0s

−1] : X → Xhϕ of H0(B) is invertible, and Xιr0 = Xq0 whenever X ∈ ObD.

Then there is an A∞-equivalence ψ : B → C such that Obψ = h and ψ
∣∣
D
= ιψ = w,

there is an invertible natural A∞-transformation r : idB → ψϕ : B→ B such that its 0-th
component consists of the given elements Xr0 and such that r

∣∣
D
= ιr = q. In particular,

ψ is quasi-inverse to ϕ.

In the case of empty subcategory D = ∅ ⊂ B the A∞-functor w and the A∞-trans-
formation q do not appear. Proof of the above proposition follows the proof of [Lyu03,
Theorem 8.8] very closely. We give full details for the sake of completeness.

Proof. We have to satisfy the equations

ιψ = w, ψb = bψ, ιr = q, rb+ br = 0.

We already know the map Obψ and the component r0. Let us construct the remaining
components of ψ and r by induction. Given a positive integer n, assume that we have
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already found components ψm, rm of the sought ψ, r for m < n, such that the equations

ψm = wm : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0h,Xmh),∀Xi ∈ ObD, (9.22.1)

(ψb)m + (bψ)m = 0 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sC(X0h,Xmh), (9.22.2)

rm = qm : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sB(X0, Xmhϕ),∀Xi ∈ ObD, (9.22.3)

(rb+ br)m = 0 : sB(X0, X1)⊗ · · · ⊗ sB(Xm−1, Xm)→ sB(X0, Xmhϕ) (9.22.4)

are satisfied for all m < n. Introduce a coalgebra homomorphism ψ̃ : TsB → TsC
of degree 0 by its components (ψ1, . . . , ψn−1, 0, 0, . . . ) and an (idB, ψ̃ϕ)-coderivation r̃ :
TsB → TsB of degree −1 by its components (r0, r1, . . . , rn−1, 0, 0, . . . ). Define a (ψ̃, ψ̃)-
coderivation λ = ψ̃b− bψ̃ of degree 1 and a map ν = −r̃b− br̃+ (r̃⊗ λϕ)θ : TsB→ TsB
of degree 0. The commutator r̃b+ br̃ has the following property:

(r̃b+ br̃)∆0 = ∆0

[
1⊗ (r̃b+ br̃) + (r̃b+ br̃)⊗ ψ̃ϕ+ r̃ ⊗ λϕ

]
.

As follows from (8.25.3) (see also [Lyu03, Proposition 3.1]) the map (r̃⊗λϕ)θ has a similar
property

(r̃ ⊗ λϕ)θ∆0 = ∆0

[
1⊗ (r̃ ⊗ λϕ)θ + (r̃ ⊗ λϕ)θ ⊗ ψ̃ϕ+ r̃ ⊗ λϕ

]
.

Taking the difference we find that ν is an (idB, ψ̃ϕ)-coderivation. Equations (9.22.2),
(9.22.4) imply that λm = 0, νm = 0 for m < n (the image of (r̃ ⊗ λϕ)θ is contained in
T⩾2sB).

The identity λb+ bλ = 0 implies that

λnd
def
= λnb1 +

∑
α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)λn = 0. (9.22.5)

The identity
νb− bν = (r̃ ⊗ λϕ)θb− b(r̃ ⊗ λϕ)θ

implies that

νnd
def
= νnb1 −

∑
α+1+β=n

(1⊗α ⊗ b1 ⊗ 1⊗β)νn = −(r0 ⊗ λnϕ1)b2 = −λnϕ1(r0 ⊗ 1)b2. (9.22.6)

Consider a sequence ξ = (X0, X1, . . . , Xn−1, Xn) of objects of B. If all of them are
contained in ObD, we define ψm and rm for this sequence of objects by (9.22.1) and
(9.22.3) respectively. Since w is an A∞-functor, equation (9.22.2) for ξ follows. Since q is
a natural A∞-transformation, equation (9.22.4) for ξ follows.

Suppose that some object Xi from the sequence ξ is not contained in ObD. Consider
the complex of k-modules N = sB(X0, X1)⊗k · · ·⊗k sB(Xn−1, Xn), and introduce a chain
map

u = Ck(N, ϕ1(r0 ⊗ 1)b2) : Ck(N, sC(X0h,Xnh))→ Ck(N, sB(X0, Xnhϕ)).
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The differential d in the source and target of this map is given by formulas generalizing
(9.22.5) and (9.22.6) in an obvious way. Since the K-functor kϕ is full and faithful and
the morphisms [Xr0s

−1] are invertible, the chain maps ϕ1 and (r0 ⊗ 1)b2 are homotopy
invertible (see [Lyu03, Lemma 7.14] for details). Hence, the map u is homotopy invertible
as well. Therefore, the complex Cone(u) is contractible (e.g. by [Lyu03, Lemma B.1]).
Equations (9.22.5) and (9.22.6) in the form −λnd = 0, νnd+ λnu = 0 imply that

(λn, νn) ∈ C1
k(N, sC(X0h,Xnh))⊕ C0

k(N, sB(X0, Xnhϕ)) = Cone0(u)

is a cycle. Hence, it is a boundary of some element

(ψn, rn) ∈ C0
k(N, sC(X0h,Xnh))⊕ C−1k (N, sB(X0, Xnhϕ)) = Cone−1(u),

that is, −ψnd = λn and rnd + ψnϕ1(r0 ⊗ 1)b2 = νn. In other words, equations (9.22.2),
(9.22.4) are satisfied for m = n, and we prove the existence of ψ and r by induction.

Since the elements [Xr0s
−1] are invertible, the constructed natural A∞-transformation

r is invertible. Therefore, the constructed A∞-functor ψ is isomorphic to some quasi-
inverse of ϕ. Hence, ψ is unital and quasi-inverse to ϕ itself.

9.23 Remark. Due to A∞-version of Yoneda Lemma cited in Corollary 1.4 any U -small
unital A∞-category C is A∞-equivalent to a U -small differential graded categoryD. More-
over, one can assume that ObD = ObC. Then there exist A∞-equivalences ϕ : C → D,
ψ : D→ C, quasi-inverse to each other, such that Obϕ = Obψ = idObC.

9.24 Unital envelopes of A∞-categories. Given an A∞-category A, we associate
a strictly unital A∞-category Asu with it. It has the same set of objects and for any pair
of objects X, Y ∈ ObA the graded k-module sAsu(X, Y ) is given by

sAsu(X, Y ) =

{
sA(X, Y ), X ̸= Y,

sA(X,X)⊕ kXiA
su

0 , X = Y,

where Xi
Asu

0 is a new generator of degree−1. The element Xi
Asu

0 is a strict unit by definition,
and the canonical embedding eA = usu : A ↪→ Asu is a strict A∞-functor. We call the
A∞-category Asu the strictly unital envelope of A. Our goal is to prove that it is also a
unital envelope of A, where the unitality is understood in a weak sense.

9.25 Lemma. Let (Ai)i∈I be A∞-categories, and let B be a strictly unital A∞-category.
Then the restriction map Asu

∞((A
su
i )i∈I ;B)→ A∞((Ai)i∈I ;B), f 7→ f

∣∣
(Ai)I

is a bijection.

Proof. Given f ∈ A∞((Ai)i∈I ;B), denote by g the corresponding strictly unital extension
of f , which is a morphism of Qsu((Asu

i )i∈I ;B) ⊂ Q((Asu
i )i∈I ;B). This subset consists of

morphisms f in Q, whose components vanish if any of its entries is iAi0 , except iAi0 fei = iB0 .
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Let us prove that g is an A∞-functor. Let its arguments be indexed by I = m. Restriction
of equation g̃b =

∑m
i=1(1

⊠(i−1) ⊠ b̃⊠ 1⊠(n−i))g to ⊠i∈IT nisAi gives:

signed permutation
& insertion of units

×
∑

l1+···+lk=n∈(Z⩾0)m

(gl1 ⊗ · · · ⊗ glk)bk

=

1⩽i⩽m∑
ai+ti+ci=ni

(1⊠(i−1) ⊠ (1⊗ai ⊗ bti ⊗ 1⊗ci)⊠ 1⊠(m−i)) · gn1,...,ni−1,ai+1+ci,ni+1,...,nm. (9.25.1)

Suppose first that |n| =
∑

i∈I ni > 2 and iAi0 , i
Aj
0 enter the arguments for some i <

j. We claim that in this case summands of both sums vanish. In the left hand side

summands might not vanish only if i
Aj
0 resp. i

Aj
0 are arguments of some gei resp. gej .

Since |n| > 2, it follows that k ⩾ 3, thus the corresponding summand vanishes due
to iB0 being a strict unit. In the right hand side at least one i0 is an argument of gn′,
n′ = (n1, . . . , ni−1, ai + 1 + ci, ni+1, . . . , nm) with |n′| > 1. The corresponding summand
vanishes by definition of g.

Suppose now that |n| = 2 and iAi0 , i
Aj
0 enter the arguments for some i < j. The right

hand vanishes by the same argument as above. In the left hand side we have only two
non-vanishing summands:

(iAi0 ⊠ i
Aj
0 )(gei ⊗ gej)b2 + (iAi0 ⊠ i

Aj
0 )(12)∼(gej ⊗ gei)b2

= (iAi0 gei ⊗ i
Aj
0 gej)b2 − (i

Aj
0 gej ⊗ iAi0 gei)b2

= (iB0 ⊗ iB0 )b2 − (iB0 ⊗ iB0 )b2 = 0,

where (12)∼ means the signed permutation. Thus, they cancel each other.

Suppose that iAi0 enters the arguments for a single i ∈ I. Composing (9.25.1) with a
k-linear map

1⊠(i−1) ⊠ (1⊗ai ⊗ iAi0 ⊗ 1⊗ci)⊠ 1⊠(m−i) : ⊠i∈ITsAsu
i → ⊠i∈ITsAsu

i

we get the following equation:

χ(ai = 0)(iAi0 gei ⊗ gn−ei)b2 + χ(ci = 0)(gn−ei ⊗ iAi0 gei)b2 = χ(ai > 0)gn−ei − χ(ci > 0)gn−ei.

All the other summands vanish by definition of g or due to iB0 being a strict unit. The
above equation transforms into the identity[

−χ(ai = 0)− χ(ai > 0) + χ(ci = 0) + χ(ci > 0)
]
gn−ei = 0.

This proves the lemma.
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Now we extend the map C 7→ Csu to a multifunctor −su : A∞ → Asu
∞. On morphisms it

is given by the map

A∞((Ai)i∈I ;B)
A∞(1;e)→ A∞((Ai)i∈I ;B

su)
∼→ Asu

∞((A
su
i )i∈I ;B

su), f 7→ f su,

where the isomorphism is inverse to that of Lemma 9.25. In other terms, f su is the only
strictly unital A∞-functor which makes commutative the following diagram in A∞:

(Ai)i∈I
f →B

(Asu
i )i∈I

(e)I↓
f su →Bsu

e
↓

(9.25.2)

Notice that (idA)
su = idAsu. The map −su agrees with multiplication in multicategories.

Indeed, for A∞-functors fj : (Ai)i∈ϕ−1j → Bj, j ∈ J , g : (Bj)j∈J → C, ϕ : I → J , we have
a commutative diagram in A∞

(Ai)i∈I
(fj)j∈J→ (Bj)j∈J

g → C

(Asu
i )i∈I

(e)I↓
(f suj )j∈J→ (Bsu

j )j∈J

(e)J↓
gsu → Csu.

e
↓

Uniqueness implies that
[(fj)j∈J · g]su = (f suj )j∈J · gsu.

Therefore, −su : A∞ → Asu
∞ is a multifunctor. The associated closing transformation

su : A∞((Ai)i∈I ;B)su → Asu
∞((A

su
i )i∈I ;B

su)

satisfies the equation

(evA∞)su =
[
(Asu

i )i∈I ,A∞((Ai)i∈I ;B)su
(1)I ,su→ (Asu

i )i∈I ,A
su
∞((A

su
i )i∈I ;B

su)
evA

su
∞
→Bsu

]
.

Corollary 4.20 implies that

Ob su = −su : A∞((Ai)i∈I ;B)→ Asu
∞((A

su
i )i∈I ;B

su).

Components of su are found from the equation

[(⊠i∈I1⊗ni)⊠ sum] ev
Asu
∞

n,1 = [(evA∞)su]n,m.

It implies that sum = 0 for m > 1, thus su is a strict A∞-functor. The first component
su1 has to map f i

A∞((Ai)i∈I ;B)su to f suiB
su

0 . Its restriction

su1 : sA∞((Ai)i∈I ;B)(f, g)→ sAsu
∞((A

su
i )i∈I ;B

su)(f su, gsu)
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takes r ∈ sA∞((Ai)i∈I ;B)(f, g) to the only rsu ∈ sAsu
∞((A

su
i )i∈I ;B

su)(f su, gsu) such that

rsu
∣∣
(Ai)i∈I

= r. In particular, a given A∞-transformation r : f → g : A → B goes to the

(f su, gsu)-coderivation rsu : TsAsu → TsBsu. Its components are given by

rsun |(sA)⊗n = rneB1 : (sA)⊗n → sBsu, n ⩾ 0,

(1⊗a ⊗ iA
su

0 ⊗ 1⊗c)rsun = 0 : (sAsu)⊗a+c → sBsu, n = a+ 1 + c ⩾ 1.

9.26 Remark. It follows from the above formulas that

reB = eAr
su : feB = eAf

su → geB = eAg
su : A→ Bsu.

The composition A∞
−su

→ Asu
∞

⊂ → A∞ is again denoted −su by abuse of notation.
Diagram (9.25.2) implies that usu = e : Id → −su : A∞ → A∞, e : A ⊂ →Asu is a
multinatural transformation. Thus, (−su, usu) : A∞ → A∞ is an augmented multifunctor.

9.27 Corollary. The multifunctor −su gives rise to an A∞-2-functor −su′ : A∞ → A∞,
that is, an A∞-functor

−su′ =
[
A∞(A;B) ⊂

e→ A∞(A;B)su
su→ A∞(A

su;Bsu)
]

by Corollary 4.35, see also Section 9.20. It is denoted also −su : A∞ → A∞ by abuse of
notation.

9.28 Corollary. For arbitrary A∞-categories A, B, C the following diagram commutes:

TsA∞(A,B)⊠ TsA∞(B,C)
M→ TsA∞(A,C)

=

TsAu
∞(A

su,Bsu)⊠ TsAu
∞(B

su,Csu)

−su⊠−su

↓
M→ TsAu

∞(A
su,Csu)

−su

↓

9.29 Remark. The A∞-2-functor −su : Au
∞ → Au

∞ is not an Au
∞-2-functor. Indeed, for

unital A∞-categories A, B the composite A∞-functor

Au
∞(A,B) ⊂ → A∞(A;B) ⊂

e→ A∞(A;B)su
su→ Asu

∞(A
su;Bsu) ⊂ →Au

∞(A
su,Bsu)

is not unital, in general, because the cycles iB0 and iB
su

0 are not homologous in sBsu.

Suppose C is an A∞-category unital in the sense of Section 9.10. Then it is also unital
in the sense of Kontsevich and Soibelman [KS09, Definition 4.2.3] by [LM06b]. That is,
there is an A∞-functor U = UC

su : C
su → C such that eCU = U |C = idC. By Proposition 1.13

the A∞-functor U is unital. Let us introduce the following A∞-functors:

Φ = A∞(usu,C) =
[
Au
∞(A

su,C)
(eA⊠1)M→A∞(A,C)

]
,

Ψ = Fsu =
[
A∞(A,C)

−su

→Au
∞(A

su,Csu)
(1⊠U)M

∥
Au∞(1,U)

→Au
∞(A

su,C)
]
. (9.29.1)
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Note that the A∞-functor Φ is strict. For an arbitrary A∞-functor g : A → C we have
gΨΦ = eAg

suU = geCU = g by (9.25.2). Similarly, for an arbitrary A∞-transformation
r : g → h : A → C we get rΨ1Φ1 = eAr

suU = reCU = r by Remark 9.26. Therefore,
ΨΦ = id : A∞(A,C)→ A∞(A,C).

Let us compute ΦΨ. We have:

ΦΨ = (eA ⊠ 1)M −su (1⊠ U)M = −su(esuA ⊠ 1)M(1⊠ U)M

= −su(1⊠ U)M(esuA ⊠ 1)M : Au
∞(A

su,C)→ Au
∞(A

su,C)

by Corollary 9.28 and due to associativity of M . Note that

−su(1⊠ U)M(eAsu ⊠ 1)M = id : Au
∞(A

su,C)→ Au
∞(A

su,C).

The verification is similar to that we did above for ΨΦ.
Let us introduce an A∞-transformation r : eAsu → esuA : Asu → Asu su by its components:

Xr0 = Xi
Asu

0 ∈ sAsu su(X,X), rn = 0 if n ⩾ 1.

9.30 Lemma. The A∞-transformation r : eAsu → esuA : Asu → Asu su is natural.

Proof. The n-th component of the equation rB1 = 0 reads as follows:∑
a+c=n

((eAsu)⊗a1 ⊗ iA
su

0 ⊗ (esuA )
⊗c
1 )bA

su su

n+1 = 0 : (sAsu)⊗n → sAsu su.

This equation holds obviously true if n ̸= 1. Indeed, either in the product · · · ⊗ iA
su

0 ⊗ . . .
some iA

su su

0 occurs, then bA
su su

n+1 vanishes by definition, or · · ·⊗ iA
su

0 ⊗· · · ∈ (sAsu)⊗n+1. Since
bA

su su

n+1 |(sA)⊗n+1 = bA
su

n+1, it follows that (· · · ⊗ iA
su

0 ⊗ . . . )bA
su

n+1 = 0. In the case n = 1 we have:

((eAsu)1 ⊗ iA
su

0 )bA
su su

2 + (iA
su

0 ⊗ (esuA )1)b
Asu su

2 = 0 : sAsu → sAsu su.

Restricting the left hand side of this equation to sA we get

(1⊗ iA
su

0 )bA
su su

2 + (iA
su

0 ⊗ 1)bA
su su

2 = (1⊗ iA
su

0 )bA
su

2 + (iA
su

0 ⊗ 1)bA
su

2 = 0 : sA→ sAsu su

by definition of bA
su

. Finally,

iA
su

0

[
((eAsu)1 ⊗ iA

su

0 )bA
su su

2 + (iA
su

0 ⊗ (esuA )1)b
Asu su

2

]
= (iA

su

0 ⊗ iA
su

0 )bA
su su

2 − (iA
su

0 ⊗ iA
su su

0 )bA
su su

2 = (iA
su

0 ⊗ iA
su

0 )bA
su

2 − iA
su

0 = 0.

The lemma is proven.

Notice that (r ⊠ 1)M is an ((eAsu ⊠ 1)M, (esuA ⊠ 1)M)-coderivation, since M is an
augmented coalgebra homomorphism. The identity (1⊠B+B⊠1)M =MB implies that
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(r⊠1)M is a natural A∞-transformation. Composing it with the A∞-functor −su(1⊠U)M
we get a natural A∞-transformation

α = −su(1⊠ U)M(r ⊠ 1)M : id = −su(1⊠ U)M(eAsu ⊠ 1)M

→ −su (1⊠ U)M(esuA ⊠ 1)M = ΦΨ : Au
∞(A

su,C)→ Au
∞(A

su,C).

We claim that α is invertible. By [Lyu03, Proposition 7.15] it suffices to show that the
0-th component of α is invertible. For an arbitrary unital A∞-functor f : Asu → C we
have

fα0 = rf suU : eAsuf suU = f → esuAf
suU : Asu → C.

It is a natural A∞-transformation whose 0-th component equals Xi
Asu

0 f su1 U1 = Xi
Asu

0 f1.
Since f is unital, it follows that Xi

Asu

0 f1 − Xf i
C
0 ∈ Im b1, in particular Xi

Asu

0 f1 is invert-
ible. By [Lyu03, Proposition 7.15] the A∞-transformation fα0 is invertible for any unital
A∞-functor f : Asu → C. By the same proposition α is invertible. Note that r itself is
not invertible.

It follows from the above considerations that Φ and Ψ are quasi-inverse A∞-equiva-
lences. Note that this implies that both are unital (see [Lyu03, Corollary 8.9]). We have
proven

9.31 Theorem. For an arbitrary unital A∞-category C the restriction strict A∞-functor
A∞(usu,C) = (usu ⊠ 1)M : Au

∞(A
su,C) → A∞(A,C) is an A∞-equivalence with a one-

sided inverse Fsu = Ψ (which is also an A∞-equivalence), namely, Fsu · A∞(usu,C) = id.
Consequently, the pair (Asu, usu : A ↪→ Asu) unitally represents the Au

∞-2-functor A
u
∞ →

Au
∞, C 7→ A∞(A,C) in the sense of [LM06a, Section 3.5] and [LM08c, Section 1.5].

9.32 Free A∞-categories and free dg-categories. The free A∞-category FQ is
associated with a differential graded quiver Q in [LM06a], see also Section 1.20. On
the other hand, the quiver Q gives rise to a non-unital free differential graded category
generated by Q, the differential graded category of paths in Q. Its underlying differential
graded quiver is the restricted tensor quiver T⩾1Q =

⊕∞
n=1 T

nQ, where T nQ is the n-th
tensor power of Q in the monoidal category of differential graded quivers with the fixed
set of objects ObQ. The embedding Q ↪→ T⩾1Q is a chain quiver map, therefore by
[LM06a, Corollary 2.4] it extends to a strict A∞-functor g : FQ → T⩾1Q. Note that by
construction Ob g = idObQ.

9.33 Proposition. The first component sg1s
−1 : FQ(X, Y )→ T⩾1Q(X, Y ) identifies with

the map

FQ(X, Y ) ∼=
∞⊕
n=1

T nQ(X, Y )⊗ A∞(n)
∑

1⊗ε−−−→
∞⊕
n=1

T nQ(X, Y )⊗ Ass(n) ∼= T⩾1Q(X, Y ).

In particular, it is homotopy invertible for each pair of objects X, Y ∈ ObQ.
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Proof. In Section 1.20 we have constructed an invertible strict A∞-functor f = în1 : FQ→
F̃Q. Let us now check that the morphisms g1 : sFQ→ sT⩾1Q, f1 : sFQ→ sF̃Q, and

h =
∑

1⊗ ε : F̃Q =
⊕
n⩾1

(sQ)⊗n ⊗ A∞(n)→
⊕
n⩾1

(sQ)⊗n ⊗ Ass(n) = T⩾1Q

satisfy the relation g1 = f1 · s−1hs. Indeed, g1|sFtQ is given by the composite

[
sFtQ = (sQ)⊗n[−|t|] s|t|−→ (sQ)⊗n

in⊗n1−−→ (sT⩾1Q)⊗n
bT

⩾1Q
t−−−→ sT⩾1Q

]
.

Therefore, it suffices to check the commutativity of the diagram

(sQ)⊗n
in⊗n1→ (sT⩾1Q)⊗n

bT
⩾1Q

t → sT⩾1Q

(sF̃Q)⊗n

in⊗n1 ↓
bF̃Q
t → sF̃Q

s−1hs

↑

It is equivalent to the commutativity of the exterior of the diagram

Q⊗n
in⊗n1 → (T⩾1Q)⊗n

(−)σmT⩾1Q
t → T⩾1Q

(sQ)⊗n
in⊗n1→

s⊗n

→
(sT⩾1Q)⊗n

s⊗n↓
bT

⩾1Q
t → sT⩾1Q

s−1 →

(sF̃Q)⊗n

in⊗n1↓
bF̃Q
t → sF̃Q

s−1hs

↑

(F̃Q)⊗n

in⊗n1

↓
(−)σmF̃Q

t →

s⊗n →

F̃Q

h

↑

s−1

→

Dropping the common sign (−)σ, we end up with the following equation to be checked:

[
Q⊗n

in⊗n1−−→ (T⩾1Q)⊗n
mT⩾1Q
t−−−−→ T⩾1Q

]
=
[
Q⊗n

in⊗n1−−→ (F̃Q)⊗n
mF̃Q
t−−→ F̃Q

h−→ T⩾1Q
]
.

Note that the composite of the first and the second arrows in the right hand side coincides
with (1.20.2). Clearly, both sides vanish if t has an internal vertex adjacent to more than
3 edges. If each internal vertex of t is adjacent to exactly 3 vertices, then both sides
coincide with the embedding of Q⊗n = T nQ into T⩾1Q. Thus g1 = f1 · shs−1. Since the
chain map h is homotopy invertible and f1 is an isomorphism, it follows that the chain
map g1 is homotopy invertible as well.
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9.34 Corollary. The A∞-functor g
su : (FQ)su → (T⩾1Q)su = TQ is an A∞-equivalence.

Proof. Clearly, Ob gsu = idObQ. Furthermore, the first component gsu1 is obviously homo-
topy invertible since so is g1. It follows that the A∞-functor g

su is an A∞-equivalence by
[Lyu03, Theorem 8.8].

Clearly, (T⩾1Q)su is isomorphic to the genuine (unital) free differential graded category
TQ generated by the differential graded quiver Q. The following corollary implies that
TQ represents the Au

∞-2-functor C 7→ A1(Q,C).

9.35 Corollary. The restrictionA∞-functor restr : A
u
∞(TQ,C)→ A1(Q,C) is anA∞-equiv-

alence, for each unital A∞-category C.

Proof. The A∞-functor restr : A
u
∞(TQ,C)→ A1(Q,C) is equal to the composite

Au
∞(TQ,C)

Au∞(gsu,1)→Au
∞((FQ)

su,C)
(usu⊠1)M→A∞(FQ,C)

restr→A1(Q,C).

The first A∞-functor is an A∞-equivalence since g
su is an A∞-equivalence by Corollary 9.34

and because Au
∞(−,C) preserves A∞-equivalences, as an arbitrary Au

∞-2-functor does.
The second A∞-functor is an A∞-equivalence by Theorem 9.31, and the last A∞-functor
is an A∞-equivalence by [LM06a, Theorem 2.12]. Hence, the entire composite is an
A∞-equivalence.



Chapter 10

A∞-categories closed under shifts

In this chapter we construct the monad of shifts first on quivers, then for A∞-categories.
The functor of shifts takes a graded quiver A to the graded quiver A[ ] obtained by adding
formal shifts of objects. This functor exists in several versions: a lax Monoidal functor
−[ ] : Qp → Qp, a lax Monoidal functor −[ ] : Qu → Qu, a multifunctor −[ ] : Q → Q,
and a multifunctor −[ ] : A∞ → A∞. The functor of shifts gives rise to a monad for
which the unit u[ ] : Id→ −[ ] is a Monoidal (resp. multinatural) transformation, and the

multiplication m[ ] : −[ ][ ] → −[ ] is a natural transformation. The results for −[ ] : Q → Q

are obtained in two different ways. On the first way the properties of −[ ] : Qu → Qu are
lifted to Q via commutation of the monad −[ ] and the comonad T⩾1. The second approach
uses the action of the category of graded categories on the Kleisli multicategory of graded
quivers, described in Appendix C. We define an algebra Z in the category of differential
graded categories, i.e., a strictly monoidal differential graded category. Tensoring with Z

(or equivalently, the action of Z) is precisely the functor of shifts.

The monad of shifts constructed for graded quivers extends to A∞-categories. This
can be achieved directly, but we prefer the second way: the above mentioned action is
extended in Appendix C to an action of the category of differential graded categories on
the multicategory of A∞-categories. The action of Z is the monad of shifts. It assigns to an
A∞-category A a certain A∞-category A[ ] with formally added shifted objects. The unit
of the monad u[ ] : A→ A[ ] is a full embedding. A∞-categories for which this embedding

is an A∞-equivalence are closed under shifts. For instance, A[ ] is always closed under
shifts. Thus, the monad −[ ] is a kind of completion. We prove that closedness under
shifts is preserved under taking quotients and A∞-categories of A∞-functors.

10.1 An algebra in the category of differential graded categories. The cat-
egory of differential graded categories dg -Cat equipped with the tensor product ⊠ is a
symmetric monoidal category. Let us study an algebra in this category, which will be
used to define the functor of shifts. Let Z be a differential graded quiver with ObZ = Z,
Z(m,n) = k[n−m] and zero differential. Consider an arbitrary k-linear graded category
structure of Z given by isomorphisms

µ′ = ϕ′(l,m, n) : Z(l,m)⊗k Z(m,n) = k[m− l]⊗ k[n−m]→ k[n− l] = Z(l, n),

1sm−l ⊗ 1sn−m 7→ ϕ′(l,m, n)sn−l.

285
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It is specified by a function ϕ′ : Z3 → k× with values in the multiplicative group k×. The
associativity of composition

(1⊗ µ′)µ′ = (µ′ ⊗ 1)µ′ : Z(k, l)⊗ Z(l,m)⊗ Z(m,n)→ Z(k, n)

implies that ϕ′ is a cycle:

ϕ′(l,m, n) · ϕ′(k, l, n) = ϕ′(k, l,m) · ϕ′(k,m, n).

An arbitrary such cycle ϕ′ is a boundary

ϕ′(l,m, n) = ξ(l,m) · ξ(m,n) · ξ(l, n)−1 (10.1.1)

of a function ξ : Z2 → k×, namely, ξ(l,m) = ϕ′(0, l,m). The graded quiver automorphism
ξ : Z → Z, n 7→ n, ξ(m,n) : Z(m,n) → Z(m,n) equips Z with another (isomorphic)
category structure (Z, µ) with ϕ(l,m, n) = 1, so that ξ : (Z, µ′) → (Z, µ) is a category
isomorphism. In the following we shall consider only composition µ in Z specified by the
function ϕ(l,m, n) = 1. The elements 1 ∈ k = Z(n, n) are identity morphisms of Z.

We equip the object Z of (dg -Cat,⊠) with an algebra structure, given by multiplica-
tion – differential graded functor

⊗ψ : Z⊠ Z→ Z, m× n 7→ m+ n,

⊗ψ = ψ(n,m, k, l) : (Z⊠ Z)(n×m, k × l) = Z(n, k)⊗ Z(m, l)→ Z(n+m, k + l),

1sk−n ⊗ 1sl−m 7→ ψ(n,m, k, l)sk+l−n−m.

We assume that the function ψ : Z4 → k takes values in k×. Being a functor, ⊗ψ has to
satisfy the equation:

Z(a, c)⊗ Z(b, d)⊗ Z(c, e)⊗ Z(d, f)
(1⊗c⊗1)(µ⊗µ)→Z(a, e)⊗ Z(b, f)

=

(Z⊠ Z)(a× b, c× d)⊗ (Z⊠ Z)(c× d, e× f)

wwwww
µ→ (Z⊠ Z)(a× b, e× f)

wwwww
=

Z(a+ b, c+ d)⊗ Z(c+ d, e+ f)

⊗ψ⊗⊗ψ↓
µ →Z(a+ b, e+ f).

⊗ψ↓

This equation in the form

ψ(a, b, c, d) · ψ(c, d, e, f) = (−1)(d−b)(e−c)ψ(a, b, e, f)

specifies the boundary of the 2-cochain ψ : Z4 → k×. Generic solution to this equation is

ψ(a, b, c, d) = (−1)c(b−d)χ(a, b) · χ(c, d)−1 (10.1.2)
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for some function χ : Z2 → k× (take χ(a, b) = ψ(a, b, 0, 0)).
Associativity of the algebra (Z,⊗ψ)

(Z⊠ Z⊠ Z)(a× b× c, d× e× f) 1⊠⊗ψ→ (Z⊠ Z)(a× (b+ c), d× (e+ f))

=

(Z⊠ Z)((a+ b)× c, (d+ e)× f)

⊗ψ⊠1
↓

⊗ψ →Z(a+ b+ c, d+ e+ f)

⊗ψ↓

is expressed by the equation

ψ(a, b, d, e) · ψ(a+ b, c, d+ e, f) = ψ(b, c, e, f) · ψ(a, b+ c, d, e+ f). (10.1.3)

It means that the function ψ : Z2 × Z2 → k×, ψ(a, b, c, d) = ψ(a, c, b, d) is a 2-cocycle on
the group Z2. For a graded category Z with multiplication (10.1.1) related to (Z, µ) via
the category isomorphism ξ : (Z, µ′) → (Z, µ), n 7→ n, ξ(m,n) : Z(m,n) → Z(m,n), we
would get the 2-cocycle

ψ
′
(a, b, c, d) = ξ(a, b) · ξ(c, d) · ψ(a, b, c, d) · ξ(a+ c, b+ d)−1,

cohomologous to ψ. Thus, the algebra structure of Z possesses an invariant – the coho-
mology class [ψ] ∈ H2(Z2,k×).

Plugging expression (10.1.2) into equation (10.1.3), we reduce the latter to

χ(a, b) · χ(a, b+ c)−1 · χ(a+ b, c) · χ(b, c)−1 = χ(d, e) · χ(d, e+ f)−1 · χ(d+ e, f) · χ(e, f)−1.

The common value of the left and right hand sides does not depend on the arguments
a, b, c, d, e, f ∈ Z. Setting d = e = f = 0 we find that this constant equals 1. Thus,
χ : Z2 → k× is a 2-cocycle on the group Z with values in k×. Since Z is a free group, its
cohomology group H2(Z,k×) vanishes. Therefore, the cocycle χ has the form

χ(a, b) = λ(a) · λ(b) · λ(a+ b)−1

for some function λ : Z → k×. The corresponding function ψ : Z4 → k× is given by the
formula

ψλ(a, b, c, d) = (−1)c(b−d)λ(a) · λ(b) · λ(a+ b)−1 · λ(c)−1 · λ(d)−1 · λ(c+ d). (10.1.4)

Denote the multiplication functor ⊗ψλ also by ⊗λ. Define an automorphism of the graded
category Z as λ : Z→ Z, n 7→ n, λ = λ(m)−1 · λ(n) : Z(m,n)→ Z(m,n). We claim that
λ : (Z,⊗1)→ (Z,⊗λ) is an algebra isomorphism, where the first algebra uses

λ1(a) = 1, ψ1(a, b, c, d) = (−1)c(b−d).
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This follows from the computation

(Z⊠ Z)(a× b, c× d) == Z(a, c)⊗ Z(b, d)
⊗1

ψ1(a,b,c,d)
→Z(a+ b, c+ d)

=

(Z⊠ Z)(a× b, c× d)

λ⊠λ
↓

== Z(a, c)⊗ Z(b, d)

λ(c)
λ(a)⊗

λ(d)
λ(b)↓

⊗λ

ψλ(a,b,c,d)
→Z(a+ b, c+ d)

λ(c+d)
λ(a+b) =λ
↓

which is equivalent to equation (10.1.4). The multiplicative cocycle ψ1 ∈ Z2(Z2,k×)
comes via the homomorphism Z/2→ k×, a 7→ (−1)a, from the additive cocycle Z2×Z2 →
Z/2, (a, c, b, d) 7→ c(b− d) (mod 2), which represents the only non-trivial element of the
cohomology group H2(Z2,Z/2) = Z/2 with values in the trivial Z2-module Z/2.

In the following we shall consider only multiplication ⊗Z = ⊗1 in Z specified by the
function ψ1(a, b, c, d) = (−1)c(b−d). Clearly, the algebra (Z,⊗Z) is unital with the unit
ηZ : 1→ Z, ∗ 7→ 0, id : 1(∗, ∗) = k→ Z(0, 0). The same statement holds for an arbitrary
(Z,⊗λ), since ψ = ψλ given by (10.1.4) satisfies ψ(a, 0, c, 0) = 0 = ψ(0, b, 0, d). Note that
the algebra Z is not commutative.

10.2 Remark. Let (C,⊗,1) be a strict monoidal graded k-linear category. We say that
an arrow α : X → Y in C is bi-invertible if it has both inverse morphism α−1 : Y → X
and a tensor inverse α⊗−1 : X⊗−1 → Y ⊗−1, that is, α · α−1 = 1X , α

−1 · α = 1Y , and
X ⊗ X⊗−1 = 1 = X⊗−1 ⊗ X, Y ⊗ Y ⊗−1 = 1 = Y ⊗−1 ⊗ Y , α ⊗ α⊗−1 = 11 = α⊗−1 ⊗ α.
Let y : 1→ Y be a bi-invertible arrow of degree −1. In assumption that all Y ⊗n, n ∈ Z
are distinct, y generates a strict monoidal graded k-linear subcategory J of C with objects
Y ⊗n, n ∈ Z, and with morphisms J(Y ⊗n, Y ⊗k) = kyn,k, where

yn,k =

(
Y ⊗n

(y−1)⊗n→ 1⊗n = 1 = 1⊗k
(−1)(

k
2)y⊗k

∥
((y−1)⊗k)−1

→ Y k

)
, n, k ∈ Z,

has degree n− k. In fact,

yn,m · ym,k = yn,k, yn,n = 1,

yn,k ⊗ ym,l = ψ1(n,m, k, l)yn+m,k+l, ψ1(n,m, k, l) = (−1)k(m−l).

The latter equation is proved as follows:

yn,k ⊗ ym,l = [(y−1)⊗n · (−1)(
k
2)y⊗k]⊗ [(y−1)⊗m · (−1)(

l
2)y⊗l]

= (−1)km+(k2)+(
l
2)[(y−1)⊗n ⊗ (y−1)⊗m] · (y⊗k ⊗ y⊗l)

= (−1)km+(k2)+(
l
2)−(

k+l
2 )(y−1)⊗n+m · (−1)(

k+l
2 )y⊗k+l

= (−1)k(m−l)yn+m,k+l.

There is an isomorphism of categories Z→ J, n 7→ Y ⊗n, Z(n, k) ∋ 1sk−n 7→ yn,k ∈ J(n, k).
It shows that Z is the universal (initial) strict monoidal graded k-linear category freely
generated by a bi-invertible morphism y as above.
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10.3 The functor of shifts. Given a graded quiver A, we produce another one
A[ ] = A⊠Z, obtained by adding formal shifts of objects. Here Z is the differential graded
category of Section 10.1. The set of objects is

ObA[ ] = {X[n] = (X,n) | X ∈ ObA, n ∈ Z} = ObA× Z.

The graded k-module of morphisms is A[ ](X[n], Y [m]) = A(X, Y )⊗k[m−n]. We identify
it with A(X, Y )[m− n] via the isomorphism

A(X, Y )[m− n] sn−m→A(X, Y )
λI .→A(X, Y )⊗ k 1⊗sm−n

→A(X, Y )⊗ k[m− n]
= A(X, Y )⊗ Z(n,m) = A[ ](X[n], Y [m]).

Given a morphism of graded quivers f : A → B, we define another one f [ ] = f ⊠ 1Z :
A[ ] → B[ ]. On objects it acts as Ob f [ ] : X[n] 7→ (Xf)[n]. This defines a functor
−[ ] = −⊠ Z : Q → Q. Commutative diagram

A(X, Y )[m− n] sn−m→A(X, Y )
λI .→A(X, Y )⊗ k 1⊗sm−n

→A(X, Y )⊗ Z(n,m)

B[ ](Xf, Y f)[m− n]

f [m−n]
↓

sn−m→B(Xf, Y f)

f
↓

λI .→B(Xf, Y f)⊗ k

f⊗1
↓

1⊗sm−n

→B(Xf, Y f)⊗ Z(n,m)

f⊗1
↓

describes the action of −[ ] on morphisms in another presentation:

f [m−n] = sn−mfsm−n : A(X, Y )[m− n]→ B(Xf, Y f)[m− n].

Let us make −[ ] into a lax Monoidal functor (−[ ], σI) : (Q,⊠I
u, λ

f
u) → (Q,⊠I

u, λ
f
u).

The functorial morphism of graded quivers

σI : ⊠i∈I
u (A

[ ]
i )→ (⊠i∈I

u Ai)
[ ]

acts on objects via (Xi[ni])i∈I 7→ (Xi)i∈I [
∑

i∈I ni]. Its action on morphisms is defined

below. First of all we describe its plain version (−[ ], σ̃I) : (Q,⊠I , λf),→ (Q,⊠I , λf)

σ̃I =
[
⊠i∈I(Ai ⊠ Z)

σ(12)→ (⊠i∈IAi)⊠ (⊠IZ)
1⊠⊗IZ→ (⊠i∈IAi)⊠ Z

]
.

10.4 Proposition. The pair (−[ ], σ̃I) : Qp = (Q,⊠I , λf) → (Q,⊠I , λf) = Qp is a lax
Monoidal functor.

Proof. Lax Monoidality of (−[ ], σ̃I) expressed by equation (2.17.2) takes the form

[
⊠i∈I(A

[ ]
i )

λf→ ⊠j∈J ⊠i∈f−1j(A
[ ]
i )

⊠j∈J σ̃f
−1j

→ ⊠j∈J (⊠i∈f−1jAi)
[ ] σ̃J→ (⊠j∈J ⊠i∈f−1j Ai)

[ ]
]

=
[
⊠i∈I(A

[ ]
i )

σ̃I→ (⊠i∈IAi)
[ ] (λf )[ ]→ (⊠j∈J ⊠i∈f−1j Ai)

[ ]
]
. (10.4.1)
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This equation coincides with the exterior of the following diagram:

⊠j∈J [(⊠i∈f−1jAi)⊠ (⊠f−1jZ)]

⊠j∈J ⊠i∈f−1j (Ai ⊠ Z)

⊠j∈Jσ(12) →

⊠j∈J [(⊠i∈f−1jAi)⊠ Z]

⊠j∈J(1⊠⊗f
−1j

Z )

→

(⊠j∈J ⊠i∈f−1j Ai)⊠ (⊠j∈J ⊠f−1j Z)

σ(12)

↓

⊠i∈I(Ai ⊠ Z)

λf

↑

(⊠j∈J ⊠i∈f−1j Ai)⊠ (⊠JZ)

σ(12)

↓
1⊠(⊠j∈J⊗f

−1j
Z )

→

(⊠j∈J ⊠i∈f−1j Ai)⊠ (⊠IZ)

1⊠λf

↑

(⊠i∈IAi)⊠ (⊠IZ)

σ(12)

↓
1⊠⊗IZ →

λf⊠1 →

(⊠i∈IAi)⊠ Z
λf⊠1 → (⊠j∈J ⊠i∈f−1j Ai)⊠ Z

1⊠⊗JZ

↓
1⊠⊗IZ

→

The hexagon follows from coherence principle of Remark 2.34. The top right square is
due to naturality of σ(12). The middle right square expresses the fact that (Z,⊗IZ) is
an algebra, cf. (2.25.1). The bottom square commutes for obvious reasons. Therefore,
(−[ ], σ̃I) is a lax Monoidal functor.

Since the algebra Z is not commutative, the lax Monoidal functor (−[ ], σ̃) is not
symmetric.

The unital version of σ̃ is σI : ⊠i∈I
u (C

[ ]
i )→ (⊠i∈I

u Ci)
[ ], defined by

σI =
[
⊠i∈I
u (Ci ⊠ Z) =

⊕
∅̸=S⊂I

⊠i∈IT χ(i∈S)(Ci ⊠ Z)

⊕⊠Iκ
∼
→

⊕
∅ ̸=S⊂I

⊠i∈I(T χ(i∈S)Ci ⊠ T χ(i∈S)Z)

⊕σ(12)
∼
→

⊕
∅̸=S⊂I

(⊠i∈IT χ(i∈S)Ci)⊠ (⊠i∈IT χ(i∈S)Z)

⊕1⊠(⊠IµZ)→
⊕

∅̸=S⊂I

(⊠i∈IT χ(i∈S)Ci)⊠ (⊠IZ)
1⊠⊗IZ→ (⊠i∈I

u Ci)⊠ Z
]
,

where the composition µZ is the identity morphism µZ = idZ : T 1Z → Z, or the unit
µZ = ηZ : T 0Z→ Z.
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10.5 Lemma. The morphisms σI and σ̃I are related by the following embeddings:

⊠i∈I
u (Ci ⊠ Z)

σI → (⊠i∈I
u Ci)⊠ Z

=

⊠i∈IT⩽1(Ci ⊠ Z)

in↓

∩

⊂
⊠Iξ′→⊠i∈I(T⩽1Ci ⊠ Z)

σ̃I→ (⊠i∈IT⩽1Ci)⊠ Z

in⊠1↓

∩

where

ξ′ =
(
T⩽1(C⊠ Z)

κ→ T⩽1C⊠ T⩽1Z
1⊠µZ→ T⩽1C⊠ Z

)
has restrictions ξ′

∣∣
C⊠Z

= id, ξ′
∣∣
T 0(C⊠Z)

=
(
T 0(C⊠Z)

κ
∼
→ T 0C⊠ T 0Z ⊂

1⊠ηZ→ T 0C⊠Z
)
, and

the embedding in is the natural transformation

in =
[
⊠i∈I
u Ci ⊂

in1→ T⩽1 ⊠i∈I
u Ci

(ϑI)−1

∼
→ ⊠i∈I T⩽1Ci

]
.

Proof. This is the exterior of the following diagram:

⊠i∈I
u (Ci ⊠ Z)

(⊠Iκ)σ(12)→
⊕

∅ ̸=S⊂I

(⊠i∈IT χ(i∈S)Ci)⊠ (⊠i∈IT χ(i∈S)Z)
1⊠(µ·⊗IZ)→ (⊠i∈I

u Ci)⊠ Z

⊠i∈IT⩽1(Ci ⊠ Z)

in

↓

∩

(⊠Iκ)σ(12)→
⊕
S⊂I

(⊠i∈IT χ(i∈S)Ci)⊠ (⊠i∈IT χ(i∈S)Z)

in

↓
∩

1⊠(µ·⊗IZ)→ (⊠i∈IT⩽1Ci)⊠ Z

in⊠1

↓

∩

⊠i∈I(T⩽1Ci ⊠ Z)

⊠Iξ′

↓

∩

σ(12) → (⊠i∈IT⩽1Ci)⊠ (⊠i∈IZ)

1⊠(⊠i∈IµZ)

↓
1⊠⊗IZ→ (⊠i∈IT⩽1Ci)⊠ Z

wwwwwww
(10.5.1)

in which all squares commute.

10.6 Lemma. The morphisms σI , σ̃I and ξ′ are related by the following equation for an
arbitrary set I:

⊠i∈IT⩽1(Ci ⊠ Z)
ϑI→ T⩽1 ⊠i∈I

u (Ci ⊠ Z)
T⩽1σI→ T⩽1[(⊠i∈I

u Ci)⊠ Z]

=

⊠i∈I(T⩽1Ci ⊠ Z)

⊠Iξ′↓
σ̃I→ (⊠i∈IT⩽1Ci)⊠ Z

ϑI⊠1→ (T⩽1 ⊠i∈I
u Ci)⊠ Z

ξ′↓ (10.6.1)

Proof. Indeed, on the summand ⊠i∈I
u (Ci ⊠ Z) of the left top corner the equation reduces

to the statement of Lemma 10.5. On the summand T 0 ⊠i∈I
u (Ci ⊠ Z) the above equation



292 10. A∞-categories closed under shifts

expands to

[
T 0 ⊠i∈I (Ci ⊠ Z)

T 0σ̃I→ T 0[(⊠i∈ICi)⊠ Z]
κ→ (T 0 ⊠i∈I Ci)⊠ T 0Z
1⊠ηZ→ (T 0 ⊠i∈I Ci)⊠ Z

κ⊠1→ (⊠i∈IT 0Ci)⊠ Z
]

=
[
T 0 ⊠i∈I (Ci ⊠ Z)

κ→ ⊠i∈I T 0(Ci ⊠ Z)
⊠Iκ→ ⊠i∈I (T 0Ci ⊠ T 0Z)

⊠I(1⊠ηZ)→ ⊠i∈I (T 0Ci ⊠ Z)
σ(12)→ (⊠i∈IT 0Ci)⊠ (⊠IZ)

1⊠⊗IZ→ (⊠i∈IT 0Ci)⊠ Z
]
.

This equation reduces to

T 0 ⊠I Z
T 0⊗IZ → T 0Z

⊠IT 0Z

κ↓
⊠IηZ→⊠IZ

⊗IZ →Z

ηZ↓

which means precisely the following: the tensor product of units 1ni ∈ Z(ni, ni), i ∈ I
is equal to the unit 1n ∈ Z(n, n), n =

∑
i∈I ni. This is certainly so, because ⊗IZ is a

functor.

10.7 Proposition. The pair (−[ ], σI) : Qu = (Q,⊠I
u, λ

f
u) → (Q,⊠I

u, λ
f
u) = Qu is a lax

Monoidal functor.

Proof. To be a lax Monoidal functor (−[ ], σI) has to satisfy the following equation:

[
⊠i∈I
u (C

[ ]
i )

λfu→ ⊠j∈J
u ⊠i∈f−1j

u (C
[ ]
i )

⊠j∈Ju σf
−1j

→ ⊠j∈J
u (⊠i∈f−1j

u Ci)
[ ] σJ→ (⊠j∈J

u ⊠i∈f−1j
u Ci)

[ ]
]

=
[
⊠i∈I
u (C

[ ]
i )

σI→ (⊠i∈I
u Ci)

[ ] (λfu)
[ ]

→ (⊠j∈J
u ⊠i∈f−1j

u Ci)
[ ]
]
. (10.7.1)

Its right hand side is related to the right hand side of (10.4.1) by the following embeddings:

⊠i∈I
u (Ci ⊠ Z)

σI→ (⊠i∈I
u Ci)⊠ Z

λfu⊠1→ (⊠j∈J
u ⊠i∈f−1j

u Ci)⊠ Z

⊠i∈IT⩽1(Ci ⊠ Z)

in
↓

∩

= = (⊠j∈JT⩽1⊠i∈f−1j
u Ci)⊠ Z

in⊠1
↓

∩

⊠i∈I(T⩽1Ci ⊠ Z)

⊠Iξ′

↓

∩

σ̃I→ (⊠i∈IT⩽1Ci)⊠Z

in⊠1

↓

∩

λf⊠1→ (⊠j∈J⊠i∈f−1jT⩽1Ci)⊠ Z

(⊠j∈J(ϑf
−1j)−1)⊠1

↓

(10.7.2)

Indeed, the left pentagon is proven in Lemma 10.5, and the right pentagon follows from
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the commutative diagram

in

⊠i∈I
u Ci ⊂

in1 → T⩽1 ⊠i∈I
u Ci

(ϑI)−1

→⊠i∈IT⩽1Ci

↓
λf→⊠j∈J ⊠i∈f−1j T⩽1Ci

= =

⊠j∈J
u ⊠i∈f−1j

u Ci

λfu↓
⊂
in1→ T⩽1 ⊠j∈J

u ⊠i∈f−1j
u Ci

T⩽1λfu↓
(ϑJ)−1

→⊠j∈JT⩽1 ⊠i∈f−1j
u Ci

⊠j∈Jϑf
−1j

↓

in

↑

(10.7.3)

which is an immediate consequence of definition (6.1.2) of λfu.
The left hand side of (10.7.1) is related to the left hand side of (10.4.1) by the same

embeddings as for right hand sides. Indeed, diagram on the following page is commutative
by Lemma 10.5 and due to equation (10.6.1), which holds for an arbitrary subset K ⊂ I,
in particular, for K = f−1j, j ∈ J .

The bottom rows of diagrams (10.7.2) and (10.3) compose to the same quiver mor-
phism due to equation (10.4.1). Their leftmost and rightmost columns pairwise coincide.
Therefore, their top rows compose to the same quiver morphism. Thus equation (10.7.1)
is proven and (−[ ], σI) : Qu → Qu is a lax Monoidal functor.

10.8 Corollary. ξ′ is a Monoidal transformation

Qu
(−[ ],σ) →Qu

Qp

(T⩽1,ϑ)
↓

(−[ ],σ̃) →

ξ′

⇐==
===

===
===

=

Qp

(T⩽1,ϑ)
↓

Indeed, this is claimed in equation (10.6.1).

10.9 The unit for the monad of shifts. For any graded k-quiver A consider the
morphism of quivers u[ ] : A → A[ ] given by the formulas Obu[ ] : X 7→ X[0], u[ ] =

λI . : A(X, Y ) → A(X, Y ) ⊗ k = A[ ](X[0], Y [0]). One easily verifies that u[ ] determines

a natural transformation u[ ] : Id → −[ ] : Q → Q. Later it will become the unit of the

monad −[ ].

10.10 Proposition. The natural transformation u[ ] is Monoidal in the following two

senses: u[ ] : Id→ (−[ ], σ̃I) : Qu → Qu and u[ ] : Id→ (−[ ], σI) : Qp → Qp.
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⊠
i∈
I

u
(C

i
⊠

Z
)

λ
f u
>
⊠
j
∈
J

u
⊠
i∈
f
−

1
j

u
(C

i
⊠

Z
)

⊠
j
∈
J

u
σ
f
−

1
j

>
⊠
j
∈
J

u
[(
⊠
i∈
f
−

1
j

u
C
i)

⊠
Z
]

σ
J

>
(⊠

j
∈
J

u
⊠
i∈
f
−

1
j

u
C
i)

⊠
Z

=

=
⊠
j
∈
J
T

⩽
1
⊠
i∈
f
−

1
j

u
(C

i
⊠

Z
)

in

↓∩

⊠
j
∈
J
T

⩽
1
σ
f
−

1
j >
⊠
j
∈
J
T
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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⊠
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)
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⊠
f
−

1
j
ξ
′ ↓∩

⊠
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⊠
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⊠
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⊠
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⊠
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∨
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Proof. The statement means the following two equations:

u[ ] =
{
⊠i∈IAi

⊠Iu[ ]→ ⊠i∈I (A
[ ]
i )

σ̃I→ (⊠i∈IAi)
[ ]
}
, (10.10.1)

u[ ] =
{
⊠i∈I
u Ai

⊠Iuu[ ]→ ⊠i∈I
u (A

[ ]
i )

σI→ (⊠i∈I
u Ai)

[ ]
}
. (10.10.2)

Let us prove the first one. On objects the right hand side gives the map

(Xi)i∈I
⊠I(u[ ])→ (Xi[0])i∈I

σ̃I→ (Xi)i∈I [0],

which coincides with the map determined by u[ ] in the left hand side. On morphisms the
right hand side gives the map[
⊗i∈IAi(Xi, Yi)

⊗IλI .→ ⊗i∈I [Ai(Xi, Yi)⊗ Z(0, 0)]
σ(12)→

(⊗i∈IAi(Xi, Yi))⊗ (⊗IZ(0, 0)) 1⊗⊗IZ
1⊗(λ∅→I)−1

→ (⊗i∈IAi(Xi, Yi))⊗ Z(0, 0)
]
= λI . .

Equation follows by coherence principle of Lemma 2.33, since Z(0, 0) = k is the unit
object, and the above equation holds in an arbitrary symmetric strictly monoidal category.
Therefore, the above map coincides with the action of the left hand side of (10.10.1) on
morphisms.

To prove (10.10.2) we consider the following diagram

⊠i∈I
u Ci

⊠Iuu[ ]→⊠i∈I
u (Ci ⊠ Z)

σI → (⊠i∈I
u Ci)⊠ Z

= =

⊠i∈IT⩽1(Ci ⊠ Z)

in↓

∩

⊠i∈IT⩽1Ci

in

↓

∩

⊠Iu[ ]→

⊠IT⩽1u[ ] →

⊠i∈I(T⩽1Ci ⊠ Z)

⊠Iξ′↓

∩

σ̃I→ (⊠i∈IT⩽1Ci)⊠ Z

in⊠1

↓

∩

(10.10.3)

The right pentagon is obtained in Lemma 10.5. The left quadrilateral expresses naturality
of the embedding in. The triangle commutes due to the following equations:[

T 0C
T 0u[ ]→ T 0(C⊠ Z)

κ→ (T 0C)⊠ (T 0Z)
1T0C⊠ηZ→ T 0C⊠ Z

]
= u[ ],[

C
u[ ]→ C⊠ Z

id→ C⊠ Z
]
= u[ ].

The bottom row of diagram (10.10.3) composes to u[ ] due to (10.10.1). Naturality of u[ ]
implies that the exterior of (10.10.3) would commute also if the top row is replaced with
u[ ]. Since the right vertical arrow is an embedding, we conclude that the composition in
the top row is u[ ], that is, equation (10.10.2) holds.
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10.11 The multiplication for the monad of shifts. Let us introduce a natural
transformation m[ ] : −[ ][ ] → −[ ] : Q → Q, which will be the multiplication for the monad

−[ ]. The morphism of graded k-quivers m[ ] : A
[ ][ ] → A[ ] is defined by formula

m[ ] =
[
(A⊠ Z)⊠ Z

(λVI)−1

→A⊠ Z⊠ Z
λIV→A⊠ (Z⊠ Z)

1⊠⊗Z→A⊠ Z
]
,

which will be generalized to (C.5.1) in appendix. On objects it gives Obm[ ] : X[n][m] 7→
X[n+m]. Clearly, this is a natural transformation. It is not Monoidal, since the algebra
Z is not commutative.

10.12 Commutation between the monad of shifts and the tensor comonad.
The composition

ξ̃
def
=
[
T (A⊠ Z)

κ→ TA⊠ TZ
1⊠µZ→ TA⊠ Z

]
will be given an explicit presentation in (10.17.2). Its restriction

ξ
def
=
[
T⩾1(A⊠ Z)

κ→ T⩾1A⊠ T⩾1Z
1⊠µZ→ T⩾1A⊠ Z

]
will become a commutation law between a comonad and a monad. There is an obvious
commutative diagram

T⩾1(A⊠ Z)
κ→ T⩾1A⊠ T⩾1Z

1⊠µZ→ T⩾1A⊠ Z

T (A⊠ Z)

in
↓

∩

κ → TA⊠ TZ

in⊠ in
↓

∩

1⊠µZ→ TA⊠ Z

in⊠1
↓

∩

(10.12.1)

where the upper row composes to ξ and the lower row to ξ̃.

10.13 Proposition. The morphisms

ξ̃ : (−[ ], σ) · (T, τ̃) → (T, τ̃) · (−[ ], σ̃) : Qu → Qp,

ξ : (−[ ], σ) · (T⩾1, τ)→ (T⩾1, τ) · (−[ ], σ) : Qu → Qu

are Monoidal transformations.

Proof. The Monoidality of ξ̃ is expressed by the left hexagon of diagram

⊠i∈IT (Ai ⊠ Z)
τ̃→ T ⊠i∈I

u (Ai ⊠ Z)
TσI→ T [(⊠i∈I

u Ai)⊠ Z] ⊂
T [in⊠1]→ T [(⊠i∈IT⩽1Ai)⊠ Z]

=

⊠i∈I(TAi ⊠ Z)

⊠I ξ̃↓
σ̃I→ (⊠i∈ITAi)⊠ Z

τ̃⊠1→ (T ⊠i∈I
u Ai)⊠ Z

ξ̃↓
⊂
(T in)⊠1→ (T ⊠i∈I T⩽1Ai)⊠ Z

ξ̃↓



10.12. Commutation between the monad of shifts and the tensor comonad. 297

It suffices to prove commutativity of its exterior. Using Lemma 10.5 we write the equation
as follows:[

⊠i∈IT (Ai ⊠ Z)
τ̃→ T ⊠i∈I

u (Ai ⊠ Z)
T in→ T ⊠i∈I T⩽1(Ai ⊠ Z)

T⊠Iξ′→ T ⊠i∈I (T⩽1Ai ⊠ Z)
T σ̃→ T [(⊠i∈IT⩽1Ai)⊠ Z]

ξ̃→ (T ⊠i∈I T⩽1Ai)⊠ Z
]

=
[
⊠i∈IT (Ai ⊠ Z)

⊠I ξ̃→ ⊠i∈I (TAi ⊠ Z)
σ̃I→ (⊠i∈ITAi)⊠ Z

τ̃⊠1→ (T ⊠i∈I
u Ai)⊠ Z ⊂

(T in)⊠1→ (T ⊠i∈I T⩽1Ai)⊠ Z
]
.

Substituting the definitions we get the equation[
⊠i∈IT (Ai ⊠ Z)

τ̃→ T ⊠i∈I
u (Ai ⊠ Z)

T in→ T ⊠i∈I T⩽1(Ai ⊠ Z)
T⊠Iκ→ T ⊠i∈I (T⩽1Ai ⊠ T⩽1Z)

T⊠I(1⊠µZ)→ T ⊠i∈I (T⩽1Ai ⊠ Z)
Tσ(12)→ T [(⊠i∈IT⩽1Ai)⊠ (⊠IZ)]

T [1⊠⊗IZ]→ T [(⊠i∈IT⩽1Ai)⊠ Z]
κ→ (T ⊠i∈I T⩽1Ai)⊠ TZ

1⊠µZ→ (T ⊠i∈I T⩽1Ai)⊠ Z
]

=
[
⊠i∈IT (Ai ⊠ Z)

⊠Iκ→ ⊠i∈I (TAi ⊠ TZ)
⊠I(1⊠µZ)→ ⊠i∈I (TAi ⊠ Z)

σ(12)→ (⊠i∈ITAi)⊠ (⊠IZ)
1⊠⊗IZ→ (⊠i∈ITAi)⊠ Z

τ̃⊠1→ (T ⊠i∈I
u Ai)⊠ Z

(T in)⊠1→ (T ⊠i∈I T⩽1Ai)⊠ Z
]
.

By naturality we may rewrite this equation as follows:[
⊠i∈IT (Ai ⊠ Z)

τ̃ ·T in→ T ⊠i∈I T⩽1(Ai ⊠ Z)
T⊠Iκ→ T ⊠i∈I (T⩽1Ai ⊠ T⩽1Z)

Tσ(12)→ T [(⊠i∈IT⩽1Ai)⊠ (⊠IT⩽1Z)]
κ→ (T ⊠i∈I T⩽1Ai)⊠ (T ⊠I T⩽1Z)

1⊠[(T⊠IµZ)·(T⊗IZ)·µZ]→ (T ⊠i∈I T⩽1Ai)⊠ Z
]

=
[
⊠i∈IT (Ai ⊠ Z)

⊠Iκ→ ⊠i∈I (TAi ⊠ TZ)
σ(12)→ (⊠i∈ITAi)⊠ (⊠ITZ)

(τ̃ ·T in)⊠1→ (T ⊠i∈I T⩽1Ai)⊠ (⊠ITZ)
1⊠[(⊠IµZ)·⊗IZ]→ (T ⊠i∈I T⩽1Ai)⊠ Z

]
.

Let us prove this equation starting from the summand ⊠i∈ITmi(Ai ⊠ Z), mi ⩾ 0, of the
source. Let m ⩾ 0 be an integer. Consider a subset S ⊂ I ×m such that pr2 S = m and
Si = {p ∈ m | (i, p) ∈ S} has cardinality |Si| = mi. Expanding τ̃ we may present the
above equation in the form[

⊠i∈ITmi(Ai ⊠ Z)
α→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Z)

1⊠β→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ Z
]
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=
[
⊠i∈ITmi(Ai ⊠ Z)

γ→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊠i∈ITmiZ)
1⊠δ→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ Z

]
, (10.13.1)

where

α =
[
⊠i∈ITmi(Ai ⊠ Z)

⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)(Ai ⊠ Z)
κ−1

→ ⊗p∈m ⊠i∈IT χ((i,p)∈S)(Ai ⊠ Z)
⊗m⊠Iκ→ ⊗p∈m ⊠i∈I(T χ((i,p)∈S)Ai ⊠ T χ((i,p)∈S)Z)

⊗mσ(12)→ ⊗p∈m [(⊠i∈IT χ((i,p)∈S)Ai)⊠ (⊠i∈IT χ((i,p)∈S)Z)]
κ→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Z)

]
,

β =
[
⊗p∈m ⊠i∈I T χ((i,p)∈S)Z

Tm⊠IµZ→ Tm ⊠I Z
Tm⊗IZ→ TmZ

µmZ→Z
]
,

γ =
[
⊠i∈ITmi(Ai ⊠ Z)

⊠Iκ→ ⊠i∈I (TmiAi ⊠ TmiZ)
σ(12)→ (⊠i∈ITmiAi)⊠ (⊠i∈ITmiZ)

(⊠i∈IλSi↪→m)⊠1→ (⊠i∈I ⊗p∈m T χ((i,p)∈S)Ai)⊠ (⊠i∈ITmiZ)
κ−1⊠1→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊠i∈ITmiZ)

]
,

δ
def
=
[
⊠i∈ITmiZ

⊠i∈Iµ
mi
Z→ ⊠I Z

⊗IZ→Z
]

=
[
⊠i∈ITmiZ

⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)Z ⊠ITmµZ→ ⊠I TmZ
⊠IµmZ→ ⊠I Z

⊗IZ→Z
]
.

The above equation is due to the fact similar to equation (2.25.1):

µmi

Z =
[
TmiZ

λSi↪→m

→ ⊗p∈m T χ((i,p)∈S)Z
TmµZ→ TmZ

µmZ→Z
]
,

which means in words: any number of units inserted into a composition in Z will not
change its value.

Being a functor ⊗IZ : ⊠IZ→ Z satisfies the identity

Tm ⊠I Z
κ→⊠ITmZ

⊠IµmZ→⊠IZ

=

TmZ

Tm⊗IZ↓
µmZ →Z

⊗IZ↓
(10.13.2)

Therefore,

δ =
[
⊠i∈ITmiZ

⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)Z ⊠ITmµZ→ ⊠I TmZ
κ−1

→ Tm ⊠I Z

Tm⊗IZ→ TmZ
µmZ→Z

]
=
[
⊠i∈ITmiZ

⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S)Z κ−1

→ ⊗p∈m ⊠i∈IT χ((i,p)∈S)Z
β→Z

]
.
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We also have

α =
[
⊠i∈ITmi(Ai ⊠ Z)

γ→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊠i∈ITmiZ)
1⊠(⊠i∈IλSi↪→m)→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊠i∈I ⊗p∈m T χ((i,p)∈S)Z)

1⊠κ−1

→ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai)⊠ (⊗p∈m ⊠i∈I T χ((i,p)∈S)Z)
]

due to coherence principle of Remark 2.34. This proves equation (10.13.1), thus, ξ̃ is
Monoidal.

Now we consider the case of ξ. In the diagram on the next page the floor, the ceiling,
the left and the right walls–quadrilaterals clearly commute. Commutativity of the left
triangle follows from the equation

ξ̃ =
[
T (Ai ⊠ Z) = T⩽1T⩾1(Ai ⊠ Z)

T⩽1ξ→ T⩽1(T⩾1Ai ⊠ Z)
ξ′→ TAi ⊠ Z

]
,

which is due to the fact that ξ̃ coincides with ξ on T⩾1(Ai ⊠ Z) and it coincides with

ξ′ on T 0(Ai ⊠ Z). The front wall commutes due to ξ̃ being Monoidal. Since in⊠1 is an
embedding, the back wall commutes as well, that is, ξ is Monoidal.

10.14 Proposition. ξ satisfies equation (5.27.1) of Proposition 5.27.

Proof. Consider the following diagram

T⩾1(A⊠ Z)
ξ → T⩾1A⊠ Z

T (A⊠ Z)
ξ̃ →

in

→
TA⊠ Z

in⊠1

→

T⩾1T⩾1(A⊠ Z)

∆

↓
T⩾1ξ → T⩾1(T⩾1A⊠ Z)

ξ→ T⩾1T⩾1A⊠ Z

∆⊠1↓

TT⩾1(A⊠ Z)

∆̃↓
Tξ→

in →
T (T⩾1A⊠ Z)

in↓
ξ̃ → TT⩾1A⊠ Z

∆̃⊠1

↓
in⊠1

→

Here the floor, the ceiling, the left and the right walls clearly commute. Commutativity
of the back wall has to be proven. We prove instead that the front wall commutes. Since
in⊠1 is an embedding, the back wall will have to commute as well.

The front wall expands to the equation[
T (A⊠ Z)

κ→ TA⊠ TZ
1⊠µZ→ TA⊠ Z

∆̃⊠1→ TT⩾1A⊠ Z
]

=
[
T (A⊠ Z)

∆̃→ TT⩾1(A⊠ Z)
Tκ→ T (T⩾1A⊠ T⩾1Z)

T (1⊠µZ)→ T (T⩾1A⊠ Z)
κ→ TT⩾1A⊠ TZ

1⊠µZ→ TT⩾1A⊠ Z
]
,
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⊠
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which we are going to verify. It is equivalent to the following equation between matrix
elements:[
Tm(A⊠ Z)

κ→ TmA⊠ TmZ
1⊠µmZ→ TmA⊠ Z

λg⊠1→ (⊗p∈n ⊗g−1p A)⊠ Z
]

=
[
Tm(A⊠ Z)

λg→ ⊗p∈n ⊗g−1p(A⊠ Z)
⊗nκ→ ⊗p∈n (⊗g−1pA⊠⊗g−1pZ)

⊗n(1⊠µg
−1p

Z )
→ ⊗p∈n (⊗g−1pA⊠ Z)

κ→ (⊗p∈n ⊗g−1p A)⊠ (⊗nZ)
1⊠µnZ→ (⊗p∈n ⊗g−1p A)⊠ Z

]
for an arbitrary non-decreasing surjection g : m ↠ n. Since a graded category with
objects set S is an algebra in (Q/S,⊗IS, λf), it satisfies equation (2.25.1). This allows to
rewrite the above equation in the form:[
Tm(A⊠ Z)

κ→ TmA⊠ TmZ
λg⊠λg→ ⊗p∈n ⊗g−1pA⊠⊗p∈n ⊗g−1p Z

1⊠⊗p∈nµg
−1p

Z→ ⊗p∈n ⊗g−1pA⊠⊗nZ
1⊠µnZ→ ⊗p∈n ⊗g−1pA⊠ Z

]
=
[
Tm(A⊠ Z)

λg→ ⊗p∈n ⊗g−1p(A⊠ Z)
⊗nκ→ ⊗p∈n (⊗g−1pA⊠⊗g−1pZ)

κ→ ⊗p∈n ⊗g−1pA⊠⊗p∈n ⊗g−1p Z

1⊠⊗p∈nµg
−1p

Z→ ⊗p∈n ⊗g−1pA⊠⊗nZ
1⊠µnZ→ (⊗p∈n ⊗g−1p A)⊠ Z

]
.

The last two arrows in both sides coincide. The previous compositions ending in⊗p∈n⊗g−1p

A ⊠ ⊗p∈n ⊗g−1p Z coincide due to coherence principle of Remark 2.34. Therefore, the
considered diagram is commutative, and ξ satisfies equation (5.27.1).

10.15 Proposition. The multifunctor of shifts−[ ] =MT⩾1

: Q̂u

T⩾1

→ Q̂u

T⩾1

forM = −[ ]

takes a quiver morphism f : ⊠i∈ITsAi → sB to the morphism

f [ ] =
[
⊠i∈IT (Ai⊠Z)

⊠I(κ·(1⊠µZ))→ ⊠i∈I (TAi⊠Z)
σ(12)→ (⊠i∈ITAi)⊠ (⊠i∈IZ)

f⊠⊗IZ→B⊠Z
]
.

(10.15.1)

Proof. As in diagram (10.12.1) the upper two squares in

⊠i∈I
u T⩾1(Ai ⊠ Z)

⊠Iuκ →⊠i∈I
u (T⩾1Ai ⊠ T⩾1Z)

⊠Iu(1⊠µZ) →⊠i∈I
u (T⩾1Ai ⊠ Z)

⊠i∈IT (Ai ⊠ Z)

in↓

∩

⊠I(1T0⊕κ)→⊠i∈IT⩽1(T⩾1Ai ⊠ T⩾1Z)

in↓

∩

⊠IT⩽1(1⊠µZ)→⊠i∈IT⩽1(T⩾1Ai ⊠ Z)

in↓

∩

⊠i∈IT (Ai ⊠ Z)

wwwww
⊠Iκ

→⊠i∈I(TAi ⊠ TZ)

⊠i∈I [κ(1T0Ai
⊠1T0Z)⊕(in⊠ in)]↓

∩

⊠I(1⊠µZ)
→⊠i∈I(TAi ⊠ Z)

⊠i∈I [κ(1T0Ai
⊠ηZ)⊕(in⊠1Z)]↓

∩
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commute. The other two commute as well. Pasting this diagram together with dia-
gram (10.5.1) for Ci = T⩾1Ai we get the left and the central commutative squares in the
following diagram

⊠i∈I
u T⩾1(Ai ⊠ Z)

⊠Iuξ→⊠i∈I
u (T⩾1Ai ⊠ Z)

σI→ (⊠i∈I
u T⩾1Ai)⊠ Z

f⊠1→B⊠ Z

⊠i∈IT (Ai ⊠ Z)

in↓

∩

⊠I ξ̃→⊠i∈I(TAi ⊠ Z)

ι↓

∩

σ̃I→ (⊠i∈ITAi)⊠ Z

in⊠1↓

∩

f⊠1→B⊠ Z

wwwwww
where

ι =
[
⊠i∈I
u (T⩾1Ai⊠Z) ⊂

in→ ⊠i∈I T⩽1(T⩾1Ai⊠Z) ⊂
⊠i∈I [κ(1T0Ai

⊠ηZ)⊕(in⊠1Z)]
→ ⊠i∈I (TAi⊠Z)

]
.

The right square also obviously commutes. The top row gives fMT⩾1

= (ξ)i ·Q̂u
(fM̂).

The left–bottom path gives f [ ] from (10.15.1). These maps are equal and the proposition
is proven.

10.16 Proposition. The triple ((−[ ])T
⩾1

,mT⩾1

[ ] , u
T⩾1

[ ] ) : Q̂u

T⩾1

→ Q̂u

T⩾1

is a monad in the

Kleisli multicategory, where according to Theorem 5.32

uT
⩾1

[ ] =
(
T⩾1A

pr1→A
u[ ]→A[ ]

)
,

mT⩾1

[ ] =
(
T⩾1[(A⊠ Z)⊠ Z]

pr1→ (A⊠ Z)⊠ Z
m[ ]→A⊠ Z

)
.

It induces the monad in Q, which is denoted (−[ ],m[ ], u[ ]) : Q→ Q by abuse of notation.

In detail, −[ ] : Q → Q is a multifunctor, the multiplication m[ ] : −[ ][ ] → −[ ] is a natural

transformation, and the unit u[ ] : Id→ −[ ] is a multinatural transformation.

Proof. We are going to verify that ξ together with u[ ], m[ ] satisfies the assumptions of
Theorem 5.32.

Let us prove equation (5.32.2) for ξ and u[ ]. This is the top equation in the couple of
equations [

T⩾1A
T⩾1u[ ]→ T⩾1(A⊠ Z)

ξ→ T⩾1A⊠ Z
]
= u[ ],

[
TA

in↓
∩

Tu[ ]→ T (A⊠ Z)

in
↓

∩

ξ̃→ TA⊠ Z
]in⊠1↓

∩

= u[ ].

Due to embedding in⊠1 it suffices to prove the bottom line. On objects both sides give
the map X 7→ X[0]. On morphisms we have an equation[
⊗i∈nA(Xi−1, Xi)

⊗nλI .→ ⊗i∈n [A(Xi−1, Xi)⊗ Z(0, 0)]
κ→ [⊗i∈nA(Xi−1, Xi)]⊗ [⊗nZ(0, 0)]

1⊗µnZ→ [⊗i∈nA(Xi−1, Xi)]⊗ Z(0, 0)
]
= λI . ,
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since here µZ = (λ∅→n)−1 : ⊗nk→ k. Equation (5.32.2) follows.
Let us prove equation (5.27.2) for ξ and the counit ε = pr1 of the comonad T⩾1. This

is the top equation in the couple of equations[
T⩾1(A⊠ Z)

ξ→ T⩾1A⊠ Z
pr1 ⊠1→A⊠ Z

]
= pr1,

[
T (A⊠ Z)

in↓
∩

ξ̃→ TA⊠ Z

in⊠1
↓

∩

pr1 ⊠1→A⊠ Z
]

wwwww
= pr1 .

It suffices to prove the bottom line. It expands to[
Tm(A⊠ Z)

κ→ TmA⊠ TmZ
1⊠µmZ→ TmA⊠ Z

pr1 ⊠1→A⊠ Z
]
= pr1

for each m ⩾ 0. This equation holds since for all m ̸= 1 both sides vanish, and for m = 1
both sides are identity morphisms. Equation (5.27.2) is proven.

Let us prove equation (5.32.1) for ξ and m[ ]:[
T⩾1[(A⊠ Z)⊠ Z]

ξ→ [T⩾1(A⊠ Z)]⊠ Z
ξ⊠1→ (T⩾1A⊠ Z)⊠ Z

(λVI)−1

→ T⩾1A⊠ Z⊠ Z
λIV→ T⩾1A⊠ (Z⊠ Z)

1⊠⊗Z→ T⩾1A⊠ Z
]

=
[
T⩾1[(A⊠ Z)⊠ Z]

T⩾1(λVI)−1

→ T⩾1(A⊠ Z⊠ Z)
T⩾1λIV→ T⩾1[A⊠ (Z⊠ Z)]

T⩾1(1⊠⊗Z)→ T⩾1(A⊠ Z)
ξ→ T⩾1A⊠ Z

]
.

Due to embeddings this equation is a corollary of

[
T [(A⊠ Z)⊠ Z]

ξ̃→ [T (A⊠ Z)]⊠ Z
ξ̃⊠1→ (TA⊠ Z)⊠ Z

(λVI)−1

→ TA⊠ Z⊠ Z
λIV→ TA⊠ (Z⊠ Z)

1⊠⊗Z→ TA⊠ Z
]

=
[
T [(A⊠Z)⊠Z]

T (λVI)−1

→ T (A⊠Z⊠Z)
TλIV→ T [A⊠(Z⊠Z)]

T (1⊠⊗Z)→ T (A⊠Z)
ξ̃−→ TA⊠Z

]
,

which we prove now. Using the definition of ξ̃ we get the equation to prove:[
Tm(A⊠ Z⊠ Z)

TmλVI→ Tm[(A⊠ Z)⊠ Z]
κ→ Tm(A⊠ Z)⊠ TmZ

1⊠µmZ→ Tm(A⊠ Z)⊠ Z
κ⊠1→ (TmA⊠ TmZ)⊠ Z

(1⊠µmZ )⊠1→ (TmA⊠ Z)⊠ Z

(λVI)−1

→ TmA⊠ Z⊠ Z
λIV→ TmA⊠ (Z⊠ Z)

1⊠⊗Z→ TmA⊠ Z
]

=
[
Tm(A⊠ Z⊠ Z)

TmλIV→ Tm[A⊠ (Z⊠ Z)]
Tm(1⊠⊗Z)→ Tm(A⊠ Z)

κ→ TmA⊠ TmZ
1⊠µmZ→ TmA⊠ Z

]
.
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Naturality of κ and the coherence principle of Remark 2.34 allows to rewrite this as
follows:[
Tm(A⊠ Z⊠ Z)

TmλIV→ Tm[A⊠ (Z⊠ Z)]
κ→ TmA⊠ Tm(Z⊠ Z)

1⊠κ→ TmA⊠ (TmZ⊠ TmZ)
1⊠(µmZ⊠µmZ )→ TmA⊠ (Z⊠ Z)

1⊠⊗Z→ TmA⊠ Z
]

=
[
Tm(A⊠ Z⊠ Z)

TmλIV→ Tm[A⊠ (Z⊠ Z)]
κ→ TmA⊠ Tm(Z⊠ Z)
1⊠Tm⊗Z→ TmA⊠ TmZ

1⊠µmZ→ TmA⊠ Z
]
.

This reduces to equation (10.13.2) for I = 2, which means that ⊗Z : Z ⊠ Z → Z is a
functor. Thus, equation (5.32.1) is proven as well.

Applying Theorem 5.32 we deduce the claim of the proposition.

10.17 The multifunctor of shifts. We are going to verify that the two ways to
construct the multifunctor of shifts agree. The above approach was to construct a lax
Monoidal functor of shifts and to transfer it to the Kleisli multicategory Q. The second
way is to consider action ⊡ of the category of graded categories on (Kleisli multicategory
of) graded quivers. This is realized in Appendices A–C.

An algebra Z in the category of graded categories D = dg−Cat was considered in

Section 10.1. As explained in Section C.8 it gives rise to algebra Ẑ in the multicategory

D̂ and to the multifunctor −[ ] = 1 ⊡ Ẑ : Q → Q. We shall see immediately that this
multifunctor coincides with the multifunctor of shifts from Proposition 10.16. That is

why we use the same notation. The multifunctor 1⊡ Ẑ takes a quiver A to another quiver
A[ ] = A⊡ Z, obtained by adding formal shifts of objects. Its set of objects is

ObA[ ] = {X[n] = (X,n) | X ∈ ObA, n ∈ Z} = (ObA)× Z.

The graded k-modules of morphisms are

A[ ](X[n], Y [m]) = {A(X, Y )[1]⊗ k[m− n]}[−1] ≃ A(X, Y )[m− n].

In degree k the chosen isomorphism is (λI . )−1 : A(X, Y )k+m−n ⊗ k→ A(X, Y )k+m−n.
A multimap f : (Ai)i∈I → B, which is a quiver map f : ⊠i∈ITsAi → sB, whose

restriction to ⊠i∈IT 0sAi vanishes, is mapped to the multimap f [ ] = f ⊡ Ẑ : (A
[ ]
i )i∈I →

B[ ], described as follows. It takes an object (Xi[ni])i∈I ∈ Ob⊠i∈I(A
[ ]
i ) to the object

((Xi)i∈If)[
∑

i∈I ni]. According to (C.5.1) and (C.8.1) the multimap f⊡Ẑ can be presented
as

f [ ] = f ⊡ Ẑ = f ⊡⊗IZ =
[
⊠i∈IT (sAi ⊠ Z)

⊠i∈Iκ→ ⊠i∈I (TsAi ⊠ TZ)
σ(12)→ (⊠i∈ITsAi)⊠ (⊠i∈ITZ)

f⊠(⊠IµZ)→ sB⊠ (⊠i∈IZ)
1⊠⊗IZ→ sB⊠ Z

]
(10.17.1)
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=
[
⊠i∈IT (sAi⊠Z)

⊠I(κ·(1⊠µZ))→ ⊠i∈I (TsAi⊠Z)
σ(12)→ (⊠i∈ITsAi)⊠ (⊠i∈IZ)

f⊠⊗IZ→ sB⊠Z
]
,

which agrees with the expression (10.15.1). Thus, the multifunctors MT⩾1

: Q̂u

T⩾1

→
Q̂u

T⩾1

for M = −[ ] and 1 ⊡ Ẑ : Q → Q are identified. Both shift multifunctors are
denoted −[ ]. In the particular case I = 1 a morphism f : A→ B in Q is mapped to the
composition

f ⊡ Ẑ =
[
T (sA⊠ Z)

κ→ TsA⊠ TZ
1⊠µZ→ TsA⊠ Z

f⊠1→ sB⊠ Z
]
.

Let us find its components explicitly.
Let C1, . . . , Ck be Z-graded k-modules, and let n1, . . . , nk be integers. Put n =

n1 + · · ·+ nk. Consider the following isomorphism (of degree 0) of shifted modules:

σ+(nj)j = (−1)
∑
i<j ninj(s−n1 ⊗ · · · ⊗ s−nk)sn

= (1⊗ · · · ⊗ 1⊗ s−nk)(1⊗ · · · ⊗ s−nk−1 ⊗ 1) . . . (s−n1 ⊗ · · · ⊗ 1⊗ 1)sn

= (sn1 ⊗ · · · ⊗ snk)−1sn : C1[n1]⊗ · · · ⊗ Ck[nk]→ (C1 ⊗ · · · ⊗ Ck)[n].

It allows to represent ξ̃
def
= κ · (1⊠ µZ) as

κ · (1⊠ µZ) =
[
T k(sA⊠ Z)(X0[n0], Xk[nk]) = ⊕Xj ,nj ⊗j∈k (sA⊠ Z)(Xj−1[nj−1], Xj[nj])

≃ ⊕Xj ,nj ⊗j∈k (sA(Xj−1, Xj)[nj − nj−1])
σ+
(nj−nj−1)j→ ⊕Xj

(⊗j∈ksA(Xj−1, Xj))[nk − n0]
≃ (T ksA⊠ Z)(X0[n0], Xk[nk])

]
. (10.17.2)

Let f ∈ Ck(C,D) be a homogeneous element (a k-linear map f : C → D of cer-
tain degree deg f). Define f [n] = (−)fns−nfsn : C[n] → D[n], which is an element of
Ck(C[n], D[n]) of the same degree deg f . Now we may write

f ⊠ 1 =
[
(T ksA⊠ Z)(X0[n0], Xk[nk]) ≃ (⊗j∈ksA(Xj−1, Xj))[nk − n0]

f
[nk−n0]
k → sB(X0f,Xkf)[nk − n0] ≃ (sB⊠ Z)(X0f [n0], Xkf [nk])

]
.

Thus, a morphism f : A→ B in Q is mapped to

f [ ] = f ⊡ Ẑ =
[
⊗j∈ksA[ ](Xj−1[nj−1], Xj[nj])

≃ ⊗j∈k(sA(Xj−1, Xj)[nj − nj−1])
σ+
(nj−nj−1)j→ (⊗j∈ksA(Xj−1, Xj))[nk − n0]

f
[nk−n0]
k → sB(X0f,Xkf)[nk − n0] ≃ sB[ ](X0f [n0], Xkf [nk])

]
. (10.17.3)

In the particular case I = ∅ a multimap f : ()→ B in Q is identified with a morphism
f : 1u → sB in Q, Ob1u = {∗}, 1u(∗, ∗) = 0, that is, with an object X = f(∗) ∈ ObB.
The multimap f [ ] : ()→ B[ ] takes ∗ ∈ Ob1u to X[0] ∈ ObB[ ] as (10.17.1) shows.
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10.18 Lemma. Let Ci, Di be Z-graded k-modules for 1 ⩽ i ⩽ k. Let fi ∈ Ck(Ci, Di)
be homogeneous k-linear maps. Then for any integers n1, . . . , nk there is an equation
between two elements of Ck

(
C1[n1]⊗ · · · ⊗ Ck[nk], (D1 ⊗ · · · ⊗Dk)[n1 + · · ·+ nk]

)
:

C1[n1]⊗ · · · ⊗ Ck[nk]
σ+
(ni)→ (C1 ⊗ · · · ⊗ Ck)[n1 + · · ·+ nk]

=

D1[n1]⊗ · · · ⊗Dk[nk]

f
[n1]
1 ⊗···⊗f [nk]k ↓

σ+
(ni)→ (D1 ⊗ · · · ⊗Dk)[n1 + · · ·+ nk] .

(f1⊗···⊗fk)[n1+···+nk]

↓
(10.18.1)

We have

(σ+n11,...,n1k1 ⊗ · · · ⊗ σ
+
nr1,...,nrkr

)σ+n11+···+n1k1 ,..., nr1+···+nrkr = σ+n11,...,n1k1 ,..., nr1,...,nrkr . (10.18.2)

Proof. Denote n = n1 + · · ·+ nk. Equation (10.18.1) is equivalent to

(sn1 ⊗ · · · ⊗ snk)(f [n1]1 ⊗ · · · ⊗ f [nk]k )(sn1 ⊗ · · · ⊗ snk)−1 = sn(f1 ⊗ · · · ⊗ fk)[n]s−n.

Here both sides are equal to the same map (−)(n1+···+nk)(f1+···+fk)f1⊗· · ·⊗fk ∈ Ck(C1⊗· · ·⊗
Ck, D1⊗· · ·⊗Dk), which proves the first claim. The second follows from the computation

(sn11⊗· · ·⊗sn1k1⊗· · ·⊗snr1⊗· · ·⊗snrkr )(σ+n11,...,n1k1⊗· · ·⊗σ
+
nr1,...,nrkr

)σ+n11+···+n1k1 ,..., nr1+···+nrkr
= (sn11+···+n1k1⊗· · ·⊗snr1+···+nrkr )σ+n11+···+n1k1 ,..., nr1+···+nrkr = sn11+···+n1k1+···+nr1+···+nrkr .

10.19 The closing transformation for the multifunctor of shifts. In this section
we study the closing transformation for the multifunctor of shifts.

Let us extend the multifunctor of shifts S = −[ ] : Q→ Q to the closing transformation
S as described in Section 4.18. On objects S coincides with ObS. We want to find the
only morphism

S(Ai);B : Q((Ai)i∈k;B)[ ] → Q((A
[ ]
i )i∈k;B

[ ]) (10.19.1)

in Q such that the following equation holds in Q:

[
(A

[ ]
i )i∈k,Q((Ai)i∈k;B)[ ]

(1
A
[ ]
i

),S(Ai);B

→ (A
[ ]
i )i∈k,Q((A

[ ]
i )i∈k;B

[ ])
evQ

(A
[ ]
i
);B[ ]

→B[ ]
]

= (evQ(Ai);B)
[ ]. (10.19.2)

Corollary 4.20 shows that on objects morphism (10.19.1) takes (f, 0), where f is an element

of Q((Ai)i∈k;B), to f [ ] : (A
[ ]
i )i∈k → B[ ]. On other objects S(Ai);B can be found from the



10.19. The closing transformation for the multifunctor of shifts. 307

following case of the above equations:[
(⊠i∈kTs(A

[ ]
i ))⊠ T 0s(Q((Ai)i∈k;B)[ ])

1⊠T 0S→ (⊠i∈kTs(A
[ ]
i ))⊠ T 0Qp(⊠

i∈kTs(A
[ ]
i ), sB

[ ])
ev′′→ sB[ ]

]
=
[
(⊠i∈kTsA

[ ]
i )⊠T

0s(Q((Ai)i∈k;B)[ ])
(⊠kκ)⊠κ→⊠i∈k(TsAi⊠TZ)⊠(T 0sQ((Ai)i∈k;B)⊠T 0Z)

σ(12)→ ((⊠i∈kTsAi)⊠ T 0Qp(⊠
i∈kTsAi, sB))⊠ ((⊠kTZ)⊠ T 0Z)

ev′′ ⊠((⊠kµZ)⊠µ0
Z)→ sB⊠ (⊠k+1Z)

1⊠⊗k+1
Z→ sB⊠ Z

]
,

where µ0Z : T 0Z→ Z, T 0Z(p, p) = k ∋ 1 7→ 1p = 1 ∈ k = Z(p, p) defines the identity mor-
phisms in Z. Associativity of multiplication in Z implies that for an arbitrary multimap
f : (Ai)i∈k → B and an arbitrary integer p the right hand side induces the map (f, p)S

⊠i∈k T (sAi ⊠ Z) ≃ (⊠i∈kT (sAi ⊠ Z))⊗ T 0sQ((Ai)i∈k;B)(f, f)⊗ T 0Z(p, p)
f [ ]⊗µ0

→ sB⊠ Z⊗ Z(p, p)
1⊠⊗Z→ sB⊠ Z.

The above multimap (f, p)S = f [ ][p] takes an arbitrary object (Xi[ni])i∈k to the object

((Xi)i∈kf)[
∑k

i=1 ni + p]. Since ψ1(∗, p, ∗, p) = 0, the multimap acts on morphisms via the
map

⊗i∈k Ts(A[ ]
i )(Xi[ni], Yi[mi])

f [ ]→ sB[ ]
((

(Xi)i∈kf
)
[
∑k

i=1 ni],
(
(Yi)i∈kf

)
[
∑k

i=1mi]
)

= sB[ ]
((

(Xi)i∈kf
)
[
∑k

i=1 ni + p],
(
(Yi)i∈kf

)
[
∑k

i=1mi + p]
)
,

which explains the notation f [ ][p]. As we noticed above, f [ ][0] = f [ ].
Applying T⩽1 to equations (10.19.2) and composing the result with the projection

pr1 : T
⩽1sB[ ] → sB[ ], we find the remaining part of equations in the expanded form[

(⊠i∈kTs(A
[ ]
i ))⊠ T⩾1s(Q((Ai)i∈k;B)[ ])

1⊠S→ (⊠i∈kTs(A
[ ]
i ))⊠ Qp(⊠

i∈kTs(A
[ ]
i ), sB

[ ])
ev′→ sB[ ]

]
=
[
(⊠i∈kTsA

[ ]
i )⊠ T⩾1s(Q((Ai)i∈k;B)[ ])

(⊠kκ)⊠pr1→ ⊠i∈k (TsAi ⊠ TZ)⊠ (sQ((Ai)i∈k;B)⊠ Z)
σ(12)→ ((⊠i∈kTsAi)⊠ Qp(⊠

i∈kTsAi, sB))⊠ ((⊠kTZ)⊠ Z)

ev′ ⊠((⊠kµZ)⊠1)→ sB⊠ (⊠k+1Z)
1⊠⊗k+1

Z→ sB⊠ Z
]
.

These equations show that S is strict, that is, it can be presented as the composition

S(Ai);B =
[
T⩾1s(Q((Ai)i∈k;B)[ ])

pr1→ s(Q((Ai)i∈k;B)[ ])
S1→ sQ((A

[ ]
i )i∈k;B

[ ])
]
.

(10.19.3)
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This allows to rewrite the above equation in the form[
(⊠i∈kTs(A

[ ]
i ))⊠s(Q((Ai)i∈k;B)[ ])

1⊠S1→ (⊠i∈kTs(A
[ ]
i ))⊠Qp(⊠

i∈kTs(A
[ ]
i ), sB

[ ])
ev′→ sB[ ]

]
=
[
(⊠i∈kT (sAi ⊠ Z))⊠ (Qp(⊠

i∈kTsAi, sB)⊠ Z)

⊠k(κ·(1⊠µ))⊠(1⊠1)→ ⊠i∈k (TsAi ⊠ Z)⊠ (Qp(⊠
i∈kTsAi, sB)⊠ Z)

σ(12)→ ((⊠i∈kTsAi)⊠ Qp(⊠
i∈kTsAi, sB))⊠ (⊠k+1Z)

ev′ ⊠⊗k+1
Z→ sB⊠ Z

]
. (10.19.4)

Given an element r ∈ sQ((Ai)i∈k;B)(f, g) of arbitrary degree and integers n, m, we can

construct r ⊗ (1sm−n) ∈ s(Q((Ai)i∈k;B)[ ])((f, n), (g,m)) and via the above recipe the

element (r ⊗ (1sm−n))S1 ∈ Qp(⊠i∈kTsA
[ ]
i , sB

[ ])(f [ ][n], g[ ][m]). When n = m = 0, we

denote it by r[ ] = (r ⊗ 1)S1 ∈ Qp(⊠i∈kTsA
[ ]
i , sB

[ ])(f [ ], g[ ]). In the particular case k = 1

equation (10.19.4) reduces to[
Ts(A[ ])⊠ (Qp(TsA, sB)⊠ Z)

1⊠S1→ Ts(A[ ])⊠ Qp(Ts(A
[ ]), sB[ ])

evQp

→ sB[ ]
]

=
[
T (sA⊠ Z)⊠ (Qp(TsA, sB)⊠ Z)

κ·(1⊠µ)⊠(1⊠1)→ (TsA⊠ Z)⊠ (Qp(TsA, sB)⊠ Z)

σ(12)→ (TsA⊠ Qp(TsA, sB))⊠ (Z⊠ Z)
evQp ⊠⊗2

Z→ sB⊠ Z
]
.

We describe the solution (r⊗ (1sm−n))S1 : f
[ ][n]→ g[ ][m] : A[ ] → B[ ] by its components:

[(r ⊗ (1sm−n))S1]p = (−)np(n−m)(sn1−n0 ⊗ · · · ⊗ snp−np−1)−1snp−n0r[np−n0]p sm−n :

⊗i∈p sA[ ](Xi−1[ni−1], Xi[ni]) = ⊗i∈p(sA(Xi−1, Xi)[ni − ni−1])
σ+
(ni−ni−1)i→

(⊗i∈psA(Xi−1, Xi))[np − n0]
r
[np−n0]
p → sB(X0f,Xpg)[np − n0]

(−)np(n−m)sm−n

→ sB[ ]((X0, n0)f
[ ][n], (Xp, np)g

[ ][m]). (10.19.5)

10.20 Proposition. The multifunctor −[ ] = − ⊡ Z : Q → Q, the unit multinatural
transformation u[ ] = − ⊡ (ηZ : 1p → Z) and the multiplication natural transformation
m[ ] = − ⊡ (⊗Z : Z ⊠ Z → Z) form a monad which satisfies condition (4.35.3) in strong
form: the right part of this diagram, namely,

X[ ][ ],W[ ]
1,u

[ ]
[ ]→X[ ][ ],W[ ][ ] e

[ ][ ]

→ Y[ ][ ]

X[ ],W[ ]

m[ ],1↓
e[ ] → Y[ ]

m[ ]↓ (10.20.1)

commutes for any morphism e : X,W→ Y in Q.
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Proof. Plugging the definitions of transformations in diagram (10.20.1), we have to prove

(X⊡ (Z⊠ Z),W⊡ Z)
(1,1⊡(ηZ⊠1))→ (X⊡ (Z⊠ Z),W⊡ (Z⊠ Z))

e⊡⊗Z⊠Z→ Y⊡ (Z⊠ Z)

=

(X⊡ Z,W⊡ Z)

(1⊡⊗Z,1)↓
e⊡⊗Z → Y⊡ Z

1⊡⊗Z↓

Since ⊡ is a multifunctor, this equation is equivalent to

e⊡
(
(1Z⊠Z⊠ (ηZ⊠1Z)) ·⊗Z⊠Z ·⊗Z

)
= e⊡

(
(⊗Z⊠1Z) ·⊗Z

)
: (X⊡ (Z⊠Z),W⊡Z)→ Y⊡Z.

The above equation follows from obvious commutativity of the diagram:

Z⊠ Z⊠ Z
1⊠1⊠ηZ⊠1→Z⊠ Z⊠ Z⊠ Z

1⊠c⊠1→Z⊠ Z⊠ Z⊠ Z

Z⊠ Z

⊗Z⊠1
↓

⊗Z →Z← ⊗Z

⊗3
Z

→
Z⊠ Z

⊗Z⊠⊗Z↓
⊗Z⊠Z

→

It implies commutativity of diagram (10.20.1).

Consider the multifunctor S = − ⊡ Z = −[ ] : Q → Q. Abusing the notation denote
the corresponding Q-functor in Q by

−[ ] def= S ′ =
(
Q((Ai)i∈I ;B)

u[ ]→Q((Ai)i∈I ;B)[ ]
S→Q((A

[ ]
i )i∈I ;B

[ ])
)
, f 7→ f [ ], r 7→ r[ ].

10.21 Corollary. The following diagram commutes:

Q(A;B)
−[ ][ ]

→Q(A[ ][ ];B[ ][ ])

=

Q(A[ ];B[ ])

−[ ]

↓
Q(mA

[ ] ;1)→Q(A[ ][ ];B[ ])

Q(1;mB
[ ])↓

This is diagram (4.35.2), proven in Corollary 4.35. Since not only exterior of di-
agram (4.35.3) commutes, but its right pentagon commutes as well, one can prove a
stronger statement:

10.22 Corollary. The following diagram

Q(A;B)[ ][ ]
S[ ]

→Q(A[ ];B[ ])[ ]
S →Q(A[ ][ ];B[ ][ ])

=

Q(A;B)[ ]

u
[ ]
[ ]

↑

S→Q(A[ ];B[ ])
Q(mA

[ ] ;1)→Q(A[ ][ ];B[ ])

Q(1;mB
[ ])↓

commutes for arbitrary graded k-quivers A, B.
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We shall neither supply the proof, nor use the above statement.

10.23 Proposition. The following diagram commutes in Q for arbitrary quivers A, B,
C:

Q(A;B),Q(B;C)
−[ ],−[ ]

→Q(A[ ];B[ ]),Q(B[ ];C[ ])

Q(A;C)

µQ

↓
−[ ]

→Q(A[ ];C[ ])

µQ

↓ (10.23.1)

Proof. This is the exterior of the diagram

Q(A;B),Q(B;C)
u[ ],u[ ]→Q(A;B)[ ],Q(B;C)[ ]

S,S→Q(A[ ];B[ ]),Q(B[ ];C[ ])

Q(A;C)

µQ

↓
u[ ] →Q(A;C)[ ]

(µQ)[ ]↓
S →Q(A[ ];C[ ])

µQ

↓

The left square commutes by multinaturality of u[ ], commutativity of the right square is
a consequence of (4.21.1).

10.24 Proposition. For an arbitrary morphism f : (Ai)i∈I → B in Q and a quiver C the
following diagram commutes in Q:

Q(B;C)
−[ ]

→Q(B[ ];C[ ])

Q((Ai)i∈I ;C)

Q(f ;1)
↓

−[ ]

→Q((A
[ ]
i )i∈I ;C

[ ])

Q(f [ ];1)↓ (10.24.1)

Proof. This is the exterior of the diagram

Q(B;C)
u[ ] →Q(B;C)[ ]

S →Q(B[ ];C[ ])

Q((Ai)i∈I ;C)

Q(f ;1)
↓

u[ ]→Q((Ai)i∈I ;C)
[ ]

Q(f ;1)[ ]↓
S→Q((A

[ ]
i )i∈I ;C

[ ])

Q(f [ ];1)↓

The left square commutes due to naturality of u[ ], the right square is commutative by
(4.23.1).

10.25 Proposition. For an arbitrary morphism f : (Bj)j∈J → C in Q, quivers Ai, i ∈ I,
and a map ϕ : I → J in Mor S the following diagram commutes in Q:

(Q((Ai)i∈ϕ−1j;Bj))j∈J
(−[ ])J→ (Q((A

[ ]
i )i∈ϕ−1j;B

[ ]
j ))j∈J

Q((Ai)i∈I ;C)

Q(ϕ;f)
↓

−[ ]

→Q((A
[ ]
i )i∈I ;C

[ ])

Q(ϕ;f [ ])↓ (10.25.1)
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Proof. This is the exterior of the diagram

(Q((Ai)i∈ϕ−1j;Bj))j∈J
(u[ ])J→ (Q((Ai)i∈ϕ−1j;Bj)

[ ])j∈J
(S)J→ (Q((A

[ ]
i )i∈ϕ−1j;B

[ ]
j ))j∈J

Q((Ai)i∈I ;C)

Q(ϕ;f)
↓

u[ ] →Q((Ai)i∈I ;C)
[ ]

Q(ϕ;f)[ ]↓
S →Q((A

[ ]
i )i∈I ;C

[ ])

Q(ϕ;f [ ])↓

The left square commutes by multinaturality of u[ ], commutativity of the right square is
a consequence of (4.22.1).

10.26 Actions and the A∞-multifunctor of shifts. In the remaining part of the
chapter we extend the obtained monad of shifts to A∞-categories. We employ the exten-
sion of the action used above to the action of the symmetric multicategory of differential
graded categories on the symmetric multicategory of A∞-categories. Let us compare the
graded and the differential graded versions of the action.

There is an embedding of symmetric multicategories e : Au
∞

⊂ → A∞ and the erasing
symmetric multifunctor E : A∞ → Q which forgets the differentials b. As explained in
Sections C.5–C.13 these multifunctors agree with the following actions in SMCatm:

Au
∞⊠ d̂g-Cat

e⊠Id→ A∞⊠ d̂g-Cat
E⊠Ê→Q⊠ ĝr-Cat

= =

Au
∞

⊡
↓

e → A∞

⊡
↓

E →Q

⊡
↓

where the erasing functor E : dg-Cat → gr-Cat forgets the differential. Choose the
algebra object Z in dg-Cat – the graded category with zero differentials described in
Section 10.1. Its action gives the multifunctors of shifts S = −[ ] in the three considered
multicategories which commute with e, E:

Au
∞

e → A∞
E →Q

= =

Au
∞

−[ ] = −⊡Z

↓
e → A∞

−[ ] = −⊡Z

↓
E →Q

−[ ] = −⊡Z

↓

According to Remark C.9 these multifunctors of shifts are augmented, where the augmen-
tation multinatural transformation u[ ] : Id→ −[ ] = S comes from the unit ηZ : 1p → Z of
the algebra Z. This gives equations between multinatural transformations – commutative
cylinders:

Au
∞

e → A∞
E →Q

= =

Au
∞

Id
↓

u[ ]
=⇒ −[ ]

↓
e → A∞

Id
↓

u[ ]
=⇒ −[ ]

↓
E →Q

Id
↓

u[ ]
=⇒ −[ ]

↓
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Therefore, assumptions of Proposition 4.36 are satisfied for both e and E and for F = −[ ],
G = −[ ]. Proposition 4.30 gives an Au

∞-multifunctor S ′ = u[ ] · S : Au
∞ → Au

∞, an

A∞-multifunctor S ′ = u[ ] · S : A∞ → A∞ and a Q-multifunctor S ′ = u[ ] · S : Q → Q. By

abuse of notation all these will be also denoted −[ ]. Proposition 4.36 implies that these
multifunctors agree with e and E, which are natural full embeddings:

Au
∞((Ai)i∈I ;B) ⊂ → A∞((Ai)i∈I ;B) ⊂ →Q((Ai)i∈I ;B)

= =

Au
∞((A

[ ]
i )i∈I ;B

[ ])

−[ ] = S′

↓
⊂ → A∞((A

[ ]
i )i∈I ;B

[ ])

−[ ] = S′

↓
⊂ →Q((A

[ ]
i )i∈I ;B

[ ])

−[ ] = S′

↓

Due to Proposition 10.16 and formula (10.19.3) the morphisms S ′ in Q are strict. There-
fore, the other two multifunctors S ′ are strict as well, that is, all A∞-functors S

′
(Ai);B

are
strict.

10.27 Differential. When A is an A∞-category, it has the differential b : id → id :
A → A – an element of Qp(TsA, sA)(id, id) of degree 1. Equivalently, the differential is

a quiver morphism b : 1p[−1]→ sQ(A;A), ∗ 7→ idA, or a quiver morphism

φQp(b) =
[
TsA⊠ 1p[−1]

1⊠b→ TsA⊠ Qp(TsA, sA)
evQp

→ sA
]
.

We are going to analyze in detail the differential b[ ] = bA⊡Z in A[ ] = A⊡Z. According to
(C.10.1) this element of Qp(Ts(A⊡ Z), s(A⊡ Z))(id, id) is given by the composition

bA⊡Z =
[
T (sA⊠ Z)

κ→ TsA⊠ TZ
b⊠µZ→ sA⊠ Z

]
.

Equivalently, it can be presented as the composition of quiver morphisms

bA⊡Z =
[
1p[−1]

λI .→ 1p[−1]⊠ 1p
b⊠µ̇Z→Qp(TsA, sA)⊠ Qp(TZ,Z)

⊠2

→Qp(TsA⊠ TZ, sA⊠ Z)
Qp(κ;1)
→Qp(T (sA⊠ Z), sA⊠ Z)

]
.

10.28 Proposition. The differential bA⊡Z coincides with the compositions in Q

b[ ] =
[
1p[−1]

b̂→ T⩾1sQ(A;A)
−[ ]

S′→ sQ(A[ ];A[ ])
]

=
[
1p[−1]

b→ sQ(A;A)
(−[ ])1

S′
1

→ sQ(A[ ];A[ ])
]
.
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Proof. Let us show that φQp(bA⊡Z) = φQp(b[ ]). In fact,

φQp(bA⊡Z) =
[
Ts(A[ ])⊠1p[−1]

1⊠bA⊡Z

→ T (sA⊠Z)⊠Qp(T (sA⊠Z), sA⊠Z)
evQp

→ sA⊠Z
]

=
[
Ts(A[ ])⊠ 1p[−1]

1⊠λI .→ Ts(A[ ])⊠ (1p[−1]⊠ 1p)
1⊠(b⊠µ̇Z)→

Ts(A[ ])⊠ [Qp(TsA, sA)⊠ Qp(TZ,Z)]
1⊠⊠2

→ Ts(A[ ])⊠ Qp(TsA⊠ TZ, sA⊠ Z)

1⊠Qp(κ;1)
→ T (sA⊠ Z)⊠ Qp(T (sA⊠ Z), sA⊠ Z)

evQp

→ sA⊠ Z
]

=
[
T (sA⊠ Z)⊠ 1p[−1]

κ⊠λI .→ (TsA⊠ TZ)⊠ (1p[−1]⊠ 1p)
1⊠(b⊠µ̇Z)→ (TsA⊠ TZ)⊠ [Qp(TsA, sA)⊠ Qp(TZ,Z)]

1⊠⊠2

→ (TsA⊠ TZ)⊠ Qp(TsA⊠ TZ, sA⊠ Z)
evQp

→ sA⊠ Z
]

=
[
T (sA⊠ Z)⊠ 1p[−1]

κ⊠λI .→ (TsA⊠ TZ)⊠ (1p[−1]⊠ 1p)
1⊠(b⊠µ̇Z)→ (TsA⊠ TZ)⊠ [Qp(TsA, sA)⊠ Qp(TZ,Z)]

σ(12)→ [TsA⊠ Qp(TsA, sA)]⊠ [TZ⊠ Qp(TZ,Z)]
evQp ⊠ evQp

→ sA⊠ Z
]

=
[
T (sA⊠ Z)⊠ 1p[−1]

κ⊠b→ (TsA⊠ TZ)⊠ Qp(TsA, sA)

(λVI)−1·(23)∼·λVI→ [TsA⊠ Qp(TsA, sA)]⊠ TZ
evQp ⊠µZ→ sA⊠ Z

]
. (10.28.1)

On the other hand, formula (10.19.4) gives for k = 1 the expression

[
Ts(A[ ])⊠ sQ(A;A)

1⊠S′
1→ Ts(A[ ])⊠ Qp(Ts(A

[ ]), s(A[ ]))
evQp

→ s(A[ ])
]

=
[
T (sA⊠ Z)⊠ sQ(A;A)

κ⊠λI .→ (TsA⊠ TZ)⊠ [Qp(TsA, sA)⊠ 1p]
(1⊠µZ)⊠[1⊠ηZ]→

(TsA⊠ Z)⊠ [Qp(TsA, sA)⊠ Z]
σ(12)→ [TsA⊠ Qp(TsA, sA)]⊠ (Z⊠ Z)

evQp ⊠⊗Z→ sA⊠ Z
]

=
[
T (sA⊠ Z)⊠ sQ(A;A)

κ⊠1→ (TsA⊠ TZ)⊠ Qp(TsA, sA)

(λVI)−1·(23)∼·λVI→ [TsA⊠ Qp(TsA, sA)]⊠ TZ
evQp ⊠µZ→ sA⊠ Z

]
.

Therefore,

φQp(b[ ]) =
[
Ts(A[ ])⊠ 1p[−1]

1⊠b[ ]→ Ts(A[ ])⊠ Qp(Ts(A
[ ]), s(A[ ]))

evQp

→ s(A[ ])
]

equals the last expression in (10.28.1). This implies that bA⊡Z = b[ ].

This allows to compute the components of the differential b[ ] ∈ Qp(TsA
[ ], sA[ ])(id, id),
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or b[ ] : id→ id : A[ ] → A[ ] via general formula (10.19.5):

b[ ]p = (sn1−n0 ⊗ · · · ⊗ snp−np−1)−1snp−n0b[np−n0]p

= (−1)np−n0(sn1−n0 ⊗ · · · ⊗ snp−np−1)−1bps
np−n0 :

⊗i∈p sA[ ](Xi−1[ni−1], Xi[ni]) = ⊗i∈p(sA(Xi−1, Xi)[ni − ni−1])
σ+
(ni−ni−1)i→

(⊗i∈psA(Xi−1, Xi))[np − n0]
b
[np−n0]
p → sA(X0, Xp)[np − n0] = sA[ ](X0[n0], Xp[np]).

(10.28.2)

10.29 Remark. If A∞-category C is unital, then C[ ] is unital as well and its unit elements
are

X[n]i
C[ ]

0 = Xi
C
0 ∈ sC(X,X) = sC[ ](X[n], X[n]) (10.29.1)

by Lemma C.14. Furthermore, if A∞-category C is strictly unital, then C[ ] is strictly
unital as well, and the above unit elements are strict. Indeed, if iC0 is a strict unit, then
(1⊗ Y i

C
0)b2 = 1 implies

(1⊗ Y [m]i
C[ ]

0 )b
[ ]
2 = (−s)n−m(1⊗ Y i

C
0)b2(−s)m−n = 1 : sC[ ](X[n], Y [m])→ sC[ ](X[n], Y [m]).

Similarly, (X[n]i
C[ ]

0 ⊗ 1)b
[ ]
2 = −1 in the strict case. Since (1⊗α ⊗ X[n]i

C[ ]

0 ⊗ 1⊗β)b
[ ]
α+1+β has a

factor (1⊗α ⊗ Xi
C
0 ⊗ 1⊗β)bα+1+β, it vanishes for α + β > 1.

10.30 The A∞-2-monad of shifts. Proposition 10.20 is based only on the existence

of action ⊡ : Q⊠ ĝr -Cat→ Q and the algebra property of differential graded category Z.
It gives the monad (−[ ], u[ ],m[ ]), where −[ ] = S = − ⊡ Z : Q → Q is the multifunctor
of shifts, the unit u[ ] = − ⊡ (ηZ : 1p → Z) is a multinatural transformation, and the
multiplication m[ ] = − ⊡ (⊗Z : Z ⊠ Z → Z) is a natural transformation which satisfies

condition (10.20.1). Since there is also action ⊡ : A∞⊠ d̂g-Cat → A∞ by Section C.10

and action ⊡ : Au
∞⊠ d̂g-Cat → Au

∞ by Section C.13, the same algebra Z gives also
monads (−[ ], u[ ],m[ ]) in A∞ and in Au

∞ with the same properties as in Q. As explained

in Section 9.20 these monads give rise to an A∞-monad (A∞-2-monad) (−[ ], u[ ],m[ ]) :

A∞ → A∞ and respectively to an Au
∞-monad (Au

∞-2-monad) (−[ ], u[ ],m[ ]) : Au
∞ → Au

∞.
As explained in Section 10.26 these monads and the corresponding Q-monad agree with

the natural full embeddings Au
∞((Ai)i∈I ;B) ⊂

e→ A∞((Ai)i∈I ;B) ⊂
E→Q((Ai)i∈I ;B). Let

us describe the unit and the multiplication in detail.

10.30.1 Unit A∞-2-transformation u[ ]. For any A∞-category A the unit A∞-2-

transformation u[ ] = uA[ ] = η(A) : A → A[ ] is a strict A∞-functor given by the formulas

X 7→ X[0], η(A)1 = id : sA(X0, X1)→ sA[ ](X0[0], X1[0]). If A is unital, then uA[ ] is unital,
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because it takes a unit element Xi
A
0 to the unit element X[0]i

A[ ]

0 . In the unital case u[ ] is a
natural Au

∞-2-transformation.

10.30.2 Multiplication A∞-2-transformation m[ ]. We describe the natural A∞-2-

transformation m[ ] : −[ ][ ] → −[ ] in the A∞-2-monad (−[ ],m[ ], u[ ]), which is obtained via
algebra (Z,⊗Z) of Section 10.1. The A∞-2-transformationm[ ] is specified by the collection
of A∞-functors

m[ ] =
[
A[ ][ ] = (A⊡ Z)⊡ Z

α2

→A⊡ (Z⊠ Z)
1⊡⊗Z→A⊡ Z = A[ ]

]
. (10.30.1)

All the above A∞-functors are strict. Indeed, α
2 given by (C.7.1) is simply an isomorphism

of underlying quivers. The A∞-functor 1⊡⊗Z is given by formula (C.5.1)

1⊡⊗Z =
[
T (sA⊠ (Z⊠ Z))

κ−→ TsA⊠ T (Z⊠ Z)
pr1 ⊠µZ⊠Z→ sA⊠ (Z⊠ Z)

1⊠⊗Z→ sA⊠ Z
]
.

Clearly, it is strict with the first component equal to 1⊠⊗Z. Therefore, A∞-functor m[ ]

is also strict with the first component expressed by

(m[ ])1 =
[
(sA⊠ Z)⊠ Z

(λVI)−1

→ sA⊠ Z⊠ Z
λIV→ sA⊠ (Z⊠ Z)

1⊠⊗Z→ sA⊠ Z
]
. (10.30.2)

On objects this quiver map is given by the formula: X[n][m] 7→ X[n+m]. On morphisms
it equals

(m[ ])1 =
[
sA[ ][ ](X[n][m], Y [k][l]) = sA(X, Y )[k − n][l −m]

(−1)k(m−l)

→ sA(X, Y )[k + l − n−m] = sA[ ](X[n+m], Y [k + l])
]
.

10.31 Remark. Let B be a unital A∞-category. If g : B→ A a contractible A∞-functor,
then g[ ] : B[ ] → A[ ] is contractible as well. Indeed, if

g1 = tb1 + b1t : sB(X, Y )→ sA(Xg, Y g)

for some map t : sB(X, Y )→ sA(Xg, Y g) of degree −1, then

g
[ ]
1 = (sn−mt(−s)m−n)b[ ]1 + b

[ ]
1 (s

n−mt(−s)m−n) : sB[ ](X[n], Y [m])→ sA[ ](Xg[n], Y g[m]).

10.32 Definition. We say that a unital A∞-category C is closed under shifts if every
object X[n] of C[ ] is isomorphic in C[ ] to some object Y [0], Y = [X,n] ∈ ObC.

10.33 Proposition. A unital A∞-category C is closed under shifts if and only if the
A∞-functor u[ ] : C→ C[ ] is an equivalence.
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Proof. Let us prove that for a closed under shifts unital A∞-category C the A∞-functor
u[ ] : C → C[ ] is an equivalence. Choose a function Obψ : ObC[ ] → ObC, X[n] 7→ [X,n],

and cycles p0 ∈ sC[ ](X[n], [X,n][0]), r0 ∈ sC[ ]([X,n][0], X[n]) such that

(p0 ⊗ r0)b[ ]2 − X[n]i
C[ ]

0 ∈ Im b
[ ]
1 , (r0 ⊗ p0)b[ ]2 − [X,n][0]i

C[ ]

0 ∈ Im b
[ ]
1 .

As u[ ]1 = id is invertible, theorem 8.8 of [Lyu03] implies that u[ ] : C → C[ ] is an equiva-

lence, and the map Obψ can be extended to an A∞-functor ψ : C[ ] → C, quasi-inverse to
u[ ].

On the other hand, if u[ ] : C→ C[ ] is an equivalence, then it is essentially surjective on
objects. This means precisely the existence of p0, r0 as above, that is, closedness under
shifts.

10.34 Corollary. Let A, B be equivalent unital A∞-categories. If one of them is closed
under shifts, then so is the other.

Proof. Let f : A → B be an A∞-equivalence, then f [ ] : A[ ] → B[ ] is A∞-equivalence

as well, since the Au
∞-2-functor −[ ] defines an ordinary strict 2-functor −[ ] : Au

∞ → Au
∞

[LM06a, Section 3.2]. In the commutative diagram

A
u[ ] →A[ ]

B

f
↓

u[ ] →B[ ]

f [ ]↓

three out of four A∞-functors are equivalences. Hence, so is the fourth.

10.35 Proposition. Let C be a unital A∞-category. Then C[ ] is closed under shifts.

Proof. Let X[n][m] be an object of C[ ][ ]. We claim that it is isomorphic to X[n +m][0].
Indeed, there is a cocycle

q ∈ sC[ ][ ](X[n][m], X[n+m][0]) = sC[ ](X[n], X[n+m])[−m] = sC(X,X),

which coincides with Xi
C
0 ∈ sC(X,X), and a cocycle

t ∈ sC[ ][ ](X[n+m][0], X[n][m]) = sC[ ](X[n+m], X[n])[m] = sC(X,X),

which coincides with (−1)mXiC0 ∈ sC(X,X).
We have

(q ⊗ t)b[ ][ ]2 − X[n][m]i
C[ ][ ]

0 = (q ⊗ t)(sm ⊗ s−m)b[ ]2 − X[n]i
C[ ]

0

= (q ⊗ t)(sm ⊗ s−m)(s−m ⊗ sm)b2 − Xi
C
0 = (Xi

C
0 ⊗ Xi

C
0)b2 − Xi

C
0 ∈ Im b

[ ][ ]
1 .

Similarly, (t⊗ q)b[ ][ ]2 −X[n+m][0]i
C[ ][ ]

0 ∈ Im b
[ ][ ]
1 . Hence, objects X[n][m] and X[n+m][0] are

isomorphic. Therefore, C[ ] is closed under shifts.
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10.36 Corollary. If C is a unital A∞-category, then A∞-functors u[ ], u
[ ]
[ ] : C

[ ] → C[ ][ ] and

m[ ] : C
[ ][ ] → C[ ] are equivalences, quasi-inverse to each other.

Indeed, such u[ ] is an equivalence by Proposition 10.33, and u[ ]m[ ] = idC[ ] = u
[ ]
[ ]m[ ].

10.37 Proposition. For an arbitrary A∞-category C closed under shifts there exists an
A∞-equivalence U[ ] = UC

[ ] : C
[ ] → C such that u[ ] · U[ ] = idC. In particular, U[ ] is quasi-

inverse to u[ ].

Proof. Apply Proposition 9.22 to the following data: B = C[ ], D = C, the A∞-equivalence
ϕ = u[ ] : C → C[ ], the embedding of a full A∞-subcategory ι = u[ ] : C ⊂ → C[ ], the

A∞-functor w = id : C → C, the natural A∞-transformation q = u[ ]i
C[ ]

: u[ ] → u[ ] :

C→ C[ ] which represents the identity 2-morphism of the 1-morphism u[ ] in Au
∞. Choose

a map h : ObC[ ] → ObC in such a way that (X[0])h = X = Xw for all objects X of
C and that the objects Y and Y h[0] were isomorphic in H0(C[ ]) for all objects Y of C[ ].
Choose cycles Y r0 ∈ C[ ](Y, Y h[0])[1]−1, Y ∈ ObC[ ] which represent these isomorphisms

taking X[0]r0 = X[0]i
C[ ]

0 = Xq0 for all objects X of C. The hypotheses of Proposition 9.22

are satisfied. We deduce from it that there exists an A∞-equivalence ψ = U[ ] : C
[ ] → C

such that u[ ] · U[ ] = idC.

10.38 Remark. Let X, Y, Z be unital A∞-categories. Equation (4.17.1), which can be
written for an arbitrary symmetric closed multicategory, takes for Au

∞ the form[
TsAu

∞(Y;Z)⊠ TsAu
∞(X;Y)

c→ TsAu
∞(X;Y)⊠ TsAu

∞(Y;Z)
M→ TsAu

∞(X;Z)
]

=
[
TsAu

∞(Y;Z)⊠ TsAu
∞(X;Y)

1⊠Au
∞( ;Z)
→ TsAu

∞(Y;Z)⊠ TsAu
∞(A

u
∞(Y;Z),A

u
∞(X;Z))

evA
u
∞
→ TsAu

∞(X;Z)
]
. (10.38.1)

By the closedness of the multicategory Au
∞, there exists a unique A∞-functor

Au
∞( ;Z) : A

u
∞(X;Y)→ Au

∞(A
u
∞(Y;Z),A

u
∞(X;Z))

which makes equation (10.38.1) hold true. A similar A∞-functor A∞( ;Z) is derived in
[LM08c, Appendix B.1]. The proof of Proposition 3.4 of [Lyu03] contains a recipe for
finding the components of Au

∞( ;Z). Namely, the equation

(p⊠ 1)M = [p.Au
∞( ;Z)]θ (10.38.2)

has to hold for all p ∈ TsAu
∞(X;Y). In particular,

f.Au
∞( ;Z) = (f ⊠ 1)M = (f ⊠ 1Z)M : Au

∞(Y;Z)→ Au
∞(X;Z) for f ∈ ObAu

∞(X;Y),

r.Au
∞( ;Z)1 = (r ⊠ 1)M = (r ⊠ 1Z)M : (f ⊠ 1)M → (g ⊠ 1)M for r ∈ sAu

∞(X;Y)(f, g).
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Other components of Au
∞( ;Z) are obtained from the recurrent relation, which is equa-

tion (10.38.2) written for p = p1 ⊗ · · · ⊗ pn:

(p1 ⊗ · · · ⊗ pn)Au
∞( ;Z)n = (p1 ⊗ · · · ⊗ pn ⊠ 1)M

−
l>1∑

i1+···+il=n
[(p1 ⊗ · · · ⊗ pn).(Au

∞( ;Z)i1 ⊗ Au
∞( ;Z)i2 ⊗ · · · ⊗ Au

∞( ;Z)il)]θ. (10.38.3)

In particular, for r ⊗ t ∈ T 2sAu
∞(X;Y) we get

(r ⊗ t)Au
∞( ;Z)2 = (r ⊗ t⊠ 1)M − [(r ⊠ 1)M ⊗ (t⊠ 1)M ]θ.

Given g0
p1→ g1

p2→ . . . gn−1
pn→ gn we find from (10.38.3) the components of the

A∞-transformation

(p1 ⊗ · · · ⊗ pn)Au
∞( ;Z)n ∈ sAu

∞(A
u
∞(Y;Z),A

u
∞(X;Z))((g

0 ⊠ 1)M, (gn ⊠ 1)M)

in the form

[(p1 ⊗ · · · ⊗ pn)Au
∞( ;Z)n]m = (p1 ⊗ · · · ⊗ pn ⊠ 1)Mnm.

So they vanish for m > 1.
Since the A∞-functor Au

∞( ;Z) is unital, its first component takes the unit transfor-

mation iX of id : X→ X to the unit transformation

iX.Au
∞( ;Z)1 = (iX ⊠ 1)M : id→ id : Au

∞(X;Z)→ Au
∞(X;Z).

Notice that the A∞-category Au
∞(X;Z) has another unit transformation (1⊠iZ)M , thereby

equivalent to (iX ⊠ 1)M .

10.39 Proposition. Let A, C be unital A∞-categories, and let C be closed under shifts.
Let A∞-equivalence U[ ] = UC

[ ] : C
[ ] → C satisfy the equation u[ ] · U[ ] = idC (it exists by

Proposition 10.37). Then the strict A∞-functor A
u
∞(u[ ],C) = (u[ ] ⊠ 1)M : Au

∞(A
[ ],C) →

Au
∞(A,C) is an A∞-equivalence which admits a one-sided inverse

F[ ] =
[
Au
∞(A,C)

−[ ]

→Au
∞(A

[ ],C[ ])
Au∞(A[ ],U[ ])→Au

∞(A
[ ],C)

]
(quasi-inverse to Au

∞(u[ ],C)), namely, F[ ] · Au
∞(u[ ],C) = idAu∞(A,C).

Proof. The naturality of the Au
∞-2-transformation u[ ] is expressed by the equation

[
Au
∞(A,B)

−[ ]

→Au
∞(A

[ ],B[ ])
(u[ ]⊠1)M

→Au
∞(A,B

[ ])
]
= (1⊠ u[ ])M. (10.39.1)
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It implies that the A∞-functor F[ ] is a one-sided inverse to Au
∞(u[ ],C). Indeed,

F[ ] · Au
∞(u[ ],C) =

[
Au
∞(A,C)

−[ ]

→Au
∞(A

[ ],C[ ])
Au∞(A[ ],U[ ])→Au

∞(A
[ ],C)

Au∞(u[ ],C)→Au
∞(A,C)

]
=
[
Au
∞(A,C)

−[ ]

→Au
∞(A

[ ],C[ ])
Au∞(u[ ],1)→Au

∞(A,C
[ ])

Au∞(1,U[ ])→Au
∞(A,C)

]
=
[
Au
∞(A,C)

Au∞(1,u[ ])→Au
∞(A,C

[ ])
Au∞(1,U[ ])→Au

∞(A,C)
]
= Au

∞(1, u[ ]U[ ]) = id

due to Lemmata 4.13 and 4.15.
Composition of these A∞-functors in the other order gives on objects (unital A∞-func-

tors f : A[ ] → C) the following:

f 7→ u[ ]f 7→ (u[ ]f)
[ ]U[ ] = u

[ ]
[ ]f

[ ]U[ ] ≃ u[ ]f
[ ]U[ ] = fu[ ]U[ ] = f.

Indeed, due to Corollary 10.36 there is an isomorphism of A∞-functors r : u
[ ]
[ ] → u[ ] :

A[ ] → A[ ][ ]. Let us prove that this composition is isomorphic to identity A∞-functor. It
is given by the top–right–bottom exterior path in the following diagram, which describes
a natural A∞-transformation:

Au
∞(A

[ ],C)
Au∞(u[ ],C)→Au

∞(A,C)
−[ ]

→Au
∞(A

[ ],C[ ])

=

Au
∞(A

[ ],C)

wwwwww
−[ ]

→Au
∞(A

[ ][ ],C[ ])

Au∞(u
[ ]
[ ],C

[ ])
→

(r⊠1)M⇓

Au∞(u[ ],C
[ ])
→Au

∞(A
[ ],C[ ])

wwwwww
= =

Au
∞(A

[ ],C)

id

↓
←

Au∞(A[ ],U[ ])
Au
∞(A

[ ],C[ ])

wwwwwwAu∞(A[ ],u[ ]) →

Since the A∞-functor A
u
∞( ,C

[ ]) is unital, its first component takes the isomorphism r to

an isomorphism r.Au
∞( ,C

[ ])1 = (r ⊠ 1)M : (u
[ ]
[ ] ⊠ 1)M → (u[ ] ⊠ 1)M . Thus the above

diagram gives an isomorphism of the top–right–bottom exterior path with the left column,
which is the identity functor. The proposition is proven.

10.40 Corollary. Let A, C be unital A∞-categories, and let C be closed under shifts.
Then the restriction map Au

∞(u[ ],C) : A
u
∞(A

[ ],C)→ Au
∞(A,C) is surjective.

10.41 Corollary. Let A, B be unital A∞-categories. Then the A∞-functor

−[ ] : Au
∞(A,B)→ Au

∞(A
[ ],B[ ])

is homotopy full and faithful, that is, its first component is homotopy invertible.
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Proof. Consider equation (10.39.1). The first component of Au
∞(A, u[ ]) = (1 ⊠ u[ ])M in

the right hand side (composition with u[ ]) is an isomorphism, since u[ ] is a strict full

embedding. The first component of the second functor Au
∞(u[ ],B

[ ]) in the left hand side
is homotopy invertible by Proposition 10.39. Therefore, the first component of the first
functor −[ ] in the left hand side is homotopy invertible.

10.42 Lemma. Let f : A → B be an A∞-equivalence. Let objects Xf , Y f of B be
isomorphic via inverse to each other isomorphisms r ∈ sB(Xf, Y f), p ∈ sB(Y f,Xf) (in
the sense of Definition 9.12). Then the objects X, Y of A are isomorphic via inverse
to each other isomorphisms q ∈ sA(X, Y ), t ∈ sA(Y,X) such that qf1 − r ∈ Im b1,
tf1 − p ∈ Im b1.

Proof. Let chain maps gX,Y : sB(Xf, Y f) → sA(X, Y ), gY,X : sB(Y f,Xf) → sA(Y,X)
be homotopy inverse to maps f1 : sA(X, Y )→ sB(Xf, Y f), f1 : sA(Y,X)→ sB(Y f,Xf).
Define q = rgX,Y , t = pgY,X . Then

[(q ⊗ t)b2 − Xi
A
0 ]f1 = (rg ⊗ pg)b2f1 − Xi

A
0 f1 ≡ (rg ⊗ pg)(f1 ⊗ f1)b2 − Xf i

B
0

= [(r + vb1)⊗ (p+ wb1)]b2 − Xf i
B
0 ≡ (r ⊗ p)b2 − Xf i

B
0 ≡ 0 (mod Im b1).

Hence,
(q ⊗ t)b2 − Xi

A
0 ≡ [(q ⊗ t)b2 − Xi

A
0 ]f1gX,X ≡ 0 (mod Im b1).

By symmetry, (t⊗ q)b2 − Y i
A
0 ∈ Im b1. Other properties are easy to verify.

10.43 Quotients and shifts. Let B be a full subcategory of a unital A∞-category
C. Denote by i : B ⊂ → C the inclusion A∞-functor, and by e : C→ q(C|B) the quotient
functor. By construction e can be chosen so that Ob q(C|B) = ObC, Ob e = idObC

[LM08c]. Similarly, in the diagram below i[ ] is a full embedding and e′ is the quotient
functor:

B ⊂
i → C

e → q(C|B)

= q(C[ ]|B[ ]) =====
χ
⇒

f

←

B[ ]

uB[ ]

↓
⊂

i[ ] → C[ ]

uC[ ]

↓

e[ ]
→

α

⇐=
==
==
==
==
==
==
==
=

e′

→
β�
wwwww

q(C|B)[ ]

u[ ]

↓g →

(10.43.1)

Here existence ofA∞-functors f , g and natural isomorphisms α, β follows from universality

of quotients. Since B ⊂
i→ C

uC[ ]→ C[ ] e′→ q(C[ ]|B[ ]) is contractible, there exists a unital

A∞-functor f and an isomorphism α : ef
∼→ uC[ ]e

′ : C → q(C[ ]|B[ ]). Since i[ ]e[ ] is
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contractible by Remark 10.31, there exists a unital A∞-functor g and an isomorphism

β : e′g
∼→ e[ ] : C[ ] → q(C|B)[ ]. Since B ⊂

i→ C
uC[ ]→ C[ ] e[ ]→ q(C|B)[ ] is contractible,

there exists a unital A∞-functor ϕ : q(C|B) → q(C|B)[ ] together with an isomorphism

eϕ
∼→ uC[ ]e

[ ] : C → q(C|B)[ ]. Actually, previous data allow to construct two such pairs:

fg and u[ ] together with isomorphisms

e(fg)
(αg)β→ uC[ ]e

[ ]====
id

eu[ ] : C→ q(C|B)[ ]. (10.43.2)

Theorem 1.3 of [LM08c] implies that

(e⊠ 1)M : Au
∞(q(C|B), q(C|B)[ ])→ Au

∞(C, q(C|B)[ ])modB,

is an A∞-equivalence. By Lemma 10.42 isomorphism (10.43.2) is equal to eχ for some
isomorphism χ : fg → u[ ] : q(C|B)→ q(C|B)[ ].

10.44 Lemma. Let i : B ⊂ → C, i′ : B′ ⊂ → C′ be full subcategories of unital A∞-cate-
gories. Denote e : C → q(C|B), e′ : C′ → q(C′|B′) the quotient functors. Let ϕ : B → B′,
ψ : C → C′ be unital A∞-functors such that iψ = ϕi′. There exists a unital A∞-functor
f : q(C|B) → q(C′|B′) and an isomorphism α : ef → ψe′. If ϕ, ψ are A∞-equivalences,
then f is an A∞-equivalence as well.

Proof. Choose a map Ob ξ : ObC′ → ObC, X ′ 7→ X ′ξ so that X ′ξψ were isomorphic
to X ′ in C′. Since ϕ : B → B′ is essentially surjective on objects we may assume
that (ObB′)Ob ξ ⊂ ObB. Extend the map Ob ξ to an A∞-equivalence ξ : C′ → C,
quasi-inverse to ψ via [Lyu03, Theorem 8.8]. It restricts to the subcategory B′ as an
A∞-equivalence γ : B′ → B, quasi-inverse to ϕ. There exists a unital A∞-functor
h : q(C′|B′)→ q(C|B) and an isomorphism β : e′h→ ξe as shown in the diagram:

B ⊂
i → C

e→ q(C|B)

=

B′

ϕ
↓

⊂
i′ → C′

ψ
↓

e′→

α

⇐=
==
==
==
==

q(C′|B′)

f
↓

=

B

γ
↓

⊂
i → C

ξ
↓

e→

β

⇐=
==
==
==
==

q(C|B)

h
↓

Theorem 1.3 of [LM08c] implies that

(e⊠ 1)M : Au
∞(q(C|B), q(C|B))→ Au

∞(C, q(C|B))modB,

is an A∞-equivalence. The object e of the target A∞-category comes from the object id of
the source A∞-category. The A∞-functor e is isomorphic to the objects ψξe ≃ efh of the
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target A∞-category. By Lemma 10.42 the objects fh and id of the source A∞-category
are isomorphic. Similarly, hf ≃ id, therefore, f and h are A∞-equivalences, quasi-inverse
to each other.

10.45 Proposition. Assume that B, C are closed under shifts. Then q(C|B) is closed
under shifts as well, and f : q(C|B) → q(C[ ]|B[ ]), g : q(C[ ]|B[ ]) → q(C|B)[ ] from dia-
gram (10.43.1) are A∞-equivalences.

Proof. We have Ob q(C|B) = ObC and Ob q(C|B)[ ] = ObC × Z. There is a function
ψ : ObC× Z→ ObC, (X,n) 7→ [X,n] together with inverse to each other isomorphisms

r0 ∈ sC[ ]([X,n][0], X[n]), p0 ∈ sC[ ](X[n], [X,n][0]).

Take the same function ψ : Ob q(C|B)[ ] → Ob q(C|B) together with inverse to each other
isomorphisms

r0e
[ ]
1 ∈ sq(C|B)[ ]([X,n][0], X[n]), p0e

[ ]
1 ∈ sq(C|B)[ ](X[n], [X,n][0]).

Notice that Ob e[ ] = idC[ ]. Their existence shows that q(C|B) is closed under shifts. By
Proposition 10.33 the A∞-functor u[ ] : q(C|B)→ q(C|B)[ ] is an equivalence.

By Lemma 10.44 the A∞-functor f is an equivalence. Since fg ≃ u[ ] is an A∞-equiv-
alence, so is g.

10.46 Proposition. The functor g : q(C[ ]|B[ ])→ q(C|B)[ ] from (10.43.1) is an A∞-equiv-
alence.

Proof. Let us describe the following diagram:

B[ ] ⊂
i[ ] → C[ ] e[ ] → q(C|B)[ ]

q(C[ ]|B[ ])

β

~wwww g

→
e′ →

=

q(C[ ][ ]|B[ ][ ])

k↓

B[ ][ ]

(uB[ ])
[ ]

↓
⊂

i[ ][ ] → C[ ][ ]

(uC[ ])
[ ]

↓

e′[ ]
→

ξ

⇐=
==
==
==
==
==
==
=

e′′

→
γ�
wwwww

q(C[ ]|B[ ])[ ]

f [ ]

↓h →

Here i[ ][ ] : B[ ][ ] → C[ ][ ] is a full embedding and e′′ : C[ ][ ] → q(C[ ][ ]|B[ ][ ]) is a quotient
map. Note that (uA[ ])

[ ] is an A∞-equivalence by Corollary 10.36. By Lemma 10.44 there

exist a unital A∞-functor k : q(C[ ]|B[ ]) → q(C[ ][ ]|B[ ][ ]) and an isomorphism ξ : e′k →
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(uC[ ])
[ ]e′′ : C[ ] → q(C[ ][ ]|B[ ][ ]). By the same lemma k is an A∞-equivalence. The functor

i[ ][ ]e′[ ] is contractible by Remark 10.31, therefore, there exist a unital A∞-functor h :
q(C[ ][ ]|B[ ][ ]) → q(C[ ]|B[ ])[ ] and an isomorphism γ : e′′h → e′[ ]. Since C[ ] and B[ ] are
closed under shifts, the functor h is an A∞-equivalence by Proposition 10.45. We have
the following isomorphism

e′gf [ ]
βf [ ]

∼
→ e[ ]f [ ]

α[ ]

∼
→ (uC[ ])

[ ]e′[ ]
(uC[ ])

[ ]γ−1

∼
→ (uC[ ])

[ ]e′′h
ξ−1h

∼
→ e′kh : C[ ] → q(C[ ]|B[ ])[ ]. (10.46.1)

Theorem 1.7 implies that

(e′ ⊠ 1)M : Au
∞(q(C

[ ]|B[ ]), q(C[ ]|B[ ])[ ])→ Au
∞(C

[ ], q(C[ ]|B[ ])[ ])modB[ ]

is an A∞-equivalence. By Lemma 10.42 isomorphism (10.46.1) is equal to e′ζ for some
isomorphism ζ : gf [ ] → kh : q(C[ ]|B[ ])→ q(C[ ]|B[ ])[ ]. In particular, gf [ ] is an A∞-equiv-

alence. On the other hand, f [ ]g[ ] ≃ (u
q(C|B)
[ ] )[ ] via the isomorphism χ[ ]. The functor

(u
q(C|B)
[ ] )[ ] is an A∞-equivalence, hence so is f [ ]g[ ]. This shows that f [ ] has left and right

quasi-inverses, hence it is an A∞-equivalence. Since gf
[ ] is an A∞-equivalence, so is g.

10.47 Embedding A∞(A,C)
[ ] ↪→ A∞(A,C

[ ]). As was suggested by Kontsevich in his
letter to Beilinson [Kon99], the monad −[ ] (and similar monads introduced below) behaves
like a completion. Thus it should, in a sense, commute with taking the A∞-category of
A∞-functors. Let us provide the details.

Let A, C be A∞-categories. A strict A∞-functor F : A∞(A,C)
[ ] → A∞(A,C

[ ]) is
defined as the composition

F =
[
A∞(A;C)[ ]

S→ A∞(A
[ ],C[ ])

A∞(u[ ];1)→ A∞(A;C[ ])
]
.

It assigns to an object (f : A → C, n) of A∞(A,C)
[ ] the A∞-functor f·[n] : A → C[ ] that

maps X ∈ ObA to Xf [n] = (Xf, n) ∈ C[ ] and whose components are given by

f·[n]k : ⊗i∈ksA(Xi−1, Xi)
fk→ sC(X0f,Xkf) = sC[ ](X0f [n], Xkf [n]).

The first component is found from (10.19.5) as

F1 : sA∞(A,C)
[ ]((f, n), (g,m)) = sA∞(A,C)(f, g)[m− n]

=

X0,...,Xk∈ObA∏
k⩾0

Ck(⊗i∈ksA(Xi−1, Xi), sC(X0f,Xkg))[m− n]

→
X0,...,Xk∈ObA∏

k⩾0

Ck(⊗i∈ksA(Xi−1, Xi), sC(X0f,Xkg)[m− n])



324 10. A∞-categories closed under shifts

=

X0,...,Xk∈ObA∏
k⩾0

Ck(⊗i∈ksA(Xi−1, Xi), sC
[ ](X0f [n], Xkg[m])) = sA∞(A,C

[ ])(f·[n], g·[m]).

It maps rsm−n ∈ sA∞(A,C)
[ ]((f, n), (g,m)) to the transformation (rsm−n)F1 : f·[n] →

g·[m] : A→ C[ ] given by the components

⊗i∈ksA(Xi−1, Xi)
rk→ sC(X0f,Xkg)

sm−n

→ sC[ ](X0f [n], Xkg[m]).

Clearly, F1 is a bijection. Therefore we have a full embedding F : A∞(A,C)
[ ] ↪→

A∞(A,C
[ ]). If f : A → C is a unital A∞-functor, then so is f·[n] : A → C[ ]. Indeed, if

Xi
A
0 f1 = Xf i

C+vb1 for some v ∈ sC(Xf,Xf) = sC[ ](Xf [n], Xf [n]), then also Xi
A
0 f · [n]1 =

Xf [n]i
C[ ]

+ vb
[ ]
1 . Therefore F restricts to an embedding Au

∞(A,C)
[ ] ↪→ Au

∞(A,C
[ ]).

10.48 Corollary. Let C be an A∞-category closed under shifts. Then for an arbitrary
A∞-category A the category A∞(A,C) is closed under shifts. If A is unital, then the
category Au

∞(A,C) is closed under shifts as well.

Proof. Consider the composite functor

A∞(A,C)
u[ ]→A∞(A,C)

[ ] F→A∞(A,C
[ ]).

It coincides with the functor (1⊠ u[ ])M , which is an equivalence since so is u[ ] : C→ C[ ].

In particular, it is essentially surjective. Let (f, n) be an object of A∞(A,C)
[ ], then the

object (f, n)F is isomorphic to an object gu[ ]F = (g, 0)F for some g ∈ ObA∞(A,C).
Since F is a full embedding, it follows that (g, 0) is isomorphic to (f, n), which means
closedness of A∞(A,C) under shifts. The case of Au

∞(A,C) is treated similarly.



Chapter 11

The Maurer–Cartan A∞-2-monad

We shall study a functor assigning to a given A∞-category C another A∞-category which,
in a sense, consists of solutions to the Maurer-Cartan equation in C. First we construct
a precursor of this functor for which no Maurer-Cartan equation is written. Nevertheless
there is a functor −mC in the category of quivers which will have applications to the
A∞-category case. We construct also the multifunctor version −MC of it.

Next, we consider the A∞-category AMc of bounded complexes in an arbitrary A∞-cat-
egory A. Its underlying quiver is a full subquiver of AMC. We may say that objects of
AMc are solutions to the Maurer-Cartan equation. Equivalently, they are A∞-functors of
the form (Jk)k∈K → A, where Jk are An-type quivers viewed as A∞-categories with zero
operations. This gives an augmented multifunctor −Mc : A∞ → A∞. A smaller version
Amc ↪→ AMc consists of A∞-functors of the form J → A with K = 1. This provides
an A∞-2-monad −mc : Au

∞ → Au
∞. When the unit of this monad umc : A → Amc is an

A∞-equivalence, the unital A∞-category A is said to be mc-closed. The multiplication
mmc : A

mcmc → Amc of this monad resembles taking the total complex of a bicomplex. It
is always an A∞-equivalence, thus the monad −mc is a kind of completion. In a certain
sense it commutes with taking quotients and A∞-categories of A∞-functors.

11.1 Simple and multiple Maurer–Cartan quivers. Consider the category of
partitions P. Its objects are sets m = {1, 2, . . . ,m}, where m ∈ Z⩾0. The morphisms
m→ n are embeddings x 7→ x + y for some y ∈ Z⩾0. The subsets I = Z ∩ [a, b] ⊂ Z for
some positive integers a ⩽ b are called intervals.

Let I ∈ ObP be the interval m for some m ∈ Z⩾0. Turn I into a graded k-linear
quiver with the set of objects I. The only non-trivial graded modules of morphisms are
I(i, i+ 1) = k[−1] concentrated in degree 1.

Let C be a graded k-linear quiver. We associate with it its simple Maurer–Cartan
quiver CmC. Objects of CmC are elements X of

ObCmC = ⊔m⩾0Q(m;C),

that is, morphisms X : I → C ∈ Q, ObX : i 7→ Xi = (i)X, where i ∈ I ∈ ObP. Besides
Xi the morphism X, or equivalently X : T⩾1sI → sC ∈ Q, is determined by k-linear
maps of degree 0 for all i < j, i, j ∈ I,

Xij : k ≃ sI(i, i+ 1)⊗ · · · ⊗ sI(j − 1, j)→ sC(Xi, Xj),

325
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that is, by elements xij ∈ sC(Xi, Xj) of degree 0, i < j, i, j ∈ I. The graded k-module of
morphisms between objects X : I → C and Y : J → C of CmC is defined as

CmC(X, Y )
def
=

∏
i∈I, j∈J

C(Xi, Yj).

Given I ∈ ObP we define an embedding of graded k-linear quivers ι : Q(I;C) ⊂ → CmC

which takes an object X : I → C ∈ Q, ObX : i 7→ Xi to itself. On morphisms it is the
split embedding

ι : Q(I;C)(X, Y ) ≃
∏

i,j∈I, i⩽j

C(Xi, Yj) ⊂ →
∏
i,j∈I

C(Xi, Yj) = CmC(X, Y ). (11.1.1)

Iterations of the map −mC are denoted CmCn = (CmCn−1

)mC. In particular, CmC0

= C.
Let us define inductively in n ⩾ 0 a map ι : Q(I1, . . . , In;C) ⊂ → ObCmCn, X 7→ X̃,

Ij ∈ ObP. For n = 0 this is the identification Q(;C) = Qu(⊠∅(), sC) = Q(1u, sC) ≃ ObC.
For n = 1 this is the canonical embedding. Assuming the map ι already defined for n− 1
we define it for n > 1 as the composition

Q(I1, . . . , In;C) ≃ Q(I2, . . . , In;Q(I1;C)) ⊂
Q((1);ι)→ Q(I2, . . . , In;C

mC)

⊂
ι→ Ob(CmC)mCn−1

= ObCmCn, X 7→ X̃. (11.1.2)

Let Y ∈ Q(K1, . . . , Kn;C) be one more multimorphism. Define a partially ordered set
suppX =

∏
j∈n Ij ∋ i, i ⩽ i′ iff ij ⩽ i′j for all j ∈ n. Naturally, i < i′ iff i ⩽ i′ and i ̸= i′.

For n = 0 the set suppX is a 1-element set. Similarly for suppY =
∏

j∈nKj. Let us
prove by induction in n ⩾ 0 that

CmCn(X̃, Ỹ ) =
∏

i∈suppX, k∈suppY

C(iX, kY ) =
∏

ij∈Ij , kj∈Kj , j∈n

C
(
(i1, . . . , in)X, (k1, . . . , kn)Y

)
.

This holds for n = 0, 1. For n > 1 the first isomorphism in (11.1.2) takes X to X ′ such
that ObX ′ : (i2, . . . , in) 7→ (−, i2, . . . , in)X ∈ Q(I1;C), where the element (−, i2, . . . , in)X
is constructed by fixing certain indices in given data for X. By induction assumption we
may write

CmCn(X̃, Ỹ ) =
∏

i2∈I2,...,in∈In, k2∈K2,...,kn∈Kn

CmC
(
(−, i2, . . . , in)X, (−, k2, . . . , kn)Y

)
=

∏
i1∈I1,...,in∈In, k1∈K1,...,kn∈Kn

C
(
(i1, . . . , in)X, (k1, . . . , kn)Y

)
.

We extend by induction the embedding ι of graded k-linear quivers to

Q(I1, . . . , In;C) ≃ Q(I2, . . . , In;Q(I1;C)) ⊂
Q(▷;ι)
→Q(I2, . . . , In;C

mC) ⊂
ι→ (CmC)mCn−1

= CmCn.
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On objects it gives (11.1.2). One can prove by induction that on morphisms ι coincides
with the split embedding

ι : Q(I1, . . . , In;C)(X, Y ) ≃ Qp(⊠
j∈nTsIj, sC)(X, Y )[−1] ≃∏

ij⩽kj∈Ij , j∈n

C
(
(i1, . . . , in)X, (k1, . . . , kn)Y

)
⊂ →

∏
ij ,kj∈Ij , j∈n

C
(
(i1, . . . , in)X, (k1, . . . , kn)Y

)
= CmCn(X̃, Ỹ ). (11.1.3)

For n = 0 this is an isomorphism. The above formula gives another presentation of
embedding ι:

Q(I1, . . . , In;C) ≃ Q(In;Q(I1, . . . , In−1;C)) ⊂
Q(1;ι)
→Q(In;C

mCn−1

) ⊂
ι→ (CmCn−1

)mC = CmCn.
(11.1.4)

We have a full embedding of graded k-linear quivers umC : C ⊂ → CmC, X 7→ (X ′ :
1→ C), X ′1 = X, with the obvious identification of morphisms. The full embeddings umC

give an inductive system of quivers and its colimit

CmC∞ def
= lim
−→

(
C ⊂

umC→ CmC ⊂
umC→ CmC2

⊂
umC→ CmC3

. . .
)
.

The multiple Maurer–Cartan quiver CMC of C is defined as a full subquiver of CmC∞
.

More precisely, objects of CMC are elements X of Q((Ij)j∈n;C), n ⩾ 0, Ij ∈ ObP. Besides

Xi = (i)X, i ∈ suppX
def
=
∏

j∈n Ij, the multimorphism X : (Ij)j∈n → C ∈ Q, or equiva-

lently X : ⊠j∈n
u T⩾1sIj → sC ∈ Q, or X : ⊠j∈nTsIj → sC ∈ Q, is determined by k-linear

maps of degree 0 for i, k ∈
∏

j∈n Ij, i ̸= k, ij ⩽ kj for all 1 ⩽ j ⩽ n,

Xik : k→ sC(Xi, Xk),

that is, by elements xik ∈ sC(Xi, Xk) of degree 0 for i, k ∈ suppX, such that i ̸= k and
ij ⩽ kj for all 1 ⩽ j ⩽ n.

Let us define a map ObCMC → ObCmC∞
= ∪n∈Z⩾0

ObCmCn, X 7→ ιX = X̃ by (11.1.2).

We use it to define CMC(X, Y ) as CmC∞
(X̃, Ỹ ).

Let X : (I1, . . . , In) → C be a multimorphism in Q, specified by Xi ∈ ObC, i ∈
suppX, and by xik ∈ sC(Xi, Xk), i, k ∈ suppX, such that i ̸= k and ij ⩽ kj for all
1 ⩽ j ⩽ n. Then it extends to the multimorphism X ′ : (I1, . . . , In,1)→ C in Q, specified
by X ′(i,1) = Xi, i ∈ suppX, and by x′(i,1),(k,1) = xik, where i, k ∈ suppX. Notice that

suppX ′ = (suppX)× 1. Then the particular case of (11.1.4):

Q(I1, . . . , In,1;C) ≃ Q(1;Q(I1, . . . , In;C)) ⊂
Q(1;ι)→ Q(1;CmCn) ⊂

ι→ (CmCn)mC = CmCn+1

shows that X̃ ′ = umC(X̃).
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Given two objects of CMC, namely, X : (Ij)j∈n → C ∈ Q and Y : (Kl)l∈m → C ∈ Q,
we find the graded k-module CMC(X, Y ) as follows. Let p be an integer, p ⩾ n,m. Let
X ′ : (Ij)j∈n, (1)p−n → C ∈ Q and Y ′ : (Kl)l∈m, (1)p−m → C ∈ Q extend X and Y by
iterating the above procedure. Then

CMC(X, Y ) = CmC∞
(X̃, Ỹ ) ≃ CmCp(X̃ ′, Ỹ ′)

=
∏

i′∈suppX ′, k′∈suppY ′

C(i′X ′, k′Y ′) ≃
∏

i∈suppX, k∈suppY

C(iX, kY ), (11.1.5)

due to the bijection suppX ′ = (suppX) × 1 × · · · × 1 ≃ suppX, (i, 1, . . . , 1) 7→ i and a
similar bijection for Y . Moreover, this shows that CMC(X, Y ) ≃ CMC(X ′, Y ′), where X ′,
Y ′ are obtained from X, Y by adding an arbitrary number of intervals 1, say, p − n for
X and q −m for Y such that q may differ from p.

We have the full embedding umC : C → CmC, ObumC : ObC ≃ Q(1;C) ↪→ CmC,
X 7→ (1 7→ X) into the simple Maurer–Cartan quiver. There is also another embedding
uMC : C → CMC, ObuMC : ObC ≃ Q(;C) ↪→ CMC, X 7→ X into the multiple Maurer–
Cartan quiver.

11.2 Maurer–Cartan multifunctor. Let f : (Cj)j∈J → B be a multimorphism
in Q, in the form f : ⊠j∈JTsCj → sB. We would like to construct a multimorphism

fMC : (CMC
j )j∈J → BMC out of it, in the form fMC : ⊠j∈JTsCMC

j → sBMC. It will take

objects Xj : (I
k
j )k∈nj

→ Cj of C
MC
j to the object

(Xj)j∈Jf
MC =

[
((Ikj )k∈nj

)j∈J
(Xj)j∈J→ (Cj)j∈J

f→B
]

of BMC. Here the indexing set of the system of intervals is n ≃ ⊔j∈Jnj.
In order to describe it on morphisms we associate with an object X : (I1, . . . , In)→ C

of CMC some other objects of CMC. Let C∗ denote the graded k-linear quiver with one object
0 added such that C∗(0,−) = C∗(−, 0) = 0. Let ej = +Nj : Ij ⊂ →Kj, ij 7→ ij + Nj

be embeddings of intervals, Nj ∈ Z⩾0, Kj ∈ ObP, 1 ⩽ j ⩽ n. Also ej : 1 ⊂ →Kj are
embeddings for n < j ⩽ m. Define an object eX = eX∗ = ∗X = X∗ : (K1, . . . , Km)→ C∗

of C∗MC as follows:

(k1, . . . , km)X
∗ = (i1, . . . , in)X if kj = ij +Nj for all 1 ⩽ j ⩽ n

and all kj ∈ Im ej for n < j ⩽ m, and (k1, . . . , km)X
∗ = 0 if kj /∈ Im(ej : Ij ⊂ →Kj) for

some j ∈m. Furthermore, for all k, k′ ∈
∏m

j=1Kj the element exkk′ has to vanish if kj or
k′j is not in Im ej for some j ∈m, otherwise, exkk′ = xii′, where kj = ij+Nj, k

′
j = i′j+Nj,

for 1 ⩽ j ⩽ n, i, i′ ∈
∏n

j=1 Ij.

Let X : (I1, . . . , In) → C, Y : (L1, . . . , Lp) → C be objects of CMC. Let m ⩾ n, p, and
let Ij = 1 for n < j ⩽ m, Lj = 1 for p < j ⩽ m. Let ej : Ij ⊂ →Kj, e

′
j : Lj

⊂ →Kj,
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j ⩽ m, be embeddings in P. Then there is the embedding

ι : Q(K1, . . . , Km;C)(
eX, e

′
Y ) ⊂ → CMC(eX, e

′
Y )

∼→ CMC(X, Y ),

given by (11.1.3). The second arrow, an isomorphism due to (11.1.5), consists in dropping
zeroes from the direct product. If Im ej ⩽ Im e′j for all 1 ⩽ j ⩽ m, then the embedding ι
is an isomorphism.

Let Xr
j : (sIrj )

nrj
s=1 → Cj, 0 ⩽ r ⩽ mj, be objects of CMC

j . Let nj ⩾ maxr(n
r
j).

Consider embeddings serj : sIrj
⊂ →Ks

j , 1 ⩽ s ⩽ nrj,
serj : 1 ⊂ →Ks

j , n
r
j < s ⩽ nj

such that Im ser−1j ⩽ Im serj for all j, r, s. Then we have extended objects ∗Xr
j = erjXr

j :

(Ks
j )
nj
s=1 → C∗j . The multimorphism f : (Cj)j∈J → B or f : ⊠j∈JTsCj → sB extends to

f ∗ : (C∗j)j∈J → B∗ or f ∗ : ⊠j∈JTsC∗j → sB∗ in a unique way by (. . . , 0, . . . )f ∗ = 0 on

objects and by zero on morphisms. Applying fMC we get objects(
erjXr

j

)
j∈Jf

MC =
[
(Ks

j )
s∈nj

j∈J
(
erjXr

j )j∈J→ (C∗j)j∈J
f∗→B∗

]
of BMC.

Consider the following diagram:

⊗j∈J ⊗r∈mj sQ
(
(Ks

j )s∈nj
;C∗j
)
(∗Xr−1

j , ∗Xr
j )

sQ
(
(Ks

j )
s∈nj

j∈J ;B
∗)((∗X0

j )f
∗, (∗X

mj

j )f ∗
)sQ(1,f∗) →

⊗j∈J ⊗r∈mj sCMC
j (∗Xr−1

j , ∗Xr
j )

⊗j∈J⊗mjι

↓

∩

sBMC
(
(∗X0

j )f
∗, (∗X

mj

j )f ∗
)

ι

↓

∩

g →

⊗j∈J ⊗r∈mj sCMC
j (Xr−1

j , Xr
j )

≀

↓

sBMC
(
(X0

j )f, (X
mj

j )f
)

≀

↓
fMC →

(11.2.1)

If conditions Im ser−1j ⩽ Im serj are satisfied, then all vertical arrows are isomorphisms and
there are unique morphisms g and

fMC : ⊠j∈JTsCMC
j (X0

j , X
mj

j )→ sBMC
(
(X0

j )j∈Jf
MC, (X

mj

j )j∈Jf
MC
)

which make this diagram commutative. Let us prove that fMC does not depend on the
choice of embeddings serj.

Let ⊗j∈J ⊗r∈mj pjr be an element of ⊗j∈J ⊗r∈mj sQ((Ks
j )s∈nj

;C∗j)(
∗Xr−1

j , ∗Xr
j ). It is

mapped by sQ(1, f ∗) = (1⊠ f ∗)µQ to

[⊠j∈J(⊗r∈mjpjr)θ]f ∗ =
∑[

⊠j∈J((∗X0
j )
⊗t0j⊗pj1⊗(∗X1

j )
⊗t1j⊗· · ·⊗pjmj⊗(∗Xmj

j )⊗t
mj
j
)]
f ∗ℓ ,

(11.2.2)
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where ℓ = (ℓj)j∈J , ℓ
j = t0j + · · ·+ t

mj

j +mj, j ∈ J , and summation is taken over all trj ⩾ 0,
j ∈ J , 0 ⩽ r ⩽ mj by (7.17.1), (7.16.3) and (7.6.4). Let us define the dashed arrow g by
imitating (11.2.2). An element ⊗j∈J⊗r∈mj ∗qjr of ⊗j∈J⊗r∈mj sCMC

j (∗Xr−1
j , ∗Xr

j ) is mapped
by g to∑[

⊠j∈J((∗X0
j )
⊗t0j ⊗ ∗qj1 ⊗ (∗X1

j )
⊗t1j ⊗ · · · ⊗ ∗qjmj ⊗ (∗X

mj

j )⊗t
mj
j
)]
f ∗ℓ . (11.2.3)

Then the top square always commutes independently of conditionsIm ser−1j ⩽ Im serj.

Let us find explicitly the lower arrow. Let ⊗j∈J ⊗r∈mj qjr be an element of ⊗j∈J ⊗r∈mj

sCMC
j (Xr−1

j , Xr
j ). It induces the corresponding element ⊗j∈J ⊗r∈mj ∗qjr of ⊗j∈J ⊗r∈mj

sCMC
j (∗Xr−1

j , ∗Xr
j ). Dropping zeroes in (11.2.3) we get the following formula for fMC:

(⊗j∈J ⊗r∈mj qjr)fMC =
∑[

⊠j∈J((X0
j )
⊗t0j ⊗ qj1⊗ (X1

j )
⊗t1j ⊗ · · · ⊗ qjmj ⊗ (X

mj

j )⊗t
mj
j
)]
fℓ,

(11.2.4)

which does not depend on embeddings serj. The bottom square of diagram (11.2.1) al-

ways commutes independently of conditions Im ser−1j ⩽ Im serj. Thus, the diagram is
commutative.

Associativity of composition in Q implies that fMC is a multimorphism. For similar
reasons, −MC : Q → Q is a multifunctor and the embedding uMC : Id → −MC : Q → Q is
a multinatural transformation. Thus, (−MC, uMC) is an augmented multifunctor.

11.3 Closing transformation −MC. According to Section 4.18, there is a natural
morphism in Q

MC(Ai);C : Q((Ai)i∈I ;C)
MC → Q((AMC

i )i∈I ;C
MC),

which is the closing transformation for the multifunctor −MC. We are going to compute
this morphism explicitly in the case I = 1. It is determined as a unique solution of the
following equation in Q:[

AMC,Q(A;C)MC id,MC→AMC,Q(AMC;CMC)
evQ→ CMC

]
= (evQ)MC. (11.3.1)

An object X : (Ip)p∈n → A of AMC is determined by a map ObX :
∏

p∈n Ip → ObA, i 7→
Xi, and a family of k-linear maps Xij : k→ sC(Xi, Xj) of degree 0, where i, j ∈

∏
p∈n Ip,

i ̸= j, ip ⩽ jp for all 1 ⩽ p ⩽ n. Similarly, an object f : (Ks)s∈m → Q(A;C) of Q(A;C)MC

is determined by a map Ob f :
∏

s∈mKs → ObQ(A;C), k 7→ fk, and a family of k-linear
maps fkl : k → sQ(A;C)(fk, f l) of degree 0, where k, l ∈

∏
s∈mKs, k ̸= l, ks ⩽ ls for all

1 ⩽ s ⩽ m. The morphism (evQ)MC assigns to the objects X, f the object[
(Ip)p∈n, (Ks)s∈m

X,f→A,Q(A;C)
evQ→ C

]
(11.3.2)
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of CMC. It is given by the map
∏

p∈n×
∏

s∈m → ObC, (i, k) 7→ Xif
k, and a family of

elements for (i, k), (j, l) ∈
∏

p∈n Ip ×
∏

s∈mKs, (i, k) ̸= (j, l), ip ⩽ jp, ks ⩽ ls for all
1 ⩽ p ⩽ n, 1 ⩽ s ⩽ m,∑

(Xi0i1 ⊗ · · · ⊗Xir−1ir)f
kl
r ∈ sC(Xif

k, Xjf
l), (11.3.3)

where the summation is taken over all sequences i0, i1, . . . , ir ∈
∏

p∈n Ip with it−1 ̸= it,
it−1,p ⩽ itp for all 1 ⩽ p ⩽ n, 1 ⩽ t ⩽ r, i0 = i, ir = j. The latter expression can be
abbreviated to

∑
r⩾0(X

⊗r)f . The components

evQa,c : T
asA⊠ T csQ(A;C)→ sC

of the evaluation morphism vanish unless c = 0 or c = 1. It follows from equation (11.2.4)
that the same is true for the components

(evQ)MC
a,c : T asAMC ⊠ T csQ(A;C)MC → sCMC.

By the same equation

(p1⊗ · · · ⊗ pr ⊠ f)(evQ)MC
r,0

=
∑

t0,...,tr⩾0

((X0)⊗t0 ⊗ p1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ pr ⊗ (Xr)⊗tr ⊠ f) evQt0+···+tr+r,0

=
∑

t0,...,tr⩾0

((X0)⊗t0 ⊗ p1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ pr ⊗ (Xr)⊗tr)ft0+···+tr+r, (11.3.4)

(p1⊗ · · · ⊗ pr ⊠ q)(evQ)MC
r,1

=
∑

t0,...,tr⩾0

((X0)⊗t0 ⊗ p1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ pr ⊗ (Xr)⊗tr ⊠ q) evQt0+···+tr+r,1

=
∑

t0,...,tr⩾0

((X0)⊗t0 ⊗ p1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ pr ⊗ (Xr)⊗tr)qt0+···+tr+r, (11.3.5)

where X0, . . . , Xr ∈ ObAMC, p1 ⊗ · · · ⊗ pr ∈ ⊗t∈rsAMC(X t−1, X t), f, g ∈ ObQ(A;C)MC,
q ∈ sQ(A;C)MC(f, g).

From equation (11.3.1) we obtain

(1⊗a ⊗ObMC) evQa,0 = (evQ)MC
a,0 :

⊗α∈a sAMC(Xα−1, Xα)⊗ T 0sQ(A;C)MC(f, f)→ sCMC(X0fMC, XafMC)

(1⊗a ⊗MCc) ev
Q
a,1 = (evQ)MC

a,c :

⊗α∈a sAMC(Xα−1, Xα)⊗⊗β∈csQ(A;C)MC(fβ−1, fβ)→ sCMC(X0(f 0)MC, Xa(f c)MC).

We conclude that MCc = 0 if c > 1. An element f : (Ks)s∈m → Q(A;C) of Q(A;C) is
mapped by ObMC to the morphism fMC : AMC → CMC specified below. It maps an object
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X : (Ip)p∈n → A of AMC to the object XfMC : (Ip)p∈n, (Ks)s∈m → C of CMC, determined by
the objects Xif

k ∈ ObC, (i, k) ∈
∏

p∈n Ip×
∏

s∈mKs, and elements (11.3.3). Components

of the morphism fMC are given by

(p1⊗· · ·⊗pr)fMC
r =

∑
t0,...,tr⩾0

((X0)⊗t0⊗p1⊗(X1)⊗t1⊗· · ·⊗pr⊗(Xr)⊗tr)ft0+···+tr+r (11.3.6)

for p1 ⊗ · · · ⊗ pr ∈ ⊗t∈rsAMC(X t−1, X t). An element q ∈ sQ(A;C)MC(f, g) is mapped by
MC1 to the element qMC ∈ sQ(AMC,CMC)(fMC, gMC) given by its components:

(p1⊗· · ·⊗pr)qMC
r =

∑
t0,...,tr⩾0

((X0)⊗t0⊗p1⊗(X1)⊗t1⊗· · ·⊗pr⊗(Xr)⊗tr)qt0+···+tr+r (11.3.7)

for p1 ⊗ · · · ⊗ pr ∈ ⊗t∈rsAMC(X t−1, X t).
Abusing the notation we define a strict morphism in Q (cf. Section 4.29)

−MC def
=
(
Q(A;B)

uMC→Q(A;B)MC MC→Q(AMC;BMC)
)
, f 7→ fMC, r 7→ rMC.

The proofs of Propositions 11.4, 11.5, 11.6 repeat those of Propositions 10.23, 10.24, 10.25
with −MC in place of −[ ] and MC in place of F .

11.4 Proposition. The following diagram commutes in Q for arbitrary quivers A, B, C:

Q(A;B),Q(B;C)
−MC,−MC

→Q(AMC;BMC),Q(BMC;CMC)

Q(A;C)

µQ

↓
−MC

→Q(AMC;CMC)

µQ

↓ (11.4.1)

11.5 Proposition. For an arbitrary morphism f : (Ai)i∈I → B in Q and a quiver C the
following diagram commutes:

Q(B;C)
−MC

→Q(BMC;CMC)

Q((Ai)i∈I ;C)

Q(f ;1)
↓

−MC

→Q((AMC
i )i∈I ;C

MC)

Q(fMC;1)↓ (11.5.1)

11.6 Proposition. For an arbitrary morphism f : (Bj)j∈J → C in Q, quivers Ai, i ∈ I,
and a map ϕ : I → J in Mor S the following diagram commutes:

(Q((Ai)i∈ϕ−1j;Bj))j∈J
(−MC)J→ (Q((AMC

i )i∈ϕ−1j;B
MC
j ))j∈J

Q((Ai)i∈I ;C)

Q(ϕ;f)
↓

−MC

→Q((AMC
i )i∈I ;C

MC)

Q(ϕ;fMC)↓ (11.6.1)
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11.7 The case of AmC. Let f : A→ B be a morphism in Q. It produces a morphism
fMC : AMC → BMC. There is a full embedding CmC ⊂ → CMC. Clearly, fMC maps the
full subquiver AmC into the full subquiver CmC. Indeed, an object X : I → A of AmC

is mapped by fMC to the object Xf : I → B of BmC. It is represented by the matrix
XfMC =

∑
n⩾1(X

⊗n)fn =
∑

1⩽n<|I|(X
⊗n)fn. The morphism f is extended to f ∗ : A∗ →

B∗ by the requirement 0f ∗ = 0.
Define fmC : AmC → BmC as the restriction of fMC. The components of fmC are

computed via

fmC
n =

[
sAmC(X0, X1)⊗ · · · ⊗ sAmC(Xn−1, Xn)

⊗ι−1
1

∼
→ sA∞(K,A

∗)(X0∗, X1∗)⊗ · · · ⊗ sA∞(K,A∗)(Xn−1∗, Xn∗)

(1⊠f∗)Mn0→ sA∞(K,B
∗)(X0∗f ∗, Xn∗f ∗)

ι1

∼
→ sBmC(X0f,Xnf)

]
for an arbitrary embedding e : I0 ⊔ I1 ⊔ · · · ⊔ In ⊂ →K and Xp : Ip → A. Let rp ∈
sAmC(Xp−1, Xp). The corresponding rp∗ are mapped by (1⊠ f ∗)Mn0 to

(r1∗ ⊗ · · · ⊗ rn∗ ⊠ f ∗)Mn0 =
∑
l>0

(r1∗ ⊗ · · · ⊗ rn∗)θ•lf ∗l

=
∑

t0,...,tn⩾0

[
(X0∗)⊗t0 ⊗ r1∗ ⊗ (X1∗)⊗t1 ⊗ · · · ⊗ rn∗ ⊗ (Xn∗)⊗tn

]
f ∗t0+···+tn+n

by [Lyu03, (4.1.3)]. Dropping zeroes we get a map of degree 0

(r1 ⊗ · · · ⊗ rn)fmC
n =

∑
t0,...,tn⩾0

[
(X0)⊗t0 ⊗ r1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ rn ⊗ (Xn)⊗tn

]
ft0+···+tn+n,

which does not depend on the embedding e.

Suppose thatA
f→B

g→ C are morphisms in Q. Then (fg)∗ =
(
A∗

f∗→B∗
g∗→ C∗

)
and (1⊠ (fg)∗)M = (1⊠f ∗g∗)M = (1⊠f ∗)M(1⊠g∗)M . Arbitrariness of the embeddings
e implies that (fg)mC = fmCgmC. Therefore, −mC : Q → Q is a functor (of ordinary
categories).

11.8 The closed version of −mC. Let p : f → g : A → B be an element of
Q(A;B)(f, g). It extends in a unique way (by zero) to an element p∗ : f ∗ → g∗ : A∗ → B∗.
Define the element pmC : fmC → gmC : AmC → BmC as follows. The components of pmC are
defined via

pmC
n =

[
sAmC(X0, X1)⊗ · · · ⊗ sAmC(Xn−1, Xn)

⊗ι−1

∼
→ sA∞(K,A

∗)(X0∗, X1∗)⊗ · · · ⊗ sA∞(K,A∗)(Xn−1∗, Xn∗)

(1⊠p∗)Mn1→ sA∞(K,B
∗)(X0∗f ∗, Xn∗g∗) ⊂

ι→ sBmC(X0f,Xng)
]
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for an arbitrary embedding e : I0 ⊔ I1 ⊔ · · · ⊔ In ⊂ →K. Let rq ∈ sAmC(Xq−1, Xq). The
last map ι1 is given by (11.1.1). It is an isomorphism if n > 0, and it is the embedding of
upper-triangular matrices into all matrices if n = 0. The corresponding rq∗ are mapped
by (1⊠ p∗)Mn1 to

(r1∗ ⊗ · · · ⊗ rn∗ ⊠ p∗)Mn1 =
∑
l⩾0

(r1∗ ⊗ · · · ⊗ rn∗)θ•lp∗l

=
∑

t0,...,tn⩾0

[
(x0∗)⊗t0 ⊗ r1∗ ⊗ (x1∗)⊗t1 ⊗ · · · ⊗ rn∗ ⊗ (xn∗)⊗tn

]
p∗t0+···+tn+n

by [Lyu03, (4.1.4)]. This formula holds for n = 0 as well. Dropping zeroes we get a map
of degree 0

(r1 ⊗ · · · ⊗ rn)pmC
n =

∑
t0,...,tn⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rn ⊗ (xn)⊗tn

]
pt0+···+tn+n,

which does not depend on the embedding e. In particular, for n = 0 we get

Xp
mC
0 =

∑
t⩾0

(x⊗t)pt.

11.9 Consequences of the closing transformation for multifunctor MC. The
closing transformation for the multifunctor MC : Q → Q allows to define a morphism in
Q

ϖMC =
[
Q(A;C)MC MC→Q(AMC;CMC)

Q(uMC;1)→Q(A;CMC)
]
.

It makes commutative the following diagram in the multicategory Q:

A,Q(A;C)MC uMC,1 →AMC,Q(A;C)MC

A,Q(AMC;CMC)
uMC,1
→

1,MC →
AMC,Q(AMC;CMC)

1,MC

←

uMC,MC

→

A,Q(A;CMC)

1,ϖMC

↓
ev →

1,Q(uMC,1)←
CMC

evMC

↓ev →

(11.9.1)

11.10 Proposition. The morphism ϖMC is a strict full embedding, that is, all its com-
ponents vanish except (ϖMC)1 : Q(A;C)MC(f, g) → Q(A;CMC)(fϖMC, gϖMC), which is an
isomorphism.

Proof. The morphism ϖMC = MC · (uMC⊠1)M in Q is strict as a composition of two strict
morphisms. Let us describe it on objects. Let A, C be graded quivers. An object f of
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Q(A;C)MC can be given by the following data: a family of functors supp f =
∏

j∈n Ij ∋
i 7→ f i ∈ Q(A;C), a family of transformations (of degree 0) f ij ∈ sQ(A;C)(f i, f j), i,
j ∈ supp f , i < j such that the Maurer-Cartan equation holds: for all i, j ∈ supp f , i < j

m>0∑
i<k1<···<km−1<j

(f ik1 ⊗ fk1k2 ⊗ · · · ⊗ fkm−1j)Bm = 0.

The morphism fϖMC : A → CMC assigned to f is due to diagram (11.9.1) and for-
mula (11.3.3). An objectX ∈ ObA is mapped to the objectXf : I1, . . . , In → C, i 7→ Xf i

of CMC. It is determined by the family of elements of degree 0 xij = Xf
ij
0 ∈ sC(Xf i, Xf j),

i, j ∈ supp f , i < j. Components of fϖMC are obtained as follows: the composition

⊗p∈nsA(Xp−1, Xp)
(fϖMC)n→ sCmC(X0f,Xnf) =

∏
i,j∈supp f

sC(X0f
i, Xnf

j)
pr−→ sC(X0f

i, Xnf
j)

equals f in for i = j, f ijn for i < j, and vanishes otherwise.
Let us describe the first component (ϖMC)1. An element q ∈ sQ(A;C)MC(f, g) is

mapped to element q(ϖMC)1 ∈ sQ(A;CMC)(fϖMC, gϖMC), given by the formula[
(p1 ⊗ · · · ⊗ pr)

(
q(ϖMC)1

)
r

]ij
= (p1 ⊗ · · · ⊗ pr)(qij)r ∈ sC(Xf i, Y gj)

for p1⊗· · ·⊗pr ∈ T rsA(X, Y ), i ∈ supp f , j ∈ supp g. This follows from formula (11.3.5),
since the sum there reduces to a single summand with t0 = · · · = tr = 0. The same
mapping can be presented as follows:

(ϖMC)1 : sQ(A;C)MC(f, g) =
∏

i∈supp f, j∈supp g

sQ(A;C)(f i, gj)

=
∏

i∈supp f, j∈supp g

∏
X,Y ∈ObA

Ck
(
TsA(X, Y ), sC(Xf i, Y gj)

)
∼−→

∏
X,Y ∈ObA

Ck

(
TsA(X, Y ),

∏
i∈supp f, j∈supp g

sC(Xf i, Y gj)
)

=
∏

X,Y ∈ObA

Ck
(
TsA(X, Y ), sCMC(X(fϖMC), Y (gϖMC))

)
= sQ(A;CMC)(fϖMC, gϖMC). (11.10.1)

Clearly, this is an isomorphism.

11.11 Proposition. There exists a unique morphism ϖmC : Q(A;C)mC → Q(A;CmC) such
that the following diagram commutes:

Q(A;C)mC ⊂ →Q(A;C)MC MC→Q(AMC;CMC)

Q(A;CmC)

ϖmC↓
⊂ →Q(A;CMC)

Q(uMC;1)↓ϖMC →
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Proof. It suffices to show that the image of

A,Q(A;C)mC ⊂
1,in→A,Q(A;C)MC 1,ϖMC→A,Q(A;CMC)

ev→ CMC

is contained in the subcategory CmC ⊂ CMC. In fact, the above composition coincides with

A,Q(A;C)mC ⊂
uMC,in→AMC,Q(A;C)MC evMC

→ CMC

due to diagram (11.9.1). The image Z in CMC of an object (X, f) of the source quiver,
X ∈ ObA, f : I → Q(A,C), f : i 7→ f i, f ij ∈ Q(A,C)[1]0, is obtained as

Z = (X, f) evMC : I → C, i 7→ Xf i, zij = Xf
ij
0 ∈ sC(Xf i, Xf j)

via (11.3.3) (r must be 0 there). This proves the claim.

11.12 Lemma. For arbitrary graded quivers A, C the following equation holds:[
Q(A;C)

uMC→Q(A;C)MC ϖMC→Q(A;CMC)
]
= Q(A;uMC) = (1⊠ uMC)M.

Proof. The left diagram in multicategory Q:

A,Q(A;C)
ev → C A,Q(A;C)

ev → C

A,Q(A;C)MC

1,uMC↓
uMC,1→AMC,Q(A;C)MC

uMC,uMC

→

A,Q(A;CMC)

1,ϖMC↓
ev → CMC

uMC

↓
evMC

→
A,Q(A;CMC)

1,Q(A;uMC)

↓
ev → CMC

uMC

↓

commutes due to diagram (11.9.1) and multinaturality of uMC. Compare it with the right
diagram, where the arrow Q(A;uMC) : Q(A;C) → Q(A;CMC) exists and is unique due to
universality of evaluation. It is computed via recipe of [Lyu03, Section 4] as (1⊠ uMC)M .
Uniqueness of such arrow implies the claim.

11.13 Corollary. For arbitrary graded quivers A, C the following equation holds:[
Q(A;C)

umC→Q(A;C)mC ϖmC→Q(A;CmC)
]
= Q(A;umC) = (1⊠ umC)M.

11.14 Multifunctor Mc. Now we shall study versions of Maurer–Cartan functors for
A∞-categories.

Let I ∈ ObP be the set m for some m ∈ Z⩾0. Turn I into a non-unital graded k-linear
category with the set of objects I. The only non-trivial graded modules of morphisms
are I(i, i + 1) = k[−1] concentrated in degree 1. Thus, the composition in this category
vanishes. We shall view I as a non-unital A∞-category with bn = 0 for all n ⩾ 1. The
empty category I = ∅ is also allowed.
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11.15 Lemma. Let A be an A∞-category, b ∈ Q(A;A)(idA, idA)
1 its differential. The

element bMC ∈ Q(AMC;AMC)(idAMC, idAMC)1 satisfies condition (8.2.1), that is, (b̂MCθ) ·
in1 ·bMC = 0.

Proof. Equivalently, the differential in A is a quiver morphism b : 1p[−1] → sQ(A;A),

∗ 7→ idA, or a T⩾1-coalgebra morphism b̂ = b · in1 : (1p[−1], in1) → (T⩾1sQ(A;A),∆).

Composing the latter morphism with the T⩾1-coalgebra morphism −̂MC : T⩾1sQ(A;A)→
T⩾1sQ(AMC;AMC) we get compositions in Q:

[
1p[−1]

b̂→ T⩾1sQ(A;A)
−̂MC

→ T⩾1sQ(AMC;AMC)
]

=
[
1p[−1]

b−→ sQ(A;A)
in1−→ T⩾1sQ(A;A)

∆−→ T⩾1T⩾1sQ(A;A)
T⩾1(−MC)→ T⩾1sQ(AMC;AMC)

]
=
[
1p[−1]

b̂→ T⩾1sQ(A;A)
−MC

→ sQ(AMC;AMC)
in1→ T⩾1sQ(AMC;AMC)

]
=
[
1p[−1]

b→ sQ(A;A)
(−MC)1→ sQ(AMC;AMC)

in1→ T⩾1sQ(AMC;AMC)
]
= b̂MC,

where bMC =
[
1p[−1]

b→ sQ(A;A)
(−MC)1→ sQ(AMC;AMC)

]
satisfies condition (8.3.1).

Indeed, the differential b̂ satisfies equation (8.3.1) between quiver morphisms. Composing

it with the morphism −̂MC : T⩾1sQ(A;A)→ T⩾1sQ(AMC;AMC) and using (11.4.1) we get
an equation in Q:

[
1p[−2]

∼→ 1p[−1]⊠ 1p[−1] ⊂ → 1p[−1]⊠u 1p[−1]
b̂⊠ub̂→ T⩾1sQ(A;A)⊠u T

⩾1sQ(A;A)

−̂MC⊠u−̂MC

→ T⩾1sQ(AMC;AMC)⊠u T
⩾1sQ(AMC;AMC)

µ̂Q

→ T⩾1sQ(AMC;AMC)
]
= 0.

This is precisely equation (8.3.1) for bMC, equivalent to (8.2.1).

Note however that the 0-th component Xb
MC
0 =

∑
t>0(X

⊗t)bn ∈ sAMC(X,X), where
X : (Jk)k∈K → A ∈ ObAMC, does not necessarily vanish. It does if and only if X :
(Jk)k∈K → A is an A∞-functor! Let A

Mc denote the full subquiver of AMC, whose objects
X are A∞-functors. The restriction bMc of bMC to the quiver AMc satisfies the condition
bMc
0 = 0, thus defines a structure of an A∞-category on AMc.

11.16 Proposition. Let f : (Ai)i∈I → B be an A∞-functor. Then f
MC : (AMC

i )i∈I → BMC

commutes with elements bMC. It restricts to an A∞-functor f
Mc : (AMc

i )i∈I → BMc. The
assignment A 7→ AMc, f 7→ fMc defines a multifunctor A∞ → A∞.

Proof. Let f : (Ai)i∈I → B be an A∞-functor, that is, a morphism in Q that satisfies

equation (8.9.4). Compose in Q̂uT⩾1 this equation with the T⩾1-coalgebra morphism

−̂MC : T⩾1sQ((Ai)i∈n;B) → T⩾1sQ((AMC
i )i∈n;B

MC). It follows from (11.5.1) and (11.6.1)
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that

[
1p[−1]

b̂→ T⩾1sQ(B;B)
−̂MC

→ T⩾1sQ(BMC;BMC)
Q(fMC;1)̂

→ T⩾1sQ((AMC
i )i∈n;B

MC)
]

=
n∑
j=1

[
1p[−1]

(( ˙id
Q

Ai
)̂ )i<j ,b̂,(( ˙id

Q

Ai
)̂ )i>j
→ (T⩾1sQ(Ai;Ai))i∈n

(−̂MC)n→ (T⩾1sQ(AMC
i ;AMC

i ))i∈n

Q(1;fMC)̂
→ T⩾1sQ((AMC

i )i∈n;B
MC)
]
.

Notice that in Q̂uT⩾1

[
()

( ˙id
Q

Ai
)̂
→ T⩾1sQ(Ai;Ai)

−̂MC

→ T⩾1sQ(AMC
i ;AMC

i )
]
= ( ˙id

Q

AMC
i
) .̂

Thus, the above equation is equivalent to

[
1p[−1]

b̂MC

→ T⩾1sQ(BMC;BMC)
Q(fMC;1)̂

→ T⩾1sQ((AMC
i )i∈n;B

MC)
]

=
n∑
j=1

[
1p[−1]

(( ˙id
Q

AMC
i

)̂ )i<j ,b̂MC,(( ˙id
Q

AMC
i

)̂ )i>j
→ (T⩾1sQ(AMC

i ;AMC
i ))i∈n

Q(1;fMC)̂
→ T⩾1sQ((AMC

i )i∈n;B
MC)
]
.

The above equation states that fMC commutes with elements bMC.

The morphism fMC : (AMC
i )i∈I → BMC restricts to a morphism fMc : (AMc

i )i∈I → BMc.
Indeed, it maps a family of A∞-functors Xi : (J

i
k)k∈Ki

→ Ai, i ∈ I to the composition

[
((J ik)k∈Ki

)i∈I
(Xi)i∈I→ (Ai)i∈I

f→B
]
,

which is again an A∞-functor. The above equation implies that fMc commutes with
differentials bMc, that is, it is an A∞-functor. The assignment A 7→ AMc, f 7→ fMc defines
a multifunctor A∞ → A∞. Compatibility with multiplications follows from the fact that
−MC is a multifunctor.

Likewise −MC the multifunctor −Mc is equipped with the multinatural transformation
uMc : Id → −Mc : A∞ → A∞. Thus, (−Mc, uMc) is an augmented multifunctor. It has
the corresponding A∞-multifunctor Mc′ = uMc · Mc : A∞ → A∞, which we denote also

−Mc : p 7→ pMc by abuse of notation.

11.17 Proposition. The morphisms Mc and MC agree in the sense of the following
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diagram:

A∞((Ai)i∈I ;B)Mc Mc → A∞((A
Mc
i )i∈I ;B

Mc)

A∞((Ai)i∈I ;B)MC

ι↓
∩

= Q((AMc
i )i∈I ;B

Mc)

E↓
∩

Q((Ai)i∈I ;B)MC

EMC

↓
∩

MC→Q((AMC
i )i∈I ;B

MC)
Q((ι);1)
→Q((AMc

i )i∈I ;B
MC)

Q(▷;ι)↓
∩

Proof. The multifunctors −Mc : A∞ → A∞ and −MC : Q→ Q are related by the multinat-
ural transformation ι : CMc ⊂ → CMC, that is,

A∞
−Mc

→ A∞

Q

E
↓

−MC

→

ι

⇐=
==
==
==
==

Q

E
↓

It remains to apply Lemma 4.25 twice and Lemma 4.24.

11.18 Corollary. For an arbitrary sequence of composable A∞-transformations

f 0
p1→ f 1

p2→ . . . fm−1
pm→ fm : (Ai)i∈I → B

we have

(p1Mc⊗· · ·⊗pmMc)Bm = [(p1⊗· · ·⊗pm)Bm]
Mc : f 0Mc → fmMc : (AMc

i )i∈I → BMc. (11.18.1)

Proof. The morphisms MC of Q are strict by Section 11.3. It follows from the above
proposition that the A∞-functors Mc are strict.

The first component Mc1 is given by formula (11.3.7) similarly to MC1.

11.19 A∞-category of bounded complexes. Let C be an A∞-category. The
A∞-category Cmc of bounded complexes in C is a full subquiver of CmC. It is also a
full A∞-subcategory of CMc. It can be viewed as a pull-back in the following diagram of
full embeddings of quivers:

Cmc ⊂
full → CmC

CMc

full↓

∩

⊂
full → CMC

full↓

∩
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The quivers on the left are A∞-categories. Thus objects of C
mc are A∞-functorsX : I → C,

ObX : i 7→ Xi, where I is some set m for m ∈ Z⩾0. If I = ∅, the A∞-functor ∅ → C

gives the zero object of Cmc. Besides Xi the A∞-functor X is determined by k-linear maps
of degree 0 for all i < j, i, j ∈ I,

Xij : k = sI(i, i+ 1)⊗ · · · ⊗ sI(j − 1, j)→ sC(Xi, Xj),

that is, by elements xij ∈ sC(Xi, Xj) of degree 0. They give an A∞-functor if and only if
the Maurer–Cartan equation holds for all i < j, i, j ∈ I:

m>0∑
i<k1<···<km−1<j

(Xik1 ⊗Xk1k2 ⊗ · · · ⊗Xkm−1j)b
C
m = 0 : k =

j−1⊗
k=i

sI(k, k + 1)→ sC(Xi, Xj).

In this equation we may replace Xac with elements xac ∈ (sC)0(Xa, Xc).
The general procedure of defining CMc(X, Y ) applies also to Cmc(X, Y ) as follows.

Given X : I → C, Y : J → C we consider isotonic embeddings e1 : I ⊂ →K, e2 :
J ⊂ →K into a finite totally ordered set K such that Im e1, Im e2 are subintervals of K
and Im e1 < Im e2. Let C∗ denote the A∞-category C with one object 0 added such that
C∗(0,−) = C∗(−, 0) = 0. The resulting A∞-category C∗ is unital with 0i

C∗

0 = 0 if C is
unital. Let us extend the A∞-functor X : I → C to an A∞-functor X

∗ = X∗I⊂K : K → C∗

by zero, that is, X∗ : e1(i) 7→ Xi if i ∈ I and X∗ : k 7→ 0 if k ∈ K∖e1(I). The components
of X∗ for k,m ∈ K, k < m

X∗km : k =
m−1⊗
p=k

sK(p, p+ 1)→ sC∗(X∗k , X
∗
m)

are set equal to Xil if k = e1(i), m = e1(l), i, l ∈ I, and they have to vanish if k or m is
not in e1(I). If the extension procedure is repeated for I ⊂ →K ⊂ →L, we do not add
0 twice. Therefore, the double extension (X∗I⊂K)

∗
K⊂L : L → C∗ coincides with the single

one X∗I⊂L : L→ C∗. Similarly, Y : J → C is extended to Y ∗ = Y ∗J⊂K : K → C∗.
The graded k-module of morphisms between X and Y is defined as

sCmc(X, Y ) =
∏

i∈I,j∈J

sC(Xi, Yj)←
ι1

∼

∏
k,m∈K,k<m

Ck(k, sC∗(X∗k , Y ∗m)))

= sA∞(K,C
∗)(X∗, Y ∗). (11.19.1)

The isomorphism consists of inserting (dropping) the zero factors. The dependence on
the embeddings e1 : I ⊂ →K, e2 : J ⊂ →K does not show up in the graded k-module
structure of Cmc(X, Y ). Notice, nevertheless, that the factor sC(Xi, Yj) belongs to the
k-module of e2(j)− e1(i) components of (X∗, Y ∗)-coderivations.

Let X0 : I0 → C, . . . , Xn : In → C be objects of Cmc, n ⩾ 1. Choose embeddings
ep : Ip ⊂ →K, 0 ⩽ p ⩽ n so that Im(ep) are subintervals of a finite totally ordered set
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K and Im(ep) < Im(ep+1) in K. Consider extensions Xp∗ = Xp∗
Ip⊂K : K → C∗. Define the

differential bmc in Cmc as bMC = bMc. In components it gives

bmc
n =

[
sCmc(X0, X1)⊗ · · · ⊗ sCmc(Xn−1, Xn)

⊗ι−1
1

∼
→ sA∞(K,C

∗)(X0∗, X1∗)⊗ · · · ⊗ sA∞(K,C∗)(Xn−1∗, Xn∗)

Bn→ sA∞(K,C
∗)(X0∗, Xn∗)

ι1

∼
→ sCmc(X0, Xn)

]
.

As in general case the operation bmc
n does not depend on the choice of embeddings.

Let rp∗ ∈ sA∞(K,C∗)(Xp−1∗, Xp∗) for 1 ⩽ p ⩽ n represent rp ∈ sCmc(Xp−1, Xp). Then
for n > 1

[(r1∗ ⊗ · · · ⊗ rn∗)Bn]q =
∑
l>0

(r1∗ ⊗ · · · ⊗ rn∗)θqlbl : k =
m−1⊗
t=k

sK(t, t+ 1)→ sC∗(X0∗
k , X

n∗
m )

(11.19.2)
by [Lyu03, (5.1.3)]. The same formula holds for n = 1 as well since in our case bK = 0
and rB1 = rbC

∗ − (−)rbKr = (r)θbC
∗
. The coderivation component number q = m − k

in (11.19.2) is determined uniquely by objects k,m ∈ ObK = K. So we may drop it

from notation and write rp = (rpij)
j∈Ip
i∈Ip−1, rp∗ = (rp∗km)k,m∈K in a matrix form. Similarly,

Xp = (Xp
ij)i,j∈Ip, X

p∗ = (Xp∗
km)k,m∈K are matrices of degree 0 elements. The tensor product

A⊗B of two matrices A = (Akl)
k∈K
l∈L , B = (Blm)

l∈L
m∈M means (A⊗B)km =

∑
l∈LAkl⊗Blm.

In these matrix notations formula (11.19.2) reads

[(r1∗ ⊗ · · · ⊗ rn∗)Bn]km

=
∑

t0,...,tn⩾0

[
(X0∗)⊗t0 ⊗ r1∗ ⊗ (X1∗)⊗t1 ⊗ · · · ⊗ rn∗ ⊗ (Xn∗)⊗tn

]
km
bC

∗

t0+···+tn+n :

k⊗m−k → sC∗(X0∗
k , X

n∗
m ). (11.19.3)

Clearly, the sum is finite. Zero matrix entries are irrelevant in this formula, so we may
write it as

(r1 ⊗ · · · ⊗ rn)bmc
n

=
∑

t0,...,tn⩾0

[
(X0)⊗t0 ⊗ r1 ⊗ (X1)⊗t1 ⊗ · · · ⊗ rn ⊗ (Xn)⊗tn

]
bCt0+···+tn+n :

k→ sCmc(X0, Xn), (11.19.4)

which does not depend on embeddings ep.

11.20 The Maurer–Cartan functor on A∞-functors. Let f : A → B be an
A∞-functor. The A∞-functor f

Mc : AMc → BMc restricts to an A∞-functor f
mc : Amc →



342 11. The Maurer–Cartan A∞-2-monad

Bmc. An object X : I → A of Amc is mapped by fmc to the object Xf : I → B of Bmc.
It is represented by the matrix Xfmc =

∑
n⩾1(X

⊗n)fn =
∑

1⩽n<|I|(X
⊗n)fn. Extend f to

f ∗ : A∗ → B∗ by the requirement 0f ∗ = 0. The components of fmc can be found from

fmc
n =

[
sAmc(X0, X1)⊗ · · · ⊗ sAmc(Xn−1, Xn)

⊗ι−1
1

∼
→ sA∞(K,A

∗)(X0∗, X1∗)⊗ · · · ⊗ sA∞(K,A∗)(Xn−1∗, Xn∗)

(1⊠f∗)Mn0→ sA∞(K,B
∗)(X0∗f ∗, Xn∗f ∗)

ι1

∼
→ sBmc(X0f,Xnf)

]
(11.20.1)

for an arbitrary embedding e : I0 ⊔ I1 ⊔ · · · ⊔ In ⊂ →K and Xp : Ip → A. Let rp ∈
sAmc(Xp−1, Xp). The corresponding rp∗ are mapped by (1⊠ f ∗)Mn0 to

(r1∗ ⊗ · · · ⊗ rn∗ ⊠ f ∗)Mn0 =
∑
l>0

(r1∗ ⊗ · · · ⊗ rn∗)θ•lf ∗l

=
∑

t0,...,tn⩾0

[
(X0∗)⊗t0 ⊗ r1∗ ⊗ (X1∗)⊗t1 ⊗ · · · ⊗ rn∗ ⊗ (Xn∗)⊗tn

]
f ∗t0+···+tn+n (11.20.2)

by [Lyu03, (4.1.3)]. Dropping zeroes we get a map of degree 0

(r1⊗· · ·⊗rn)fmc
n =

∑
t0,...,tn⩾0

[
(X0)⊗t0⊗r1⊗(X1)⊗t1⊗· · ·⊗rn⊗(Xn)⊗tn

]
ft0+···+tn+n, (11.20.3)

which does not depend on the embedding e.

Suppose that A
f→B

g→ C are A∞-functors. Since (fg)
Mc = fMcgMc, we have also

(fg)mc = fmcgmc. Therefore, −mc : A∞ → A∞ is a functor (of ordinary categories). We
are going to equip it with a monad structure.

11.21 The Maurer–Cartan functor on A∞-transformations. Let p : f → g :
A→ B be an A∞-transformation. It extends in a unique way (by zero) to an A∞-trans-
formation p∗ : f ∗ → g∗ : A∗ → B∗. Part of the data defining the A∞-transformation pMc

gives the A∞-transformation pmc : fmc → gmc : Amc → Bmc. The components of pmc are
found from

pmc
n =

[
sAmc(X0, X1)⊗ · · · ⊗ sAmc(Xn−1, Xn)

⊗ι−1
1

∼
→ sA∞(K,A

∗)(X0∗, X1∗)⊗ · · · ⊗ sA∞(K,A∗)(Xn−1∗, Xn∗)

(1⊠p∗)Mn1→ sA∞(K,B
∗)(X0∗f ∗, Xn∗g∗) ⊂

ι1→ sBmc(X0f,Xng)
]

(11.21.1)

for an arbitrary embedding e : I0 ⊔ I1 ⊔ · · · ⊔ In ⊂ →K. Let rq ∈ sAmc(Xq−1, Xq). The
last map ι1 is given by (11.19.1). It is an isomorphism if n > 0, and it is the embedding of
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upper-triangular matrices into all matrices if n = 0. The corresponding rq∗ are mapped
by (1⊠ p∗)Mn1 to

(r1∗ ⊗ · · · ⊗ rn∗ ⊠ p∗)Mn1 =
∑
l⩾0

(r1∗ ⊗ · · · ⊗ rn∗)θ•lp∗l

=
∑

t0,...,tn⩾0

[
(x0∗)⊗t0 ⊗ r1∗ ⊗ (x1∗)⊗t1 ⊗ · · · ⊗ rn∗ ⊗ (xn∗)⊗tn

]
p∗t0+···+tn+n (11.21.2)

by [Lyu03, (4.1.4)]. This formula holds for n = 0 as well. Dropping zeroes we get a map
of degree 0

(r1⊗· · ·⊗rn)pmc
n =

∑
t0,...,tn⩾0

[
(x0)⊗t0⊗r1⊗(x1)⊗t1⊗· · ·⊗rn⊗(xn)⊗tn

]
pt0+···+tn+n, (11.21.3)

which does not depend on the embedding e. In particular, for n = 0 we get

Xp
mc
0 =

∑
t⩾0

(x⊗t)pt.

11.22 Corollary (to Corollary 11.18). Let A, B be A∞-categories. Then the correspon-
dences f 7→ fmc, p 7→ pmc given by (11.20.3) and (11.21.3) define a strict A∞-functor
−mc : A∞(A,B)→ A∞(A

mc,Bmc).

11.23 Proposition. Let C be a unital A∞-category. Then Cmc is unital with the unit
transformation i(C

mc) = (iC)mc. For a unital A∞-functor f : A → B the A∞-functor
fmc : Amc → Bmc is unital as well. If A, B are unital A∞-categories, then the A∞-functor
−mc : Au

∞(A,B)→ Au
∞(A

mc,Bmc) is unital.

Proof. The A∞-category C has a unit transformation iC : id→ id : C→ C which satisfies

iCB1 = 0, (iC ⊗ iC)B2 = iC + vB1

for some v : id→ id : C→ C. Applying −mc to these equations we get

(iC)mcB1 = 0, ((iC)mc ⊗ (iC)mc)B2 = (iC)mc + vmcB1 : id→ id : Cmc → Cmc.

The A∞-transformation (iC)mc has degree −1. Let us write down its 0-th component.
If (X : I → C, i 7→ Xi, x = (xij)i,j∈I) is an object of Cmc, then

X(i
C)mc

0 =
∑
t⩾0

(x⊗t)iCt ∈ sCmc(X,X). (11.23.1)

The summand corresponding to t = 0 is diag(Xi
iC0).
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Let (X : I → C, x), (Y : J → C, y) be objects of Cmc and let r ∈ sCmc(X, Y ). Consider
the map

r 7→ (r ⊗ Y (i
C)mc

0 )bmc
2 =

∑
t0,t1,t2⩾0

(
x⊗t0 ⊗ r ⊗ y⊗t1 ⊗ Y (i

C)mc
0 ⊗ y⊗t2

)
bt0+t1+t2+2 :∏

i∈I,j∈J

sC(Xi, Yj)→
∏

i∈I,j∈J

sC(Xi, Yj). (11.23.2)

Filter this k-module by graded submodules Φkl =
∏

i⩽k,j⩾l sC(Xi, Yj), k ∈ I, l ∈ J . They
are subcomplexes with respect to the differential bmc

1 . Let

(1⊗ Yj i
C
0)b

C
2 = 1 + hijb1 + b1hij : sC(Xi, Yj)→ sC(Xi, Yj).

Combine the maps hij into a k-linear map h =
∏

i∈I,j∈J hij : sC
mc(X, Y )→ sCmc(X, Y ) of

degree −1. The chain map

a = (1⊗ Y (i
C)mc

0 )bmc
2 − 1− hbmc

1 − bmc
1 h : sCmc(X, Y )→ sCmc(X, Y )

maps the subcomplex Φkl into the sum of subcomplexes Φk,l+1 + Φk−1,l. Therefore, a is
nilpotent, a|I|+|J | = 0. Hence, 1+a is invertible, and (1⊗ Y (i

C)mc
0 )bmc

2 ∼ 1+a is homotopy
invertible. Similarly, (X(i

C)mc
0 ⊗ 1)bmc

2 is homotopy invertible, hence, Cmc is unital with
the unit transformation i(C

mc) = (iC)mc.

For an arbitrary diagram A
h→B

f→
⇓p
g
→

C
k→D of A∞-categories, A∞-functors, an

A∞-transformation p and an A∞-category X the equations

(1⊠ p∗)M(1⊠ k∗)M = (1⊠ p∗k∗)M = (1⊠ (pk)∗)M :

(1⊠ (fk)∗)M → (1⊠ (gk)∗)M : A∞(X,B)→ A∞(X,D),

(1⊠ h∗)M(1⊠ p∗)M = (1⊠ h∗p∗)M = (1⊠ (hp)∗)M :

(1⊠ (hf)∗)M → (1⊠ (hg)∗)M : A∞(X,A)→ A∞(X,C)

imply that
pmckmc = (pk)mc, hmcpmc = (hp)mc. (11.23.3)

Let f : A→ B be a unital A∞-functor. Then there is an A∞-transformation v : iAf →
f iB : f → f : A→ B, that is, equation vB1 = iAf − f iB holds. Applying −mc we get an
equation

vmcB1 = (iA)mcfmc − fmc(iB)mc,

which implies that fmc is unital. The first component (−mc)1 : Au
∞(A,B)(f, f) →

Au
∞(A

mc,Bmc)(fmc, fmc) takes the unit element f iB of B to the unit element (f iB)mc =
fmc(iB)mc = fmci(B

mc) of Bmc. Therefore, −mc : Au
∞(A,B)→ Au

∞(A
mc,Bmc) is unital.
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11.24 Lemma. If C is strictly unital, then Cmc is strictly unital as well.

Proof. Let (X : I → C, i 7→ Xi, xij ∈ sC(Xi, Xj)) be an object of Cmc. Consider the ele-
ment a = Xi

Cmc

0 ∈ sCmc(X,X) =
∏

i,j∈I sC(Xi, Xj) of degree −1 with the matrix elements

aii = Xi
iC0 ∈ sC(Xi, Xi), aij = 0 ∈ sC(Xi, Xj) if i ̸= j. In other terms, Xi

Cmc

0 = diag(Xi
iC0).

We have

(Xi
Cmc

0 )bmc
1 =

∑
t,p⩾0

(x⊗t ⊗ Xi
Cmc

0 ⊗ x⊗p)bCt+1+p = (x⊗ Xi
Cmc

0 )bC2 + (Xi
Cmc

0 ⊗ x)bC2 = x− x = 0.

For all r ∈ sCmc(Y,X) we have

(r ⊗ Xi
Cmc

0 )bmc
2 =

∑
t,p,q⩾0

(y⊗t ⊗ r ⊗ x⊗p ⊗ Xi
Cmc

0 ⊗ x⊗q)bCt+p+q+2 = (r ⊗ Xi
Cmc

0 )bC2 = r.

Similarly, for all r ∈ sCmc(X, Y ) we have

r(Xi
Cmc

0 ⊗ 1)bmc
2 = (−)r(XiC

mc

0 ⊗ r)bmc
2 = (−)r(XiC

mc

0 ⊗ r)bC2 = −r : k→ sCmc(Y,X).

If n > 2, the expression (r1 ⊗ · · · ⊗ rk ⊗ Xi
Cmc

0 ⊗ rk+2 ⊗ · · · ⊗ rn)bmc
n vanishes.

11.25 Au
∞-2-functor −mc. Let us show that the Maurer–Cartan construction gives

an example of an A∞-2-functor −mc : A∞ → A∞ which restricts to an Au
∞-2-functor

−mc : Au
∞ → Au

∞. Indeed, we have

1. maps −mc : ObA∞ → ObA∞ and −mc : ObAu
∞ → ObAu

∞, C 7→ Cmc;

2. a strict A∞-functor −mc : A∞(A,B) → A∞(A
mc,Bmc), f 7→ fmc, r 7→ rmc, as

Corollary 11.22 shows, whose restriction is a unital A∞-functor −mc : Au
∞(A,B)→

Au
∞(A

mc,Bmc), if A∞-categories A, B are unital (by Proposition 11.23 and by equa-
tions (11.23.3)).

11.26 Proposition. −mc : A∞ → A∞ is an A∞-2-functor (equivalently, an A∞-functor)
which restricts to an Au

∞-2-functor −mc : Au
∞ → Au

∞ (equivalently, to an Au
∞-functor).

Proof. As required, idCmc = (idC)
mc. Let us prove that the following equation holds:

A∞(A;B),A∞(B;C)
µ
A∞
1→1→ A∞(A;C)

=

A∞(A
mc;Bmc),A∞(B

mc;Cmc)

−mc,−mc

↓
µ
A∞
1→1→ A∞(A

mc;Cmc)

−mc

↓
(11.26.1)
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By Section 9.20 the multifunctor −Mc : A∞ → A∞ together with the natural transforma-
tion uMc : Id→ −Mc produces an A∞-functor Mc′ : A∞ → A∞. It is related to −mc by the
following equation

A∞(A;B)
Mc′→ A∞(A

Mc;BMc)

=

A∞(A
mc;Bmc)

−mc

↓
⊂
A∞(1;ι)
→ A∞(A

mc;BMc)

A∞(ι;1)↓

where ι denotes the embedding Cmc ⊂ → CMc. This implies that

[
A∞(A;B),A∞(B;C)

−mc,−mc

→ A∞(A
mc;Bmc),A∞(B

mc;Cmc)

µ
A∞
1→1→ A∞(A

mc;Cmc) ⊂
A∞(1;ι)
→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

−mc,−mc

→ A∞(A
mc;Bmc),A∞(B

mc;Cmc)

1,A∞(1;ι)
→ A∞(A

mc;Bmc),A∞(B
mc;CMc)

µ
A∞
1→1→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

−mc,Mc′→ A∞(A
mc;Bmc),A∞(B

Mc;CMc)

1,A∞(ι;1)
→ A∞(A

mc;Bmc),A∞(B
mc;CMc)

µ
A∞
1→1→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

−mc,Mc′→ A∞(A
mc;Bmc),A∞(B

Mc;CMc)

A∞(1;ι),1
→ A∞(A

mc;BMc),A∞(B
Mc;CMc)

µ
A∞
1→1→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

Mc′,Mc′→ A∞(A
Mc;BMc),A∞(B

Mc;CMc)

A∞(ι;1),1
→ A∞(A

mc;BMc),A∞(B
Mc;CMc)

µ
A∞
1→1→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

Mc′,Mc′→ A∞(A
Mc;BMc),A∞(B

Mc;CMc)

µ
A∞
1→1→ A∞(A

Mc;CMc)
A∞(ι;1)
→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

µ
A∞
1→1→ A∞(A;C)

Mc′→ A∞(A
Mc;CMc)

A∞(ι;1)
→ A∞(A

mc;CMc)
]

=
[
A∞(A;B),A∞(B;C)

µ
A∞
1→1→ A∞(A;C)

−mc

→ A∞(A
mc;Cmc) ⊂

A∞(1;ι)
→ A∞(A

mc;CMc)
]
.

Since A∞(1; ι) is an embedding, equation (11.26.1) follows.

11.27 Unit for the Maurer–Cartan monad. Denote by umc = uAmc : A→ Amc the
strict A∞-functor

ObA
∼→ ObA∞(1,A) ⊂ → ObAmc,
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X 7→ (1 ∋ 1 7→ X, 0), with the first component given by (umc)1 = id : sA(X, Y ) →
sAmc((1 7→ X, 0), (1 7→ Y, 0)) = sA(X, Y ). We claim that the collection of uAmc defines a
strict A∞-2-transformation umc : Id→ (−)mc.

1) If A is unital, then A∞-functor u
A
mc is unital. Indeed, (11.21.3) implies (r1 ⊗ · · · ⊗

rn)(iA)mc
n = (r1 ⊗ · · · ⊗ rn)iAn , that is, (iA)mc

n = iAn : (sA)⊗n(X, Y ) → sA(X, Y ). In other
terms, uAmci

(Amc) = iAuAmc : u
A
mc → uAmc : A→ Amc. Therefore, uAmc is unital.

2) We claim that the following equation holds:

(1⊠ uBmc)M =
(
A∞(A,B)

−mc

→A∞(A
mc,Bmc)

(uAmc⊠1)M→A∞(A,B
mc)
)
. (11.27.1)

Indeed, on objects we have the equation fuBmc = uAmcf
mc, since both sides map an ob-

ject X ∈ ObA to the object (1 7→ Xf, 0) of Bmc, and fmc
n = fn : sA⊗n → sBmc due to

formula (11.20.3). Furthermore, both sides of equation (11.27.1) consist of strict A∞-func-
tors. It remains to verify for each A∞-transformation p : f → g : A→ B the equation

puBmc = uAmcp
mc : fuBmc → guBmc : A→ Bmc.

Its equivalent form pn = pmc
n : T nsA→ sBmc holds true due to equation (11.21.3). There-

fore, umc : Id → (−)mc : A∞ → A∞ is a strict A∞-2-transformation, whose restriction
umc : Id→ (−)mc : Au

∞ → Au
∞ is a strict Au

∞-2-transformation.

11.28 The A∞-2-transformation Tot. Let A be an A∞-category. We want to define
a strict A∞-functor m

A
mc = TotA : (Amc)mc → Amc. Objects of (Amc)mc are A∞-functors

X : I → Amc, i 7→ (X i : J i → A), xii
′ ∈ [sAmc(X i, X i′)]0 ≃ [sA∞(K,A

∗)(X i∗, X i′∗)]0 for
i, i′ ∈ I, i < i′. Here we use the partition K = ⊔i∈IJ i = J0 ⊔ · · · ⊔ Jn. We claim that
A∞-functors X with fixed sets I, (J i)i∈I are in bijection with A∞-functors X̃ : K → A.
This defines a map ObTotA : Ob(Amc)mc → ObAmc.

To prove this claim we fix (I, (J i)i∈I) and consider two sets:

S = {(I ∋ i 7→ X i : J i → A, xii
′ ∈ [sAmc(X i, X i′)]0)i,i′∈I | i ⩾ i′ =⇒ xii

′
= 0,

and
∑
t>0

x⊗tbmc
t = 0 for x = (xii

′
)i,i′∈I},

S̃ = {X̃ : K → A – A∞-functor }.
Let us transform the equation which determines S. The A∞-functor X

i : J i → A consists

of ObX i : J i ∋ j 7→ X i
j ∈ ObA and of xii

def
= xi = (xijj′)j,j′∈J i. We have an equation

between matrices of size |J i| × |J i′|:

∑
t>0

(x⊗tbmc
t )ii

′
=

t0,...,tp⩾0∑
i=i0<i1<···<ip=i′

((xi0)⊗t0⊗xi0i1⊗ (xi1)⊗t1⊗· · ·⊗xip−1ip⊗ (xip)⊗tp)bt0+···+tp+p

=
∑

i=l0⩽l1⩽···⩽lq−1⩽lq=i′

(xl0l1 ⊗ xl1l2 ⊗ · · · ⊗ xlq−1lq)bq.
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A map S → S̃, X 7→ X̃ is given by the assignment J i ∋ j 7→ X i
j, x̃

ii′

jj′ = xii
′

jj′, where j ∈ J i,
j′ ∈ J i′, i ⩽ i′. For this choice of x̃∑

t>0

(x⊗tbmc
t )ii

′

jj′ =
∑
q>0

(x̃⊗qbq)
ii′

jj′,

hence, both sides vanish simultaneously. The inverse map S̃ → S, X̃ 7→ X is given by

restriction: ObX i = Ob X̃
∣∣
J i
, xijj′ = x̃iijj′, j, j

′ ∈ J i, xii′ = (x̃ii
′

jj′)
j∈J i
j′∈J i′ for i < i′. This is the

bijection between the discussed sets of objects, which defines ObTotA.
Given two objects of (Amc)mc, X : I → Amc, i 7→ (X i : J i → A, j 7→ X i

j), and

Y : L → Amc, l 7→ (Y l : M l → A,m 7→ Y l
m), we describe the k-module of morphisms

between them:

(Amc)mc(X, Y ) =
∏

i∈I, l∈L

Amc(X i, Y l) =
∏

i∈I, l∈L

∏
j∈J i,m∈M l

A(X i
j, Y

l
m)

≃
∏

k∈K,n∈N

A(X̃k, Ỹ n) = Amc(X̃, Ỹ ),

where K = ⊔i∈IJ i, N = ⊔l∈LM l and X̃ = X Tot, Ỹ = Y Tot.
We make TotA into a strict A∞-functor setting (TotA)1 to be the above isomorphism

and (TotA)k = 0, k > 1. We must verify the equations

((TotA)1 ⊗ · · · ⊗ (TotA)1)b
mc
k = bmcmc

k (TotA)1. (11.28.1)

Since (TotA)1 is an isomorphism it is sufficient to check that bmcmc
k and bmc

k coincide under
the natural identification.

Let pX : pI → Amc, 0 ⩽ p ⩽ k, be A∞-functors, that is, objects of A
mcmc. They can

be described as functions pI ∋ i 7→ pX i : pJ i → A, j 7→ pX i
j, together with a matrix

px = (pxii
′

jj′)
i,i′∈pI
j∈pJ i,j′∈pJ i′ . Let

pr = (prii
′

jj′)
i∈p−1I,i′∈pI
j∈p−1J i,j′∈pJ i′ . Then, in obvious notation

(1r ⊗ · · · ⊗ kr)bmcmc
k =

∑
(0x•<•⊗l0 ⊗ 1r•• ⊗ 1x•<•⊗l1 ⊗ · · · ⊗ kr•• ⊗ kx•<•⊗lk)bmc

l0+···+lk+k

=
∑

(0x•=•⊗n00⊗0x•<•⊗0x•=•⊗n10⊗· · ·⊗0x•<•⊗0x•=•⊗nl00 ⊗1r••⊗1x•=•⊗n01⊗ . . . )b∑nqp+
∑
lp+k

=
∑

(0x•⩽•⊗l0 ⊗ 1r•• ⊗ 1x•⩽•⊗l1 ⊗ · · · ⊗ kr•• ⊗ kx•⩽•⊗lk)bmc
l0+···+lk+k

=
∑

(0x••⊗l0 ⊗ 1r•• ⊗ 1x••⊗l1 ⊗ · · · ⊗ kr•• ⊗ kx••⊗lk)bmc
l0+···+lk+k, (11.28.2)

where ⊗ means the matrix tensor product (A⊗B)jj′′ =
∑

j′ Ajj′ ⊗Bj′j′′. Denoting by ⊙
the matrix tensor product (A⊙B)ii

′′

jj′′ =
∑

i′,j′ A
ii′

jj′ ⊗Bi′i′′

j′j′′, we get

(1r ⊗ · · · ⊗ kr)bmc
k =

∑
(0x⊙l0 ⊙ 1r ⊙ 1x⊙l1 ⊙ · · · ⊙ kr ⊙ kx⊙lk)bmc

l0+···+lk+k. (11.28.3)
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This coincides with the above expression, hence, (11.28.1) is proven. Hence TotA is a
strict A∞-functor.

When A runs over all A∞-categories, the collection of functors TotA determines a
natural transformation Tot : ((−)mc)mc → (−)mc. We must show that for any A∞-functor
f : A→ B the diagram commutes:

(Amc)mc TotA→Amc

(Bmc)mc

(fmc)mc

↓
TotB→Bmc

fmc

↓

Since TotA and TotB are strict functors, it is sufficient to establish the equation

((TotA)1 ⊗ · · · ⊗ (TotA)1)f
mc
k = fmcmc

k (TotA)1.

The verification is quite similar to that made for b (replace b with f in equations (11.28.2),
(11.28.3)).

Let us show that Tot is an A∞-2-transformation. We have already verified equation

A∞(A,B)
−mcmc

→A∞(A
mcmc,Bmcmc)

=

A∞(A
mc,Bmc)

−mc

↓
(TotA ⊠1)M→A∞(A

mcmc,Bmc)

(1⊠TotB)M↓

on objects. Let us do it on morphisms. All arrows in the above diagram are strict
A∞-functors, so we have to consider only the first components. Let p : f → g : A → B

be an A∞-transformation. We have to check that

TotA p
mc = pmcmcTotB : TotB f

mc → TotB g
mc : Amcmc → Bmc, (11.28.4)

that is,
(TotA 1)

⊗kpmc
k = pmcmc

k TotB 1 : T
ks(Amcmc)→ sBmc.

Considering isomorphisms TotA 1 and TotB 1 as natural identifications we have to verify
that pmc

k and pmcmc
k coincide. Using definition (11.21.3) of pmc

k we prove the general case of
p similarly to the particular case p = b : id → id : A → A (replace b with p in equations
(11.28.2), (11.28.3)). Therefore, Tot is a strict A∞-2-transformation.

If A is unital, then the A∞-functor TotA : Amcmc → Amc is unital. Indeed, (11.28.4)
implies that

TotA i(A
mc) = TotA imc = imcmcTotA = i(A

mcmc)TotA : TotA → TotA : Amcmc → Amc.
(11.28.5)

Therefore, restriction of Tot to unital A∞-categories and functors is a strict Au
∞-2-

transformation.
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11.29 The A∞-2-monad (−mc,Tot, umc). Now we claim that (−mc,Tot, umc) is an
A∞-2-monad. Indeed, equations(

Amc uA
mc

mc→Amcmc TotA→Amc
)
= id,(

Amc (uAmc)
mc

→Amcmc TotA→Amc
)
= id,

Amcmcmc TotAmc→Amcmc

=

Amcmc

(TotA)
mc

↓
TotA→Amc

TotA↓
(11.29.1)

are equations between strict A∞-functors. The left hand sides of the first two equations
give on objects the maps

(X : J → A)
uA

mc

mc→ (1 7→ (X : J → A), 0)
TotA→ (X : J → A)

due to ⊔i∈1J = J , and

(X : I → A)
(uAmc)

mc

→ (I → Amc, i 7→ (1 7→ X i, 0))
TotA→ (X : I → A)

due to ⊔i∈I1 = I. Thus, both maps are identity maps.
Equation (11.29.1) on objects follows from the fact that in the category of partitions

P the ordered sets ⊔i∈I ⊔j∈J i Kj and ⊔j∈⊔i∈IJ iKj are not only isomorphic, but equal.
Equations between first components on morphisms follow from the fact that (umc)1 = id
and Tot1 are natural identifications. Thus an A∞-2-monad (−mc,Tot, umc) is constructed.
Its restriction to unital A∞-categories and unital A∞-functors is an A

u
∞-2-monad.

11.30 Remark. Let g : B → A be a contractible unital A∞-functor. Then gmc : Bmc →
Amc is contractible as well. Indeed, by criterion of [LO06] (propositions 6.1(C1), 6.3) the
complexes sA(Ug, V g) are contractible for all U, V ∈ ObB. Hence, for all X, Y ∈ ObBmc

the complex sAmc(Xgmc, Y gmc) =
∏

i∈I,j∈J sA(Xig, Yjg) is contractible. By [LO06, Propo-
sition 6.1(C3)] the functor gmc is contractible.

11.31 Definition. We say that a unital A∞-category C is mc-closed if every object X of
Cmc is isomorphic in Cmc to Y umc for some object Y ∈ ObC.

If C is mc-closed, then the zero object 0 → C of Cmc is isomorphic in Cmc to Oumc

for some object O ∈ ObC. Therefore, the only morphisms 0 ∈ sCmc(0 → C,O) = 0 and
0 ∈ sCmc(O,0→ C) = 0 are inverse to each other. This means precisely that

(c1) the unit element Oi
C
0 ∈ sC(O,O) is the boundary vb1 for some v ∈ C(O,O)[1]−2.
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This condition is equivalent to any of the following three:

(c2) the complex (sC(O,O), b1) is acyclic;

(c3) the complex (sC(O,O), b1) is contractible;

(c4) for any X ∈ ObC the complexes (sC(O, X), b1) and (sC(X,O), b1) are contractible.

Their equivalence is shown in [LO06, Proposition 6.1]. An object O of a unital A∞-cate-
gory C which satisfies equivalent conditions (c1)–(c4) is called contractible. Contractible
objects play the rôle similar to that of zero (initial and final) objects in ordinary cat-
egories. A unital A∞-functor f : A → B is called contractible if equivalent conditions
(C1)–(C11) of [LO06, Section 6] hold. One of them says that f is a contractible object of
A∞(A,B) in the sense of (c1).

11.32 Proposition. Let C be a unital A∞-category. Then the following conditions are
equivalent:

(i) C contains a contractible object, and each object
(
W : 2 → C,

(
0 f
0 0

))
of Cmc is

isomorphic in Cmc to Cumc for some object C ∈ ObC;

(ii) C is mc-closed;

(iii) the A∞-functor umc : C→ Cmc is an equivalence.

Proof. (ii) =⇒ (i) is obvious.
(i) =⇒ (ii): If |K| = 0, 1, 2, then an object Z : K → C of Cmc is isomorphic in Cmc to

Cumc for some object C ∈ ObC by condition (i). We proceed by induction on n = |K|.
Let Z : K → C be an object of Cmc with |K| > 1. Then K can be presented as a

disjoint union K = I ⊔ J with |I|, |J | < |K|. Define the objects X =
(
I ⊂ →K

Z→ C
)
,

Y =
(
J ⊂ →K

Z→ C
)
of Cmc as compositions of full embeddings with the A∞-functor

Z. Then Xi = Zi, xii′ = zii′ for i, i
′ ∈ I, and Yj = Zj, yjj′ = zjj′ for j, j

′ ∈ J . Denote by f
the matrix (zij)

j∈J
i∈I , zij ∈ C(Xi, Yj)[1]

0. The object Z is determined by X, Y and f , since

z = (zkk′)k,k′∈K =
(
x f
0 y

)
. The matrix z has to satisfy the Maurer–Cartan equation:

0 =
∑
t>0

(z⊗t)bCt =
∑
t>0

(
x f
0 y

)⊗t
bt

=

(∑
t>0 x

⊗tbt
∑

a,c⩾0(x
⊗a ⊗ f ⊗ y⊗c)ba+1+c

0
∑

t>0 y
⊗tbt

)
=

(
0 fbmc

1

0 0

)
.

We see that given objects X, Y of Cmc and an element f ∈ Cmc(X, Y )[1]0 determine such
object Z if and only if f is a cycle.
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By induction assumption there are objects Ũ , Ṽ of C and the corresponding objects
U = Ũumc = (1 → C, 1 7→ Ũ , 0), V = Ṽ umc = (1 → C, 1 7→ Ṽ , 0), there are cycles
α ∈ Cmc(X,U)[1]−1, α′ ∈ Cmc(U,X)[1]−1 and β ∈ Cmc(Y, V )[1]−1, β′ ∈ Cmc(V, Y )[1]−1,
pairwise mutually inverse to each other. This means that morphisms

αs−1 : k→ Cmc(X,U)0, α′s−1 : k→ Cmc(U,X)0,

βs−1 : k→ Cmc(Y, V )0, β′s−1 : k→ Cmc(V, Y )0

define mutually inverse elements in K, that is, (α′s−1 ⊗ αs−1)mmc
2 − 1U ∈ Immmc

1 etc.
Since αs−1 is invertible, there is a unique element gs−1 : k → Cmc(U, V )1 in K such that
equation (

X
fs−1

→ Y
βs−1

→ V
)
=
(
X

αs−1

→U
gs−1

→ V
)

(11.32.1)

holds in kCmc, namely, gs−1 = (α′s−1) ·(fs−1) ·(βs−1). Lift gs−1 to a chain map gs−1 : k→
Cmc(U, V )1, and consider the corresponding cycle g ∈ Cmc(U, V )[1]0. Equation (11.32.1)
means that

(fs−1 ⊗ βs−1)mmc
2 − (αs−1 ⊗ gs−1)mmc

2 ∈ Immmc
1 .

Therefore, there exists an element η ∈ Cmc(X, V )[1]−1 such that

(f ⊗ β)bmc
2 + (α⊗ g)bmc

2 + ηbmc
1 = 0.

Due to g being a cycle, we may define an object
(
W : 2→ C, 1 7→ Ũ , 2 7→ Ṽ ,

(
0 g
0 0

))
of

Cmc. Consider an element γ ∈ Cmc(Z,W )[1]−1, represented by the matrix γ =
( α η
0 β

)
. We

claim that it is a cycle. We shall prove it in more general assumptions: (W : I ′⊔J ′ → C, w)
is determined by (U : I ′ → C, u), (V : J ′ → C, v) and a cycle g ∈ Cmc(U, V )[1]0. Thus,
w =

(
u g
0 v

)
instead of

(
0 g
0 0

)
. We have

γbmc
1 =

∑
k,m⩾0

[(
x f
0 y

)⊗k
⊗
(
α η
0 β

)
⊗
(
u g
0 v

)⊗m]
bk+1+m

=
∑
k,m⩾0

[(
x⊗k

∑
n+1+l=k x

⊗n⊗f⊗y⊗l
0 y⊗k

)
⊗
(
α η
0 β

)
⊗
(
u⊗m

∑
p+1+q=m u

⊗p⊗g⊗v⊗q
0 v⊗m

)]
bk+1+m

=
∑
k,m⩾0

(
x⊗k ⊗ α⊗ u⊗m tk,m

0 y⊗k ⊗ β ⊗ v⊗m
)
bk+1+m =

(
αbmc

1 (f ⊗ β)bmc
2 +ηbmc

1 +(α⊗ g)bmc
2

0 βbmc
1

)
= 0, (11.32.2)

where the matrix tk,m denotes the sum∑
n+1+l=k

x⊗n ⊗ f ⊗ y⊗l ⊗ β ⊗ v⊗m + x⊗k ⊗ η ⊗ v⊗m +
∑

p+1+q=m

x⊗k ⊗ α⊗ u⊗p ⊗ g ⊗ v⊗q.
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We also have the equation(
U

gs−1

→ V
β′s−1

→ Y
)
=
(
U

α′s−1

→X
fs−1

→ Y
)

in kCmc, which means that there is an element η′ ∈ Cmc(U, Y )[1]−1 such that

(g ⊗ β′)bmc
2 + (α′ ⊗ f)bmc

2 + η′bmc
1 = 0.

Exchanging the rôles of Z and W , f and g, α and α′, β and β′ in the above formulae we
obtain that γ′ =

(
α′ η′

0 β′

)
∈ Cmc(W,Z)[1]−1 is a cycle. Consider the element

ω = (γ⊗γ′)bmc
2 =

∑
k,l,m⩾0

[(
x f
0 y

)⊗k
⊗
(
α η
0 β

)
⊗
(
u g
0 v

)⊗l
⊗
(
α′ η′

0 β′

)
⊗
(
x f
0 y

)⊗m]
bk+l+m+2

=

(
(α⊗ α′)bmc

2 p
0 (β ⊗ β′)bmc

2

)
=

(
X(i

C)mc
0 + rbmc

1 p
0 Y (i

C)mc
0 + qbmc

1

)
= Z(i

C)mc
0 +

(
r 0
0 q

)
bmc
1 +

(
0 n
0 0

)
∈ Cmc(Z,Z)[1]−1

for some n ∈ Cmc(X, Y )[1]−1, because formula (11.23.1) shows that Z(i
C)mc

0 =
(
X(iC)mc

0 ∗
0 Y (i

C)mc
0

)
.

Computation (11.32.2) proves that the necessary property
(
0 n
0 0

)
bmc
1 = 0 is equivalent to

the condition nbmc
1 = 0. Denote by a the chain map

a =
[(

0 n
0 0

)
⊗ 1
]
bmc
2 : sCmc(Z,Z)→ sCmc(Z,Z).

Matrix form of this expression shows that Im a ⊂ sCmc(X,Z) and a2 = 0. The chain map

−
[(
Z(i

C)mc
0 +

(
r 0
0 q

)
bmc
1

)
⊗ 1
]
bmc
2 : sCmc(Z,Z)→ sCmc(Z,Z)

is homotopic to the identity map since (iC)mc
0 are unit elements of Cmc by Proposition 11.23.

Therefore, the chain map −(ω⊗1)bmc
2 ∼ 1−a is homotopy invertible, since (1−a)−1 = 1+a

exists. Thus, it is a homology isomorphism, and

−H−1
[
(ω ⊗ 1)bmc

2

]
: H−1

(
sCmc(Z,Z)

)
→ H−1

(
sCmc(Z,Z)

)
is invertible. In particular, there is a cycle σ ∈ Cmc(Z,Z)[1]−1 such that −σ(ω ⊗ 1)bmc

2 −
Z(i

C)mc
0 ∈ Im bmc

1 . That is, [(γ⊗ γ′)bmc
2 ⊗ σ]bmc

2 − Z(i
C)mc

0 ∈ Im bmc
1 . Equivalently, [γ⊗ (γ′⊗

σ)bmc
2 ]bmc

2 − Z(i
C)mc

0 ∈ Im bmc
1 , hence, γ is invertible on the right. Similarly, γ is invertible

on the left. We have established that γ : Z → W is an isomorphism in Cmc. The object
W : 2→ C is isomorphic in Cmc to Cumc for some object C ∈ ObC, thus, Z ≃ Cumc.

(ii) ⇐⇒ (iii): Since umc 1 = id is invertible, the A∞-functor umc : C → Cmc is an
equivalence if and only if it is essentially surjective on objects [Lyu03, Theorem 8.8].
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11.33 Corollary. Let A, B be equivalent unital A∞-categories. If one of them is
mc-closed, then so is the other.

Proof. The Au
∞-2-functor −mc projects to an ordinary strict 2-functor −mc : Au

∞ → Au
∞

[LM06a, Section 3.2]. In particular, it takes A∞-equivalences to A∞-equivalences. Take
an A∞-equivalence f : A → B, then fmc : Amc → Bmc is A∞-equivalence as well. In the
commutative diagram

A
umc →Amc

B

f
↓

umc →Bmc

fmc

↓

three out of four A∞-functors are equivalences. Hence, so is the fourth.

11.34 Proposition. Let A be a unital A∞-category. Then Amc is mc-closed.

Proof. Let X be an object of Amcmc. We claim that it is isomorphic to X Totumc ∈
ObAmcmc. Such X is specified by a family

(I ∋ i 7→ (X i : J i → A), xii
′ ∈ [sAmc(X i, X i′)]0)i<i

′

i,i′∈I .

The corresponding X̃ = X TotA is determined by the partition K = ⊔i∈IJ i = J0⊔· · ·⊔Jn
and the A∞-functor X̃ : K → A with x̃ii

′

jj′ = xii
′

jj′ if i < i′, and with x̃iijj′ = xijj′, coming from

X i. Then Y = X Totumc = (1 ∋ 1 7→ X̃, 0). Notice that Ỹ = X̃, hence, the isomorphism
Tot1 identifies A

mcmc(X, Y ), Amcmc(Y,X), Amcmc(X,X), Amcmc(Y, Y ) with Amc(X̃, X̃).
Consider the elements q ∈ sAmcmc(X, Y ), t ∈ sAmcmc(Y,X), which are identified with

X̃i
Amc

0 . The map

Tot1 : A
mcmc(X, Y )

∼→Amc(X̃, Ỹ ) = Amc(X̃, X̃)

and three other similar isomorphisms strictly commute with the operations bk in the sense
of (11.28.1). The equation qbmcmc

1 Tot1 = iA
mc

0 bmc
1 = 0 implies that qbmcmc

1 = 0. Similarly,
tbmcmc

1 = 0. The property

((q ⊗ t)bmcmc
2 − Xi

Amcmc

0 ) Tot1 = (X̃i
Amc

0 ⊗ X̃i
Amc

0 )bmc
2 − X̃i

Amc

0 ∈ Im bmc
1 = (Im bmcmc

1 ) Tot1

holds true, as 0-th component of (11.28.5) shows. It implies that (q⊗ t)bmcmc
2 − Xi

Amcmc

0 ∈
Im bmcmc

1 . Similarly, (t ⊗ q)bmcmc
2 − Xi

Amcmc

0 ∈ Im bmcmc
1 . Thus, X and Y are isomorphic.

Therefore, Amc is mc-closed.

11.35 Corollary. If A is a unital A∞-category, then A∞-functors umc, u
mc
mc : A

mc → Amcmc

and mmc : A
mcmc → Amc are equivalences, quasi-inverse to each other.
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Indeed, such umc is an equivalence by Proposition 11.32, and umcmmc = idAmc =
umc
mcmmc.

11.36 Proposition. For an arbitrary mc-closed A∞-category C there exists an A∞-equiv-
alence Umc = UC

mc : C
mc → C such that umc · Umc = idC. In particular, Umc is quasi-inverse

to umc.

Proof. Apply Proposition 9.22 to the following data: B = Cmc, D = C, the A∞-equivalence
ϕ = umc : C → Cmc, the embedding of a full A∞-subcategory ι = umc : C ⊂ → Cmc, the
A∞-functor w = id : C → C, the natural A∞-transformation q = umci

Cmc

: umc → umc :
C→ Cmc which represents the identity 2-morphism of the 1-morphism umc in Au

∞. Choose
a map h : ObCmc → ObC in such a way that Xumch = X = Xw for all objects X of C
and that the objects Y and Y humc were isomorphic in H0(Cmc) for all objects Y of Cmc.
Choose cycles Y r0 ∈ Cmc(Y, Y humc)[1]

−1, Y ∈ ObCmc which represent these isomorphisms
taking Xumc

r0 = Xumc
iC

mc

0 = Xq0 for all objects X of C. The hypotheses of Proposition 9.22
are satisfied. We deduce from it that there exists an A∞-equivalence ψ = Umc : C

mc → C

such that umc · Umc = idC.

11.37 Proposition. Let A, C be unital A∞-categories, and let C be mc-closed. Let
A∞-equivalence Umc = UC

mc : Cmc → C satisfy the equation umc · Umc = idC (it exists by
Proposition 11.36). Then the strict A∞-functor A

u
∞(umc,C) = (umc⊠1)M : Au

∞(A
mc,C)→

Au
∞(A,C) is an A∞-equivalence which admits a one-sided inverse

Fmc =
[
Au
∞(A,C)

−mc

→Au
∞(A

mc,Cmc)
Au∞(Amc,Umc)→Au

∞(A
mc,C)

]
(quasi-inverse to Au

∞(umc,C)), namely, Fmc · Au
∞(umc,C) = idAu∞(A,C).

Proof. Naturality of the Au
∞-2-transformation umc is expressed by the equation[

Au
∞(A,B)

−mc

→Au
∞(A

mc,Bmc)
(umc⊠1)M→Au

∞(A,B
mc)
]
= (1⊠ umc)M. (11.37.1)

It implies that the A∞-functor Fmc is a one-sided inverse to Au
∞(umc,C). Indeed,

Fmc · Au
∞(umc,C)

=
[
Au
∞(A,C)

−mc

→Au
∞(A

mc,Cmc)
Au∞(Amc,Umc)→Au

∞(A
mc,C)

Au∞(umc,C)→Au
∞(A,C)

]
=
[
Au
∞(A,C)

−mc

→Au
∞(A

mc,Cmc)
Au∞(umc,1)→Au

∞(A,C
mc)

Au∞(1,Umc)→Au
∞(A,C)

]
=
[
Au
∞(A,C)

Au∞(1,umc)→Au
∞(A,C

mc)
Au∞(1,Umc)→Au

∞(A,C)
]
= Au

∞(1, umcUmc) = id

due to Lemmata 4.13 and 4.15.
Composition of these A∞-functors in the other order gives on objects (unital A∞-func-

tors f : Amc → C) the following:

f 7→ umcf 7→ (umcf)
mcUmc = umc

mcf
mcUmc ≃ umcf

mcUmc = fumcUmc = f.
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Indeed, due to Corollary 11.35 there is an isomorphism of A∞-functors r : umc
mc → umc :

Amc → Amcmc. Let us prove that this composition is isomorphic to identity A∞-functor. It
is given by the top–right–bottom exterior path in the following diagram, which describes
a natural A∞-transformation:

Au
∞(A

mc,C)
Au∞(umc,C) →Au

∞(A,C)
−mc

→Au
∞(A

mc,Cmc)

=

Au
∞(A

mc,C)

wwwwwww
−mc

→Au
∞(A

mcmc,Cmc)

Au∞(umc
mc,C

mc)→
(r⊠1)M⇓

Au∞(umc,C
mc)
→Au

∞(A
mc,Cmc)

wwwwwww
= =

Au
∞(A

mc,C)

id

↓
←

Au∞(Amc,Umc)
Au
∞(A

mc,Cmc)

wwwwwwwAu∞(Amc,umc) →

Since the A∞-functor A
u
∞( ,C

mc) is unital, its first component takes the isomorphism r
to an isomorphism r.Au

∞( ,C
mc)1 = (r ⊠ 1)M : (umc

mc ⊠ 1)M → (umc ⊠ 1)M . Thus the
above diagram gives an isomorphism of the top–right–bottom exterior path with the left
column, which is the identity functor. The proposition is proven.

11.38 Corollary. Let A, C be unital A∞-categories, and let C be mc-closed. Then the
restriction map Au

∞(umc; 1) : A
u
∞(A

mc;C)→ Au
∞(A;C) is surjective.

11.39 Corollary. Let A, B be unital A∞-categories. Then the A∞-functor

−mc : Au
∞(A,B)→ Au

∞(A
mc,Bmc)

is homotopy full and faithful, that is, its first component is homotopy invertible.

Proof. Consider equation (11.37.1). The first component of Au
∞(A, umc) = (1⊠ umc)M in

the right hand side (composition with umc) is an isomorphism, since umc is a strict full
embedding. The first component of the second functor Au

∞(umc,B
mc) in the left hand side

is homotopy invertible by Proposition 11.37. Therefore, the first component of the first
functor −mc in the left hand side is homotopy invertible.

11.40 Quotients and solutions to Maurer–Cartan equation. Let B be a full
subcategory of a unital A∞-category C. Denote by i : B ⊂ → C the inclusion strict
A∞-functor, and by e : C → q(C|B) the quotient functor. By construction e can be
chosen so that Ob q(C|B) = ObC, Ob e = idObC [LM08c]. Similarly, in the diagram below
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imc is a full embedding and e′ is the quotient functor:

B ⊂
i → C

e → q(C|B)

= q(Cmc|Bmc)======
χ

⇒

f

←

Bmc

uBmc

↓
⊂

imc

→ Cmc

uCmc

↓
emc →

α

⇐=
==
==
==
==
==
==
==
=

e′

→
β�
wwwww

q(C|B)mc

umc

↓g →

(11.40.1)

Here existence ofA∞-functors f , g and natural isomorphisms α, β follows from universality

of quotients. Since B ⊂
i→ C

uCmc→ Cmc e′→ q(Cmc|Bmc) is contractible, there exists a unital

A∞-functor f and an isomorphism α : ef
∼→ uCmce

′ : C → q(Cmc|Bmc). Since imcemc is
contractible by Remark 11.30, there exists a unital A∞-functor g and an isomorphism

β : e′g
∼→ emc : Cmc → q(C|B)mc. Since B ⊂

i→ C
uCmc→ Cmc emc

→ q(C|B)mc is contractible,
there exists a unital A∞-functor ϕ : q(C|B) → q(C|B)mc together with an isomorphism

eϕ
∼→ uCmce

mc : C→ q(C|B)mc. Actually, previous data allow to construct two such pairs:
fg and umc together with isomorphisms

e(fg)
(αg)β→ uCmce

mc====
id

eumc : C→ q(C|B)mc. (11.40.2)

Theorem 1.3 of [LM08c] implies that

(e⊠ 1)M : Au
∞(q(C|B), q(C|B)mc)→ Au

∞(C, q(C|B)mc)modB,

is an A∞-equivalence. By Lemma 10.42 isomorphism (11.40.2) is equal to eχ for some
isomorphism χ : fg → umc : q(C|B)→ q(C|B)mc.

11.41 Proposition. Assume that B, C are mc-closed. Then q(C|B) is mc-closed as well,
and f : q(C|B) → q(Cmc|Bmc), g : q(Cmc|Bmc) → q(C|B)mc from diagram (11.40.1) are
A∞-equivalences.

Proof. We have Ob q(C|B) = ObC. There is a function ψ : ObCmc → ObC, X 7→ X
together with inverse to each other isomorphisms

r0 ∈ sCmc(Xumc, X), p0 ∈ sCmc(X,Xumc).

Take the same function ψ : Ob q(C|B)mc → Ob q(C|B), X 7→ X together with inverse to
each other isomorphisms

r0e
mc
1 ∈ sq(C|B)mc(Xumc, X), p0e

mc
1 ∈ sq(C|B)mc(X,Xumc).
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Notice that Ob emc = idCmc. Their existence shows that q(C|B) is mc-closed. By Proposi-
tion 11.32 the A∞-functor umc : q(C|B)→ q(C|B)mc is an equivalence.

By Lemma 10.44 the A∞-functor f is an equivalence. Since fg ≃ umc is an A∞-equiv-
alence, so is g.

11.42 Proposition. The functor g : q(Cmc|Bmc) → q(C|B)mc from (11.40.1) is an
A∞-equivalence.

Proof. Let us describe the following diagram:

Bmc ⊂
imc

→ Cmc emc

→ q(C|B)mc

q(Cmc|Bmc)

β

~wwww g

→
e′ →

=

q(Cmcmc|Bmcmc)

k
↓

Bmcmc

(uBmc)
mc

↓
⊂

imcmc

→ Cmcmc

(uCmc)
mc

↓
e′mc →

ξ

⇐=
==
==
==
==
==
==
==
==

e′′

→
γ�
wwwww

q(Cmc|Bmc)mc

fmc

↓h →

Here imcmc : Bmcmc → Cmcmc is a full embedding and e′′ : Cmcmc → q(Cmcmc|Bmcmc)
is a quotient map. Note that (uAmc)

mc is an A∞-equivalence by Corollary 11.35. By
Lemma 10.44 there exist a unital A∞-functor k : q(Cmc|Bmc) → q(Cmcmc|Bmcmc) and an
isomorphism ξ : e′k → (uCmc)

mce′′ : Cmc → q(Cmcmc|Bmcmc). By the same lemma k is
an A∞-equivalence. The functor imcmce′mc is contractible by Remark 11.30, therefore,
there exist a unital A∞-functor h : q(Cmcmc|Bmcmc)→ q(Cmc|Bmc)mc and an isomorphism
γ : e′′h → e′mc. Since Cmc and Bmc are mc-closed, the functor h is an A∞-equivalence by
Proposition 11.41. We have the following isomorphism

e′gfmc βfmc

∼
→ emcfmc αmc

∼
→ (uCmc)

mce′mc (uCmc)
mcγ−1

∼
→ (uCmc)

mce′′h
ξ−1h

∼
→ e′kh : Cmc → q(Cmc|Bmc)mc.

(11.42.1)
Theorem 1.7 implies that

(e′ ⊠ 1)M : Au
∞(q(C

mc|Bmc), q(Cmc|Bmc)mc)→ Au
∞(C

mc, q(Cmc|Bmc)mc)modBmc

is an A∞-equivalence. By Lemma 10.42 isomorphism (11.42.1) is equal to e′ζ for some
isomorphism ζ : gfmc → kh : q(Cmc|Bmc) → q(Cmc|Bmc)mc. In particular, gfmc is an

A∞-equivalence. On the other hand, fmcgmc ≃ (u
q(C|B)
mc )mc via the isomorphism χmc. The

functor (u
q(C|B)
mc )mc is an A∞-equivalence, hence so is fmcgmc. This shows that fmc has left

and right quasi-inverses, hence it is an A∞-equivalence. Since gf
mc is an A∞-equivalence,

so is g.



11.43. Embedding A∞(A,B)mc ↪→ A∞(A,B
mc). 359

11.43 Embedding A∞(A,B)mc ↪→ A∞(A,B
mc). Let A, B be A∞-categories. Let

ϖMc : A∞((Ai)i∈I ;B)Mc → A∞((Ai)i∈I ;B
Mc) be an A∞-functor defined as follows:

ϖMc =
[
A∞((Ai)i∈I ;B)Mc Mc→ A∞((A

Mc
i )i∈I ;B

Mc)
A∞((uMc);1)→ A∞((Ai)i∈I ;B

Mc)
]
.

11.44 Proposition. The A∞-functor ϖMc is a strict full embedding, that is, all its com-
ponents vanish except

(ϖMc)1 : A∞((Ai)i∈I ;B)Mc(f, g)→ A∞((Ai)i∈I ;B
Mc)(fϖMc, gϖMc)

which is an isomorphism.

Proof. Consider the following diagram:

A∞((Ai)i∈I ;B)Mc Mc→ A∞((A
Mc
i )i∈I ;B

Mc)
A∞((uMc);1)→ A∞((Ai)i∈I ;B

Mc)

A∞((Ai)i∈I ;B)MC

ι↓
∩

Q((AMc
i )i∈I ;B

Mc)

E↓
∩

Q((uMc);1)→Q((Ai)i∈I ;B
Mc)

E↓
∩

Q((Ai)i∈I ;B)MC

EMC

↓
∩

Q((AMc
i )i∈I ;B

MC)

Q(▷;ι)↓
∩

Q((AMC
i )i∈I ;B

MC)

MC↓
Q((uMC);1) →

Q((ι);1) →

Q((Ai)i∈I ;B
MC)

Q(▷;ι)

↓

∩

Q((uMc);1)

→

The left heptagon is commutative due to Proposition 11.17. The upper and the lower
quadrilaterals commute by Lemmata 4.23 and 4.13 respectively. Commutativity of the
bottom triangle is a particular case of Lemma 4.14. The morphism ϖMC is a strict
morphism with the bijective first component by Proposition 11.10. It is related to ϖMc

by full embeddings, therefore, the latter shares the same properties.

As a corollary the same statement holds for ϖmc : A∞(A;C)mc → A∞(A;Cmc), which is
a restriction of ϖMc. Let us describe this A∞-functor on objects. An object of A∞(A,C)

mc

is given by the following data: a family of functors I ∋ i 7→ f i ∈ ObA∞(A,C), a family
of transformations (of degree 0) rij ∈ sA∞(A,C)(f

i, f j), i, j ∈ I, i < j such that the
Maurer-Cartan equation holds: for all i, j ∈ I, i < j

m>0∑
i<k1<···<km−1<j

(rik1 ⊗ rk1k2 ⊗ · · · ⊗ rkm−1j)Bm = 0.

Note that the first component of this equation reads as follows:

m>0∑
i<k1<···<km−1<j

(rik10 ⊗ r
k1k2
0 ⊗ · · · ⊗ rkm−1j

0 )bm = 0. (11.44.1)
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To this object ϖmc assigns the A∞-functor f : A→ Cmc defined by the following prescrip-
tions. An object X ∈ ObA is mapped to the object Xf : I → C, i 7→ Xf i of Cmc. It
is determined by the family of elements of degree 0 xij = Xr

ij
0 ∈ sC(Xf i, Xf j), i, j ∈ I,

i < j. The Maurer-Cartan equation is fulfilled due to (11.44.1). Components of f are
determined as follows: the composition

⊗p∈nsA(Xp−1, Xp)
fn→ sCmc(X0f,Xnf) =

∏
i,j∈I

sC(X0f
i, Xnf

j)
pr→ sC(X0f

i, Xnf
j)

equals f in for i = j, rijn for i < j, and vanishes otherwise. We write briefly

fn =


f 1n r12n . . . r1nn
0 f 2n . . . r2nn
...

... . . . ...

0 0 . . . f
|I|
n

 or f ijn =


f in, if i = j,

rijn , if i < j,

0, otherwise.

(11.44.2)

The components of ϖmc are determined by (11.10.1).

11.45 Lemma. Let B be a unital A∞-category. Let (X : I ∋ i 7→ Xi, x = (xij)),
xij ∈ sB(Xi, Xj) be an object of Bmc, let p = (pij) ∈ sBmc(X,X) be an element of degree
−1 such that pbmc

1 = 0, pii = Xi
iB0 for all i ∈ I, and pij = 0 for i > j. Then p is invertible

modulo boundaries.

Proof. By (11.23.1) we can write p as Xi
Bmc

0 +n, where n = (nij) ∈ sBmc(X,X), nbmc
1 = 0,

nij = 0 for i ⩾ j. Consider the chain map a = (1 ⊗ n)bmc
2 : sBmc(X,X) → sBmc(X,X).

Then ak = (1 ⊗ nk)bmc
2 , where by definition n1 = n, nk = (nk−1 ⊗ n)bmc

2 . Since n is
represented by a strictly upper triangular matrix, we have nk = 0 for all sufficiently large
k, hence a is a nilpotent chain map. Therefore 1+a is invertible, as (1+a)−1 =

∑∞
k=0(−a)k

exists. This implies that the chain map (1⊗p)b2 = (1⊗Xi
Bmc

0 )bmc
2 +a ∼ 1+a is homotopy

invertible. In particular the induced map H−1(sBmc(X,X)) → H−1(sBmc(X,X)) is an
isomorphism. Therefore there exists a cycle q ∈ sBmc(X,X)−1 such that (q ⊗ p)bmc

2 −
Xi

Bmc

0 ∈ Im bmc
1 , that is, p is invertible on the left. Similarly, it is invertible on the

right.

Suppose that A and C are unital A∞-categories. Let us show that ϖmc restricts to
an A∞-functor A

u
∞(A,C)

mc → Au
∞(A,C

mc). We preserve the above notations. It suffices
to show that the A∞-functor f : A → Cmc is unital if each f i : A → C, i ∈ I is unital.
Assume iAf i = f iiC + viB1, i ∈ I, where vi : f i → f i : A → C is an A∞-transformation
of degree −2. Since f is an A∞-functor, it follows that Xi

A
0 f1 ∈ sCmc(Xf,Xf) is a cycle,

idempotent modulo boundary. According to (11.44.2)

Xi
A
0 f1 =


Xi

A
0 f

1
1 Xi

A
0 r

12
1 . . . Xi

A
0 r

1n
1

0 Xi
A
0 f

2
1 . . . Xi

A
0 r

2n
1

...
... . . . ...

0 0 . . . Xi
A
0 f
|I|
1

 = p+ diag(Xv
i
0)b

mc
1 ,
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where p = (pij) ∈ sCmc(Xf,Xf) is an element of degree −1 such that pbmc
1 = 0, pii = Xf ii

C
0

for all i ∈ I, and pij = 0 for i > j. By Lemma 11.45 p is invertible modulo boundaries.
Therefore, the same is true for Xi

A
0 f1. Being also idempotent, Xi

A
0 f1 equals the unit Xf i

C
0

modulo boundaries.

11.46 Corollary. Let C be an mc-closed A∞-category. Then for an arbitrary A∞-category
A the A∞-category A∞(A,C) is mc-closed. If A is unital, then the A∞-category A

u
∞(A,C)

is mc-closed.

Proof. Due to Corollary 11.13 for arbitrary A∞-categories A, C the following equation
holds: [

A∞(A,C)
umc→A∞(A,C)

mc ϖmc→A∞(A,C
mc)
]
= A∞(A, umc).

When C is mc-closed, the above A∞-functor is an equivalence since so is umc : C→ Cmc. In
particular, it is essentially surjective. Let f : I → A∞(A,C) be an object of A∞(A,C)

mc,
then the object fϖmc is isomorphic to an object gumcϖmc for some g ∈ ObA∞(A,C).
Since ϖmc is a full embedding, it follows that gumc is isomorphic to f , which means that
A∞(A,C) is mc-closed. The case of Au

∞(A,C) is treated similarly.
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Chapter 12

The monad of pretriangulated A∞-categories

In this chapter we construct a commutation morphism between the two Au
∞-monads con-

sidered above, the monad of shifts and the Maurer–Cartan monad. Since it is coher-
ent with the units and the multiplications in these monads, a new monad −tr, their
composition, is obtained as a corollary. It is called the Au

∞-monad of pretriangulated
A∞-categories. Using it we define pretriangulated A∞-categories and study some of their
properties. In particular, an A∞-category is pretriangulated if and only if it is closed un-
der shifts and mc-closed. By Proposition 11.32 this is equivalent to closedness under shifts
and existence of cones of closed morphisms. The monad −tr behaves like a completion. In
a certain sense it commutes with taking quotients and the A∞-category of A∞-functors.

12.1 The composition of two monads. Define Ctr = C[ ]mc. Its objects are A∞-func-
tors X : I → C[ ], ObX : i 7→ Xi[ni], specified by the elements

xij ∈ {sC[ ](Xi[ni], Xj[nj])}0 = {sC(Xi, Xj)[nj − ni]}0 = Cnj−ni+1(Xi, Xj).

These elements have to satisfy the Maurer–Cartan equation

m>0∑
i<k1<···<km−1<j

(xik1 ⊗ xk1k2 ⊗ · · · ⊗ xkm−1j)b
[ ]
m = 0. (12.1.1)

where the operation b
[ ]
m is described by (10.28.2). This equation can be written as

m>0∑
i<k1<···<km−1<j

(xik1 ⊗ xk1k2 ⊗ · · · ⊗ xkm−1j)(s
nk1−ni ⊗ snk2−nk1 ⊗ · · · ⊗ snj−nkm−1)−1bCm = 0.

12.2 Commutation morphism between two monads. To equip −tr with a monad
structure, we construct a commutation morphism between the A∞-2-monads mc and [ ],

c = cC : Cmc[ ] → C[ ]mc.

The strict A∞-functor cC takes an object X[n] of Cmc[ ], where X : I → C is an A∞-functor,
to the object X ′ = X[n]c : I → C[ ], i 7→ Xi[n], x

′
ij = xij ∈ sC[ ](Xi[n], Xj[n]) = sC(Xi, Xj).

363
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Equation (12.1.1) for x′ takes (correctly) the form

m>0∑
i<k1<···<km−1<j

(xik1 ⊗ xk1k2 ⊗ · · · ⊗ xkm−1j)b
C
m = 0.

and thus holds.
The first component of c consists of the identity morphisms

c1 : sC
mc[ ](X[n], Y [m]) = sCmc(X, Y )[m− n]

=
{ ∏
i∈I,j∈J

sC(Xi, Yj)
}
[m− n] =

∏
i∈I, j∈J

{
sC(Xi, Yj)[m− n]

}
=

∏
i∈I, j∈J

sC[ ](Xi[n], Yj[m]) = sC[ ]mc(X[n]c, Y [m]c).

To be a strict A∞-functor, c has to satisfy the equation

(c1 ⊗ · · · ⊗ c1)b
[ ]mc
k = b

mc[ ]
k c1 : ⊗p∈ksCmc[ ](Xp−1[np−1], X

p[np])

→ sC[ ]mc(X0[n0]c, X
k[nk]c). (12.2.1)

Let objects Xp[np], 0 ⩽ p ⩽ k of Cmc[ ] be specified by elements

xp = (xpij) ∈
∏

i∈Ip, j∈Ip

sC[ ](Xp
i [np], X

p
j [np]) = sCmc[ ](Xp[np], X

p[np]). (12.2.2)

Consider morphisms

rp = (rpij) ∈
∏

i∈Ip−1, j∈Ip

sC[ ](Xp−1
i [np−1], X

p
j [np]) = sCmc[ ](Xp−1[np−1], X

p[np]). (12.2.3)

Applying the left hand side of (12.2.1) to them we obtain

(r1 ⊗ · · · ⊗ rk)b[ ]mc
k =

∑
t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rk ⊗ (xk)⊗tk

]
b
[ ]
t0+···+tk+k

=
∑

t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rk ⊗ (xk)⊗tk

]
(1⊗t0 ⊗ sn0−n1 ⊗ 1⊗t1 ⊗ · · · ⊗ snk−1−nk ⊗ 1⊗tk)bt0+···+tk+k(−s)nk−n0

= (−)σ
∑

t0,...,tk⩾0

[
(x0)⊗t0⊗r1sn0−n1⊗(x1)⊗t1⊗· · ·⊗rksnk−1−nk⊗(xk)⊗tk

]
bt0+···+tk+k(−s)nk−n0.

Here the sign is determined by

σ =
∑

1⩽q<p⩽k

(nq−1 − nq) deg rp (12.2.4)
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due to deg xpij being 0. Applying the right hand side of (12.2.1) to the same rp ∈
sCmc(Xp−1, Xp)[np − np−1] we get

(r1 ⊗ · · · ⊗ rk)bmc[ ]
k = (r1 ⊗ · · · ⊗ rk)(sn0−n1 ⊗ · · · ⊗ snk−1−nk)bmc

k (−s)nk−n0

= (−)σ(r1sn0−n1 ⊗ · · · ⊗ rksnk−1−nk)bmc
k (−s)nk−n0

= (−)σ
∑

t0,...,tk⩾0

[
(x0)⊗t0⊗r1sn0−n1⊗(x1)⊗t1⊗· · ·⊗rksnk−1−nk⊗(xk)⊗tk

]
bt0+···+tk+k(−s)nk−n0,

which coincides with the left hand side. Thus cC is a strict A∞-functor.

12.2.1 Unitality of the commutation morphism. Let us prove that c is a natural
A∞-2-transformation. First of all, we shall prove that cC : Cmc[ ] → C[ ]mc is unital if C is.
Indeed, the unit elements of C[ ]mc and Cmc[ ] belonging to the same k-module

sC[ ]mc(X[n]c, X[n]c) =
∏
i,j∈I

sC[ ](Xi[n], Xj[n]) =
∏
i,j∈I

sC(Xi, Xj)

= sCmc(X,X) = sCmc[ ](X[n], X[n])

are

X[n]ci
C[ ]mc

0 =
∑
t⩾0

(x⊗t)iC
[ ]

t =
∑
t⩾0

(x⊗t)(iC)
[ ]
t =

∑
t⩾0

(x⊗t)iCt = X[n]i
Cmc[ ]

0 ,

due to already proven equations (iC)mc = iC
mc

and (iC)[ ] = iC
[ ]

, and due to formula (10.19.5)
for (iC)[ ]. Notice that here all objects Xi ∈ ObC are shifted by the same integer n.

Therefore, the identity map c1 maps the unit element X[n]i
Cmc[ ]

0 to the unit element X[n]i
C[ ]mc

0 ,
thus, c is unital.

12.2.2 The natural transformation c. Let us prove that c is a natural transforma-
tion, that is, for an arbitrary A∞-functor f : A→ B the following equation holds:

Amc[ ] cA →A[ ]mc

=

Bmc[ ]

fmc[ ]

↓
cB →B[ ]mc

f [ ]mc

↓

Since c is strict this equation reduces to:

(c1 ⊗ · · · ⊗ c1)f
[ ]mc
k = f

mc[ ]
k c1 :

⊗p∈k sAmc[ ](Xp−1[np−1], X
p[np])→ sB[ ]mc(X0f [n0]c, X

kf [nk]c). (12.2.5)
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Let Xp, xp, rp be given by (12.2.2), (12.2.3). In the left hand side of (12.2.5) we obtain

(r1 ⊗ · · · ⊗ rk)f [ ]mc
k =

∑
t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rk ⊗ (xk)⊗tk

]
f
[ ]
t0+···+tk+k

=
∑

t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rk ⊗ (xk)⊗tk

]
(1⊗t0 ⊗ sn0−n1 ⊗ 1⊗t1 ⊗ · · · ⊗ snk−1−nk ⊗ 1⊗tk)ft0+···+tk+ks

nk−n0

= (−)σ
∑

t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1sn0−n1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rksnk−1−nk ⊗ (xk)⊗tk

]
ft0+···+tk+ks

nk−n0.

The sign is determined by σ from (12.2.4). The right hand side of (12.2.5) gives

(r1 ⊗ · · · ⊗ rk)fmc[ ]
k = (r1 ⊗ · · · ⊗ rk)(sn0−n1 ⊗ · · · ⊗ snk−1−nk)fmc

k snk−n0

= (−)σ(r1sn0−n1 ⊗ · · · ⊗ rksnk−1−nk)fmc
k snk−n0

= (−)σ
∑

t0,...,tk⩾0

[
(x0)⊗t0 ⊗ r1sn0−n1 ⊗ (x1)⊗t1 ⊗ · · · ⊗ rksnk−1−nk ⊗ (xk)⊗tk

]
ft0+···+tk+ks

nk−n0,

which coincides with the left hand side. Thus c : −mc[ ] → −[ ]mc is a natural transformation.

12.2.3 The natural A∞-2-transformation c. Let us show that c is an A∞-2-trans-
formation. We have already verified equation

A∞(A,B)
−mc[ ]

→A∞(A
mc[ ],Bmc[ ])

=

A∞(A
[ ]mc,B[ ]mc)

−[ ]mc

↓
(cA⊠1)M→A∞(A

mc[ ],B[ ]mc)

(1⊠cB)M↓

on objects in Section 12.2.2. Let us verify this equation on morphisms. All A∞-functors
being strict in this diagram, we have to compare the first components:

A∞(A,B)(f, g)
(−mc[ ])1→A∞(A

mc[ ],Bmc[ ])(fmc[ ], gmc[ ])

=

A∞(A
[ ]mc,B[ ]mc)(f [ ]mc, g[ ]mc)

(−[ ]mc)1↓
cA·−→A∞(A

mc[ ],B[ ]mc)(fmc[ ]cB, cAg
[ ]mc)

−·cB↓

Consider an A∞-transformation q : f → g : A → B. We have to verify that qmc[ ] · cB =
cA · q[ ]mc. Since A∞-functors c are strict, this equation reduces to:

(cA1 ⊗ · · · ⊗ cA1)q
[ ]mc
k = q

mc[ ]
k cB1 :

⊗p∈k sAmc[ ](Xp−1[np−1], X
p[np])→ sB[ ]mc(X0f [n0]cB, X

kg[nk]cB).
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It resembles equation (12.2.5) and is proved in the same way as in Section 12.2.2 (replace
fk with qk, and add the sign (−)q(nk−n0) in appropriate lines). Therefore, c is an A∞-2-
transformation which restricts to an Au

∞-2-transformation in the unital case.

12.3 Proposition. The A∞-2-functor tr : A∞ → A∞, (resp. Au
∞-2-functor tr : Au

∞ →
Au
∞) C 7→ Ctr = C[ ]mc, equipped with the unit

utr =
(
Id

u[ ]→ −[ ] umc→−[ ]mc
)

and with the multiplication

mtr =
(
−[ ]mc[ ]mc cmc

→ −[ ][ ]mcmc mmc→ −[ ][ ]mc
mmc

[ ]→−[ ]mc
)

(12.3.1)

is an A∞-2-monad (resp. Au
∞-2-monad).

Proof. The conclusion of the proposition follows from commutation relations between c
and u[ ], umc, mmc, m[ ] – distributivity laws of Beck [Bec69]. They are proven in four
lemmata below.

12.4 Lemma. For an arbitrary A∞-category C the following equation holds

umc
[ ] =

(
Cmc u[ ]→ Cmc[ ] c→ C[ ]mc

)
. (12.4.1)

Proof. Let (X : I ∋ i 7→ Xi, x = (xij)), xij ∈ sC(Xi, Xj) be an object of Cmc. Then
Xu[ ]c = X[0]c : i 7→ Xi[0] is equipped with the matrix (xij), xij ∈ sC[ ](Xi[0], Xj[0]).

The same data determine the object Xumc
[ ] : I → C[ ], since u[ ] is strict. Therefore

both sides of (12.4.1) give the same map on objects. The both sides are strict A∞-func-
tors. The first components of both sides give the same identity map on morphisms:
id :

∏
i∈I,j∈J sC(Xi, Yj)===⇀⇁

∏
i∈I,j∈J sC

[ ](Xi[0], Yj[0]).

12.5 Lemma. For an arbitrary A∞-category C the following equation holds

umc =
(
C[ ] u

[ ]
mc→ Cmc[ ] c→ C[ ]mc

)
. (12.5.1)

Proof. An object X[n] of C[ ] is mapped by both sides of (12.5.1) to (1 ∋ 1 7→ X[n], 0).
The both sides are strict A∞-functors. The first components of both sides give the same
identity map on morphisms id : sC[ ](X[n], Y [m])→ sC[ ]mc((1 7→ X[n], 0), (1 7→ Y [m], 0)).

12.6 Lemma. For an arbitrary A∞-category C the following equation holds

Cmcmc[ ] c→ Cmc[ ]mc cmc

→ C[ ]mcmc

=

Cmc[ ]

m
[ ]
mc↓

c → C[ ]mc

mmc↓ (12.6.1)
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Proof. An object X of Cmcmc[ ] is described by the following data:

(X : I → Cmc, i 7→ X i, x)[n], x = (xii′)i,i′∈I , (X
i : J i → C, j 7→ X i

j, x
i), xi = (xijj′)j,j′∈J i.

Denote K = ⊔i∈IJ i. Then

Xc = (i 7→ (X i : J i → C, j 7→ X i
j, x

i)[n], x),

Xccmc = (i 7→ (X i : J i → C, j 7→ X i
j[n], x

i), x),

Xccmcmmc = (X̃ : K ∋ k = (i, j ∈ J i) 7→ X i
j[n], x+ diag(xi)),

Xm[ ]
mc = (K ∋ k = (i, j ∈ J i) 7→ X i

j, x+ diag(xi))[n],

Xm[ ]
mcc = (X̃ : K ∋ k = (i, j ∈ J i) 7→ X i

j[n], x+ diag(xi)).

Therefore, the objects Xccmcmmc and Xm
[ ]
mcc coincide.

All A∞-functors in diagram (12.6.1) are strict. All their first components are identity
maps. Indeed, the top–right path gives

sCmcmc[ ]
(
(X : i 7→ (X i : J i ∋ j 7→ X i

j, x
i), x)[n], (Y : l 7→ (Y l : P l ∋ p 7→ Y l

p , y
l), y)[m]

)
===

c1
⇀⇁

∏
i∈I, l∈L

sCmc[ ]
(
(X i : J i ∋ j 7→ X i

j, x
i)[n], (Y l : P l ∋ p 7→ Y l

p , y
l)[m]

)
===
cmc
1 ⇀⇁

∏
i∈I, l∈L

∏
j∈J i, p∈P l

sC[ ](X i
j[n], Y

l
p [m])===

mmc1
⇀⇁

∏
k∈K, q∈Q

sC[ ](X̃k[n], Ỹ q[m]),

where Q = ⊔l∈LP l. The left–bottom path gives

sCmcmc
(
(X : i 7→ (X i : J i ∋ j 7→ X i

j, x
i), x), (Y : l 7→ (Y l : P l ∋ p 7→ Y l

p , y
l), y)

)
[m− n]

========
sn−mmmc1s

m−n

⇀⇁sCmc
(
(X̃ : K ∋ k 7→ X̃k, x+diag(xi)), (Ỹ : Q ∋ q 7→ Ỹ q, y+diag(yl))

)
[m−n]

===
c1
⇀⇁

∏
k∈K, q∈Q

sC[ ](X̃k[n], Ỹ q[m]).

Therefore the both compositions are equal to the identity map, hence, coincide.

12.7 Lemma. For an arbitrary A∞-category C the following equation holds

Cmc[ ][ ] c[ ]→ C[ ]mc[ ] c → C[ ][ ]mc

Cmc[ ]

m[ ]↓
c → C[ ]mc

mmc
[ ]↓ (12.7.1)
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Proof. On the top–right path the objects are mapped as follows:

(X : I ∋ i 7→ X i, x)[n][m]
c[ ]→ (X : I ∋ i 7→ X i[n], x)[m]

c→ (X : I ∋ i 7→ X i[n][m], x)
mmc

[ ]→ (X : I ∋ i 7→ X i[n+m], x).

The left–bottom path gives

(X : I ∋ i 7→ X i, x)[n][m]
m[ ]→ (X : I ∋ i 7→ X i, x)[n+m]

c→ (X : I ∋ i 7→ X i[n+m], x),

which coincides with the above result.
All A∞-functors in diagram (12.7.1) are strict. Their first components are acting as

follows. On the top–right path:

∏
i∈I, j∈J

sC(Xi, Yj)[k − n][l −m]======
sm−lc1s

l−m

⇀⇁
∏

i∈I, j∈J

sC[ ](Xi[n], Yj[k])[l −m]

===
c1
⇀⇁

∏
i∈I, j∈J

sC[ ][ ](Xi[n][m], Yj[k][l])
(−1)k(m−l)

m[ ]1

→
∏

i∈I, j∈J

sC[ ](Xi[n+m], Yj[k + l]).

On the left–bottom path:

sCmc[ ][ ](X[n][m], Y [k][l])
(−1)k(m−l)

m[ ]1

→ sCmc[ ](X[n+m], Y [k + l])

===
c1
⇀⇁

∏
i∈I, j∈J

sC[ ](Xi[n+m], Yj[k + l]).

These compositions are both equal to multiplication by (−1)k(m−l), hence, coincide.

The proof of Proposition 12.3 is complete.

12.8 Remark. If C is strictly unital, then Ctr is strictly unital as well. This follows from
Remark 10.29 and Lemma 11.24.

Let us describe the strict A∞-functor mtr : C
tr tr → Ctr explicitly. By definition (12.3.1)

this is a composition of three strict A∞-functors, two of which act as identity on morphisms
and the third acts via a cocycle. First we consider the strict A∞-functor mtr on objects.

An object X of Ctr tr = C[ ]mc[ ]mc is specified by the following data:

— finite totally ordered sets I ∈ ObP, J i ∈ ObP for every i ∈ I;
— objects X i

j of C for all i ∈ I, j ∈ J i;
— integers mi, nij for all i ∈ I, j ∈ J i;



370 12. The monad of pretriangulated A∞-categories

— and the following matrices x, xii, i ∈ I of morphisms:(
X : I ∋ i 7→ (X i : J i ∋ j 7→ X i

j[n
i
j], x

ii = (xiijj′)j,j′∈J i)[m
i], x = (xii

′
)i,i′∈I

)
,

xiijj′ ∈ C[ ](X i
j[n

i
j], X

i
j′[n

i
j′])[1]

0 = C(X i
j, X

i
j′)[n

i
j′ − nij + 1]0,

xii
′ ∈ C[ ]mc[ ](X i[mi], X i′[mi′])[1]0 = C(X i, X i′)[mi′ −mi + 1]0,

where X i and X specify A∞-functors. It means that j ⩾ j′ implies xiijj′ = 0,

i ⩾ i′ implies xii
′
= 0, the Maurer–Cartan equations

∑
t⩾0 x

⊗tb
[ ]mc[ ]
t = 0 and∑

t⩾0(x
ii)⊗tb

[ ]
t = 0 hold for all i ∈ I.

Applying cmc to X gives(
Xcmc : I ∋ i 7→ (X̃ i : J i ∋ j 7→ X i

j[n
i
j][m

i], xii = (xiijj′)j,j′∈J i), x = (xii
′
)i,i′∈I

)
,

xiijj′ ∈ C[ ][ ](X i
j[n

i
j][m

i], X i
j′[n

i
j′][m

i])[1]0 = C(X i
j, X

i
j′)[n

i
j′ − nij + 1]0,

xii
′ ∈ C[ ][ ]mc(X̃ i, X̃ i′)[1]0 =

∏
j∈J i,j′∈J i′

C[ ][ ](X i
j[n

i
j][m

i], X i′

j′[n
i′

j′][m
i′])[1]0

=
∏

j∈J i,j′∈J i′
C(X i

j, X
i′

j′)[n
i′

j′ +mi′ − nij −mi + 1]0 = C[ ]mc[ ](X i[mi], X i′[mi′])[1]0.

The elements xii
′
are identified with matrices (xii

′

jj′)
j′∈J i′

j∈J i , where

xii
′

jj′ ∈ C[ ](X i
j[n

i
j], X

i′

j′[n
i′

j′])[m
i′ −mi + 1]0 = C(X i

j, X
i′

j′)[n
i′

j′ +mi′ − nij −mi + 1]0.

Denote IJ =
⊔
i∈I J

i =
{
(i, j) ∈ I ×

⋃
i∈I J

i | j ∈ J i
}
, and consider the IJ × IJ-matrix

x̃ = x+ diag(xii), thus,

x̃ii
′

jj′ = xii
′

jj′ ∈ C[ ][ ](X i
j[n

i
j][m

i], X i′

j′[n
i′

j′][m
i′])[1]0 = C(X i

j, X
i′

j′)[m
i′ + ni

′

j′ −mi − nij + 1]0

if i < i′, or if i = i′ and j < j′, otherwise x̃ii
′

jj′ = 0.
Applying mmc to Xcmc gives(

Xcmcmmc : IJ ∋ (i, j) 7→ X i
j[n

i
j][m

i], x̃ = (x̃ii
′

jj′)(i,j),(i′,j′)∈IJ
)
.

due to Section 11.28. Finally, mmc
[ ] takes Xcmcmmc to Xmtr:(

Xmtr : IJ ∋ (i, j) 7→ X i
j[n

i
j +mi], x̄ = (x̄ii

′

jj′)(i,j),(i′,j′)∈IJ
)
,

x̄ii
′

jj′ = (−1)n
i′
j′(m

i−mi′)xii
′

jj′ ∈ C[ ](X i
j[n

i
j +mi], X i′

j′[n
i′

j′ +mi′])[1]0 (12.8.1)

due to Section 10.30.2. In particular, x̄iijj′ = xiijj′, so diagonal blocks are not changed.
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Now we consider the first component of the strict A∞-functor mtr. Let Y be another
object of Ctr tr,(

Y : K ∋ k 7→ (Y k : Lk ∋ l 7→ Y k
l [p

k
l ], y

kk = (ykkll′ )l,l′∈Lk)[q
k], y = (ykk

′
)k,k′∈K

)
.

A morphism f ∈ Ctr tr(X, Y )[1] identifies with the matrix (f ikjl )
i∈I,k∈K
j∈J i,l∈Lk

f ikjl ∈ C(X i
j, Y

k
l )[p

k
l + qk − nij −mi + 1] ≃ Ctr(X i, Y k)[qk −mi + 1].

It is mapped by cmc
1 to fcmc

1 ∈ C[ ][ ]mcmc(Xcmc, Y cmc)[1] identified with the same matrix,

f ikjl ∈ C[ ][ ](X i
j[n

i
j][m

i], Y k
l [p

k
l ][q

k])[1].

Denote KL =
⊔
k∈K L

k. The previous morphism is mapped by (mmc)1 to fcmc
1 (mmc)1 ∈

C[ ][ ]mc(Xcmcmmc, Y cmcmmc)[1] identified with the same matrix (f ikjl )(i,j)∈IJ,(k,l)∈KL due to
Section 11.28. Finally, (mmc

[ ] )1 takes this morphism to f(mtr)1 ∈ Ctr(Xmtr, Y mtr)[1],

determined by the matrix

f(mtr)1 =
(
(−1)pkl (mi−qk)f ikjl

)
(i,j)∈IJ,(k,l)∈KL, f ikjl ∈ C[ ](X i

j[n
i
j +mi], Y k

l [p
k
l + qk])[1]

due to Section 10.30.2.
By Proposition 12.3 the A∞-2-monad C 7→ Ctr = C[ ]mc has the unit

utr =
(
C

umc→ Cmc
umc
[ ]→ C[ ]mc

)
=
(
C

u[ ]→ C[ ] umc→ C[ ]mc
)
.

12.9 Definition. We say that a unital A∞-category C is pretriangulated if every object
X of Ctr is isomorphic in Ctr to Y utr for some object Y of C.

12.10 Proposition. Let C be a unital A∞-category. Then the following conditions are
equivalent:

(i) C is pretriangulated;

(ii) the A∞-functor utr : C→ Ctr is an equivalence;

(iii) C is closed under shifts and mc-closed;

(iv) the A∞-functors u[ ] : C→ C[ ] and umc : C→ Cmc are equivalences.

Proof. (i) ⇐⇒ (ii): Both A∞-functors umc : C → Cmc and umc
[ ] : Cmc → C[ ]mc are strict,

and their first components are isomorphisms. Their composition utr : C → Ctr has the
same properties. So it is an equivalence if and only if it is essentially surjective on objects
[Lyu03, Theorem 8.8].

(iii) ⇐⇒ (iv): Proved in Propositions 10.33 and 11.32.
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(iv) =⇒ (ii): Since u[ ] : C→ C[ ] is an A∞-equivalence, so is umc
[ ] : Cmc → C[ ]mc. There-

fore, its composition utr with the A∞-equivalence umc : C→ Cmc is also an A∞-equivalence.
(ii) =⇒ (iv): The composition utr of two full strict embeddings umc : C ↪→ Cmc and

umc
[ ] : Cmc ↪→ C[ ]mc is essentially surjective on objects. Therefore, both umc

[ ] and umc are

essentially surjective on objects (the latter by Lemma 10.42). From the presentation of
utr as composition of full embeddings u[ ] : C → C[ ] and umc : C[ ] → C[ ]mc we find that
both are essentially surjective on objects (the former by Lemma 10.42). Therefore, all
mentioned A∞-functors are equivalences.

12.11 Proposition. Let C be a unital A∞-category. Then the A∞-category Ctr is pretri-
angulated, closed under shifts and mc-closed. The A∞-functors utr, u

tr
tr : C

tr → Ctr tr and
mtr : C

tr tr → Ctr are equivalences, quasi-inverse to each other.

Proof. The A∞-category Ctr = C[ ]mc is mc-closed by Proposition 11.34, hence, umc : C
tr →

Ctr mc is an A∞-equivalence by Corollary 11.35. Similarly to Proposition 10.35 we are
going to prove that Ctr = C[ ]mc is closed under shifts. This amounts to proving that u[ ] :

C[ ]mc → C[ ]mc[ ] is an A∞-equivalence. Recall that ⊗Z and the multiplication A∞-functor
m[ ] : C

[ ][ ] → C[ ] depend on a sign, determined by the function ψ1(a, b, c, d) = (−1)c(b−d).
Consider the A∞-functor

g =
(
C[ ]mc[ ] c→ C[ ][ ]mc

mmc
[ ]→ C[ ]mc

)
, (12.11.1)

whose source and target are the same as target and source of the studied functor u[ ].

Let X : I → C[ ], i 7→ Xi[ni], x = (xij)i,j∈I , xij ∈
[
sC[ ](Xi[ni], Xj[nj])

]0
be an object of

Ctr. The first functor from (12.11.1) takes an object X[m] of Ctr[ ] to the object X ′ =
X[m]c : I → C[ ][ ], i 7→ Xi[ni][m], x′ = x = (xij), x

′
ij ∈ sC[ ][ ](Xi[ni][m], Xj[nj][m])

of C[ ][ ]mc. The second takes it further to the object Y : I → C[ ], i 7→ Xi[ni + m],
y = (ψ1(ni,m, nj,m)xij)i,j∈I = (xij)i,j∈I , yij = xij ∈ sC[ ](Xi[ni +m], Xj[nj +m]) of Ctr,
due to our choice of ψ1(ni,m, nj,m) = 1. Let us prove that X[m] is isomorphic to Y [0]
in Ctr[ ].

Applying the same A∞-functor g to the object Y [0] of Ctr[ ] we get the object Y ′ =
Y [0]c : I → C[ ][ ], i 7→ Xi[ni +m][0], y′ = y = x, y′ij ∈ sC[ ][ ](Xi[ni +m][0], Xj[nj +m][0])

of C[ ][ ]mc, and Y [0]g = Y . The first component

g1 =
(
sC[ ]mc[ ](X[m], Y [0])

c1→ sC[ ][ ]mc(X ′, Y ′)
(m[ ])

mc
1→ sC[ ]mc(Y, Y )

)
is an isomorphism. It takes some element q ∈ sC[ ]mc[ ](X[m], Y [0]) to the unit element

Y i
C[ ]mc

0 . Similarly, the isomorphism

g1 =
(
sC[ ]mc[ ](Y [0], X[m])

c1→ sC[ ][ ]mc(Y ′, X ′)
(m[ ])

mc
1→ sC[ ]mc(Y, Y )

)
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takes some element t ∈ sC[ ]mc[ ](Y [0], X[m]) to the unit element Y i
C[ ]mc

0 . Since c, m[ ] are
A∞-functors, the elements q, t are cocycles.

The equations m[ ]b
[ ] = b[ ]m[ ], (m[ ])

mc(b[ ])mc = (b[ ])mc(m[ ])
mc and property (12.2.1)

imply commutativity of the following diagram

sC[ ]mc[ ](X[m], Y [0])⊗ sC[ ]mc[ ](Y [0], X[m])
b
[ ]mc[ ]
2 → sC[ ]mc[ ](X[m], X[m])

sC[ ][ ]mc(X ′, Y ′)⊗ sC[ ][ ]mc(Y ′, X ′)

c1⊗c1↓
b
[ ][ ]mc
2

(b[ ][ ])mc
2

→ sC[ ][ ]mc(X ′, X ′)

c1↓

sC[ ]mc(Y, Y )⊗ sC[ ]mc(Y, Y )

(m[ ])
mc
1 ⊗(m[ ])

mc
1 ↓

(b[ ])mc
2

b
[ ]mc
2

→ sC[ ]mc(Y, Y )

(m[ ])
mc
1↓

The result of Section 12.2.1 implies that X[m]i
C[ ]mc[ ]

0 c1 = X ′iC
[ ][ ]mc

0 . Since ψ1(ni,m, nj,m) = 1,

we have X ′iC
[ ][ ]mc

0 (m[ ])
mc
1 = Y i

C[ ]mc

0 . The image of the element q ⊗ t from the left top cor-

ner of this diagram is (Y i
C[ ]mc

0 ⊗ Y i
C[ ]mc

0 )b
[ ]mc
2 . It differs by a boundary from Y i

C[ ]mc

0 =

X[m]i
C[ ]mc[ ]

0 c1(m[ ])
mc
1 . Hence, the difference (q ⊗ t)b[ ]mc[ ]

2 − X[m]i
C[ ]mc[ ]

0 is mapped by the iso-
morphism g1 to a boundary. Therefore, this difference is a boundary itself.

Similarly, (t ⊗ q)b[ ]mc[ ]
2 − Y [0]i

C[ ]mc[ ]

0 ∈ Im b
[ ]mc[ ]
1 . We conclude that Ctr = C[ ]mc is closed

under shifts, and u[ ] : C
[ ]mc → C[ ]mc[ ] is an A∞-equivalence. Since −mc is an Au

∞-2-functor,

it projects to an ordinary strict 2-functor −mc : Au
∞ → Au

∞ [LM06a, Section 3.2]. In
particular, it takes A∞-equivalences to A∞-equivalences. Hence, u

mc
[ ] : C[ ]mcmc → C[ ]mc[ ]mc

is an A∞-equivalence. Therefore, the composition

utr =
(
Ctr umc→ Ctr mc

umc
[ ]→ Ctr tr

)
is an A∞-equivalence. Equations utrmtr = idCtr = utrtrmtr imply that mtr : C

tr tr → Ctr and
utrtr : C

tr → Ctr tr are A∞-equivalences as well.

12.12 Corollary. Let A, B be equivalent unital A∞-categories. If one of them is pretri-
angulated, then so is the other.

Proof. Let f : A → B be an A∞-equivalence, then f
tr : Atr → Btr is A∞-equivalence as

well. In the equation
utrf

tr = futr : A→ Btr

three out of four A∞-functors are equivalences. Hence, so is the fourth.

We say that a unital A∞-functor f : A → C is an A∞-equivalence with its image

if f factorizes as follows: f = (A
g→B ⊂

e→ C), where e : B ⊂ → C is a strict full
embedding with ObB = ImOb f , and the uniquely defined g is an A∞-equivalence. This
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is equivalent to homotopy invertibility of the first component f1 : sA(X, Y )→ sC(Xf, Y f)
for all objects X, Y of A. Such A∞-functor f is also called homotopy fully faithful.

Let A be a unital A∞-category. Recall that the Yoneda A∞-functor Y : A →
Au
∞(A

op,Ck) is an A∞-equivalence with its image – full differential graded subcategory
[LM08c, Appendix A].

12.13 Proposition. If a unital A∞-functor f : A → C is an equivalence with its image,
then so are f [ ] : A[ ] → C[ ], fmc : Amc → Cmc and f tr : Atr → Ctr.

Proof. Let g : A→ B be an A∞-equivalence. Then g
mc : Amc → Bmc is an A∞-equivalence

as well. This follows from the fact that −mc : Au
∞ → Au

∞ is an Au
∞-2-functor (it produces

a strict 2-functor −mc : Au
∞ → Au

∞, which maps equivalences to equivalences).
Suppose that the functor f : A → C is an A∞-equivalence with its image. That is,

f factorizes as follows: f = (A
g→B ⊂

e→ C), where B denotes the image of f , g is
an A∞-equivalence, and e : B ⊂ → C is a strict full embedding. Applying −mc we obtain

fmc = (Amc gmc

→Bmc emc

→ Cmc). By the above observation gmc is an A∞-equivalence.
Since e is a strict A∞-functor with e1 = id, the same holds for emc. This shows that the
functor fmc is also an A∞-equivalence with its essential image.

Similar statement holds for −[ ]: we can look at the first component

f
[ ]
1 : sA[ ](X[n], Y [m]) = sA(X, Y )[m− n]

f
[m−n]
1 → sC[ ](X[n]f [ ], Y [m]f [ ]) = sC(Xf, Y f)[m− n],

it is homotopy invertible if so is f1.
The first two claims imply the third one.

12.14 Corollary. TheA∞-functors Y [ ] : A[ ] → Au
∞(A

op,Ck)
[ ], Y mc : Amc → Au

∞(A
op,Ck)

mc

and Y tr : Atr → Au
∞(A

op,Ck)
tr are A∞-equivalences with its image.

12.15 Proposition. 1) For an arbitrary pretriangulated A∞-category C there exists an

A∞-equivalence Utr = UC
tr =

(
Ctr

Umc
[ ]→ Cmc Umc→ C

)
such that utr · Utr = idC. In particular,

Utr is quasi-inverse to utr.
2) Let A, C be unital A∞-categories, and let C be pretriangulated. Then the strict

A∞-functor A
u
∞(utr,C) = (utr⊠1)M : Au

∞(A
tr,C)→ Au

∞(A,C) is an A∞-equivalence which
admits a one-sided inverse

Ftr
def
=
[
Au
∞(A,C)

−tr

→Au
∞(A

tr,Ctr)
Au∞(Atr,Utr)→Au

∞(A
tr,C)

]
= F[ ] · Fmc,

namely, Ftr · Au
∞(utr,C) = idAu∞(A,C).

The restriction map Au
∞(utr; 1) : A

u
∞(A

tr;C)→ Au
∞(A;C) is surjective.

3) Let A, B be unital A∞-categories. Then the A∞-functor

−tr : Au
∞(A,B)→ Au

∞(A
tr,Btr)

is homotopy full and faithful, that is, its first component is homotopy invertible.
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Proof. 1) Since umc is a natural transformation we have utr · Utr = u[ ]umcU
mc
[ ] Umc =

u[ ]U[ ]umcUmc = id · id = id.
2) Since utr = u[ ] · umc, the considered A∞-functor is a composition of two A∞-equiv-

alences

Au
∞(utr,C) =

[
Au
∞(A

tr,C)
Au∞(umc,C)→Au

∞(A
[ ],C)

Au∞(u[ ],C)→Au
∞(A,C)

]
from Propositions 10.39 and 11.37. The same propositions imply that F[ ] · Fmc is a one-
sided inverse of Au

∞(utr,C). Let us prove that Ftr = F[ ] · Fmc. Indeed, these A∞-functors
are compositions of the two paths from the left top corner to the right bottom corner of
the following diagram

Au
∞(A,C)

−[ ]

→Au
∞(A

[ ],C[ ])
−mc

→Au
∞(A

tr,Ctr)

F[ ] · Fmc Ftr

Au
∞(A

[ ],C)

Au∞(1,U[ ])↓
−mc

→Au
∞(A

tr,Cmc)

Au∞(1,Umc
[ ] )↓

Au∞(1,Umc)→Au
∞(A

tr,C)

It commutes since −mc : Au
∞ → Au

∞ is an Au
∞-2-functor.

The restriction map Au
∞(utr;C) = Au

∞(umc;C) · Au
∞(u[ ];C) is a composition of two sur-

jective mappings.
3) The considered A∞-functor is a composition of two homotopy full and faithful

A∞-functors

−tr =
[
Au
∞(A,B)

−[ ]

→Au
∞(A

[ ],B[ ])
−mc

→Au
∞(A

tr,Btr)
]

from Corollaries 10.41 and 11.39.

12.16 Remark. Let A be a unital A∞-category. It follows from Section 10.47 and Propo-
sition 11.44 that there is a strict full embedding

Au
∞(A

op,Ck)
tr Smc·A∞(u[ ];1)

mc

→Au
∞(A

op,Ck
[ ])mc ϖmc→Au

∞(A
op,Ck

tr),

whose first component is bijective on morphisms. Since the differential graded category
Ck is pretriangulated, the above functor extends to an A∞-equivalence of Au

∞(A
op,Ck)

tr

with Au
∞(A

op,Ck). It follows from Corollary 12.14 that Atr is A∞-equivalent to a full
differential graded subcategory of Au

∞(A
op,Ck).

12.17 Closed multicategory of pretriangulated A∞-categories. Let Atr
∞ denote

the full submulticategory of Au
∞, whose objects are pretriangulated A∞-categories.

12.18 Proposition. The multicategory Atr
∞ is closed with the inner object of morphism

Atr
∞((Ai)i∈I ;B) = Au

∞((Ai)i∈I ;B) and the evaluation

evA
tr
∞ = evA

u
∞ : (Ai)i∈I ,A

tr
∞((Ai)i∈I ;B)→ B.
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The proof follows from the following lemma.

12.19 Lemma. Let B be a pretriangulated A∞-category. Then for arbitrary A∞-cate-
gories Ai, i ∈ I the A∞-category A∞((Ai)i∈I ;B) is pretriangulated. If Ai, i ∈ I are unital,
then the A∞-category Au

∞((Ai)i∈I ;B) is pretriangulated.

Proof. Let us prove that A∞((Ai)i∈I ;B) is pretriangulated, the case of Au
∞((Ai)i∈I ;B) is

treated similarly. Let A be an A∞-category. By Corollaries 10.48 and 11.46 the A∞-cat-
egory A∞(A;B) is closed under shifts and mc-closed. Proposition 12.10 implies that
A∞(A;B) is pretriangulated. Therefore, the claim holds for 1-element sets I. For I = ∅
we have an isomorphism A∞(;B) ≃ B. For other I the claim follows by induction from
the isomorphism

A∞((Ai)i∈1⊔I ;B) ≃ A∞((Ai)i∈I ;A∞(A1;B)).

The lemma is proven.

12.20 Remark. The A∞-category A
u
∞(A

op,Ck) is pretriangulated by Lemma 12.19, for
any unital A∞-category A. Therefore, by Proposition 12.15.1 there exists an A∞-equiva-
lence Utr such that the following diagram is commutative:

A
Y→Au

∞(A
op,Ck) ===⇀⇁Au

∞(A
op,Ck)

Atr

utr↓
Y tr

→Au
∞(A

op,Ck)
tr

utr↓ Utr

→

Thus, the homotopy fully faithful Yoneda A∞-functor Y : A→ Au
∞(A

op,Ck) factors into
utr and the homotopy fully faithful A∞-functor Y tr · Utr : A

tr → Au
∞(A

op,Ck).

12.21 Pretriangulated differential graded categories. Suppose C is a differential
graded category. Then Ctr is a differential graded category as well. Explicit description
of that is given below.

An object X of Ctr consists of the following data: a set I ∈ P, a function that as-
signs to every i ∈ I an object Xi of C and an integer ni, and a family of elements
xij ∈ sC(Xi, Xj)[nj − ni], i, j ∈ I, i < j of degree 0 which satisfy Maurer-Cartan equa-
tion (12.1.1): for every i, j ∈ I, i < j

(−)nj−nixijsni−njb1snj−ni +
∑
i<k<j

(−)nj−ni(xik ⊗ xkj)(snk−ni ⊗ snj−nk)−1b2snj−ni = 0.

Let us introduce elements qij = xijs
−1 ∈ C(Xi, Xj)[nj − ni], i, j ∈ I, i < j of degree 1.

Composing the above equation with s−1 we write it as follows:

(−)nj−niqijsni−njm1s
nj−ni−

∑
i<k<j

(qik⊗qkj)(snk−ni⊗snj−nk)−1µsnj−ni = 0, i, j ∈ J, i < j,
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where m1 = sb1s
−1 and µ = m2 = (s ⊗ s)b2s−1 are respectively the differential and the

multiplication in the original category C. Putting qij = 0 for i ⩾ j we may extend this
equation to all pairs i, j ∈ I. Similarly to [Dri04] we write briefly X = (

⊕
i∈I Xi[ni], x).

When the strictly upper-triangular matrix x has to be specified explicitly we use the
following compact notation:

X =


X1[n1] x12 x13 . . .

X2[n2] x23 . . .
X3[n3] . . .

. . .

 .

Let X = (
⊕

i∈I Xi[ni], x), Y = (
⊕

j∈J Yj[mj], y) be objects of Ctr, q = xs−1, r = ys−1.
The graded k-module of morphisms between X and Y is defined as

Ctr(X, Y ) =
∏

i∈I,j∈J

C(Xi, Yj)[mj − ni].

An element f of Ctr(X, Y ) is thought as a matrix with entries fij ∈ C(Xi, Yj)[mj − ni],
i ∈ I, j ∈ J . The composition map is matrix multiplication. More precisely, let Z =
(
⊕

k∈K Zk[ℓk], z) be another object of Ctr, p = zs−1 and let g be a morphism from Y to

Z. Then fg
def
= (f ⊗ g)mtr

2 has the entries[
(f ⊗ g)mtr

2

]
ik
=
∑
j∈J

(fij ⊗ gjk)(smj−ni ⊗ sℓk−mj)−1µsℓk−ni, i ∈ I, k ∈ K. (12.21.1)

The differential mtr
1 : Ctr(X, Y )→ Ctr(X, Y ) is given by[

fmtr
1

]
ij
= (−)mj−nifijs

ni−mjm1s
mj−ni−

∑
t∈J

(fit ⊗ rtj)(smt−ni ⊗ smj−mt)−1µsmj−ni

+(−)f
∑
u∈I

(qiu ⊗ fuj)(snu−ni ⊗ smj−nu)−1µsmj−ni

for every i ∈ I, j ∈ J . Let us denote by d = m
[ ]
1 the naive differential in Ctr(X, Y ) defined

by [
fd
]
ij
= fijm

[ ]
1 = (−)mj−nifijs

ni−mjm1s
mj−ni, i ∈ I, j ∈ J.

Since the composition mtr
2 in Ctr consists of matrix composition combined with m

[ ]
2 , the

differential d is a derivation of it: mtr
2 d = (1 ⊗ d + d ⊗ 1)mtr

2 . Denoting the composition
of f ∈ Ctr(X, Y ) and g ∈ Ctr(Y, Z) simply fg we may write the following expressions for
the Maurer-Cartan equation and for the differential in Ctr(X, Y ):

qd = q2,

fmtr
1 = fd− fr + (−)fqf. (12.21.2)
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These expressions agree with those in [Dri04, Section 2.4] up to the fact that we use right
operators.

The category C is embedded into Ctr as a full differential graded subcategory via
X 7→ (X[0], 0) and we identify C with its image. If X, Y ∈ ObC and f : X → Y is a
closed morphism of degree 0 one defines Cone(f) to be the object

(
X[1]⊕Y,

(
0 f
0 0

))
of Ctr

with f ∈ C[ ](X[1], Y )[1]0 = C(X, Y )0.
The differential graded category C is said to be pretriangulated (originally Bondal

and Kapranov called them enhancements of triangulated categories [BK90]) in the sense
of [Dri04, 2.4] if for every X ∈ ObC, k ∈ Z the object X[k] of H0(Ctr) is isomorphic1

to an object of H0(C) and for every closed morphism f in C of degree 0 the object
Cone(f) ∈ ObCtr is isomorphic in H0(Ctr) to an object of H0(C). The first condition
implies that C is closed under shifts. This combined with the second condition gives
nothing else but condition (i) of Proposition 11.32. Therefore if C is pretriangulated in
the sense of [Dri04, Section 2.4], then it is pretriangulated in the sense of this book. The
converse is obvious.

1In [Dri04, 2.4] isomorphic objects are called homotopy equivalent.



Chapter 13

Strongly triangulated categories

In this chapter we prove that zeroth homology of a pretriangulated A∞-category is strongly
triangulated. This implies, for instance, that the derived category of an abelian category is
strongly triangulated. Besides, this corollary is already known by work of Neeman [Nee05]
and Maltsiniotis [Mal06]. The definition of strongly triangulated categories is given by
Maltsiniotis [Mal06]. In particular, such category is triangulated in the ordinary (although
relaxed) sense: we do not assume that the action of the group Z on the category by
translations [n] is strict. That is why we describe firstly translation structures on a
category or more generally, on an object of a 2-category. For instance, an A∞-category
closed under shifts has a translation structure as an object of the 2-category Au

∞. The
essence of strongly triangulated categories is that they have a hierarchy of distinguished
triangles, distinguished octahedra and so on, while ordinary triangulated categories need
only the class of distinguished triangles. We define higher triangles using a particular
translation structure on certain subcategories of Z × Z. Thus the new axioms realize
the suggestion expressed by Beilinson, Bernstein and Deligne in [BBD82, Remark 1.1.14]
to work with finer structures than those of triangulated categories. The new structure
is more attractive than the old one, although it does not resolve the usual problems of
triangulated categories: non-functoriality of the cone, non-existence of direct product of
such categories.

From our point of view, the new axioms just express a better truncation of the un-
derlying thing, which is a pretriangulated dg-category or a pretriangulated A∞-category.
We describe in detail distinguished n-triangles in its zeroth homology and prove the main
result of this chapter.

13.1 Translation structures. Let C be a 2-category, C, D objects of C. An adjunc-
tion from C to D is a quadruple (F,U, η, ε), where F : C → D and U : D → C are
1-morphisms, η : IdC → FU and ε : UF → IdD are 2-morphisms such that the following
equations hold: (

F
ηF→ FUF

Fε→ F
)
= idF , (13.1.1)(

U
Uη→UFU

εU→U
)
= idU . (13.1.2)

Let C be an object of C. The category C(C,C) = End(C) is a strict monoidal category
with the tensor product given by composition of 1-morphisms. The set of integers Z can

379
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be viewed as a discrete category. It is a strict monoidal category with the tensor product
given by addition.

13.2 Definition. A translation structure on C is a monoidal functor (Σ , ς) : Z→ End(C).
More specifically, a translation structure on C consists of the following data: for every
n ∈ Z a 1-morphism Σn = Σ (n) : C → C; for each pair m,n ∈ Z a 2-isomorphism
ςm,n : ΣmΣn ∼−→ Σm+n; a 2-isomorphism ς0 : IdC

∼−→ Σ 0. These data must satisfy the
following coherence relations:

(i) cocycle condition: for k,m, n ∈ Z

(
Σ kΣmΣn Σkςm,n→Σ kΣm+n ςk,m+n→Σ k+m+n

)
=
(
Σ kΣmΣn ςk,mΣn

→Σ k+mΣn ςk+m,n→Σ k+m+n
)
;

(13.2.1)

(ii) for every n ∈ Z: (
Σn ς0Σ

n

→Σ 0Σn ς0,n→Σn
)
= idΣn, (13.2.2)(

Σn Σnς0→ΣnΣ 0 ςn,0→Σn
)
= idΣn . (13.2.3)

This definition is similar to definition of weak action of the group Z on a category C

[Ver96, Définition 1.2.2], except that we do not require Σ 0 = IdC. In our applications
we might have restricted the family (Σ p, ς) to the only self-equivalence Σ 1. To recover
the rest one chooses a quasi-inverse Σ−1 to Σ 1 together with adjunction isomorphisms.
Then one defines Σ p = (Σ 1)p, Σ 0 = id, Σ−p = (Σ−1)p for p > 0. The isomorphisms ς
are constructed from the adjunction isomorphisms. This particular family (Σ p, ς) does
not actually have any advantage over the general case. That is why we have chosen the
general approach. We stress, however, that the general structure is isomorphic to this
particular one in the sense described below.

The notion of a Z-functor (a functor commuting with the action of Z up to isomor-
phism) due to Verdier [Ver96, Définition 1.2.4] suggests the following generalization. Let
us define a new 2-category TransC. An object of this category is an object of C with a
translation structure on it. A 1-morphism from (C,Σ , ς) to (D,Σ , ς) (a translation pre-
serving 1-morphism) consists of the following data: a 1-morphism F : C → D; for every
n ∈ Z a 2-isomorphism ϕn : ΣnF

∼−→ FΣn such that the following diagram commutes for
each pair m,n ∈ Z

ΣmΣnF
Σmϕn→ΣmFΣn ϕmΣn

→ FΣmΣn

Σm+nF

ςm,nF↓
ϕm+n → FΣm+n

Fςm,n↓ (13.2.4)
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and the following equation holds:(
F

ς0F→Σ 0F
ϕ0→ FΣ 0

)
=
(
F

Fς0→ FΣ 0
)
. (13.2.5)

A 2-morphism ν : (F, ϕn) → (G,ψn) : (C,Σ , ς) → (D,Σ , ς) (a translation preserving
2-morphism) is a 2-morphism ν : F → G such that the following diagram commutes for
every n ∈ Z:

ΣnF
Σnν→ΣnG

FΣn

ϕn↓
νΣn

→GΣn

ψn↓
(13.2.6)

13.3 Proposition. Let C, D be objects of C, (F,U, η, ε) an adjunction from C to D. The
correspondence T 7→ FTU extends to a lax monoidal functor Γ : End(D)→ End(C).

Proof. For each pair T, S ∈ End(D) put

γT,S =
(
TΓ · SΓ = FTUFSU

FTεSU→ FTSU = (TS)Γ
)
.

We have to check that for T, S,R ∈ End(D) the following equation holds:(
FTUFSUFRU

FTεSUFRU→ FTSUFRU
FTSεRU→ FTSRU

)
=
(
FTUFSUFRU

FTUFSεRU→ FTUFSRU
FTεSRU→ FTSRU

)
.

It follows from the equation(
UFSUF

εSUF→ SUF
Sε→ S

)
=
(
UFSUF

UFSε→UFS
εS→ S

)
,

which is a consequence of distributivity of horizontal product of 2-morphisms with respect
to vertical product. A 2-morphism IdC → IdD Γ = FU coincides with η. We have to check
that for every T ∈ End(D)(

FTU
FTUη→ FTUFU

FTεU→ FTU
)
= id,(

FTU
ηFTU→ FUFTU

FεTU→ FTU
)
= id .

These equations follow from (13.1.1) and (13.1.2).

13.4 Remark. If (F,U, η, ε) is an adjunction–equivalence between C and D (an adjunc-
tion with invertible η, ε), the constructed above functor is monoidal. Assume (F,U, η, ε)
is an adjunction–equivalence from C to D and D is equipped with a translation struc-

ture. Then the composite functor Z ΣD→ End(D)
Γ→ End(C) is monoidal and defines
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a translation structure on C. Specifically, the translation structure on C is given by the
following data: for each n ∈ Z a 1-morphism Σn

C = FΣn
DU : C→ C; for each pair m,n ∈ Z

a 2-isomorphism

ςCm,n =
(
Σm

C Σn
C = FΣn

DUFΣ
m
DU

FΣm
D εΣ

n
DU→ FΣm

DΣn
DU

FςDm,nU→ FΣm+n
D U = Σm+n

C

)
;

a 2-isomorphism ςC0 = η(FςD0 U) : IdC → FΣ 0
DU = Σ 0

C . We may turn F into a morphism
of objects with translation structure putting for every n ∈ Z

ϕn =
(
Σn

CF = FΣn
DUF

FΣn
Dε→ FΣn

D

)
.

Let us check equations (13.2.4) and (13.2.5). Equation (13.2.4) reads explicitly as follows:

(
FΣm

DUFΣ
n
DUF

FΣm
DUFΣ

n
Dε→ FΣm

DUFΣ
m
D

FΣm
D εΣ

n
D→ FΣm

DΣn
D

FςDm,n→ FΣm+n
D

)
=
(
FΣm

DUFΣ
n
DUF

FΣm
D εΣ

n
DUF→ FΣm

DΣm
DUF

FςDm,nUF→ FΣm+n
D UF

FΣm+n
D ε
→ FΣm+n

D

)
.

It is a consequence of distributivity of products in 2-categories. Equation (13.2.5) reads
as follows:

(
F

ηF→ FUF
FςD0 UF→ FΣ 0

DUF
FΣ 0

Dε→ FΣ 0
D

)
=
(
F

FςD0→ FΣ 0
D

)
.

It follows from distributivity of products and equation (13.1.1).

A given equivalence F : C → D can be completed to an adjunction in a non-unique
way. Let (F,U, η, ε) and (F, Ũ , η̃, ε̃) be adjunction–equivalences between C and D. Being
quasi–inverse to F the 1-morphisms U , Ũ are related by some 2-isomorphism α : U → Ũ
such that η̃ = η ·Fα and ε̃ = α−1F ·ε. The two obtained translation structures (ΣC, ς) and
(Σ̃C, ς̃) on C are isomorphic via the invertible 1-morphism (Id, ψn) : (C,ΣC, ς)→ (C, Σ̃C, ς̃)
of TransC, where the 2-isomorphism ψn is given by

ψn = FΣn
Dα : Σn

C = FΣn
DU → FΣn

DŨ = Σ̃n
C .

Indeed,

(
IdC

ςC0→Σ 0
C

ψ0−→ Σ̃ 0
C

)
=
(
IdC

η−→ FU
FςD0 U→ FΣ 0

DU
FΣ 0

Dα→ FΣ 0
DŨ
)

=
(
IdC

η·Fα
η̃
→ FŨ

FςD0 Ũ→ FΣ 0
DŨ
)
= ς̃C0 ,
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hence, (13.2.5) holds. Moreover,(
Σm

C Σn
C

Σm
C ψn→Σm

C Σ̃n
C

ψmΣ̃n
C→ Σ̃m

C Σ̃n
C

ς̃m,n→ Σ̃m+n
C

)
=
(
FΣm

DUFΣ
n
DU

FΣm
DUFΣ

n
Dα→ FΣm

DUFΣ
n
DŨ

FΣm
DαFΣ

n
DŨ→

FΣm
D ŨFΣ

n
DŨ

FΣm
D ε̃Σ

n
DŨ→ FΣm

DΣn
DŨ

FςDm,nŨ→ FΣm+n
D Ũ

)
=
(
FΣm

DUFΣ
n
DU

FΣm
D εΣ

n
DU→ FΣm

DΣn
DU

FςDm,nU→ FΣm+n
D U

FΣm+n
D α
→ FΣm+n

D Ũ
)
=
(
Σm

C Σn
C

ςm,n→Σm+n
C

ψm+n→ Σ̃m+n
C

)
.

implies that (13.2.4) holds. This shows that ΣC depends functorially on the choice of
adjunction data.

13.5 Translation structures determined by an automorphism. Let category C

have a translation structure. Let us introduce a new category D. Its class of objects is
ObC× Z, that is, objects of D are pairs (X,n) with X ∈ ObC, n ∈ Z. The k-module of
morphisms from (X,n) to (Y,m) is defined as

D((X,n), (Y,m)) = C(XΣn, Y Σm).

Composition in D is induced by that in C. There is a natural functor P : D → C,
(X,n) 7→ XΣn, identity on morphisms. It is obviously an equivalence of categories.

13.6 Proposition. The categoryD has a translation structure, which is a strict monoidal
functor Σ : Z → End(D), such that Σk = Σ(k) : D → D maps an object (X,n) to
(X,n+ k). A morphism (f : XΣn → Y Σm) ∈ D((X,n), (Y,m)) is mapped by Σk to the
composition(

XΣn+k
ς−1
n,k→XΣnΣ k fΣk

→ Y ΣmΣ k ςm,k→ Y Σm+k
)
∈ D((X,n+ k), (Y,m+ k)).

In particular, ΣkΣl = Σk+l, Σ0 = IdD, and Σk are automorphisms of D.
The functor P together with the collection of natural transformations

ϕk =
(
(X,n)ΣkP = XΣn+k

ς−1
n,k→XΣnΣ k = (X,n)PΣ k

)
is a morphism of categories with translation structure.

Proof. Clearly, the functors ΣkΣl and Σk+l coincide on objects. Let f ∈ D((X,n), (Y,m)) =
C(XΣn, Y Σm). The equation fΣkΣl = fΣk+l is given by the exterior of the following
diagram:

XΣn+kΣ l
ς−1
n,kΣ

l

→XΣnΣ kΣ l fΣ
kΣ l

→ Y ΣmΣ kΣ l ςm,kΣ
l

→XΣm+kΣ l

XΣn+k+l

ς−1
n+k,l

↑

ς−1
n,k+l→XΣnΣ k+l

Σnς−1
k,l

↑

fΣk+l

→ Y ΣmΣ k+l

Σmς−1
k,l

↑

ςm,k+l→ Y Σm+k+l

ςm+k,l↓
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The middle square is commutative due to naturality of ςk,l. Two other squares commute
by (13.2.1).

Similarly, the functors Σ0 and IdD coincide on objects. The equation fΣ0 = f is
proven in the diagram below:

XΣnΣ 0 fΣ 0

→ Y ΣmΣ 0

XΣn======

ς−1
n,0

→

XΣn

Σnς0

↑

f → Y Σm

Σmς0

↑

======Y Σm

ςm,0

→

The middle square is commutative due to naturality of ς0. The triangles commute due to
equations (13.2.2) and (13.2.3).

The transformations ϕk = ς−1n,k are commutation isomorphisms of P with translation

functors due to equation (13.2.1).

13.7 Proposition. Let unital A∞-category C be closed under shifts. Then the object
C of 2-category Au

∞, the K-category kC and the k-linear category H0(C) have a natural
translation structure, determined in a unique way up to an isomorphism.

Proof. First we construct a translation structure on C[ ] for an arbitrary unitalA∞-category
C. Denote by σn the differential graded functor

σn =
(
Z

λI .→Z⊠ 1p
1⊠ṅ→Z⊠ Z

⊗Z→Z
)
,

where the quiver 1p with one object ∗ is made into a differential graded category in the
obvious way, and the differential graded functor ṅ : 1p → Z, ∗ 7→ n gives idk : k →
Z(n, n) on morphisms. On objects σn(m) = m + n. Explicit formula for ⊗Z based on
ψ1(l, n, k, n) = 1 shows that

σn = id : Z(l, k) = k[k − l]→ k[k + n− l − n] = Z(l + n, k + n)

on morphisms. Therefore, σmσn = σm+n and σ0 = IdZ. This gives a strict monoidal
functor σ : Z→ EndZ, which is a translation structure on Z.

Denote by Σn = [n] : C[ ] → C[ ] the unital strict A∞-functor idC⊡σn : C⊡Z→ C⊡Z,
see Proposition C.15. On objects it gives the shift Σn : X[m] 7→ X[m + n]. The first
component gives on morphisms the identity map

Σn
1 = id : C[ ](X[k], Y [m])[1] = C(X, Y )[1]⊗ k[m− k]

→ C(X, Y )[1]⊗ k[m+ n− k − n] = C[ ](X[k + n], Y [m+ n])[1].

Since the action ⊡ is a symmetric multifunctor, we have ΣmΣn = Σm+n and Σ 0 = idC[ ].
Equipping this family with identity 2-isomorphisms ςm,n = id and ς0 = id, we get a strict
monoidal functor (Σ , id) : Z→ Au

∞(C
[ ],C[ ]), which is a translation structure on C[ ].
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For an arbitrary A∞-category C closed under shifts the A∞-functor u[ ] : C → C[ ]

is an A∞-equivalence by Proposition 10.33. Choose an A∞-equivalence U : C[ ] → C

quasi-inverse to u[ ] and 2-isomorphisms η : idC → u[ ]U , ε : Uu[ ] → idC[ ] in Au
∞ so that

the quadruple (u[ ], U, η, ε) were an adjunction–equivalence. According to Remark 13.4 the

translation structure on C[ ] constructed above transfers along this adjunction–equivalence
to a translation structure (Σ , ς) : Z → Au

∞(C,C) on C. It is proven in the same remark
that choosing other adjunction–equivalence data will lead to an isomorphic translation
structure on C.

A strict 2-functor k : Au
∞ → K-Cat is constructed in [Lyu03, Proposition 8.6]. It takes

a unital A∞-category C to the K-category kC, a unital A∞-functor f to the K-functor
kf = sf1s

−1, the cohomology class of a natural A∞-transformation r : f → g : A→ B to
kr = r0s

−1 : kf → kg : kA → kB, that is, for each object X of A the component (kr)X
is the homotopy equivalence class of chain map Xr0s

−1 : k→ B(Xf,Xg). This 2-functor
induces a translation structure on kC as the composition of monoidal functors

(kΣ , kς) =
[
Z (Σ ,ς)→Au

∞(C,C)
k→K-Cat(kC, kC)

]
.

Following [Lyu03, Section 8.13] we compose the 2-functor k with the strict 2-functor

H0 : K-Cat → k-Cat. The composition Au
∞

k→K-Cat
H0

→ k-Cat is again denoted
H0. It takes a unital A∞-category C to H0(C), a unital A∞-functor f to H0(f) induced
by kf , a natural A∞-transformation r : f → g : A → B to the natural transformation
H0(r), formed by cohomology classes [Xr0s

−1] ∈ H0(B(Xf,Xg),m1). The composition
of monoidal functors

(H0(Σ ), H0(ς)) =
[
Z (Σ ,ς)→Au

∞(C,C)
H0

→ k-Cat(H0(C), H0(C))
]

determines a translation structure on H0(C).

13.8 Lemma. Let B be a unital A∞-category. Then the following equation holds(
B[ ][ ] m[ ]→B[ ] Σn

→B[ ]
)
=
(
B[ ][ ] Σn

→B[ ][ ] m[ ]→B[ ]
)
. (13.8.1)

Proof. The algebra Z satisfies the identity[
Z⊠ Z

⊗Z→Z
σn→Z

]
=
[
Z⊠ Z

⊗Z→Z
λI .→Z⊠ 1p

1⊠ṅ→Z⊠ Z
⊗Z→Z

]
=
[
Z⊠ Z

λI I .→Z⊠ Z⊠ 1p
1⊠1⊠ṅ→Z⊠ Z⊠ Z

⊗3
Z→Z

]
=
[
Z⊠ Z

1⊠λI .→Z⊠ (Z⊠ 1p)
1⊠(1⊠ṅ)→Z⊠ (Z⊠ Z)

1⊠⊗Z→Z⊠ Z
⊗Z−→ Z

]
=
[
Z⊠ Z

1⊠σn→Z⊠ Z
⊗Z→Z

]
.
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Hence, (13.8.1) holds:

m[ ] · Σn =
[
(B⊡ Z)⊡ Z

α2

−→ B⊡ (Z⊠ Z)
1⊡⊗Z→B⊡ Z

1⊡σn→B⊡ Z
]

=
[
(B⊡ Z)⊡ Z

α2

−→ B⊡ (Z⊠ Z)
1⊡(1⊠σn)→B⊡ (Z⊠ Z)

1⊡⊗Z→B⊡ Z
]

=
[
(B⊡ Z)⊡ Z

1⊡σn→ (B⊡ Z)⊡ Z
α2

−→ B⊡ (Z⊠ Z)
1⊡⊗Z→B⊡ Z

]
= Σn ·m[ ]

by naturality of α2.

13.9 Example. Let B be a unital A∞-category. Then B[ ] has the canonical translation
structure Σn = 1 ⊡ σn, ς = id. The canonical translation structure on B[ ][ ] could be
transferred to an a priori different translation structure (Σ̃ , ς̃) on B[ ] along the A∞-equiv-
alence u[ ] : B[ ] → B[ ][ ]. However, choosing m[ ] : B[ ][ ] → B[ ] as the A∞-equivalence
quasi-inverse to u[ ], choosing id : idB[ ] → u[ ] · m[ ] as the unit 2-isomorphism η we get

Σ̃n = Σn, ς̃ = ς = id. Indeed, there is a unique 2-isomorphism ε : m[ ] · u[ ] → idB[ ][ ]

in Au
∞ which makes (u[ ],m[ ], id, ε) into an adjunction–equivalence. The construction of

Remark 13.4 gives

Σ̃n
B[ ] = u[ ]Σ

n
B[ ][ ]m[ ] = u[ ]m[ ]Σ

n
B[ ] = Σn

B[ ] : B
[ ] → B[ ]

by Lemma 13.8. Since η and ε satisfy property (13.1.2) the following equation(
m[ ] = m[ ] · u[ ] ·m[ ]

εm[ ]→m[ ]

)
= idm[ ]

: B[ ][ ] → B[ ]

holds. Therefore,

ς̃B
[ ]

m,n =
(
Σm

B[ ]Σ
n
B[ ] = u[ ]Σ

m
B[ ][ ]m[ ]u[ ]Σ

n
B[ ][ ]m[ ]

u[ ]Σ
m

B[ ][ ]εΣ
n

B[ ][ ]m[ ]

→
u[ ]Σ

m
B[ ][ ]Σ

n
B[ ][ ]m[ ] = u[ ]Σ

m+n
B[ ][ ] m[ ] = Σm+n

B[ ]

)
=
(
Σm

B[ ]Σ
n
B[ ] = u[ ]Σ

m
B[ ][ ]m[ ]u[ ]m[ ]Σ

n
B[ ]

u[ ]Σ
m

B[ ][ ]εm[ ]Σ
n

B[ ]→
u[ ]Σ

m
B[ ][ ]m[ ]Σ

n
B[ ] = Σm

B[ ]Σ
n
B[ ] = Σm+n

B[ ]

)
is the identity morphism, and coincides with ςB

[ ]

m,n.

Introduce the full subcategory A
[ ]-closed
∞ of the k-Cat-category (2-category) Au

∞ from
Section 9.21. Its objects are unital A∞-categories closed under shifts.

13.10 Proposition. The embedding A
[ ]-closed
∞ ⊂ →Au

∞ lifts naturally to a 2-functor −̃ :

A
[ ]-closed
∞ → TransAu

∞, identity on 2-morphisms.



13.5. Translation structures determined by an automorphism. 387

Proof. It suffices to lift the 2-functor on the full 2-subcategory of A
[ ]-closed
∞ , consisting of

C[ ], C ∈ ObAu
∞, since this 2-subcategory is equivalent to A

[ ]-closed
∞ . Define C̃[ ] = (C[ ],Σ ).

Let A, B be unital A∞-categories. As shown in Proposition 10.39 the A∞-cate-
gories Au

∞(A,B
[ ]) and Au

∞(A
[ ],B[ ]) are equivalent. An A∞-equivalence (constructed in

the proof) is given by Fh = h[ ]m[ ],

F =
[
Au
∞(A,B

[ ])
−[ ]

∥
S′
→Au

∞(A
[ ],B[ ][ ])

Au∞(1,m[ ])→Au
∞(A

[ ],B[ ])
]
.

It is a strict A∞-functor since S
′ and m[ ] are strict by Section 10.30.2.

13.11 Lemma. The both following compositions are equal for the above F and any
n ∈ Z:

Au
∞(A,B

[ ])
F→Au

∞(A
[ ],B[ ])

Au∞(1,Σn)→
Au∞(Σn,1)

→Au
∞(A

[ ],B[ ]). (13.11.1)

Proof. We are going to prove that the following compositions in multicategory Au
∞ are

equal:

[
A[ ],Au

∞(A;B[ ])
1,S′

→A[ ],Au
∞(A

[ ];B[ ][ ])
1,Au

∞(1;m[ ]·Σn)
→A[ ],Au

∞(A
[ ];B[ ])

ev→B[ ]
]

=
[
A[ ],Au

∞(A;B[ ])
1,F→A[ ],Au

∞(A
[ ];B[ ])

1,Au
∞(Σn;1)
→A[ ],Au

∞(A
[ ];B[ ])

ev→B[ ]
]
. (13.11.2)

Using the presentation S ′ = u[ ] ·S and definitions (4.12.2), (4.12.3), (4.18.3) we transform
the left hand side to[
A[ ],Au

∞(A;B[ ])
1,u[ ]→A[ ],Au

∞(A;B[ ])[ ]
1,S→A[ ],Au

∞(A
[ ],B[ ][ ])

ev−→ B[ ][ ] m[ ]→B[ ] Σn

−→ B[ ]
]

=
[
A[ ],Au

∞(A;B[ ])
1,u[ ]→A[ ],Au

∞(A;B[ ])[ ]
ev[ ]→B[ ][ ] Σn

→B[ ][ ] m[ ]→B[ ]
]

=
[
A[ ],C

1,u[ ]→A[ ],C[ ] ev[ ]→B[ ][ ] Σn

→B[ ][ ] m[ ]→B[ ]
]
, (13.11.3)

where C denotes Au
∞(A;B[ ]). We have used commutation (13.8.1).

The right hand side of (13.11.2) transforms to[
A[ ],Au

∞(A;B[ ])
1,F→A[ ],Au

∞(A
[ ],B[ ])

Σn,1→A[ ],Au
∞(A

[ ];B[ ])
ev−→ B[ ]

]
=
[
A[ ],Au

∞(A;B[ ])
Σn,u[ ]→A[ ],Au

∞(A;B[ ])[ ]
ev[ ]→B[ ][ ] m[ ]→B[ ]

]
=
[
A[ ],C

Σn,u[ ]→A[ ],C[ ] ev[ ]→B[ ][ ] m[ ]→B[ ]
]

similarly to the left hand side. Actually, this equals (13.11.3) for an arbitrary morphism

ev : A,C → B[ ], not only for evaluation. Indeed, u[ ] =
(
C

λI .
∼
→ C ⊡ 1p

1⊡ηZ→ C ⊡ Z
)
,
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where ηZ = 0̇ : 1p → Z is the unit of the algebra Z, ev[ ] = ev⊡⊗Z by (10.17.1), and the
equation to prove reads:[

A⊡ Z,C⊡ 1p
1⊡1,1⊡ηZ→A⊡ Z,C⊡ Z

ev⊡⊗Z→B[ ] ⊡ Z
1⊡σn→B[ ] ⊡ Z

]
=
[
A⊡ Z,C⊡ 1p

1⊡σn,1⊡ηZ→A⊡ Z,C⊡ Z
ev⊡⊗Z→B[ ] ⊡ Z

]
.

Since the action ⊡ is a multifunctor this equation reduces to[
Z⊠ 1p

1⊠ηZ→Z⊠ Z
⊗Z→Z

σn→Z
]
=
[
Z⊠ 1p

σn⊠ηZ→Z⊠ Z
⊗Z→Z

]
.

Composing it with λI . : Z → Z ⊠ 1p we reduce it to obvious identity σ0 · σn = σn · σ0

since ηZ = 0̇. The lemma is proven.

Therefore, for any A∞-functor g : A[ ] → B[ ] which belongs to ImObF , we have
Σng = gΣn. Since F and Σn are strict, all A∞-functors in (13.11.1) are strict. Applying
their first components to an arbitrary A∞-transformation r : f → g : A → B[ ] we get
Σn(rF1) = (rF1)Σ

n : (fF )Σn → (gF )Σn : A[ ] → B[ ]. Thus, the lifting −̃ can be defined
by identity transformations on the images of ObF and F1. Since F is an A∞-equivalence
one can extend the lifting to the whole Au

∞(A
[ ],B[ ]). Let us supply the details.

Let f : A[ ] → B[ ] be a unital A∞-functor. There is an A∞-functor g : A[ ] → B[ ],
g = g′F , isomorphic to f . Let α = rs−1 : f → g, β = ps−1 : g → f be 2-morphisms of
Au
∞, inverse to each other. Define f̃ = (f, ϕn) : (A

[ ],Σ )→ (B[ ],Σ ), where

ϕn =
(
Σnf

Σnα→Σng = gΣn α−1Σn

→ fΣn
)
,

the composition is taken in 2-category Au
∞. Since Σ 0 = id, we have ϕ0 = id, hence,

equation (13.2.5) is satisfied. The upper row in commutative diagram

ΣmΣnf
Σmϕn →ΣmfΣn ϕmΣn

→ fΣmΣn

ΣmΣng

ΣmΣnα
↓

========ΣmgΣn

Σmα−1Σn
↑

ΣmαΣn

↓
======== gΣmΣn

α−1ΣmΣn

↓

composes to ϕm+n, hence, (13.2.4) is satisfied.
Let us prove that ϕn does not depend on the choice of g and α. If γ : f → h is a

2-isomorphism with h = h′F , the 2-isomorphism δ = γ−1 · α : h → g can be represented
by (rF1)s

−1 for some natural A∞-transformation r : h′ → g′ : A → B[ ]. Indeed, being
an equivalence H0(F ) : H0(Au

∞(A,B
[ ])) → H0(Au

∞(A
[ ],B[ ])) is full and faithful. The

equation Σn(rF1) = (rF1)Σ
n between natural A∞-transformations implies the equation

Σnδ = δΣn between 2-morphisms in Au
∞, see [Lyu03, Proposition 7.1]. The obtained

equation (Σnγ−1) · (Σnα) = (γ−1Σn) · (αΣn) implies that ϕn = (Σnα) · (α−1Σn) =
(Σnγ) · (γ−1Σn) does not depend on the choices made.
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Let k : A[ ] → B[ ] be another unital A∞-functor with the lifting k̃ = (k, κn) : (A
[ ],Σ )→

(B[ ],Σ ). Let ν : f → k : A[ ] → B[ ] be a 2-morphism in Au
∞. We claim that it is also a

2-morphism ν : (f, ϕn)→ (k, κn) : (A
[ ],Σ )→ (B[ ],Σ ) in TransAu

∞. Indeed, construct ϕn
(resp. κn) using a 2-isomorphism α : f → g (resp. γ : h→ k) with g, h ∈ ImObF . Then

there is a unique 2-morphism δ : g → h such that ν =
(
f

α→ g
δ→ h

γ→ k
)
. The

above equation Σnδ = δΣn implies commutativity of the following diagram

Σnf
Σnν →Σnk

Σng
Σnδ→Σnα

→
Σnh Σnγ

→

gΣn

w
δΣn

→ hΣn

ww
fΣn

ϕn

↓
νΣn

→

αΣn

→
kΣn

κn

↓γΣn

→

Its exterior gives diagram (13.2.6) for ν. The proposition is proven.

13.12 Corollary. There is a composite 2-functor

H̃0 =
(
A[ ]-closed
∞

−̃→ TransAu
∞

TransH0

→ Trans k-Cat
)
.

Given an A∞-category B closed under shifts, we denote by H̃0(B) the k-linear cat-
egory H0(B) equipped with the natural translation structure, obtained via the above
corollary. Furthermore, a unital A∞-functor f : B → C between such A∞-categories
induces a translation preserving functor H̃0(f) = (H0(f), ϕn) : H̃0(B) → H̃0(C). Sim-
ilarly, any natural A∞-transformation p : g → h : B → C of unital A∞-functors be-
tween A∞-categories closed under shifts induces a translation preserving transformation
H̃0(p) : H̃0(g)→ H̃0(h) : H̃0(B)→ H̃0(C) in zeroth homology.

Now we are going to describe the translation structure on Ctr = C[ ]mc.

13.13 Lemma. Let C be an A∞-category. Then for each n ∈ Z the following equation
holds: (

Cmc[ ]
Σn

Cmc[ ]→ Cmc[ ] c→ C[ ]mc
)
=
(
Cmc[ ] c→ C[ ]mc

(Σn

C[ ]
)mc

→ C[ ]mc
)
. (13.13.1)

Proof. Since all A∞-functors in equation (13.13.1) are strict and their first components are
identity maps, it suffices to check that both compositions act identically on objects. Let
X : I → C, i 7→ Xi, x = (xij)i,j∈I , xij ∈ [sC(Xi, Xj)]

0 be an object of Cmc and let m ∈ Z.
The first functor in the left hand side of (13.13.1) maps the object X[m] of Cmc[ ] to the
objectX[m+n], the second functor maps it further to the objectX ′ = X[m+n]c : I → C[ ],
i 7→ Xi[m+n], x′ = x = (xij), x

′
ij ∈ C[ ](Xi[m+n], Xj[m+n]) of C[ ]mc. The first functor in

the right hand side of (13.13.1) maps the objectX[m] to the objectX ′′ = X[m]c : I → C[ ],
i 7→ Xi[m], x′′ = x = (xij), x

′′
ij ∈ sC[ ](Xi[m], Xj[m]) of C[ ]mc. The second functor maps
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X ′′ to the object X ′′(Σn
C[ ])

mc = (I
X ′′
−→ C[ ]

Σn

C[ ]−−→ C[ ]) of C[ ]mc. The functor Σn
C[ ] is strict and

its first component is the identity map, therefore the objects X ′ and X ′′(Σn
C[ ])

mc are given
by the same data. Thus, the objects X[m]Σn

Cmc[ ]c and X[m]c(Σn
C[ ])

mc coincide.

Let B be a unital A∞-category. The A∞-equivalence u[ ] : B[ ]mc → B[ ]mc[ ] has a
one-sided inverse

U[ ] =
(
B[ ]mc[ ] c→B[ ][ ]mc

mmc
[ ]→B[ ]mc

)
,

that is, u[ ] · U[ ] = IdB[ ]mc. Indeed, by (12.4.1) and Proposition 11.26

u[ ] · U[ ] =
(
B[ ]mc u[ ]→B[ ]mc[ ] c→B[ ][ ]mc

mmc
[ ]→B[ ]mc

)
=
(
B[ ]mc

umc
[ ]→B[ ][ ]mc

mmc
[ ]→B[ ]mc

)
= (u[ ]m[ ])

mc = (IdB[ ])mc = IdB[ ]mc .

13.14 Lemma. For each n ∈ Z the following equation holds:

(
B[ ]mc[ ]

Σn

B[ ]mc[ ]→B[ ]mc[ ] U[ ]→B[ ]mc
)
=
(
B[ ]mc[ ] U[ ]→B[ ]mc

(Σn

B[ ])
mc

→B[ ]mc
)
. (13.14.1)

Proof. Consider the following diagram:

B[ ]mc[ ] c→B[ ][ ]mc
mmc

[ ]→B[ ]mc

B[ ]mc[ ]

Σn

B[ ]mc[ ]↓
c→B[ ][ ]mc

(Σn

B[ ][ ])
mc

↓
mmc

[ ]→B[ ]mc

(Σn

B[ ])
mc

↓

The left square commutes by (13.13.1). By Proposition 11.26, −mc is an Au
∞-2-functor,

therefore commutativity of the right square is a consequence of equation (13.8.1). The
exterior of the diagram gives equation (13.14.1).

The quadruple (u[ ], U[ ], id, ε) is an adjunction–equivalence for a unique natural iso-
morphism ε : U[ ] · u[ ] → idB[ ]mc[ ]. Equations (13.1.1) and (13.1.2) take the form

(
u[ ] = u[ ] · U[ ] · u[ ]

u[ ]ε→ u[ ]
)
= idu[ ] : u[ ] → u[ ] : B

[ ]mc → B[ ]mc[ ],(
U[ ] = U[ ] · u[ ] · U[ ]

εU[ ]→U[ ]

)
= idU[ ]

: U[ ] → U[ ] : B
[ ]mc[ ] → B[ ]mc. (13.14.2)

Given these data, equip the A∞-category B[ ]mc with a translation structure as described
in Remark 13.4. For each n ∈ Z the A∞-functor Σ

n
B[ ]mc is given by

Σn
B[ ]mc = u[ ]Σ

n
B[ ]mc[ ]U[ ] = u[ ]U[ ](Σ

n
B[ ])

mc = (Σn
B[ ])

mc : B[ ]mc → B[ ]mc. (13.14.3)
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The second equality holds due to (13.14.1). For each pair n,m ∈ Z the 2-isomorphism

ςB
[ ]mc

m,n is given by the composite

(
Σm

B[ ]mcΣ
n
B[ ]mc = u[ ]Σ

m
B[ ]mc[ ]U[ ]u[ ]Σ

n
B[ ]mc[ ]U[ ]

u[ ]Σ
m

B[ ]mc[ ]εΣ
n

B[ ]mc[ ]U[ ]

→ u[ ]Σ
m
B[ ]mc[ ]Σ

n
B[ ]mc[ ]U[ ]

=======
u[ ]ς

B[ ]mc[ ]

m,n U[ ]
⇀⇁u[ ]Σ

m+n
B[ ]mc[ ]U[ ] = Σm+n

B[ ]mc

)
=
(
Σm

BtrΣn
Btr = u[ ]Σ

m
B[ ]mc[ ]U[ ]u[ ]U[ ](Σ

n
B[ ])

mc
u[ ]Σ

m

B[ ]mc[ ]εU[ ](Σ
n

B[ ])
mc

→ u[ ]Σ
m
B[ ]mc[ ]U[ ](Σ

n
B[ ])

mc = Σm+n
Btr

)
.

The equality holds by (13.14.1). By (13.14.2) the latter 2-morphism is the identity.
Thus, (Σn

Btr, id) = ((Σn
B[ ])

mc, id) : Z → Au
∞(B

tr,Btr) is a strict monoidal functor. The
strict A∞-functor Σn

Btr = (Σn
B[ ])

mc takes an object (I ∋ i 7→ Xi[mi], (xij)) of Btr to the
object (I ∋ i 7→ Xi[mi+n], (xij)). Its first component acts on morphisms as identity map.

13.15 Systems of n-triangles. Let us recall the definition of an n-triangle in a cat-
egory given by Maltsiniotis [Mal06]. To large extent it was extracted from the work of
Neeman on K-theory for triangulated categories, see survey [Nee05, Sections 6–8] and ref-
erences therein. A different but similar notion of an n-triangle is used by Künzer [Kün07a].

Consider Z as a category, whose objects are integers and Z(i, j) = {eij} are one-
element sets if i ⩽ j, otherwise Z(i, j) are empty. The square Z × Z of this category is
associated with the partially ordered set Z× Z. View its subsets as full subcategories of
Z× Z. For an integer n ⩾ 0 consider the following subsets:

Dn = {(x, y) ∈ Z× Z | x ⩽ y ⩽ x+ n+ 1},
◦
Dn = {(x, y) ∈ Z× Z | x < y < x+ n+ 1},

∂0Dn = {(x, y) ∈ Z× Z | x = y},
∂1Dn = {(x, y) ∈ Z× Z | y = x+ n+ 1}.

For any non-decreasing map ψ : [m]→ [n] define a non-decreasing map ψ : Z→ Z via

ψ(k) = (n+ 1)q + ψ(r),

where integers q, r are uniquely determined by k from the conditions

k = (m+ 1)q + r, 0 ⩽ r ⩽ m.

In other words, q and r are the quotient and the remainder for k divided by m + 1. A
non-decreasing map and a functor are defined as follows:

Dψ : Dm → Dn, (x, y) 7→ (ψ(x), ψ(y)).
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Introduce also the increasing bijections (category automorphisms) In, Jn : Dn → Dn

via:

In(x, y) = (y, x+ n+ 1), Jn(x, y) = (x+ 1, y + 1).

They satisfy the relations

InJn = JnIn, I2n = Jn+1
n , Dψ ◦ Im = In ◦Dψ

for an arbitrary non-decreasing map ψ : [m] → [n]. Make Dn into a category with
translation structure by equipping it with the automorphisms Σ p = Ipn, p ∈ Z, which
form a strict representation of Z on Dn.

Assume given from now on a category with translation structure (T,Σ p, ς) which has
a zero object 0 (initial and final object). All zero objects are isomorphic. Any category
equivalence E : T → T′ takes a zero object to a zero object.

13.16 Definition. Define an n-triangle of T as a translation preserving functor (F, ϕp) :
Dn → T such that (x, x)F are zero objects of T for all x ∈ Z. Thus, F : Dn → T is a
functor, and ϕp : I

p
nF

∼−→ FΣ p, p ∈ Z, are functorial isomorphisms related as in (13.2.4),
(13.2.5). A morphism of n-triangles is a translation preserving morphism of functors,
thus, (13.2.6) holds. A system of n-triangles in T is a collection of n-triangles, called
distinguished n-triangles, which satisfies the axiom

(FTR0) Each n-triangle isomorphic to a distinguished n-triangle is distinguished.

Let B, C be categories equipped with a system of n-triangles. A translation preserving
functor (G,ψp) : B → C is called triangulated if for every distinguished n-triangle F :
Dn → B the composite n-triangle F ·G : Dn → C is distinguished.

The condition (x, y)F ≃ 0 holds for (x, y) ∈ ∂0Dn by definition. It implies also that
(x, y)F ≃ 0 for (x, y) ∈ ∂1Dn.

Diagrams introduced by Beilinson, Bernstein and Deligne in [BBD82, Remark 1.1.14]
are the same as hypersimplices considered by Gelfand and Manin in [GM03, Exer-
cise IV.2.1c], and these are essentially examples of n-triangles.

Let us look at examples for small n. If n = 0, then (x, y)F ≃ 0 for all (x, y) ∈ D0.
When n = 1, a 1-triangle is unambiguously recovered from a sequence of objects Xk =
(k, k + 1)F , k ∈ Z, and a family of isomorphisms ϕp : Xp

∼−→ X0Σ
p, p ̸= 0. Clearly, the

category of 1-triangles in T is equivalent to T via the functor (Xk, ϕp)
p ̸=0
k,p∈Z 7→ X0.

A 2-triangle is precisely a candidate triangle in the sense of ordinary triangulated
categories (up to irrelevant choice of zero objects (x, y)F for (x, y) ∈ ∂•D2). That is,
essentially, a 2-triangle consists of three objects (0, 1)F , (0, 2)F , (1, 2)F and three mor-
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phisms u, v, w · ϕ1 as shown below,

(0, 1)F
u → (0, 2)F

(1, 2)F

v
↓

w → (1, 3)F
ϕ1

∼
→ (0, 1)FΣ 1

(2, 3)F

ϕ1·(uΣ 1)·ϕ−1
1 ↓

ϕ1

∼
→ (0, 2)FΣ 1

uΣ 1

↓

such that the three consecutive compositions, u · v, v · (w · ϕ1) and (w · ϕ1) · (uΣ 1) vanish
(factor through 0).

A 3-triangle is an octahedron from the point of view of ordinary triangulated cate-
gories. Its essential data are described on the following diagram:

X1
f12 →X2

f23 →X3

C12

i2
↓

v23 →C13

i3
↓

j1→X1Σ
1

C23

u12
↓

j2→X2Σ
1

f12Σ
1

↓

X3Σ
1

f23Σ
1

↓

Here Xk = (0, k)F , C12 = (1, 2)F , C13 = (1, 3)F and C23 = (2, 3)F . Two manifest and
four hidden squares have to commute. The latter mean squares obtained after adding
zero objects at the sides of the strip. General n-triangles are higher generalizations of
octahedra.

13.17 The principal distinguished n-triangle. Define an A∞-category (a non-
unital differential graded category) An for n ⩾ 0 as follows. Objects set is ObAn =
{1, 2, . . . , n}, morphisms sets are An(i, j) = k{eij} ≃ k if i < j, and An(i, j) = 0 if i ⩾ j.
Here deg eij = 0, so morphism complexes are concentrated in degree 0. The only possibly
non-vanishing component of the multiplication is m2. It is given by (eij ⊗ ejk)m2 = eik.

Denote by Dn the differential graded category Asu
n (with the identity morphisms

added). The identity morphism of k is denoted also ekk, so that the above multiplication
formula still holds. Let us construct the principal distinguished n-triangle in H0(Dtr

n ).



394 13. Strongly triangulated categories

Consider the objects

C(ekl) = Cone(ekl) =
(
1 7→ k[1], 2 7→ l[0],

(
0 ekl

0

))
=
(
k[1] ekl

l

)
of Dtr

n . There are cycles in Z0(Dtr
n ) between them:

um(ekl) =
(
ekl[1] 0
0 1m

)
: C(ekm) =

(
k[1] ekm

m

)
→
(
l[1] elm

m

)
= C(elm) for k < l < m,

vj(ekl) =
(1j[1] 0

0 ekl

)
: C(ejk) =

(j[1] ejk
k

)
→
(j[1] ejl

l

)
= C(ejl) for j < k < l.

For homogeneity we consider also the zero maps e0l = 0 : 0→ l, ek,n+1 = 0 : k → 0 in Dtr
n

for 1 ⩽ k, l ⩽ n and their cones descended to the same dg-category

C(e0l) = Cone(e0l)mtr =
(
0 0
l

)
mtr = l.

C(ek,n+1) = Cone(ek,n+1)mtr =
(
k[1] 0

0

)
mtr = k[1].

Then the morphisms defined above identify with

um(e0l) = (01) : C(e0m) = m→
(
l[1] elm

m

)
= C(elm) for 0 < l < m,

v0(ekl) = ekl : C(e0k) = k → l = C(e0l) for 0 < k < l,

un+1(ekl) = ekl[1] : C(ek,n+1) = k[1]→ l[1] = C(el,n+1) for k < l,

vj(ek,n+1) =
(
1
0

)
: C(ejk) =

(j[1] ejk
k

)
→ j[1] = C(ej,n+1) for j < k.

Notice that for arbitrary i ⩽ j ⩽ k ⩽ l we have the relations[
C(eil)

ul(eij)→C(ejl)
ul(ejk)→C(ekl)

]
= ul(eik),[

C(eij)
vi(ejk)→C(eik)

vi(ekl)→C(eil)
]
= vi(eil).

The following square commutes in the category Z0(Dtr
n ) for all j < k ⩽ l < m:

C(ejl)
vj(elm)→C(ejm)

C(ekl)

ul(ejk)↓
vk(elm)→C(ekm)

um(ejk)↓

A forteriori it commutes in H0(Dtr
n ).
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Let us summarize the above morphisms in the following commutative diagram, where
we put C(ekl) to the point with the coordinates (x, y) = (k, l). Note that the x-axis goes
down, and the y-axis goes right. We depict the case n = 4. This diagram will become a
part of the interior of an n-triangle defined below.

1
e12 → 2

e23 → 3
e34 → 4

C(e12)

(01)
↓

v1(e23)→C(e13)

(01)
↓

v1(e34)→C(e14)

(01)
↓ (

1
0

)
→ 1[1]

C(e23)

u3(e12)↓
v2(e34)→C(e24)

u4(e12)↓ (
1
0

)
→ 2[1]

e12[1]↓

C(e34)

u4(e23)↓ (
1
0

)
→ 3[1]

e23[1]↓

4[1]

e34[1]↓

The boundary of Dn is filled with the zero object (∅ → D
[ ]
n ) of H0(Dtr

n ). The same
diagram can be given a homogeneous form:

C(e01)
v0(e12)→C(e02)

v0(e23)→C(e03)
v0(e34)→C(e04)

C(e12)

u2(e01)↓
v1(e23)→C(e13)

u3(e01)↓
v1(e34)→C(e14)

u4(e01)↓
v1(e45)→C(e15)

C(e23)

u3(e12)↓
v2(e34)→C(e24)

u4(e12)↓
v2(e45)→C(e25)

u5(e12)↓

C(e34)

u4(e23)↓
v3(e45)→C(e35)

u5(e23)↓

C(e45)

u5(e34)↓

Define a translation preserving functor△n : Dn → H̃0(Dtr
n ), the principal distinguished

n-triangle in H̃0(Dtr
n ). Any point (x, y) of Dn ⊂ Z × Z equals Ipn(k, l) for some uniquely

determined p ∈ Z, 0 ⩽ k ⩽ l ⩽ n. These inequalities define the fundamental domain
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of the group generated by In on vertices. Set △n(x, y) = C(ekl)[p]. Applying In and
[1] (or I−1n and [−1]) simultaneously several times we cover the whole strip Dn with the
commutative diagram of the above type, where the rightmost column is removed. It
remains commutative, thus it gives a functor △n. By construction this functor satisfies
the identity In · △n = △n · [1] and, in general, Ipn · △n = △n · [p], p ∈ Z. Together with
the identity natural transformations ϕp = id : Ipn · △n → △n · [p] the functor △n is an
n-triangle of H̃0(Dtr

n ), called the principal distinguished n-triangle.

13.18 Definition. Let B be a unital A∞-category closed under shifts. Let f : Dtr
n → B

be a unital A∞-functor. The composition of translation preserving functors

△n · H̃0(f) =
(
Dn

△n→ H̃0(Dtr
n )

H̃0(f)→ H̃0(B)
)

(13.18.1)

is called a standard distinguished n-triangle in H̃0(B). Distinguished n-triangles in H̃0(B)
are defined as those isomorphic to a standard distinguished n-triangle for some f . This
is the system of n-triangles associated with B.

The definition implies that axiom (FTR0) holds for distinguished n-triangles in H̃0(B).

13.19 Proposition. Any unital A∞-functor g : B → C between A∞-categories closed
under shifts induces a triangulated functor H̃0(g) : H̃0(B)→ H̃0(C) in zeroth homology.

Proof. Since H̃0(g) maps isomorphic n-triangles to isomorphic ones, it suffices to check
that the image of a standard distinguished n-triangle under H̃0(g) = (H0(g), ψn) is a
standard distinguished n-triangle as well. Let f : Dtr

2 → B be a unital A∞-functor,
it gives rise to the standard n-triangle △n · H̃0(f) = △n · (H0(f), ϕn) in H̃0(B), given
by (13.18.1). Its image under H̃0(g) coincides with △n · H̃0(fg), which is a standard
distinguished n-triangle in H̃0(C).

13.20 Definition. The base of an n-triangle (F, ϕp) : Dn → T is the composite functor

n
in2→Dn

F→ T, where the increasing map in2 takes k to (0, k) ∈ Dn. For n > 0 this is
the sequence of n− 1 composable morphisms of T

F (0, 1)→ F (0, 2)→ · · · → F (0, n).

We are interested in such systems of distinguished n-triangles which satisfy the property

(FTR1) Each functor n→ T is the base of a distinguished n-triangle.

13.21 Proposition. Let B be a pretriangulated A∞-category. Then the axiom (FTR1)
holds for distinguished n-triangles in H̃0(B).

Proof. First of all, we establish a lemma.
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13.22 Lemma. Let C be a unital A∞-category. Assume that

X1
g1→X2

g2→ . . .
gn−1

→Xn (13.22.1)

is a sequence of composable morphisms of H0C. Then there is an A∞-functor f : An → C

such that kf = Xk, k ⩽ n, and the cycle ek,k+1sf1s
−1 belongs to the homology class gk

for all k < n.

Proof. By the Yoneda Lemma there is an A∞-equivalence ϕ : D → C such that D is a
differential graded category with ObD = ObC and Obϕ = id. Then H0ϕ : H0D→ H0C

is an isomorphism of categories, identity on objects. Take the sequence of morphisms of
H0D that corresponds to (13.22.1). Lift it to a sequence of cycles

X1
h1→X2

h2→ . . .
hn−1

→Xn

in Z0D. Define a differential graded functor (between non-unital differential graded cat-
egories) F : An → D by F (k) = Xk, k ⩽ n, and F (ek,k+1) = hk ∈ Z0D(Xk, Xk+1) for all
k < n. View F as an A∞-functor and set f = F · ϕ : An → C. This A∞-functor satisfies
the requirements of the lemma.

As shown in lemma any sequence (13.22.1) comes from the first component of an
A∞-functor f : An → B. The restriction maps

Au
∞(D

tr
n ;B) ▷ Au

∞(Dn;B) ▷ A∞(An;B)

are surjective for any pretriangulated A∞-category B by Theorem 9.31 and Proposi-
tion 12.15.2. Therefore, the given sequence (13.22.1) is the base of any triangle△n ·H̃0(g),
where g : Dtr

n → B restricts to f .

A morphism between the bases of n-triangles F,G : Dn → T is by definition a natural
transformation p : in2 ·F → in2 ·G : n→ T. In other terms, this is a commutative diagram

F (0, 1) → F (0, 2) → . . . → F (0, n)

G(0, 1)

p
↓

→G(0, 2)

p
↓

→ . . .

p

↓ →G(0, n)

p
↓

13.23 Remark. The A∞-category A1 ≡ 1u has a single object 1 and A1(1, 1) = 0. An
A∞-functor F : A1 → B has no non-vanishing components and amounts to an object
X = 1F of B. Furthermore, there is an isomorphism of A∞-categories A∞(A1,B) ∼= B.
Let e : A1 → Atr

2 be the A∞-functor that corresponds to the object Cone(e12) of Atr
2 .

Consider the composite A∞-functor

Cone =
(
A∞(A2,B)

−[ ]
∥
S′
→A∞(A

[ ]
2 ,B

[ ])
−mc

→A∞(A
tr
2 ,B

tr)
A∞(e,1)→A∞(A1,B

tr) ∼= Btr
)
.
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It is strict as the composition of strict A∞-functors. An A∞-functor F : A2 → B identifies
with an arrow of Z0B, namely with e12sF1s

−1 : 1F → 2F , which can be arbitrary. It is
mapped to the object

Cone(F ) = Cone(e12)F
tr =

(
1 7→ 1F [1], 2 7→ 2F [0],

(
0 e12sF1s

−1

0 0

))
of Btr. By (10.19.5) an A∞-transformation r : F → G : A2 → B is mapped to

Cone1(r) = Cone(e12)r
tr
0 =

∑
n⩾0

(
0 e12
0 0

)⊗n
r[ ]n =

(
1[1]r

[ ]
0 e12r

[ ]
1

0 2r
[ ]
0

)
=
(
1r0 (−)re12sr1s−1
0 2r0

)
∈ sBtr(Cone(F ),Cone(G)).

Since r0 and r1 are the only non-vanishing components of r, the mapping r 7→ Cone1(r) is
an embedding. This embedding identifies the A∞-category A∞(A2,B) of arrows in B with
the subcategory of Btr whose objects are A∞-functors 2 → B and morphisms are given
by matrices of the form

( ∗ ∗
0 ∗
)
. It is important to stress that unlike the case of ordinary

triangulated categories so defined Cone : A∞(A2,B)→ Btr is an A∞-functor.
If B is pretriangulated, the A∞-functor Cone can be extended to the composition

A∞(A2,B)
Cone→Btr Utr→B, which can also be given the name of cone.

13.24 A category of strips. Following Maltsiniotis [Mal06] denote by D the sub-
category of the category of categories, whose objects are Dn, n ⩾ 0, and whose morphisms
are generated by the functors Dψ, I

±1
n , J±1n . Notice that any morphism h : Dm → Dn of

D satisfies the relation Im · h = h · In. Thus, (h, id) : Dm → Dn is a translation preserv-
ing functor. This observation allows us to view D as a subcategory of the category of
categories with translation structure.

For any morphism h : Dm → Dn of D there is a unique εh ∈ {0, 1} such that
(∂0Dm)h ⊂ ∂εhDn. For instance, εDψ

= 0, εI±1
n

= 1 and εJ±1
n

= 0. The sign (−1)εh is
multiplicative in h, in other terms, there is a functor ε :D → Z/2, h 7→ εh, where Z/2 is
the category with one object, whose endomorphism monoid is Z/2.

Let (T,Σ p, ς) be a k-linear category with translation structure (an object of Transk-Cat).
If (F, ϕp) : (D,Σ p, ς) → (T,Σ p, ς) is a translation preserving functor (not necessarily
k-linear), then so is (F, apϕp), where a ∈ k is an invertible element, for instance, a = −1.
Actually, (F, apϕp) = (F, ϕp) · (Id, ap) is the composition of the original functor with the
twisted identity functor (Id, ap) : (T,Σ p, ς)→ (T,Σ p, ς).

Let h : Dm → Dn be a morphism of D, and let (F, ϕp) : Dn → T be an n-triangle of
T. Then (h, id) · (F, ϕp) = (h · F, h · ϕp) is always an m-triangle of T. However, we are
interested in its twisting

h∗(F, ϕp) = (h, id) · (F, ϕp) · (Id, (−1)pεh) = (h · F, (−1)pεhh · ϕp),

which is called the inverse image of the n-triangle (F, ϕp) by the morphism h.
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13.25 Definition (Strongly triangulated categories, Maltsiniotis [Mal06]). A strongly
triangulated category is an additive k-linear category C with a translation structure on it
and a system of n-triangles for each n ⩾ 0 which satisfies axioms (FTR0), (FTR1) and
the following axioms:

(FTR2) Any morphism of the base n
in2→Dn

F→ T to the base n
in2→Dn

G→ T

equals in2 ·r for some morphism r : F → G of distinguished n-triangles.

(FTR3) Let h : Dm → Dn be a morphism of D. Let (F, ϕp) be a distinguished n-triangle
in T. Then the inverse image m-triangle h∗(F, ϕp) = (h · F, (−1)pεhh · ϕp) is
distinguished.

Maltsiniotis proves in [Mal06] that a strongly triangulated category equipped with
the class of distinguished 2-triangles is an ordinary triangulated category in the sense of
Verdier [Ver77]. This has the following corollary: Any morphism r : F → G of distin-
guished n-triangles, whose restriction to bases is invertible, is invertible itself. Indeed,
each object F (i, j) for 0 < i < j ⩽ n is the third vertex of a distinguished 2-triangle
F (0, i) → F (0, j) → F (i, j) →, whose first two vertices belong to the base. The mor-
phism r includes, in particular, a morphism of the above 2-triangle to the distinguished
2-triangle G(0, i) → G(0, j) → G(i, j) →. Being invertible on the first two places, this
morphism is invertible on the third place as well, by the property of the usual triangulated
categories. Thus, axiom (FTR2) implies that any isomorphism of the base of one distin-
guished n-triangle with the base of another distinguished n-triangle is the restriction of
some isomorphism of these n-triangles. In other words, isomorphism classes of n-triangles
are in bijection with isomorphism classes of bases.

Künzer gives in [Kün07b] an example of two non-isomorphic octahedra on the same
base in an ordinary (not strongly) triangulated category. Any sub-2-triangle of these
octahedra obtained via inverse image from a morphism h : D2 → D3 ofD is distinguished
(there are essentially four of them). In this example the identity morphism between the
bases cannot be prolonged to a morphism between the whole Verdier octahedra. Clearly,
both mentioned octahedra can not be distinguished 3-triangles simultaneously.

13.26 Proposition. Let C be an mc-closed A∞-category. Then the k-linear category
H0(C) is additive.

Proof. The A∞-functor umc : C → Cmc is an equivalence by Proposition 11.32. The
category H0(Cmc) admits a zero object (initial and final object), namely, the A∞-functor
∅ → C. Since H0(umc) : H

0(C) → H0(Cmc) is an equivalence, the category H0(C) has a
zero object 0 as well.

Let X, Y be objects of C. Consider the object Z =
(
1 7→ X, 2 7→ Y, ( 0 0

0 0 )
)
of Cmc.
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There are cycles of degree 0

iX = (Xi0s
−1, 0) ∈ Cmc(Xumc, Z), iY = (0, Y i0s

−1) ∈ Cmc(Y umc, Z),

pX =
(
Xi0s

−1

0

)
∈ Cmc(Z,Xumc), pY =

(
0

Y i0s
−1

)
∈ Cmc(Z, Y umc).

They satisfy equations

(iX ⊗ pX)m2 = (Xi0 ⊗ Xi0)b2s
−1 ≡ Xi

Cmc

0 s−1 ∈ Cmc(Xumc, Xumc),

(iX ⊗ pY )m2 = 0 ∈ Cmc(Xumc, Y umc),

(iY ⊗ pX)m2 = 0 ∈ Cmc(Y umc, Xumc),

(iY ⊗ pY )m2 = (Y i0 ⊗ Y i0)b2s
−1 ≡ Y i

Cmc

0 s−1 ∈ Cmc(Y umc, Y umc),

(pX ⊗ iX)m2 + (pY ⊗ iY )m2 =
(
(Xi0 ⊗ Xi0)b2s

−1 0
0 (Y i0 ⊗ Y i0)b2s

−1

)
≡
(
Xi0s

−1 0
0 Y i0s

−1

)
= Zi

Cmc

0 s−1 ∈ Cmc(Z,Z)

due to (11.23.1). Thus, the object Z is a direct sum of Xumc and Y umc in H
0(Cmc). Since

H0(umc) : H
0(C) → H0(Cmc) is an equivalence, the objects X and Y admit a direct sum

X ⊕ Y in H0(C).

13.27 Theorem. Let B be a unital A∞-category closed under shifts. Then axiom (FTR3)
holds true for H̃0(B). If B is pretriangulated, then H̃0(B) is strongly triangulated.

Proof. The proof is given in several lemmata. We begin with particular cases of property
(FTR3) which imply it in general case.

13.28 Lemma. Let B be a unital A∞-category closed under shifts. Let ψ : [m]→ [n] be
a non-decreasing map. Let F be a distinguished n-triangle in H̃0(B). Then the inverse
image m-triangle D∗ψF = Dψ · F is distinguished.

Proof. It suffices to prove the statement for the standard distinguished n-triangle F =
△n · H̃0(f), where f : Dtr

n → B is a unital A∞-functor. Consider the dg-functor Dψ :
Dm → Dtr

n , determined by ψ. It takes an object k ∈ ObDm to the object Cone(eψ0,ψk) =(ψ0[1] eψ0,ψk
ψk

)
of Dtr

n . A morphism ekl of Dm goes to morphism

vψ0(eψk,ψl) =
(
1 0
0 eψk,ψl

)
: C(eψ0,ψk) =

(ψ0[1] eψ0,ψk
ψk

)
→
(ψ0[1] eψ0,ψl

ψl

)
= C(eψ0,ψl).

Extend the dg-functor Dψ to the dg-functor D̂ψ =
(
Dtr
m

Dtr
ψ→Dtr tr

m

mtr→Dtr
n

)
. Denote

g =
[
Dtr
m

D̂ψ→Dtr
n

f→B
]
.
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We claim that D∗ψ[△n · H̃0(f)] = Dψ · △n · H̃0(f) is isomorphic to △m · H̃0(g). In detail,
there are mutually inverse natural transformations α, β shown in the following diagram:

Dm
Dψ →Dn
α

⇐==
===

===
===

H̃0(Dtr
m)

△m↓

H̃0(D̂ψ)
→
β===
===

===
⇒

H̃0(Dtr
n )

△n↓

H̃0(f)
→ H̃0(B)

Their value on the point (k, l) ∈ Dm of the fundamental domain of Im, 0 ⩽ k < l ⩽ m, is
given by the following matrices. Denote a = ψ0, b = ψk, c = ψl. If all these are distinct,
the transformations are chosen equal

α =

(
0 1 0 0
0 0 0 1

)
: C(ebc) =

(
b[1] ebc

c

)
→ Cone

(
va(ebc) : C(eab)→ C(eac)

)
, (13.28.1)

β =


0 0
1 0

eab[1] 0
0 1

 : Cone
(
va(ebc) : C(eab)→ C(eac)

)
=


a[2] eab[1] −1 0

b[1] 0 ebc
a[1] eac

c

→ C(ebc).

When a = b < c, we choose α, β : C(eac)→ C(eac) to be the identity morphisms. If b = c,
then α, β : 0→ 0 are obvious.

We see immediately that α and β are cycles and that αβ = 1. An easy calculation
shows that 1− βα = hm1, where the element h of degree −1 is given by the matrix

h =


0 0 0 0
0 0 0 0
−1 0 0 0
0 0 0 0

 :


a[2] eab[1] −1 0

b[1] 0 ebc
a[1] eac

c

→

a[2] eab[1] −1 0

b[1] 0 ebc
a[1] eac

c

 .

Therefore, the cycles α and β induce isomorphisms in H0(Dtr
n ) inverse to each other.

Let us show that α, β are natural transformations. Let us prove that α, β satisfy the
naturality relation for any vertical arrow (j, l) → (k, l) within the fundamental domain,
thus 0 ⩽ j < k < l ⩽ m. Denote a = ψ0, b = ψj, c = ψk, d = ψl. Notice that the
following diagram commutes in Z0(Dtr

n ):

C(ebd)
α→←
β

Cone
(
va(ebd) : C(eab)→ C(ead)

)

C(ecd)

ud(ebc)↓ α→←
β

Cone
(
va(ecd) : C(eac)→ C(ead)

)ul(va(ebc))↓

due to explicit computation using the matrices

ud(ebc) =
(
ebc[1] 0
0 1

)
, ul(va(ebc)) =

(
va(ebc)[1] 0

0 1

)
= diag(1, ebc[1], 1, 1).
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Verification is left to the reader as an exercise. Commutativity of this diagram is the
desired result if all four numbers a, b, c, d are distinct. If some of them coincide, the
diagram still commutes in Z0(Dtr

n ), but contains cones of identity morphisms, which we
have to replace with 0. Such cones are isomorphic to the zero object of H0(Dtr

n ), and Cone
is functorial by Remark 13.23. Hence, the required diagram commutes in the homotopy
category. Besides, when b = c or c = d, the required relation is obvious. When a = b <
c < d, the equation to prove is the following:

C(ead)===============C(ead)

C(ecd)

ud(eac)↓ α→←
β

Cone
(
va(ecd) : C(eac)→ C(ead)

)(01)↓

It takes in H0(Dtr
n ) the following explicit form:(

a[1] ead
d

)
===============

(
a[1] ead

d

)

(
c[1] ecd

d

)
(
eac[1] 0
0 1

)
↓ (

0 1 0 0
0 0 0 1

)
→←(

0 0
1 0

eac[1] 0
0 1

)

a[2] eac[1] −1 0

c[1] 0 ecd
a[1] ead

d



(
0 0 1 0
0 0 0 1

)
↓

The naturality condition for β holds already in Z0(Dtr
n ), while the naturality condition

for α holds true up to the boundary of the element

(
−1 0 0 0
0 0 0 0

)
:
(
a[1] ead

d

)
→


a[2] eac[1] −1 0

c[1] 0 ecd
a[1] ead

d


of degree −1.

Now let us prove that α, β give a commutative square for each horizontal arrow
(j, k)→ (j, l) within the fundamental domain, thus 0 ⩽ j < k < l ⩽ m. Denote a = ψ0,
b = ψj, c = ψk, d = ψl. Notice that the following diagram commutes in Z0(Dtr

n ):

C(ebc)
α→←
β

Cone
(
va(ebc) : C(eab)→ C(eac)

)

C(ebd)

vb(ecd)↓ α→←
β

Cone
(
va(ebd) : C(eab)→ C(ead)

)vj(va(ecd))↓
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due to explicit computation using the matrices

vb(ecd) =
(
1 0
0 ecd

)
, vj(va(ecd)) =

(
1 0
0 va(ecd)

)
= diag(1, 1, 1, ecd).

If some of the numbers a, b, c, d coincide, the required square in H0(Dtr
n ) differs form the

above, however, its commutativity is obvious.
It remains to verify naturality of α, β on the horizontal arrows (k,m) → (k,m + 1),

0 < k ⩽ m, which join the fundamental domain of Dm with its image under Im. Denote
a = ψ0, b = ψk, c = ψm. The points Dψ(k,m) = (ψk, ψm) = (b, c) and Dψ(k,m + 1) =
(ψk, n+1+ψ0) = (b, n+1+ a) lie in the fundamental domain of Dn and its image under
In, respectively. They are joined by the composition of two arrows: (b, c)→ (b, n+ 1)→
(b, n+ 1 + a). The corresponding diagram to verify is the following:

C(ebc)
α →←
β

Cone
(
va(ebc) : C(eab)→ C(eac)

)

b[1]

(
1
0

)
↓

(01)→C(eab)[1]==============
α

β
C(eab)[1]

(
1
0

)
↓

Its explicit form in H0(Dtr
n ) is the following:

(
b[1] ebc

c

) (
0 1 0 0
0 0 0 1

)
→←(

0 0
1 0

eab[1] 0
0 1

)

a[2] eab[1] −1 0

b[1] 0 ebc
a[1] eac

c



b[1]

(
1
0

)
↓

(01) →
(
a[2] eab[1]

b[1]

)
(

1 0
0 1
0 0
0 0

)
↓

This square commutes up to a boundary.

13.29 Lemma. Let B be a unital A∞-category closed under shifts. Let F be a dis-
tinguished n-triangle in H̃0(B). Then the inverse image n-triangle J∗nF = Jn · F is
distinguished.

Proof. As in the proof of the preceding lemma, it suffices to check the assertion for
the standard distinguished n-triangle F = △n · H0(f), where f : Dtr

n → B is a unital
A∞-functor. Consider the dg-functor j : Dn → Dtr

n defined as follows. It maps an object
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k ∈ ObDn to the object Cone(e1,k+1) =

(
1[1] e1,k+1

k + 1

)
of Dtr

n if 0 ⩽ k < n and to the

object 1[1] if k = n. A morphism ekl of Dn is mapped to the morphism

v1(ek+1,l+1) =

(
11[1] 0
0 ek+1,l+1

)
: C(e1,k+1) =

(
1[1] e1,k+1

k + 1

)
→
(
1[1] e1,l+1

l + 1

)
= C(e1,l+1)

if 0 ⩽ k ⩽ l < n and to the morphism(
1
0

)
: C(e1,k+1) =

(
1[1] e1,k+1

k + 1

)
→ 1[1]

if 0 ⩽ k < l = n. The restriction of j to Dn−1 coincides with the dg-functor Dψ :
Dn−1 → Dtr

n , determined by the shift map ψ : [n − 1] → [n], m 7→ m + 1 in the proof of
Lemma 13.28.

Extend the dg-functor j to the dg-functor

ȷ̂ =
(
Dtr
n

jtr→Dtr tr
n

mtr→Dtr
n

)
.

Denote by g the composite g =
[
Dtr
n

ȷ̂→Dtr
n

f→B
]
. We claim that J∗n[△n ·H0(f)] =

Jn ·△n ·H0(f) is isomorphic to △n ·H0(g). We are going to construct a pair of reciprocal
natural isomorphisms α and β as in the following diagram

Dn
Jn →Dn
α

⇐==
===

===
=

H0(Dtr
n )

△n↓

H0(ȷ̂)
→
β===
===

==⇒

H0(Dtr
n )

△n↓

H0(f)
→H0(B)

Let (k, l) ∈ Dn be a point of the fundamental domain of In, 0 ⩽ k < l ⩽ n. In order to
define α and β, we need to distinguish the following cases. If 0 ⩽ k < l < n, we define
the morphisms α, β by the same formulae

(
0 1 0 0
0 0 0 1

)
:

(
k + 1[1] ek+1,l+1

l + 1

)
α→←
β


1[2] e1,k+1[1] −1 0

k + 1[1] 0 ek+1,l+1

1[1] e1,l+1

l + 1

 :


0 0
1 0

e1,k+1[1] 0
0 1


as in Lemma 13.28 for ψ(m) = m + 1. See equations (13.28.1) with a = 1, b = k + 1,
c = l + 1.

If 0 = k < l < n, both functors Jn · △n and △n · H0(ȷ̂) map the point (0, l) to the
object C(e1,l+1), and we choose α and β to be the identities. Also if k = 0, l = n, both
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functors map the point (0, n) to the object 1[1], and we take α = β = 11[1]. Finally, if
0 < k < l = n, we define the morphisms

k + 1[1]
α→←
β

1[2] e1,k+1[1] −1
k + 1[1] 0

1[1]


by the matrices

α =
(
0 1 0

)
, β =

 0
1

e1,k+1[1]

 .

Again, it is obvious that α and β are cycles such that αβ = 1. Moreover, 1− βα = tm1,
where the element t of degree −1 is given by the matrix

t =

 0 0 0
0 0 0
−1 0 0

 :

1[2] e1,k+1[1] −1
k + 1[1] 0

1[1]

→
1[2] e1,k+1[1] −1

k + 1[1] 0
1[1]

 .

Let us check the naturality of α and β. First, let us check that α and β satisfy the
naturality condition for any vertical arrow (i, l) → (k, l) in the fundamental domain,
which means that 0 ⩽ i < k < l ⩽ n. Due to peculiarities in the definition of α and β,
it is necessary to distinguish the following cases. If 0 = i < k < l < n, then the required
diagrams follow from the proof of Lemma 13.28.

If 0 < i < k < l = n, the required diagrams for α and β

i+ 1[1]
α→←
β

1[2] e1,i+1 −1
i+ 1[1] 0

1[1]



k + 1[1]

ei+1,k+1[1]

↓ α→←
β

1[2] e1,k+1 −1
k + 1[1] 0

1[1]


(
1 0 0
0 ei+1,k+1[1] 0
0 0 1

)
↓

commute in Z0(Dtr
n ). If 0 = i < k < l = n, then the corresponding diagram for β

1[1]=============1[1]

1[2] e1,k+1[1] −1
k + 1[1] 0

1[1]


( 0 0 1 )↓

β→ k + 1[1]

e1,k+1[1]

↓
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commutes already in Z0(Dtr
n ), while the diagram for α

1[1]=============1[1]

k + 1[1]

e1,k+1[1]

↓
α→

1[2] e1,k+1[1] −1
k + 1[1] 0

1[1]


( 0 0 1 )↓

commutes up to the boundary of the element

(
−1 0 0

)
: 1[1]→

1[2] e1,k+1[1] −1
k + 1[1] 0

1[1]


of degree −1.

Now let us check that α and β satisfy the naturality condition for any horizontal
arrow (i, k) → (i, l) in the fundamental domain, thus 0 ⩽ i < k < l ⩽ n + 1. We need
to distinguish the following cases. If 0 < i < k < l < n, then the required diagrams
commute in Z0(Dtr

n ), hence a fortiori in H0(Dtr
n ), due to the proof of Lemma 13.28.

If 0 = i < k < l < n, the naturality conditions are trivially satisfied since both α and
β are identities. The same is true if 0 = i < k < l = n. If 0 < i < k < l = n, the required
naturality condition expressed by the commutativity of the diagrams

(
i+ 1[1] ei+1,k+1

k + 1

)
α→←
β


1[2] e1,i+1 −1 0

i+ 1 0 ei+1,k+1

1[1] e1,k+1

k + 1



i+ 1[1]

(
1 0
)
↓ α →←

β

1[2] e1,i+1 −1
i+ 1[1] 0

1[1]



(
1 0 0
0 1 0
0 0 1
0 0 0

)
↓

is satisfied already in Z0(Dtr
n ). Finally, it remains to verify the naturality of α and β on

the horizontal arrows (i, n) → (i, n + 1), 0 < i ⩽ n, which join the fundamental domain
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of Dn with its image under In. The naturality condition for α takes the form

i+ 1[1]
α→

1[2] e1,i+1[1] −1
i+ 1[1] 0

1[1]



(
1[2] e1,i+1[1]

i+ 1[1]

)( 0 1 )

↓

=====

(
1[2] e1,i+1[1]

i+ 1[1]

)
(
1 0
0 1
0 0

)
↓

It holds true on the nose (i.e., in the category Z0(Dtr
n )). The naturality condition for β

reads 1[2] e1,i+1[1] −1
i+ 1[1] 0

1[1]

 β → i+ 1

(
1[2] e1,i+1[1]

i+ 1[1]

)
(
1 0
0 1
0 0

)
↓

=====

(
1[2] e1,i+1[1]

i+ 1[1]

)( 0 1 )

↓

It holds true up to the boundary of the element 0 0
0 0
−1 0

 :

1[2] e1,i+1[1] −1
i+ 1[1] 0

1[1]

→ (
1[2] e1,i+1[1]

i+ 1[1]

)

of degree −1.

13.30 Lemma. Let B be a unital A∞-category closed under shifts. Let F be a distin-
guished n-triangle in H̃0(B). Then the inverse image n-triangle (J−1n )∗F = J−1n · F is
distinguished.

Proof. As in Lemma 13.29, it suffices to check the assertion for the standard distinguished
n-triangle F = △n · H0(f), where f : Dtr

n → B is a unital A∞-functor. Consider the
differential graded functor i : Dn → Dtr

n defined as follows. It maps an object k ∈ ObDn

to the object C(ek−1,n)[−1] =
(
k − 1 ek−1,n[−1]

n[−1]

)
of Dtr

n if k > 1 and to the object n[−1]

if k = 1. A morphism ekl of Dn is mapped to the morphism

un(ek−1,l−1)[−1] =
(
ek−1,l−1 0

0 1

)
:

(
k − 1 ek−1,n[−1]

n[−1]

)
→
(
l − 1 el−1,n[−1]

n[−1]

)
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if 1 < k < l ⩽ n and to the morphism

(
0 1

)
: n[−1]→

(
l − 1 el−1,n[−1]

n[−1]

)
if 1 = k < l ⩽ n. Extend the dg-functor i to the dg-functor ı̂ =

(
Dtr
n

itr→Dtr tr
n

mtr→Dtr
n

)
.

Denote by g the composite

g =
[
Dtr
n

ı̂→Dtr
n

f→B
]
.

Similarly to Lemma 13.29 one can prove that (J−1n )∗[△n · H0(f)] = J−1n · △n · H0(f) is
isomorphic to △n ·H0(g).

Recall that [1] = 1⊡ σ1 : D
[ ]
n → D

[ ]
n denotes the shift functor in the dg-category D

[ ]
n .

Its restriction to Dn is denoted by [1] : Dn → D
[ ]
n by abuse of notation. There is a natural

isomorphism γ of differential graded functors, unique up to a constant factor, as shown
on the following diagram:

D[ ]
n

[1] →D[ ]
n

D[ ][ ]
n

[1][ ]↓
m[ ] →

γ

⇐=
==
==
==

D[ ]
n

Id↓ (13.30.1)

For each k ∈ {1, 2, . . . , n} and q ∈ Z, we set γk[q] = (−1)q : k[q + 1]→ k[q + 1]. One can
check that the isomorphism γ induces an isomorphism of translation preserving functors

H̃0(D[ ]
n )

H̃0([1])→ H̃0(D[ ]
n )

H̃0(D[ ][ ]
n )

H̃0([1][ ])↓
H̃0(m[ ])→
⇐==

==
==
==∼

H̃0(D[ ]
n )

(Id,(−)p)↓

This amounts to the commutative diagram of natural differential graded transformations

Σ p · [1] · Id γ→Σ p · [1][ ] ·m[ ]

[1] · Id ·Σ p

(−1)p
↓

γ·Σp

→ [1][ ] ·m[ ] · Σ p

wwww (13.30.2)

where Σ p = Σ p

D
[ ]
n

= [p] and we use a different notation to stress the rôle of Σ p as part of the

translation structure on the differential graded category D
[ ]
n . Applying the Au

∞-2-functor
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−mc to transformation (13.30.1), we obtain an isomorphism of differential graded functors

ν =

Dtr
n

[1] →Dtr
n

Dtr tr
n

[1]tr↓
mtr →

γmc

⇐=
==
==
==
=

Dtr
n

Id↓

In fact, for each A∞-functor j : Dn → Dtr
n of the form

j =
[
Dn

h→D[ ]
n

umc→Dtr
n

]
for an A∞-functor h : Dn → D

[ ]
n , the equation[

Dtr
n

jtr→Dtr tr
n

mtr→Dtr
n

]
=
[
D[ ]
n

h[ ]→D[ ][ ]
n

m[ ]→D[ ]
n

]mc
(13.30.3)

holds true. Indeed, the left hand side expands out as[
Dtr
n

htr→D[ ]tr
n = D[ ][ ]mc

n

u
[ ]mc
mc→D[ ]mc[ ]mc

n

cmc

→D[ ][ ]mcmc
n

mmc→D[ ][ ]mc
n

mmc
[ ]→Dtr

n

]
,

which is equal to the right hand side of (13.30.3) due to equation (12.5.1). Applying the
Au
∞-2-functor −mc to diagram (13.30.2) we obtain a diagram of natural differential graded

transformations

Σ p · [1] · Id ν→Σ p · [1]tr ·mtr

[1] · Id ·Σ p

(−1)p
↓

ν·Σp

→ [1]tr ·mtr · Σ p

wwwww
where Σ p = (Σ p

D[ ])
mc = Σ p

Dtr
n
. Therefore the transformation ν induces a natural isomor-

phism of translation preserving functorsH0(ν) shown as the bottom square in the diagram

Dn
(In,id) →Dn

=

H̃0(Dtr
n )

(△n,id)↓
H̃0([1])→ H̃0(Dtr

n )

(△n,id)↓

H̃0(Dtr tr
n )

H̃0([1]tr)↓
H̃0(mtr)→

H0(ν)

⇐==
===

===
=

H̃0(Dtr
n )

(Id,(−)p)↓

(13.30.4)

The upper square is commutative by the definition of △n.
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13.31 Lemma. Let B be a unital A∞-category closed under shifts. Let F be a distin-
guished n-triangle in H̃0(B). Then the inverse image n-triangle I∗nF = (In · F, (−1)p) is
distinguished.

Proof. Again, it suffices to check the assertion for the standard distinguished n-triangle
F = △n · H0(f), where f : Dtr

n → B is a unital A∞-functor. Consider the dg-functor

S =
[
Dtr
n

[1]tr→Dtr tr
n

mtr→Dtr
n

]
and denote by g the composite

[
Dtr
n

S→Dtr
n

f→B
]
. We

claim that I∗n[△n ·H0(f)] = In ·△n · (Id, (−)p) ·H0(f) is isomorphic to △n ·H0(g). Indeed,
the required isomorphism is obtained, for example, by composing diagram (13.30.4) with
the functor H̃0(f) : H̃0(Dtr

n )→ H̃0(B).

Similarly the following lemma is proven:

13.32 Lemma. Let B be a unital A∞-category closed under shifts. Let F be a distin-
guished n-triangle in H̃0(B). Then the inverse image n-triangle I−1n

∗
F = (I−1n · F, (−1)p)

is distinguished.

Summing up results of Lemmata 13.28–13.32 we obtain property (FTR3) for H̃0(B).
From now on we suppose that the A∞-category B is pretriangulated. We prove axiom

(FTR2) for H̃0(B).
In [LM06a], with a differential graded quiver Q we associated the free A∞-category

FQ generated by Q. The freeness of FQ is expressed by an A∞-equivalence

restr : A∞(FQ,C)→ A1(Q,C),

for each unital A∞-category C. We recall that the objects of the target A∞-category
are A1-functors Q → C, which are nothing but morphisms of differential graded quivers.
For an A1-functor f : Q → C, denote by f1 its first component, which is a k-linear map
f1 : sQ→ sC of degree 0. For a pair of A1-functors f, g : Q→ C and an integer k, the k-th
component of the graded k-module sA1(Q,C)(f, g) consists of A1-transformations f → g :
Q→ C of degree k. An A1-transformation r : f → g : Q→ C is unambiguously determined
by its components Xr0 : k→ sC(Xf,Xg), for each object X ∈ ObQ, and r1 : sQ(X, Y )→
sC(Xf, Y g), for each pair of objects X, Y ∈ ObQ. We refer the reader to [LM06a] for
the formulas of components of the codifferential B : TsA1(Q,C) → TsA1(Q,C). Here we
reproduce the formula for B1, since we are going to make use of it in the sequel. For each
pair of A1-functors f, g : Q→ C, the differential B1 : sA1(Q,C)→ sA1(Q,C), r 7→ rB1, is
given by

[rB1]0 = r0b1,

[rB1]1 = (f1 ⊗ r0)b2 + (r0 ⊗ g1)b2 + r1b1 − (−)rb1r1.

An A1-transformation r of degree −1 is natural if rB1 = 0. If C is a unital A∞-category,

so is the A∞-category A1(Q,C). For each A1-functor f : Q→ C, the unit element f i
A1(Q,C)
0

of f is just f iC, where iC is the unit transformation of C.
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Consider now the special graded k-linear quiver Q = an, whose objects are symbols 1,
2, . . . , n, and morphisms sets are an(i, i+ 1) = k{ei,i+1} ≃ k, 1 ⩽ i < n, and an(i, j) = 0
if j ̸= i + 1. Here deg eij = 0. Thus an is the graded k-linear envelope of the ordinary
quiver with the same vertices and edges ei,i+1. We have T⩾1an = An and Tan = Dn.
Denote the category corresponding to the poset n also by n. Its k-linear envelope kn is
isomorphic to the k-linear category H0(Dn) = H0(Tan) = TH0(an).

It suffices to prove property (FTR2) for standard distinguished n-triangles F and G,
obtained from unital A∞-functors f, g : Dtr

n → B, respectively. The base of standard
distinguished triangle F given by (13.18.1) equals[

n
in2→Dn

△n→H0(Dtr
n )

H0(f)→H0(B)
]

=
[
n→ an

in1→ Tan = Dn = H0(Dn)
H0(utr)→H0(Dtr

n )
H0(f)→H0(B)

]
. (13.32.1)

A morphism of the base of F to the base of G is the commutative diagram in H0(B):

1f
[e12sf1s

−1]→ 2f
[e23sf1s

−1]→ 3f → . . . → n− 1f
[en−1,nsf1s

−1]→ nf

1g

ρ(1)
↓

[e12sg1s
−1]→ 2g

ρ(2)
↓

[e23sg1s
−1]→ 3g

ρ(3)
↓

→ . . . → n− 1g

ρ(n−1)
↓

[en−1,nsg1s
−1]→ ng

ρ(n)

↓

Lifting morphisms ρ(k) of H0(B) to cycles kr0s
−1 from Z0(B) we obtain a diagram in

Z0(B), commutative up to boundaries. More precisely, for each square in

1f
e12sf1s

−1

→ 2f
e23sf1s

−1

→ 3f → . . . → n− 1f
en−1,nsf1s

−1

→ nf

1g

1r0s
−1

↓
e12sg1s

−1

→ 2g

2r0s
−1

↓
e23sg1s

−1

→ 3g

3r0s
−1

↓
→ . . . → n− 1g

n−1r0s
−1

↓
en−1,nsg1s

−1

→ ng

nr0s
−1

↓

that starts, say, with kf , there is an element kr
′s−1 ∈ B(kf, k + 1g)−1 such that the

difference of two m2-compositions along edges of the square is the boundary kr
′s−1m1.

Define the k-linear map

kr1 : an(k, k + 1)[1]→ B(kf, k + 1g)[1], ek,k+1s 7→ kr
′.

It has degree −1. One can check that the pair (kr0, kr1) defines a natural A1-transforma-
tion. This implies that the third of the following maps is surjective:

H0(Au
∞(D

tr
n ,B)(f, g))

∼−→ H0(Au
∞(Dn,B)(f

∣∣
Dn
, g
∣∣
Dn
))
∼−→ H0(A1(an,B)(f

∣∣
an
, g
∣∣
an
))

▷ k-mod-quivers(H0(an), H
0(B))(H0(f

∣∣
an
), H0(g

∣∣
an
))

∼−→ k-Cat(kn, H0(B))(H0f
∣∣
kn, H

0g
∣∣
kn)

∼−→ Cat(n, H0(B))(H0f
∣∣
n
, H0g

∣∣
n
). (13.32.2)
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The other maps are bijections. Note that k-mod-quivers(H0(an), H
0(B)) is a cate-

gory, since H0(B) is. Its meaning is explained better by the isomorphic expression
k-Cat(TH0(an), H

0(B)) ≃ k-Cat(kn, H0(B)) from the next term.
The last term of (13.32.2) consists of morphisms between bases of the standard distin-

guished n-triangles F and G. Take one such morphism ρ, lift it to a natural A1-transfor-
mation r : f

∣∣
an
→ g

∣∣
an

: an → B as explained above, and further to an equivalence class of

a natural A∞-transformation r̃ : f → g : Dtr
n → B. According to Corollary 13.12 the lat-

ter defines a translation preserving transformation H̃0(r̃) : H̃0(f) → H̃0(g) : H̃0(Dtr
n ) →

H̃0(B). The morphism of distinguished n-triangles

r = △n · H̃0(r̃) =

(
Dn

△n→ H̃0(Dtr
n )

H̃0(f)→
⇓H̃0(r̃)

H̃0(g)
→
H̃0(B)

)

satisfies the requirement of axiom (FTR2). In fact, in2 ·r equals ρ : in2 ·F → in2 ·G : n→
H̃0(B) that we started with. Indeed, computation made in (13.32.1) implies that in2 ·r
equals[

n→ an
in1→ Tan = H0(Dn)

H0(utr)→H0(Dtr
n )

H0(f)→
⇓H0(r̃)

H0(g)
→
H0(B)

]

=

[
n→ an = H0(an)

H0(f |an)→
⇓H0(r)

H0(g|an)
→
H0(B)

]
= ρ.

This finishes the proof of Theorem 13.27.

Recall that the derived category of an abelian category is the zero cohomology of some
pretriangulated differential graded category due to Drinfeld [Dri04]. Thus, Theorem 13.27
implies that the derived category of an abelian category is strongly triangulated. Besides,
this fact is already known by work of Neeman [Nee05] and Maltsiniotis [Mal06].

13.33 Corollary. Let C be a pretriangulated A∞-category. Then its homotopy category
H̃0(C) is triangulated.

13.34 Remark. The differential graded functors ȷ̂, ı̂ : Dtr
n → Dtr

n constructed in Lemmata
13.29, 13.30, are quasi-inverse to each other in Au

∞. In particular, they are A∞-equiva-
lences. It is important that these two are not quasi-inverse to each other as differential
graded functors! This naturally arising example shows that the dg-context is not sufficient
and should be replaced with the A∞-set-up.

We are going to check that the composites ȷ̂ · ı̂ and ı̂ · ȷ̂ are A∞-isomorphic to the
identity of Dtr

n . In order to do that, one may use the following argument. We observe that
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Dn is the free differential graded category generated by the quiver an. By Corollary 9.35,
the restriction A∞-functor

restr : Au
∞(Dn,C)→ A1(an,C),

is an A∞-equivalence, for an arbitrary unital A∞-category C. Furthermore, if C is pretri-
angulated, the embedding utr : Dn ↪→ Dtr

n induces an A∞-equivalence

Au
∞(utr, 1) = (utr ⊠ 1)M : Au

∞(D
tr
n ,C)→ Au

∞(Dn,C).

Taking C = Dtr
n , we find that the composite

Au
∞(D

tr
n ,D

tr
n )

Au∞(utr,1)→Au
∞(Dn,D

tr
n )

restr→A1(an,D
tr
n )

is an A∞-equivalence. Note that A∞-equivalences reflect isomorphisms. In order to show
that the A∞-functors ȷ̂ · ı̂ and ı̂ · ȷ̂ are isomorphic to the identity of Dtr

n , one shows that
the restrictions of these A∞-functors to the differential graded subquiver an of Dtr

n are
isomorphic (as A1-functors) to the restriction of the A∞-functor utr : Dn ↪→ Dtr

n .

13.35 (Pre)triangulatedness and A∞-modules. Let A be an A∞-category. Then
Au
∞(A

op,Ck) is pretriangulated by Lemma 12.19. The Yoneda homotopy fully faithful
A∞-functor A → Au

∞(A
op,Ck) makes H0A into a full subcategory of the strongly trian-

gulated categoryH0(Au
∞(A

op,Ck)). By definition, the replete closure of a full subcategory
B ↪→ C is a full subcategory of C consisting of objects isomorphic to an object of B.

13.36 Proposition. Let A be an A∞-category. Then the following are equivalent:

(i) the A∞-category A is closed under shifts;

(ii) the replete closure of the subcategory H0A ↪→ H0(A[ ]) is closed under translation;

(iii) the replete closure of the subcategory H0A ↪→ H0(Au
∞(A

op,Ck)) is closed under
translation.

Let A be an A∞-category closed under shifts. Then the following are equivalent:

(iv) the A∞-category A is pretriangulated;

(v) ObA is not empty and the replete closure of the subcategory H0A ↪→ H0(Amc)
is closed under taking cones; (If two objects from a distinguished triangle are in
ObH0A, then the third is isomorphic to an object of H0A.)

(vi) ObA is not empty and the replete closure of the subcategoryH0A ↪→ H0(Au
∞(A

op,Ck))
is closed under taking cones.
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Proof. (i) =⇒ (ii), (iii). If A is closed under shifts, the unital A∞-functors u[ ] : A →
A[ ], Y : A → Au

∞(A
op,Ck) induce fully faithful functors H̃0(u[ ]) : H̃0(A) → H̃0(A[ ]),

H̃0(Y ) : H̃0(A) → H̃0(Au
∞(A

op,Ck)) between categories with translation structure by
Corollary 13.12.

(ii) =⇒ (i). The translation structure H0(Σn) of H0(A[ ]) explicitly constructed in
Proposition 13.7 takes an object X.u[ ] = X[0] to X[n] which has to be isomorphic to Y [0]
for some object Y of A.

(iv) =⇒ (v), (vi). If A is pretriangulated, the unital A∞-functors umc : A → Amc,
Y : A → Au

∞(A
op,Ck) induce fully faithful triangulated functors H̃0(umc) : H̃0(A) →

H̃0(Amc), H̃0(Y ) : H̃0(A)→ H̃0(Au
∞(A

op,Ck)) by Proposition 13.19.
(v) =⇒ (iv). Since A contains an object X, H0A contains a zero object (isomor-

phic to Cone(id : X → X)). Therefore, A contains a contractible object (see Defini-
tion 11.31(c2)). For any cycle f ∈ A(X, Y )0 the object Cone(f) of H0(Amc) appears in
distinguished triangle

△f
def
=
(
X

f→ Y
iY→ Cone(f)

jX→X[1]
)
. (13.36.1)

Hence, it is isomorphic to Cumc for some object C of A. We conclude by Proposition 11.32
that A is mc-closed.

(iii) =⇒ (ii). Similarly to Remark 12.20 there is a commutative diagram

A
Y →Au

∞(A
op,Ck)

= =

A[ ]

u[ ]↓
Y [ ]

→

Y [ ]·U[ ]
→

Au
∞(A

op,Ck)
[ ]

U[ ]

↑

where U[ ] is described in Proposition 10.37. The top triangle part implies the equation

H0Y =
[
H0A

H0(u[ ])→H0(A[ ])
H0(Y [ ]·U[ ])→H0(Au

∞(A
op,Ck))

]
,

where all functors are full embeddings, and the second is triangulated. This makes the
implication obvious.

(vi) =⇒ (v). Similar to the above with mc in place of [ ].

Notice that properties (iii) and (vi) of the above proposition are taken as part of the
definition of triangulatedness of a differential graded category by Toën and Vaquié [TV05].
These two properties distinguish pretriangulated (or exact) differential graded categories
in terms of Keller [Kel06b, Section 4.5]. They are equivalent to pretriangulatedness in our
sense due to above proposition. Thus, some properties of A∞-categories can be defined
in terms of properties of triangulated categories.

A triangulated differential graded category in the sense of Toën and Vaquié [TV05] in
addition to the above is required to have H0A closed under retracts in H0(Au

∞(A
op,Ck)).

Equivalently, H0A is idempotent complete or has split idempotents. Keller calls such
differential graded categories Morita fibrant [Kel06b, Section 4.6].
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Further applications

14.1 A∞-bimodules and Serre A∞-functors. The techniques developed in this
book play an important rôle in the study of A∞-bimodules and Serre A∞-functors carried
out in [LM08b]. Here we give only a short account of the results referring the curious
reader to [loc.cit.] for further details. We begin by recalling the notion of (ordinary) Serre
functor.

Let k be a field and let C be a k-linear category. A k-linear functor S : C→ C is called
a right Serre functor if there exists an isomorphism of k-vector spaces

C(X, Y S) ∼= C(Y,X)∗,

natural in X, Y ∈ ObC, where ∗ denotes the dual k-vector space. A Serre functor, if it
exists, is determined uniquely up to an isomorphism. If, moreover, S is an equivalence,
it is called a Serre functor. The notion of Serre functor was introduced by Bondal and
Kapranov [BK89], who used it to reformulate Serre–Grothendieck duality for coherent
sheaves on a smooth projective variety. More precisely, Bondal and Kapranov observed
that the bounded derived category Db(X) of coherent sheaves on a smooth projective
variety X of dimension n over a field k admits a Serre functor S = −⊗ ωX [n], where ωX
is the canonical sheaf. In other words, there exists an isomorphism of k-vector spaces

HomDb(X)(F
•,G • ⊗ ωX [n]) ∼= HomDb(X)(G

•,F •)∗,

natural in F •,G • ∈ ObDb(X). In particular, if F and G are sheaves concentrated in
degrees i and 0 respectively, the above isomorphism specializes to the familiar form of
Serre duality:

Extn−i(F ,G ⊗ ωX) ∼= Exti(G ,F )∗.

Being an abstract category theory notion, Serre functors have been discovered in other
contexts, for example, in Kapranov’s studies of constructible sheaves on stratified spaces
[Kap90]. Reiten and van den Bergh have shown that Serre functors in abelian categories
of modules are related to Auslander–Reiten sequences and triangles, and they classified
the noetherian hereditary Ext-finite abelian categories with Serre duality [Rv02]. Serre
functors play an important role in reconstruction of a variety from its derived category of
coherent sheaves [BO01].

In all cases of interest, Serre functors operate on triangulated categories rather than
mere k-linear categories. In the context of the program of rewriting homological algebra in
the language of pretriangulated dg-categories or A∞-categories as explained in Chapter 1,

415
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it is desirable to have an analog of the notion of Serre functor at the level of dg-categories
or A∞-categories. This is a point where the inadequacy of dg-functors becomes apparent.
Namely, there is a natural generalization of the notion of Serre functor to the differential
graded context. However, given a pretriangulated dg-category A whose homotopy cate-
gory H0(A) admits a Serre functor, it is hard (if possible at all) to prove the existence of
a Serre dg-functor from A to itself. In contrast to a Serre dg-functor, a Serre A∞-functor
does exist, under some standard assumptions. Let us supply some details.

In order to define Serre A∞-functors, we study basic properties of A∞-bimodules. The
definition of A∞-bimodule overA∞-algebras has been given by Tradler [Tra01, Tra02]. The
notion of bimodule over some kind of A∞-categories was introduced by Lefèvre-Hasegawa
under the name of bipolydule [LH03]. Tradler’s definition of A∞-bimodules improved in
[TT06] is extended in [LM08b] from graded k-modules to graded quivers. The precise
definition is not important at the moment; what is important is that A∞-bimodules over
A∞-categories A and B can be identified with A∞-bifunctors A

op,B→ Ck. In particular,
A-B-bimodules form a dg-category isomorphic to A∞(A

op,B;Ck). Of course, there is
nothing surprising in this statement. In fact, it is in complete analogy with the ordinary
category theory: on the one hand, a bimodule over k-linear categories A and B can be
defined as a collection of k-modules P(X, Y ), X ∈ ObA, Y ∈ ObB, together with k-linear
action maps A(U,X)⊗P(X, Y )⊗B(Y, V )→ P(U, V ) compatible with compositions and
identities; on the other hand, an A-B-bimodule can be defined as a k-linear bifunctor
Aop ⊠ B → k-Mod. That these definitions are equivalent is a straightforward exercise.
In the case of A∞-bimodules it is still straightforward, however computations become
cumbersome.

In spite of its obviousness, the interpretation of A∞-bimodules via A∞-functors is quite
helpful. For on the one hand, it allows to apply general results about A∞-functors to the
study of A∞-bimodules. On the other hand, A∞-bimodules are often more suited for
computations than A∞-functors.

Explicitly, an A∞-bimodule B over A∞-categories A and B is a graded span P such
that Obs P = ObA and Obt P = ObB, equipped with k-linear maps of degree 1

bPmn : sA(Xm, Xm−1)⊗ · · · ⊗ sA(X1, X0)⊗ sP(X0, Y0)⊗
⊗ sB(Y0, Y1)⊗ · · · ⊗ sB(Yn−1, Yn)→ sP(Xm, Yn), m, n ⩾ 0,

satisfying identities which resemble those imposed on the components of the codifferential
of an A∞-category. An A∞-category A gives rise to a regular A-A-bimodule denoted by
RA or simply by A. Its underlying graded span coincides with A and bRA

mn = bAm+1+n,
m,n ⩾ 0.

To an arbitrary A-B-bimodule P there is a dual B-A-bimodule P∗. Its underlying
graded span is given by P∗(Y,X) = Ck(P(X, Y ),k), X ∈ ObA, Y ∈ ObB.

An A∞-functor g : B→ A gives rise to anA-B-bimoduleAg which is obtained from the
regular A-A-bimodule by the restriction of scalars along the A∞-functor g. In particular,
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its underlying graded span is given by Ag(X, Y ) = A(X, Y g), X ∈ ObA, Y ∈ ObB.
An A-B-bimodule P is called representable if it is isomorphic to Ag for some A∞-functor
g : B→ A, which is said to represent P.

A unital A∞-category A is said to admit a right Serre A∞-functor if the dual A
∗ of the

regular A-A-bimodule is representable; a representing A∞-functor S : A → A is called a
right Serre A∞-functor. If it exists, it is determined uniquely up to an isomorphism. If,
moreover, S is an A∞-equivalence, it is called a Serre A∞-functor.

It appears advantageous to introduce also an intermediate notion of Serre functor
for enriched categories. The case of categories enriched in the category of k-modules
corresponds to the notion of ordinary Serre functor. Another case of interest is categories
enriched in K, the homotopy category of complexes of k-modules. As we have seen in
Chapter 9, these form a bridge from unital A∞-categories to ordinary k-linear categories.
We consider also full homology of an A∞-category, and correspondingly Serre gr-functors.

The main result of [LM08b] asserts the following.

14.2 Theorem (cf. [LM08b, Theorem 6.5]). Suppose that the ground commutative ring
k is a field. Let A be a unital A∞-category.

(a) The mappings k : S 7→ kS, H• : S ′ 7→ H•(S ′),

N : S ′′ 7→ (S ′′)0 = restriction of S ′′ to degree 0

take Serre functors to Serre functors as shown below:

{Serre A∞-functors in A} k→{Serre K-functors in kA} H•

→

{Serre gr-functors in H•A} N→{Serre k-linear functors in H0A}. (14.2.1)

(b) If furthermore A is closed under shifts, and one of the sets of Serre functors in
(14.2.1) is not empty, then the other three are not empty as well.

In particular, if A is closed under shifts and H0(A) admits an ordinary Serre functor,
then A admits a Serre A∞-functor. Note that the Serre A∞-functor whose existence is
claimed in part (b) of the theorem need not be a dg-functor even if A is a dg-category.

An application of this theorem is the following. Let k be a field. Drinfeld’s construc-
tion of quotients of pretriangulated dg-categories [Dri04] allows to find a pretriangulated
dg-category A such that H0(A) is some familiar derived category (e.g. the bounded de-
rived category Db(X) of coherent sheaves on a projective variety X). If a Serre functor
exists for H0(A), then A admits a Serre A∞-functor S by the above theorem. That is the
case of H0(A) ≃ Db(X), where X is a smooth projective variety [BK89, Example 3.2].

Now we shall reinforce the statement of Theorem 14.2. First we prove a lemma.

14.3 Lemma. Let A, B be unital A∞-categories over an arbitrary commutative ground
ring k, and let f : A → B be a unital A∞-functor. Let β : kf → j : kA → kB be
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an isomorphism of K-functors. Then there is a unital A∞-functor g : A → B and an
invertible natural A∞-transformation r : f → g : A → B such that j = kg and kr = β.
The latter means that the chain map Xr0s

−1 : k→ B(Xf,Xg) belongs to the homotopy
equivalence class βX for all objects X of A.

Proof. Take the mapping g = Ob g = Ob j : ObA → ObB, and choose chain maps
g1 : sA(X, Y ) → sB(Xg, Y g) so that sg1s

−1 belongs to the homotopy equivalence class
jX,Y ∈ K(A(X, Y ),B(Xj, Y j)). Choose chain maps Xr0 : k → sB(Xf,Xg) so that

Xr0s
−1 belongs to the homotopy equivalence class βX ∈ K(k,B(Xf,Xj)). Naturality of

the transformation β means that the following diagram commutes up to homotopy:

A(X, Y )
Xr0s

−1⊗sg1s−1

→B(Xf,Xg)⊗B(Xg, Y g)

∼

B(Xf, Y f)⊗B(Y f, Y g)

sf1s
−1⊗Y r0s−1

↓
m2 →B(Xf, Y g)

m2↓

That is, there are maps h : A(X, Y )→ B(Xf, Y g) of degree −1 such that

(Xr0s
−1 ⊗ sg1s−1)m2 − (sf1s

−1 ⊗ Y r0s
−1)m2 = hm1 +m1h.

Define r1 = s−1hs : sA(X, Y )→ sB(Xf, Y g). Then the above equation can be rewritten
as

(r0 ⊗ g1)b2 + (f1 ⊗ r0)b2 + r1b1 + b1r1 = 0.

Together with the obvious equation g1b1 = b1g1 it implies that (Ob g, g1) and (r0, r1)
satisfy the equations of an A1-functor and A1-transformation. Invertibility of βX means
that Xr0s

−1 is invertible in H0B. Therefore, the hypotheses of Proposition 1.6 are satisfied
for n = 1. Applying it we find the required g and r.

14.4 Proposition. Suppose that the ground commutative ring k is a field. Let A be
a unital A∞-category closed under shifts. Then mappings (14.2.1) between sets of Serre
functors are surjective.

Proof. We leave to the reader the proof that the last two maps are canonically split
surjections. Let us prove that the first map is a surjection. Assume that S : kA→ kA is
a Serre K-functor. By Theorem 14.2 there exists a Serre A∞-functor S

′ : A→ A. It gives
one more Serre K-functor kS ′ : kA → kA. Uniqueness of Serre functors in the enriched
setting implies that kS ′ and S are isomorphic K-functors, see [LM08b, Corollary 2.10].
By Lemma 14.3 there is an A∞-functor S : A → A isomorphic to S ′ such that kS = S.
Being isomorphic to a Serre A∞-functor, S is a Serre A∞-functor itself, see [LM08b,
Proposition 5.22]. Thus, the first map k is a surjection, and we have provided a non-
canonical splitting of this surjection.
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14.5 Remark. Let C be a minimal A∞-category. Then kC has differential 0. Hence, kC
is a graded category with zero differential. If S : C → C is a Serre A∞-functor, then the
Serre K-functor kS : kC → kC is a gr-functor. It identifies with H•S, so it is a Serre
gr-functor.

14.6 Remark. Let k be a field, and let A be a unital A∞-category closed under shifts.
Lifting homology classes to cycles one can construct a chain quiver map α1 : H•A[1] →
A[1] such that Obα1 = idObA and H•α1 = idH•A[1]. Here the graded quiver H•A[1]
is equipped with the zero differential. The maps α1 : H•A(X, Y )[1] → A(X, Y )[1] are
homotopy invertible. Applying Proposition 1.3 or a result of Kadeishvili [Kad82] we get
a minimal A∞-structure on H•A and an A∞-equivalence α : H•A → A, whose first
component is the above α1. Thus, gr-functors H•α and idH•A coincide. A quasi-inverse
A∞-functor α

−1 : A→ H•A to α can also be chosen in such a way that Obα−1 = idObA,
e.g. by Theorem 1.2. Hence, H•α−1 = idH•A.

Assume now that S : A→ A is a Serre A∞-functor. Consider the tautological square
of K-categories and K-functors:

H•A
(kα)·(kS)·(kα−1)→H•A

=

kA

kα
↓

kS → kA

kα−1

↑

Applying to it H• we find that (kα) · (kS) · (kα−1) = H•S. Thus, the Serre gr-functor
H•S = H•(α · S · α−1) comes from the Serre A∞-functor α · S · α−1 for the minimal
A∞-category H

•A as in Remark 14.5.
Take now an arbitrary Serre gr-functor S : H•A → H•A. A priori it senses only

gr-category structure of H•A. However, the latter admits a lifting to a minimal A∞-cat-
egory structure in H•A along some α as above. This S equals H•S for some Serre
A∞-functor S : A → A. Hence, it equals H•(α · S · α−1) = k(α · S · α−1) for the Serre
A∞-functor α · S · α−1 in H•A. Thus, S extends to a Serre A∞-functor simultaneously
with the extension of gr-structure on H•A to an A∞-structure.

The proof of Theorem 14.2 relies on the Yoneda Lemma in the form of Proposition 1.5.

14.7 The Yoneda Lemma. A version of the classical Yoneda Lemma is presented
in Mac Lane’s book [Mac88, Section III.2] as the following statement. For any category
C there is an isomorphism of functors

evCat ≃
[
C× Cat(C, Set)

Y op×1→ Cat(C, Set)op × Cat(C, Set)
HomCat(C,Set)→ Set

]
,

where Y : Cop → Cat(C, Set), X 7→ C(X, ), is the Yoneda embedding. This observation
was generalized to A∞-setting in [LM08b]. It required the use of A∞-transformations of
two variables considered in this book.
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14.8 Theorem (The Yoneda Lemma [LM08b, Theorem A.1]). For any A∞-category A

there is a natural A∞-transformation

Ω : evA∞ →
[
A,A∞(A;Ck)

Y op,1→ A∞(A;Ck)
op,A∞(A;Ck)

HomA∞(A;Ck)→ Ck
]
.

If the A∞-category A is unital, Ω restricts to an invertible natural A∞-transformation

A,Au
∞(A;Ck)

evA
u
∞

→ Ck

Au
∞(A;Ck)

op,Au
∞(A;Ck)

Ω�
wwww

HomAu∞(A;Ck)

→

Y op,1 →

Some previously published A∞-versions of the Yoneda Lemma contented with the
statement that for a unital A∞-category A, the Yoneda A∞-functor Y : Aop → Au

∞(A;Ck)

is homotopy full and faithful [Fuk02, Theorem 9.1], [LM08c, Theorem A.11], see Corol-
lary 1.4 and the preceding discussion. A more general form of the Yoneda Lemma cited
in Proposition 1.5 was obtained in [LM08b, Proposition A.3] as a corollary of the above
theorem. The same corollary was proven by Seidel [Sei08, Lemma 2.12] over a ground
field k.

The instruments from this book used in [LM08b] do not restrict to A∞-functors and

A∞-transformations of several variables. The use of multifunctor k : Au
∞ → K̂-Cat from

Section 9.7 was essential. As usual, K denotes the homotopy category of complexes of
k-modules. The multifunctor was even generalized to the following.

14.9 Proposition ([LM08b, Proposition 3.5]). There is a symmetric k-Cat-multifunctor

k : Au
∞ → K̂-Cat.

Here Au
∞ denotes a symmetric k-Cat-multicategory obtained from the symmetric

Au
∞-multicategory Au

∞ via the base change functor H0 : Au
∞ → k-Cat. That is, the objects

of Au
∞ are unital A∞-categories, and for each collection (Ai)i∈I , B of unital A∞-categories,

there is a k-linear category Au
∞((Ai)i∈I ;B) = H0Au

∞((Ai)i∈I ;B), whose objects are unital
A∞-functors, and whose morphisms are equivalence classes of natural A∞-transforma-
tions.



Appendix A

Internal Monoidal categories

In this chapter, we provide the general set-up necessary for the construction of actions of
one multicategory on another, which is the subject of Appendices B, C. Instead of working
inside a symmetric monoidal 2-category we develop the language of internal lax symmetric
Monoidal categories which live inside a symmetric Monoidal Cat-category C, interpreted
as a 2-category. Mostly we are interested in the paradigmatic example of the category
C = sym-Mono-Cat of symmetric Monoidal categories introduced in Chapter 2. Lax
symmetric Monoidal categories have internal analogues in C: lax-symmetric-Monoidal-
categories which are objects of C. We prove that these constitute a symmetric Monoidal
Cat-category C⋆. Moreover, the correspondence C 7→ C⋆ becomes a 2-functor.

A.1 Definition. A lax-symmetric-Monoidal-category C of a symmetric Monoidal Cat-cat-
egory (C,⊠I ,Λf) (viewed also as a 2-category) is

1. An object C of C.

2. A 1-morphism ⊗I : ⊠IC → C, for every set I ∈ Ob S, such that ⊗I = IdC for each
1-element set I.

For a map f : I → J in Mor S introduce a 1-morphism

⊗fC =
(
⊠IC

ΛfC→ ⊠j∈J ⊠f−1jC
⊠j∈J⊗f−1j

→ ⊠J C
)
.

3. A 2-morphism λf for every map f : I → J in Mor S:

⊠IC
⊗fC →⊠JC

λf===
===
⇒

C

⊗J
↓⊗I →

=

⊠j∈J ⊠f−1j C
⊠j∈J⊗f−1j

→⊠JC

⊠IC

ΛfC

↑

⊗I →

λf

~www
C

⊗J
↓

such that

(i) for all sets I ∈ ObO, for all 1-element sets J

λidI = id, λI→J = id;

(ii) for any pair of composable maps I
f→ J

g→K from S this equation holds:

421
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⊠JC
⊗gC →⊠KC

λg

==
==
==
==
⇒

⊠IC

⊗fC

↑

⊗I
→

λf

⇐
===============

C

⊗K

↓

⊗J

→

=

⊠JC
⊗gC →⊠KC

⊠k∈Kλf :f
−1g−1k→g−1k

⇐===========

⊠IC

⊗fC

↑

⊗I
→

⊗g◦fC

→

λg◦f

==
==
==
==
==
==
==
==
=⇒

C

⊗K

↓

(A.1.1)

Here ⊠k∈Kλf :f
−1g−1k→g−1k means the 2-morphism

⊠JC

=

⊠j∈J ⊠f−1j C
ΛgC →

⊠j∈J⊗f−1j
→

⊠k∈K ⊠j∈g−1k ⊠f−1jC
⊠k∈K⊠j∈g

−1k⊗f−1j

→⊠k∈K ⊠g−1k C

ΛgC

→

=

⊠IC

ΛfC

↑

Λg◦fC

→⊠k∈K ⊠f−1g−1k C

⊠k∈KΛf :f
−1g−1k→g−1k

C

↑

⊠k∈K⊗f−1g−1k
→

⊠k∈Kλf :f
−1g−1k→g−1kwww
~w

⊠KC

⊠k∈K⊗g−1k

↓

The top quadrilateral in above diagram is the identity 2-morphism due to the 2-transfor-
mation Λg being strict. The left square is equation (2.37.2).

A.2 Definition. A lax-symmetric-Monoidal-functor (F, ϕI) : (C,⊗I , λf) → (D,⊗I , µf)
between lax-symmetric-Monoidal-categories C, D of a symmetric Monoidal Cat-category
(C,⊠I ,Λf) is

i) a 1-morphism F : C→ D between objects C, D of C,

ii) a 2-morphism for each set I ∈ Ob S

⊠IC
⊠IF→⊠ID

C

⊗I
↓

F →

ϕI

⇐=
==
==
==
==
=

D

⊗I
↓

such that ϕI = idF for each 1-element set I, and for every map f : I → J of S the
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following equation holds:

⊠IC
⊠IF →⊠ID

⊠JC
⊠JF

→

⊠j∈Jϕf
−1j

⇐=====
=====

=====
=====

=====
=

⊗f

←
⊠JD⇐=====

µf

⊗f←

C
F

→

ϕJ

⇐=
==
==
==
==

⊗J →
D

⊗I

↓⊗J →

=

⊠IC
⊠IF→⊠ID

⊠JC⇐=====
λf

⊗f

←

C

⊗I

↓
F
→

ϕI

⇐=
==
==
==
==
==
==
==

⊗J →
D

⊗I

↓

(A.2.1)

Here 2-morphism ⊠j∈Jϕf
−1j means the pasting

⊠IC
⊠IF →⊠ID

=

⊠j∈J ⊠f−1j C

Λf↓
⊠j∈J⊠f

−1jF→⊠j∈J ⊠f−1j D

Λf↓

⊠JC

⊠j∈J⊗f−1j

↓
⊠JF →

⊠j∈Jϕf
−1j

⇐===
===

===
===

===
=

⊠JD

⊠j∈J⊗f−1j

↓

A.3 Definition. A Monoidal-transformation t : (F, ϕI) → (G,ψI) : (C,⊗I , λf) →
(D,⊗I , µf) between lax-symmetric-Monoidal-functors of a symmetric Monoidal Cat-cat-
egory (C,⊠I ,Λf) is a 2-morphism t : F → G such that for every I ∈ Ob S

⊠IC

⊠IF→
⊠It⇓
⊠IG
→⊠ID

C

⊗I
↓

G
→

ψI

⇐=
==
==
==
==
==

D

⊗I
↓

=

⊠IC
⊠IF→⊠ID

ϕI

⇐=
==
==
==
==
==

C

⊗I

↓ F→
t⇓
G
→D

⊗I

↓

.

For each symmetric Monoidal Cat-category C there is a Cat-category lax-sym-Mono-
cat-C with

0. Objects – lax-symmetric-Monoidal-categories of C;

1. 1-morphisms – lax-symmetric-Monoidal-functors of C;

2. 2-morphisms – Monoidal-transformations of C.
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Let us put for brevity C⋆ = lax-sym-Mono-cat-C. We are going to show that this Cat-cate-
gory is equipped with a natural symmetric Monoidal structure. To achieve this, we extend
−⋆ to symmetric Monoidal Cat-functors and Monoidal transformations as a 2-functor.

A.4 Proposition. Let (R, ρI) : (C,⊠I ,ΛfC) → (D,⊠I ,ΛfD) be a symmetric Monoidal
Cat-functor between symmetric Monoidal Cat-categories.

(a) Let (C,⊗I , λf) be a lax-symmetric-Monoidal-category in C. For each set I ∈ Ob S
put

⊗IRC =
[
⊠IRC

ρI→R⊠I C
R(⊗I)→RC

]
.

For each map f : I → J in Mor S, let λfRC be a 2-morphism given by the following
pasting:

⊠j∈J ⊠f−1j RC
⊠j∈Jρf

−1j

→⊠j∈JR⊠f−1j C
⊠j∈JR(⊗f−1j)→⊠JRC

=

= R⊠j∈J ⊠f−1jC

ρJ↓
R(⊠j∈J⊗f−1j)→R⊠J C

ρJ↓

⊠IRC

ΛfD

↑

ρI →R⊠I C

RΛfC

↑

R(⊗I) →

Rλf

~www
RC

R(⊗J)
↓

in which the pentagon commutes by (2.6.1), and the upper square is commutative

due to the naturality of ρJ . Then (RC,⊗IRC, λ
f
RC) is a lax-symmetric-Monoidal-

category in D.

(b) Let (F, ϕI) : (C,⊗I , λf) → (D,⊗I , µf) be a lax-symmetric-Monoidal-functor. For
each set I ∈ Ob S, let ϕIRF denote the 2-morphism given by the pasting

⊠IRC
⊠IRF→⊠IRD

=

R⊠I C

ρI↓
R⊠IF→R⊠I D

ρI↓

RC

R(⊗I)
↓

RF →

RϕI

⇐=
==
==
==
==

RD

R(⊗I)
↓

in which the upper square is commutative due to the naturality of ρI . Then
(RF, ϕIRF ) : (RC,⊗IRC, λ

f
RC)→ (RD,⊗IRD, µ

f
RD) is a lax-symmetric-Monoidal-functor.

(c) Let t : (F, ϕI)→ (G,ψI) : (C,⊗I , λf)→ (D,⊗I , µf) be a Monoidal-transformation.

ThenRt : (RF, ϕIRF )→ (G,ψIRG) : (RC,⊗IRC, λ
f
RC)→ (RD,⊗IRD, µ

f
RD) is a Monoidal–

transformation.
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(d) The correspondence defined in (a), (b), and (c) is a Cat-functor (R, ρI)⋆ : C⋆ → D⋆.

Proof. The proof of (a), (b), and (c) is somewhat cumbersome, but truly straightforward.
The last claim is obvious.

Let t : (R, ρI) → (S, ςI) : (C,⊠I ,ΛIC) → (D,⊠I ,ΛID) be a Monoidal transformation of
symmetric Monoidal Cat-functors. It gives rise to a natural transformation of Cat-functors
t⋆ : (R, ρ)⋆ → (S, ςI)⋆ : C⋆ → D⋆ which we shall describe below.

Let (C,⊗I , λf) be a lax-symmetric-Monoidal-category in C. The following diagram
commutes:

⊠IRC
⊠It→⊠ISC

R⊠I C

ρI↓
t→ S ⊠I C

ςI↓

RC

R(⊗I)
↓

t → SC

S(⊗I)
↓

The lower rectangle commutes due to the naturality of t, the upper rectangle commutes
due to the Monoidality of t.

A.5 Lemma. (t, id) : (RC,⊗IRC, λ
f
RC) → (SC,⊗ISC, λ

f
SC) is a lax-symmetric-Monoidal-

functor.

The collection of lax-symmetric-Monoidal-functors

(t, id) : (RC,⊗IRC, λ
f
RC)→ (SC,⊗ISC, λ

f
SC),

where C runs over lax-symmetric-Monoidal-categories, constitutes a Cat-natural transfor-
mation t⋆ : (R, ρI)⋆ → (S, ςI)⋆ : C⋆ → D⋆. The Cat-naturality of t⋆ follows from the
Cat-naturality of t.

The correspondence C 7→ C⋆, (R, ρI) 7→ (R, ρI)⋆, t 7→ t⋆ is a strict 2-functor from the
2-category of symmetric Monoidal Cat-categories, symmetric Monoidal Cat-functors and
Monoidal transformations to the 2-category of Cat-categories, Cat-functors, and Cat-nat-
ural transformations. In fact, more is true.

A.6 Theorem. The 2-functor

−⋆ : symmetric-Monoidal-Cat-categories→ Cat-categories

restricts to a 2-functor

−⋆ : symmetric-Monoidal-Cat-categories→ symmetric-Monoidal-Cat-categories.
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Sketch of proof. We only outline the crucial steps of the proof, letting the curious reader
fill in details.

For a symmetric Monoidal Cat-category (C,⊠I ,Λf), the Cat-functor ⊠I : CI → C to-
gether with the Cat-natural transformation σ(12) : ⊠j∈J ⊠i∈I Cij → ⊠i∈I ⊠j∈J Cij is a sym-
metric Monoidal Cat-functor, cf. Example 4.26. Furthermore, the symmetric Monoidal
Cat-category (CI)⋆ identifies naturally with (C⋆)I . Therefore, the symmetric Monoidal
Cat-functor (⊠I , σ(12)) : C

I → C gives rise to a Cat-functor ⊠I = (⊠I , σ(12))
⋆ : (C⋆)I → C⋆

by Proposition A.4,(a).
Next notice that, for each map f : I → J in Mor S, the Cat-natural transformation

ΛfC : ⊠I → ⊠f ·⊠J : CI → C is Monoidal. Thus ΛfC induces a Cat-natural transformation

(ΛfC)
⋆ : ⊠I → ⊠f · ⊠J : (C⋆)I → C⋆ by Proposition A.4,(c). These transformations are

invertible, since so are ΛfC, and satisfy equation (2.37.2), since so do ΛfC. Therefore, C⋆

becomes a symmetric Monoidal Cat-category.
A symmetric Monoidal Cat-functor (R, ρI) : (C,⊠I ,ΛfC)→ (D,⊠I ,ΛfD) gives rise to a

Cat-functor (R, ρI)⋆ : C⋆ → D⋆ by Proposition A.4,(b). It remains to show that trans-
formation ρI : RI · ⊠I → ⊠I · R : CI → D is Monoidal, and thus it gives rise to a
transformation of Cat-functors (ρI)⋆ : (R⋆)I ·⊠I → ⊠I · R⋆ : (C⋆)I → D⋆ which turns R⋆

into a symmetric Monoidal Cat-functor. We shall leave the last assertion as an exercise
for the reader.

Finally, a Monoidal transformation t : (R, ρI)→ (S, ςI) : (C,⊠I ,ΛIC)→ (D,⊠I ,ΛID) of
symmetric Monoidal Cat-functors gives rise to a Cat-natural transformation t⋆ : (R, ρ)⋆ →
(S, ςI)⋆ : C⋆ → D⋆ by Proposition A.4,(c). The Cat-natural transformation t⋆ is Monoidal
since the Monoidality conditions for t and t⋆ are just the same.

A.7 Monoidal Cat-functor from lax Monoidal categories to multicategories.
One can prove that the map which assigns a multicategory to a lax Monoidal category
gives rise to a symmetric Monoidal Cat-functor.

A.8 Theorem. The assignment C 7→ Ĉ, F 7→ F̂ , r 7→ r̂ of Propositions 3.22, 3.28, 3.29 is a
symmetric Monoidal Cat-functor lax-Mono-cat→MCatm, lax-sym-Mono-cat→ SMCatm.

Combining the results of Theorems A.6 and A.8 we obtain the following corollary.

A.9 Corollary. The symmetric Monoidal Cat-functor −̂ : lax-sym-Mono-cat→ SMCatm
of Theorem A.8 extends to a symmetric Monoidal Cat-functor

−̂⋆ : lax-sym-Mono-cat-(lax-sym-Mono-cat)→ lax-sym-Mono-cat-(SMCatm).

Let sym-Mono-cat-C ⊂ lax-sym-Mono-cat-C be a full Cat-subcategory, consisting
of those (C,⊗I , λf) for which all 2-morphisms λf are invertible, that is, of symmetric-
Monoidal-categories. Its 1-morphisms are lax-symmetric-Monoidal-functors and 2-mor-
phisms are Monoidal-transformations of C. Just like a commutative algebra in a sym-
metric Monoidal category gives rise to a commutative algebra in the symmetric Monoidal
category of commutative algebras, we have the following statement.
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A.10 Proposition. There is a natural map

Ob sym-Mono-cat-C→ Ob sym-Mono-cat-(sym-Mono-cat-C).

Sketch of proof. We only describe the map. Let (C,⊗I , λf) be a symmetric-Monoidal-
category in C. In order to turn it into a symmetric-Monoidal-category in sym-Mono-cat-C,
one can proceed as follows: first, show that for each set J ∈ Ob S the 1-morphism
⊗J : ⊠JC→ C can be equipped with the structure of a lax-symmetric-Monoidal-functor;
second, show that for each map f : I → J in Mor S the 2-morphism λf is a Monoidal-
transformation ⊗I → ⊗f · ⊗J : ⊠IC → C. To turn ⊗J : ⊠JC → C into a lax-symmetric-
Monoidal-functor, we need to define a 2-morphism

⊠K ⊠J C
⊠K⊗J→⊠KC

⊠JC

⊗K
⊠JC↓

⊗J →

τKJ

⇐==
==
==
==
=

C

⊗K
↓

for each set K ∈ Ob S. Let τKJ be given by the pasting

⊠K ⊠J C===============⊠K ⊠J C

⊠k∈K ⊠{k}×J C

⊠k∈K(Λ
{k}×J→J
C )−1

↓
⊠k∈K⊗{k}×J

→

⊠k∈K(λ{k}×J→J)−1

⇐===
====

====
====

==

⊠KC

⊠K⊗J↓

⊠K×JC

(ΛK×J→K
C )−1

↓
⊗K×J

→

(λK×J→K)−1

⇐===
====

====
====

===

C

⊗K
↓

⊠J×KC

ΛK×J→J×K
C ↓

⊗J×K →

λK×J→J×K

⇐===
====

====
====

====

C

wwwwww

⊠j∈J ⊠{j}×K C

ΛJ×K→J
C ↓

⊠j∈J⊗{j}×K

→

λJ×K→J�www
⊠JC

⊗J
↑

⊠J ⊠K C

⊠j∈JΛ{j}×K→K
C ↓

===============

⊠j∈Jλ{j}×K→K�
wwwww

⊠J ⊠K C

⊠J⊗K
↑

where (λK×J→K)−1 and (λ{k}×J→J)−1 are abbreviations for(ΛK×J→KC )−1•(λK×J→K)−1 and

(Λ
{k}×J→J
C )−1•(λ{k}×J→J)−1 respectively. It can be shown that (⊗J , τKJ ) : ⊠JC → C is a

lax-symmetric-Monoidal-functor and that λf : ⊗L → ⊗f · ⊗K : ⊠LC → C is a Monoidal-
transformation. The proofs of these facts are omitted.
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A.11 Category C(1,D) is a Monoidal category. Let (C,⊠I ,Λf) be a symmetric
Monoidal Cat-category. The Cat-functor C(1,−) : C→ Cat admits the following structure
of a symmetric Monoidal Cat-functor. Given a family (Di)i∈I of objects of C, denote

γI =
[∏
i∈I

C(1,Di)
⊠I→ C(⊠I1,⊠i∈IDi)

C(Λ∅→I
C ,1)→ C(1,⊠i∈IDi)

]
.

Clearly, γI is a natural transformation of Cat-functors.

A.12 Proposition. (C(1,−), γI) is a symmetric Monoidal Cat-functor.

Proof. Let f : I → J be a map in S. We must prove the equation:∏
i∈I

C(1,Di)
γI → C(1,⊠i∈IDi)

∏
j∈J

∏
i∈f−1j

C(1,Di)

≀↓ ∏
j∈J γ

f−1j

→
∏
j∈J

C(1,⊠i∈f−1jDi)
γJ→ C(1,⊠j∈J ⊠i∈f−1j Di)

C(1,ΛfC)↓

It coincides with the exterior of the diagram∏
i∈I

C(1,Di)
⊠I → C(⊠I1,⊠i∈IDi)

C(Λ∅→I
C ,1) → C(1,⊠i∈IDi)

C(⊠I1,⊠j∈J ⊠i∈f−1j Di)

C(1,ΛfC)↓
C(Λ∅→I

C ,1)→ C(1,⊠j∈J ⊠i∈f−1j Di)

C(1,ΛfC)↓

C(⊠j∈J ⊠f−1j 1,⊠j∈J ⊠i∈f−1j Di)

C(ΛfC,1)
↑

C(⊠j∈JΛ∅→f−1j
C ,1)→ C(⊠J1,⊠j∈J ⊠i∈f−1j Di)

C(Λ∅→J
C ,1)

↑

∏
j∈J

∏
i∈f−1j

C(1,Di)

≀

↓ ∏
j∈J ⊠

f−1j

→
∏
j∈J

C(⊠f−1j1,⊠i∈f−1jDi)

⊠J
↑

∏
j∈J C(Λ

∅→f−1j
C ,1)

→
∏
j∈J

C(1,⊠i∈f−1jDi)

⊠J
↑

The commutativity of the hexagon is nothing else but the naturality of ΛfC. The bottom
square commutes since ⊠J is a Cat-functor, commutativity of the middle square follows

from equation (2.37.2) written for the pair of maps ∅→ I
f→ J .

As a consequence, the functor (C(1,−), γI) gives rise to a symmetric Monoidal
Cat-functor (C(1,−), γI)⋆ : lax-sym-Mono-cat-C → lax-sym-Mono-cat. In particular,
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if (D,⊗I , λf) is a lax-symmetric-Monoidal-category in C, then the category C(1,D)
equipped with functors

⊠I :
∏
i∈I

C(1,D)
⊠I→ C(⊠I1,⊠ID)

C(Λ∅→I
C ,⊗I)→ C(1,D)

and with transformations νf = ⊠I ·C(Λ∅→I
C , λf), presented on the following page, is a lax

symmetric Monoidal category.
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Appendix B

Actions of categories

We define an action of a Monoidal-category D on an object A of a Monoidal Cat-category
C. The definition is obtained by internalizing the notion of action of a Monoidal category
on a category. The examples of interest are actions of the category of graded k-linear
categories by tensoring on the categories of graded quivers Qp and Qu. We conclude by
considering the following question: given a symmetric multicategory C with a symmetric
multicomonad T on it, when does an action of a Monoidal-category D in the symmetric
Monoidal Cat-category of multicategories on the symmetric multicategory C lift to an
action on the Kleisli multicategory CT? We describe the additional datum, an intertwiner
of the action and the multicomonad, which ensures the existence of a lifting.

B.1 Actions of lax-Monoidal-categories. We define actions of Monoidal–categories
on objects of a symmetric Monoidal Cat-category in a style similar to the definition of a
Monoidal-category.

B.2 Definition. Let (C,⊠I ,Λf) be a Monoidal Cat-category. Let A ∈ ObC and let

(D ,⊗I , λfD) be a Monoidal-category of C. A right action of D on A is

1. A 1-morphism ⊡[I] : ⊠[I](A , (D)I)→ A , for each I ∈ ObO, such that ⊡[0] = IdA .

For each isotonic map f : [I]→ [J ] such that f(0) = 0, introduce a 1-morphism

⊡f =
[
⊠[I](A , (D)I)

Λf→ ⊠[J ] (⊠f−1(0)(A ,D , . . . ,D), (⊠f−1(j)D)j∈J)

⊠[J](⊡f
−1(0),(⊗f−1(j))j∈J)→ ⊠[J ] (A , (D)J)

]
.

2. A 2-isomorphism λf· for every isotonic map f : [I]→ [J ] such that f(0) = 0:

⊠[I](A , (D)I)
⊡f →⊠[J ](A , (D)J)

λf·===
==⇒

A

⊡[J]

↓⊡[I]

→

such that
λ[I]→[0]
· = id, λ

id[I]
· = id,

431
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and for any pair of composable isotonic maps [I]
f→ [J ]

g→ [K] such that f(0) = 0,
g(0) = 0, an equation holds:

⊠[J ](A , (D)J)
⊡g→⊠[K](A , (D)K)

λg·

==
==
==
==
⇒

⊠[I](A , (D)I)

⊡f

↑

⊡[I]
→

λf·

⇐
===============

A

⊡[K]

↓

⊡[J]

→

=

⊠[J ](A , (D)J)
⊡g→⊠[K](A , (D)K)

⊠k∈[K]λfk
⇐
========

⊠[I](A , (D)I)

⊡f

↑

⊡[I]
→

⊡g◦f

→

λg◦f·

==
==
==
==
==
==
==
=⇒

A

⊡[K]

↓

(B.2.1)

where fk = f : f−1g−1k → g−1k.

Here ⋋(f,g) def
= ⊠k∈[K]λfk : ⊡f ·g → ⊡f ·⊡g denotes the 2-morphism

⊠[J ](A , (D)J)

=

⊠j∈[J ] ⊠i∈f−1j Ci
ΛgC→

⊠j∈[J]⊙f−1(j) →

⊠k∈[K] ⊠j∈g−1k ⊠i∈f−1jCi
⊠k∈[K]⊠j∈g

−1k⊙f−1j

→⊠k∈[K] ⊠j∈g−1k Cj

ΛgC

→

=

⊠[I](A , (D)I)

ΛfC

↑

Λg◦fC

→⊠k∈[K] ⊠i∈f−1g−1k Ci

⊠k∈[K]Λf :f
−1g−1k→g−1k

C

↑

⊠k∈[K]⊙f−1g−1k
→

⊠k∈[K]λf :f
−1g−1k→g−1kwww
~w

⊠[K](A , (D)K)

⊠k∈[K]⊙g−1k

↓

where C0 = A , Ci = D for i > 0. In this diagram ⊙f−1j means ⊡f−1j if j = 0, and ⊗f−1j if
j > 0. The 2-morphism λ means either λ· or λD . The top quadrilateral in above diagram
is the identity 2-morphism due to the 2-transformation ΛgC being strict. The left square
is equation (2.37.2). Notice that ⋋(f,▷) = λf .

B.3 Proposition. Let (C,⊠I ,Λf) be a Monoidal Cat-category. Let Monoidal-category

(D ,⊗I , λfD) of C act on object A of C. Assume that non-decreasing mappings (from O)

[I]
f→ [J ]

g→ [K]
h→ [L] map 0 to 0. Then the following associativity equation holds:

⊠[J ](A , (D)J)
⊡g →⊠[K](A , (D)K)

⋋(g,h)

==
==
==
==
=⇒

⊠[I](A , (D)I)

⊡f

↑

⊡fgh
→

⋋(f,gh)

⇐
================

⊠[L](A , (D)L)

⊡h

↓

⊡gh

→

=

⊠[J ](A , (D)J)
⊡g →⊠[K](A , (D)K)

⋋(f,g)
⇐=========

⊠[I](A , (D)I)

⊡f

↑

⊡fgh
→

⊡fg

→

⋋(fg,h)

==
==
==
==
==
==
==
==
⇒

⊠[L](A , (D)L)

⊡h

↓
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Proof is similar to the proof of Proposition 2.14.

For every element [f(0)]
f1→ [f(1)]

f2→ . . .
fn→ [f(n)] of height n > 2 in NnO such

that fi(0) = 0, we define a 1-morphism

⊠[f(1)](A , (D)f(1))
⊡f2 → · · · ⊡fn−1

→⊠[f(n−1)](A , (D)f(n−1))

⊠[f(0)](A , (D)f(0))

⊡f1
↑

⊡f1·...·fn
→

⋋(fi)i∈n

~wwwww
⊠[f(n)](A , (D)f(n))

⊡fn↓

as the composition of (n− 1) morphisms ⋋(-,-) corresponding to any triangulation of the
above (n + 1)-gon, in particular as the composition of ⋋(f1,f2),⋋(f1f2,f3), . . . ,⋋(f1...fn−1,fn).
According to Proposition B.3 the result is independent of triangulation. For n = 2

transformation ⋋(f1,f2) was defined above. We define ⋋ also for element [I]
f→ [J ] of

height 1 of the nerve as ⋋(f) = id : ⊡f
C → ⊡f

C, and for element [I] of height 0 in N0O as

⋋() = id : ⊡idI
C → Id. The independence of triangulation implies the following

B.4 Proposition. Let ϕ : I → J be an isotonic map, and let (fi)i∈I ∈ NIO. Then

⋋(fi)i∈I =
[
⊡•i∈Ifi = ⊡•j∈J(•i∈ϕ

−1jfi) ⋋(•i∈ϕ
−1jfi)j∈J
→ •

j∈J⊡•i∈ϕ
−1jfi

•j∈J⋋
(fi)i∈ϕ−1j

→ •
j∈J

•
i∈ϕ−1j⊡fi = •

i∈I⊡fi
]
.

Proof. If in equation (B.2.1) the map f = id, then both sides of this equation are equal to
λg and⋋(id,g) = id. If in the same equation the map g = id, then both sides of this equation
are equal to λf and ⋋(f,id) = id. Consequently, if in assumptions of Proposition B.3 one of
maps equals the identity map, then both sides of the equation considered there are equal
to ⋋. Namely, f = id implies that both sides equal ⋋(g,h), g = id implies that both sides
equal ⋋(f,h), and h = id implies that both sides equal ⋋(f,g). The rest of the proof uses
the independence of triangulation analogously to the proof of Proposition 2.15.

B.5 Action of graded categories on graded quivers. As an example of a sym-
metric Monoidal Cat-category we take (C,×I ,Λf) = sym-Mono-Cat. Each symmetric
Monoidal category D defines a symmetric–Monoidal–category in sym-Mono-Cat. In par-
ticular, this holds for D = (gr-Cat,⊠I , λf), the category of graded k-linear categories,
gr = gr(k-Mod). We claim that D acts on the symmetric Monoidal categories of graded
quivers A = Qp = (Q,⊠I , λf) and A = Qu = (Q,⊠I

u, λ
f
u) (p stands for plain, and u for

unital). Particular cases of action (for I = 1) are lax Monoidal functors

⊡ = (⊠, ζ̃I) : Qp × gr-Cat→ Qp,

⊡ = (⊠, ζI) : Qu × gr-Cat→ Qu,



434 B. Actions of categories

where natural transformations are given by the following expressions:

ζ̃I = σ(12) : ⊠
i∈I(Ai ⊠ Ci)→ (⊠i∈IAi)⊠ (⊠i∈ICi),

for graded quivers Ai and graded categories Ci, and

ζI =
[
⊠i∈I
u (Ai⊠Ci) =

⊕
∅ ̸=S⊂I

⊠i∈IT χ(i∈S)(Ai⊠Ci)
⊕⊠Iκ
∼
→

⊕
∅ ̸=S⊂I

⊠i∈I(T χ(i∈S)Ai⊠T
χ(i∈S)Ci)

⊕σ(12)
∼
→

⊕
∅ ̸=S⊂I

(⊠i∈IT χ(i∈S)Ai)⊠ (⊠i∈IT χ(i∈S)Ci)
⊕1⊠(⊠Iµ)→

⊕
∅ ̸=S⊂I

(⊠i∈IT χ(i∈S)Ai)⊠ (⊠i∈ICi)

= (⊠i∈I
u Ai)⊠ (⊠i∈ICi)

]
,

where the composition µ is the identity morphism µ = id : T 1Ci → Ci, or the unit
µ = η : T 0Ci → Ci.

Let us describe the constructed action ⊡[J ] :
∏

[J ](A , (D)J) → A in general. As a

functor it coincides with ⊠[J ] and assigns to a graded quiver A and graded categories
Cj, j ∈ J , the quiver ⊡[J ](A, (Cj)j∈J) = ⊠[J ](A, (Cj)j∈J). Thus, ⊡[J ] = (⊠[J ], ζ̃I) and
⊡[J ] = (⊠[J ], ζI) in plain (resp. unital) case, where natural transformations are

ζ̃I = σ(12) : ⊠
i∈I ⊠[J ] (Ai, (C

j
i )j∈J)→ ⊠[J ](⊠i∈IAi, (⊠

i∈IC
j
i )j∈J),

for graded quivers Ai and graded categories Cji , and

ζI =
[
⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J) =

⊕
∅ ̸=S⊂I

⊠i∈IT χ(i∈S) ⊠[J ] (Ai, (C
j
i )j∈J)

⊕⊠Iκ
∼
→

⊕
∅ ̸=S⊂I

⊠i∈I ⊠[J ] (T χ(i∈S)Ai, (T
χ(i∈S)C

j
i )j∈J)

⊕σ(12)
∼
→

⊕
∅ ̸=S⊂I

⊠[J ](⊠i∈IT χ(i∈S)Ai, (⊠
i∈IT χ(i∈S)Cji )j∈J)

⊕⊠[J](1,(⊠Iµ)J)→
⊕

∅̸=S⊂I

⊠[J ](⊠i∈IT χ(i∈S)Ai, (⊠
i∈IC

j
i )j∈J) = ⊠[J ](⊠i∈I

u Ai, (⊠
i∈IC

j
i )j∈J)

]
.

B.6 Lemma. The morphisms ζI and ζ̃I are related by the following embeddings:

⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J)

ζI →⊠[J ](⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

=

⊠i∈IT⩽1⊠[J ](Ai, (C
j
i )j∈J)

in↓
∩

⊠Iξ′→⊠i∈I⊠[J ](T⩽1Ai, (C
j
i )j∈J)

ζ̃I→⊠[J ](⊠i∈IT⩽1Ai, (⊠
i∈IC

j
i )j∈J)

⊠[J](in,(1)J)↓
∩
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where

ξ′ =
[
T⩽1 ⊠[J ] (A, (Cj)j∈J)

κ→ ⊠[J ] (T⩽1A, (T⩽1Cj)j∈J)
⊠[J](1,(µ)J)→ ⊠[J ] (T⩽1A, (Cj)j∈J)

]
has restrictions ξ′

∣∣
⊠[J](A,(Cj)j∈J)

= ⊠[J ](in1, (1)J) and

ξ′
∣∣
T 0⊠[J](A,(Cj)j∈J)

=
[
T 0 ⊠[J ] (A, (Cj)j∈J)

κ→ ⊠[J ] (T 0A, (T 0Cj)j∈J)

⊠[J](in0,(η)J)→ ⊠[J ] (T⩽1A, (Cj)j∈J)
]
.

Proof. This is the exterior of the following diagram:

⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J)

⊠i∈IT⩽1 ⊠[J ] (Ai, (C
j
i )j∈J)

in

←

⊃

⊕
∅ ̸=S⊂I

⊠[J ] (⊠i∈IT χ(i∈S)Ai, (⊠
i∈IT χ(i∈S)Cji )j∈J)

(⊠Iκ)σ(12)

→

⊕
S⊂I

⊠[J ] (⊠i∈IT χ(i∈S)Ai, (⊠
i∈IT χ(i∈S)Cji )j∈J)
←

⊃(⊠Iκ)σ(12)

→

⊠i∈I ⊠[J ] (T⩽1Ai, (T
⩽1C

j
i )j∈J)

⊠Iκ

↓

⊠i∈I ⊠[J ] (T⩽1Ai, (C
j
i )j∈J)

⊠I⊠[J](1,(µ)J)↓
⊠[J ](⊠i∈I

u Ai, (⊠
i∈IC

j
i )j∈J)

⊠[J](1,(⊠Iµ)J)

↓

⊠[J ](⊠i∈IT⩽1Ai, (⊠
i∈IC

j
i )j∈J)

⊠[J](1,(⊠Iµ)J)

↓ ⊠[J](in,(1)J)←

⊃

σ(12) →

in which all cells commute.

B.7 Proposition. The both pairs

(⊠[J ], ζ̃I) :
∏
[J ]

(Qp, (gr-Cat)J)→ Qp, (⊠[J ], ζI) :
∏
[J ]

(Qu, (gr-Cat)J)→ Qu, (B.7.1)

are lax symmetric Monoidal functors.

Proof. Lax Monoidality of (⊠[J ], ζ̃I) expressed by equation (2.17.2) for a map f : I → K
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of S takes the form[
⊠i∈I ⊠[J ] (Ai, (C

j
i )j∈J)

λf→ ⊠k∈K ⊠i∈f−1k ⊠[J ] (Ai, (C
j
i )j∈J)

⊠k∈K ζ̃f
−1k

→

⊠k∈K ⊠[J ](⊠i∈f−1kAi, (⊠
i∈f−1kC

j
i )j∈J)

ζ̃K→ ⊠[J ] (⊠k∈K ⊠i∈f−1k Ai, (⊠
k∈K ⊠i∈f−1k C

j
i )j∈J)

]
=
[
⊠i∈I ⊠[J ] (Ai, (C

j
i )j∈J)

ζ̃I→ ⊠[J ] (⊠i∈IAi, (⊠
i∈IC

j
i )j∈J)

⊠[J](λf ,(λf )J)→ ⊠[J ] (⊠k∈K ⊠i∈f−1k Ai, (⊠
k∈K ⊠i∈f−1k C

j
i )j∈J)

]
. (B.7.2)

Since ζ̃ = σ(12) can be expressed in terms of λ, the equation follows from coherence

principle of Remark 2.34. Therefore, (⊠[J ], ζ̃I) is a lax symmetric Monoidal functor.
To be a lax symmetric Monoidal functor (⊠[J ], ζI) has to satisfy the following equation:[
⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J)

λfu→ ⊠k∈K
u ⊠i∈f−1k

u ⊠[J ] (Ai, (C
j
i )j∈J)

⊠k∈Ku ζf
−1k

→

⊠k∈K
u ⊠[J ](⊠i∈f−1k

u Ai, (⊠
i∈f−1kC

j
i )j∈J)

ζK→ ⊠[J ] (⊠k∈K
u ⊠i∈f−1k

u Ai, (⊠
k∈K ⊠i∈f−1k C

j
i )j∈J)

]
=
[
⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J)

ζI→ ⊠[J ] (⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

⊠[J](λfu,(λ
f )J)→ ⊠[J ] (⊠k∈K

u ⊠i∈f−1k
u Ai, (⊠

k∈K ⊠i∈f−1k C
j
i )j∈J)

]
. (B.7.3)

Its right hand side is related to the right hand side of (B.7.2) by the following maps:

⊠[J ](⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

⊠i∈I
u ⊠[J ] (Ai, (C

j
i )j∈J)

ζI
→

⊠[J ](⊠k∈K
u ⊠i∈f−1k

u Ai,

(⊠k∈K ⊠i∈f−1k C
j
i )j∈J)

⊠[J](λfu,(λ
f )J)

→

= =

⊠i∈IT⩽1 ⊠[J ] (Ai, (C
j
i )j∈J)

in

↓

∩

⊠[J ](⊠k∈KT⩽1 ⊠i∈f−1k
u Ai,

(⊠k∈K ⊠i∈f−1k C
j
i )j∈J)

⊠[J](in,(1)J)↓
∩

⊠i∈I ⊠[J ] (T⩽1Ai, (C
j
i )j∈J)

⊠Iξ′

↓
⊠[J ](⊠k∈K ⊠i∈f−1k T⩽1Ai,

(⊠k∈K ⊠i∈f−1k C
j
i )j∈J)

⊠[J](⊠k∈K(ϑf
−1k)−1,(1)J)↓

⊠[J ](⊠i∈IT⩽1Ai, (⊠
i∈IC

j
i )j∈J)

⊠[J](in,(1)J)

↓

∩

⊠[J]λf →ζ̃I

→
(B.7.4)

Indeed, the left pentagon is proven in Lemma B.6, and the right pentagon follows from
commutative diagram (10.7.3).
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The left hand side of (B.7.3) is related to the left hand side of (B.7.2) by the same
maps as for the right hand sides. Indeed, for any map f : I → K the diagram on the next
page is commutative by Lemma B.6, diagram (10.7.3) and due to the following equation,
which holds for an arbitrary subset L ⊂ I,

T⩽1 ⊠i∈L
u ⊠[J ](Ai, (C

j
i )j∈J)

T⩽1ζL→ T⩽1 ⊠[J ] (⊠i∈L
u Ai, (⊠

i∈LC
j
i )j∈J)

⊠i∈LT⩽1 ⊠[J ] (Ai, (C
j
i )j∈J)

(ϑL)−1 ≀↓
⊠[J ](T⩽1 ⊠i∈L

u Ai, (⊠
i∈LC

j
i )j∈J)

ξ′↓

⊠i∈L ⊠[J ] (T⩽1Ai, (C
j
i )j∈J)

⊠i∈Lξ′↓
ζ̃L→⊠[J ](⊠i∈LT⩽1Ai, (⊠

i∈LC
j
i )j∈J)

⊠[J]((ϑL)−1,(1)J)↓

in particular, for L = f−1k, k ∈ K. Indeed, on the summand ⊠i∈L
u ⊠[J ] (Ai, (C

j
i )j∈J) of the

left top corner the equation reduces to the statement of Lemma B.6. On the summand
T 0 ⊠i∈L

u ⊠[J ](Ai, (C
j
i )j∈J) the above equation expands to exterior of the diagram

T 0 ⊠i∈L ⊠[J ](Ai, (C
j
i )j∈J)

T 0σ(12)→ T 0 ⊠[J ] (⊠i∈LAi, (⊠
i∈LC

j
i )j∈J)

⊠i∈LT 0 ⊠[J ] (Ai, (C
j
i )j∈J)

κ↓
⊠[J ](T 0 ⊠i∈L Ai, (T

0 ⊠i∈L C
j
i )j∈J)

κ↓

⊠i∈L ⊠[J ] (T 0Ai, (T
0C

j
i )j∈J)

⊠Lκ↓
σ(12)→⊠[J ](⊠i∈LT 0Ai, (⊠

i∈LT 0C
j
i )j∈J)

⊠[J](κ,(κ)J)↓

⊠i∈L ⊠[J ] (T 0Ai, (C
j
i )j∈J)

⊠L⊠[J](1,(η)J)↓
σ(12)→⊠[J ](⊠i∈LT 0Ai, (⊠

i∈LC
j
i )j∈J)

⊠[J](1,(⊠Lη)J)↓

It is commutative due to coherence principle.
This proves equation (B.7.3) and the fact that (⊠, ζI) is a lax symmetric Monoidal

functor.

B.8 Proposition. Both lax symmetric Monoidal functors (B.7.1)

⊡[J ] = (⊠[J ], ζ̃I) :
∏
[J ]

(Qp, (gr-Cat)J)→ Qp, ⊡
[J ] = (⊠[J ], ζI) :

∏
[J ]

(Qu, (gr-Cat)J)→ Qu,

equipped with the 2-isomorphism λf· = λf : ⊡[I] → ⊡f⊡[J ] :
∏

[I](Q, (gr-Cat)I) → Q for

each isotonic map f : [I]→ [J ] such that f(0) = 0, define an action of gr-Cat on Qp and
on Qu.
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⊠
i∈
I

u
⊠

[J
]
(A

i,
(C

j i
) j

∈
J
)

λ
f u

>
⊠
k
∈
K

u
⊠
i∈
f
−

1
k

u
⊠

[J
] (
A
i,
(C

j i
) j

∈
J
)

⊠
k
∈
K

u
ζ
f
−

1
k

>
⊠
k
∈
K

u
⊠

[J
]
(⊠

i∈
f
−

1
k

u
A
i,

(⊠
i∈
f
−

1
k
C
j i
) j

∈
J
)

ζ
K

>
⊠

[J
] (
⊠
k
∈
K

u
⊠
i∈
f
−

1
k

u
A
i,

(⊠
k
∈
K

⊠
i∈
f
−

1
k
C
j i
) j

∈
J
)

⊠
k
∈
K
T

⩽
1
⊠
i∈
f
−

1
k

u
⊠

[J
] (
A
i,
(C

j i
) j

∈
J
)

in

↓∩

⊠
k
∈
K
T

⩽
1
ζ
f
−

1
k >
⊠
k
∈
K
T

⩽
1
⊠

[J
]
(⊠

i∈
f
−

1
k

u
A
i,

(⊠
i∈
f
−

1
k
C
j i
) j

∈
J
)

in

↓∩

⊠
i∈
I
T

⩽
1
⊠

[J
]
(A

i,
(C

j i
) j

∈
J
)

in

↓∩

λ
f >
⊠
k
∈
K

⊠
i∈
f
−

1
k
T

⩽
1
⊠

[J
]
(A

i,
(C

j i
) j

∈
J
)

⊠
k
∈
K
(ϑ
f
−

1
k
)−

1
≀

∨
⊠
k
∈
K

⊠
[J

]
(T

⩽
1
⊠
i∈
f
−

1
k

u
A
i,

(⊠
i∈
f
−

1
k
C
j i
) j

∈
J
)

⊠
K
ξ
′ ∨

ζ̃
K >

⊠
[J
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K
T

⩽
1
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f
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u
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K
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f
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C
j i
) j
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J
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⊠
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] (
in
,(
1
) J

)

↓∩
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i∈
I
⊠

[J
]
(T

⩽
1
A
i,
(C

j i
) j

∈
J
)

⊠
I
ξ
′ ∨

λ
f

>
⊠
k
∈
K

⊠
i∈
f
−

1
k
⊠

[J
] (
T

⩽
1
A
i,
(C

j i
) j
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)
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K
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i∈
f
−

1
k
ξ
′ ∨
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ζ̃
f
−

1
k

>
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K
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[J
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1
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T

⩽
1
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−

1
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j i
) j
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J
)

⊠
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K
⊠

[J
] (
(ϑ
f
−

1
k
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1
,(
1
) J

)

∨

ζ̃
K >

⊠
[J

] (
⊠
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K

⊠
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f
−

1
k
T

⩽
1
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i,

(⊠
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⊠
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j i
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∨
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Proof. We have to prove that λf· is a Monoidal transformation for each isotonic map
f : [I] → [J ] such that f(0) = 0. First we show this in plain case for ⊡[J ] = (⊠[J ], ζ̃I).
In fact, let C0

k be graded k-linear quivers, k ∈ K ∈ ObO, and let Cik be graded k-linear
categories, i ∈ I, k ∈ K. Then the diagram

⊠k∈K ⊠i∈[I] Cik
ζ̃K

σ(12)
→⊠i∈[I] ⊠k∈K Cik

⊠k∈K ⊠j∈[J ] ⊠i∈f−1jCik

⊠Kλf↓
ζ̃K

σ(12)
→⊠j∈[J ] ⊠k∈K ⊠i∈f−1jCik

⊠[J]ζ̃K

⊠[J]σ(12)
→⊠j∈[J ] ⊠i∈f−1j ⊠k∈KCik

λf↓ (B.8.1)

commutes due to coherence principle.
In the unital case for ⊡[J ] = (⊠[J ], ζI) denote graded k-linear quivers by Ak, k ∈ K,

and let Cik be graded k-linear categories, i ∈ I, k ∈ K. We have to prove the equation

[
⊠k∈K
u ⊠[I] (Ak, (C

i
k)i∈I)

ζK→ ⊠[I] (⊠k∈K
u Ak, (⊠

k∈KCik)i∈I)
λf→ ⊠[J ] [⊠f−10(⊠k∈K

u Ak, (⊠
k∈KCik)

fi=0
i∈I ), (⊠i∈f−1j ⊠k∈K Cik)j∈J ]

]
=
[
⊠k∈K
u ⊠[I] (Ak, (C

i
k)i∈I)

⊠Ku λ
f

→ ⊠k∈K
u ⊠[J ][⊠f−10(Ak, (C

i
k)
fi=0
i∈I ), (⊠i∈f−1jCik)j∈J ]

ζK→ ⊠[J ] [⊠k∈K
u ⊠f−10 (Ak, (C

i
k)
fi=0
i∈I ), (⊠k∈K ⊠i∈f−1j Cik)j∈J ]

⊠[J](ζK ,(ζ̃K)J)→ ⊠[J ] [⊠f−10(⊠k∈K
u Ak, (⊠

k∈KCik)
fi=0
i∈I ), (⊠i∈f−1j ⊠k∈K Cik)j∈J ]

]
. (B.8.2)

This is the back wall pentagon of diagram on the following page, where C0
k denotes T

⩽1Ak.
Here the front wall commutes due to equation (B.8.1). The ceiling, the right wall and
the floor commute due to Lemma B.6. Since the arrow ⊠[J ][⊠f−10(in, (1)I), (1)J ] is a
split embedding, commutativity of the left wall would imply that the back wall pentagon
commutes as well. This is precisely equation (B.8.2).

It remains to prove that the left wall commutes. This is a corollary of the following
equation, which holds for a graded k-linear quiver A and graded k-linear categories Ci,
i ∈ I:

T⩽1 ⊠[I] (A, (Ci)i∈I)
ξ′ →⊠[I](T⩽1A, (Ci)i∈I)

=

⊠[J ][⊠f−10(T⩽1A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)j∈J ]

λf↓

T⩽1 ⊠[J ] [⊠f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)j∈J ]

T⩽1λf

↓
ξ′→⊠[J ][T⩽1 ⊠f−10 (A, (Ci)fi=0

i∈I ), (⊠i∈f−1jCi)j∈J ]

⊠[J][ξ′,(1)J ]
↑

Indeed, expanding the maps ξ′ we get the commutative diagram on page 441. In particular,
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K

u
A
k
,
(⊠

k
∈
K
C
i k
)f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
⊠
k
∈
K

C
i k
) j

∈
J
]

∨

⊠
j
∈
[J

]
⊠
i∈
f
−

1
j
⊠
k
∈
K
C
i k

λ
f

∨

⊠
[J

] [
⊠
f
−

1
0
(i
n
,(
1
) I
),
(1

) J
]

>

⊠
k
∈
K

u
⊠

[J
]
[⊠

f
−

1
0
(A

k
,
(C

i k
)f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i k
) j

∈
J
]

⊠
K u
λ
f

∨

ζ
K

>
⊠

[J
] [
⊠
k
∈
K

u
⊠
f
−

1
0
(A

k
,
(C

i k
)f
i=

0
i∈
I
),

(⊠
k
∈
K

⊠
i∈
f
−

1
j
C
i k
) j

∈
J
]

⊠
[J

] (
ζ
K
,(
ζ̃
K
) J

)

∧

⊠
k
∈
K

⊠
[J

]
[T

⩽
1
⊠
f
−

1
0
(A

k
,
(C

i k
)f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i k
) j

∈
J
]

in
·⊠
K
ξ
′ ∨

ζ̃
K

>
⊠

[J
] [
⊠
k
∈
K

u
T

⩽
1
⊠
f
−

1
0
(A

k
,
(C

i k
)f
i=

0
i∈
I
),

(⊠
k
∈
K

⊠
i∈
f
−

1
j
C
i k
) j

∈
J
]

⊠
[I

] (
in
,(
1
) I
)

∨

⊠
k
∈
K

⊠
j
∈
[J

]
⊠
i∈
f
−

1
j
C
i k

⊠
K
λ
f

∨
ζ̃
K

>

⊠
K
⊠

[J
] [
ξ
′ ,
(1

) J
]

>

⊠
j
∈
[J

]
⊠
k
∈
K

⊠
i∈
f
−

1
j
C
i k

⊠
[J

] ζ̃
K

∧

⊠
[J

] [
⊠
K
ξ
′ ,
(1

) J
]

>
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T
⩽
1
⊠

[I
]
(A
,
(C

i )
i∈
I
)

κ
>
⊠

[I
] (
T

⩽
1
A
,
(T

⩽
1
C
i )
i∈
I
)

T
⩽
1
⊠

[J
]
[⊠

f
−

1
0
(A
,
(C

i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i )
j
∈
J
]

T
⩽
1
λ
f

∨

⊠
[J

] [
T

⩽
1
⊠
f
−

1
0
(A
,
(C

i )
f
i=

0
i∈
I
),

(T
⩽
1
⊠
i∈
f
−

1
j
C
i )
j
∈
J
]

κ
∨

⊠
[I
] (
T

⩽
1
A
,
(C

i )
i∈
I
)

⊠
[I

] [
1
,(
µ
) I
]

∨

ξ
′

>

⊠
[J

] [
T

⩽
1
⊠
f
−

1
0
(A
,
(C

i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
T

⩽
1
C
i )
j
∈
J
]

⊠
[J

] [
1
,(
κ
) J

] ∨

⊠
[J

] [
1
,(
⊠
i∈
f
−

1
j
µ
) J

]
>

⊠
[J

] [
T

⩽
1
⊠
f
−

1
0
(A
,
(C

i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i )
j
∈
J
]

ξ
′

>

⊠
[J

] [
⊠
f
−

1
0
(T

⩽
1
A
,
(T

⩽
1
C
i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
T

⩽
1
C
i )
j
∈
J
]

⊠
[J

] [
κ
,(
1
) J

] ∨

⊠
[J

] [
1
,(
⊠
i∈
f
−

1
j
µ
) J

] >

<

λf

⊠
[J

] [
⊠
f
−

1
0
(T

⩽
1
A
,
(T

⩽
1
C
i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i )
j
∈
J
]

⊠
[J

] [
κ
,(
1
) J

] ∨

⊠
[J

] [
⊠
f
−

1
0
(1
,(
µ
))
,(
1
) J

] >
⊠

[J
] [
⊠
f
−

1
0
(T

⩽
1
A
,
(C

i )
f
i=

0
i∈
I
),

(⊠
i∈
f
−

1
j
C
i )
j
∈
J
]

λ
f

∨

⊠
[J

] [
ξ
′ ,
(1

) J
]

>

⊠
[J

] [
⊠
f
−

1
0
(1
,(
µ
))
,(
⊠
i∈
f
−

1
j
µ
) J

]

∧
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central pentagon gives the required equation. Therefore, λf· is a Monoidal transformation
in both cases.

Clearly, the 2-isomorphism λf· satisfies the necessary equations, and thus defines an
action in both cases.

Applying symmetric Monoidal Cat-functor −̂ : lax-sym-Mono-cat → SMCatm from
Theorem A.8 to the action (⊠[J ], ζI) :

∏
[J ](Qu, (gr-Cat)J) → Qu we get an action ⊡[J ] :∏

[J ](Q̂u, (ĝr-Cat)J)→ Q̂u in the symmetric Monoidal Cat-category SMCatm of symmetric
multicategories.

B.9 Actions on Kleisli multicategories. Let C be the symmetric Monoidal Cat-cat-
egory SMCatm of symmetric multicategories. Let C, D be symmetric multicategories with
Monoidal-category structure (D,⊠I , λfD) and an action ⊡[J ] : ⊠[J ](C, (D)J) → C. Let
(T,∆, ε) be a symmetric multicomonad in C. An additional datum, an intertwiner of the
action and the comonad, will ensure that the given action lifts to an action on the Kleisli
multicategory CT .

Let ξ : T ⊡[J ] (A, (Cj)j∈J) → ⊡[J ](TA, (Cj)j∈J), A ∈ ObC, Cj ∈ ObD, j ∈ J , be
a multinatural transformation. We call it an intertwiner if the following conditions are
satisfied:

(a) compatibility with comultiplication:

T ⊡[J ] (A, (Cj)j∈J)
∆→ TT ⊡[J ] (A, (Cj)j∈J)

Tξ→ T ⊡[J ] (TA, (Cj)j∈J)

⊡[J ](TA, (Cj)j∈J)

ξ↓
⊡[J](∆,(1)j∈J) →⊡[J ](TTA, (Cj)j∈J)

ξ↓ (B.9.1)

(b) compatibility with counit:[
T⊡[J ](A, (Cj)j∈J)

ξ→⊡[J ](TA, (Cj)j∈J)
⊡[J](ε,(1)j∈J)→⊡[J ](A, (Cj)j∈J)

]
= ε. (B.9.2)

We claim that in this case the action ⊡[J ] gives rise to an action ⊡[J ]
T : ⊠[J ](CT , (D)J)→ CT

of D on the Kleisli multicategory CT . Let us describe it as a multifunctor. Its action on

objects coincides with that of ⊡[J ], that is, ⊡[J ]
T (A, (Cj)j∈J) = ⊡[J ](A, (Cj)j∈J), A ∈ ObC,

Cj ∈ ObD, j ∈ J . Given f ∈ CT ((Ai)i∈I ;B) = C((TAi)i∈I ;B), gj ∈ D((Cji )i∈I ;D
j), j ∈ J ,

we define

⊡[J ]
T (f, (gj)j∈J) =

[(
T ⊡[J ] (Ai, (C

j
i )j∈J)

)
i∈I

(ξ)i∈I→(
⊡[J ](TAi, (C

j
i )j∈J)

)
i∈I

⊡[J](f,(gj)j∈J)→ ⊡[J ] (B, (Dj)j∈J)
]
. (B.9.3)
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B.10 Lemma. Suppose that equations (B.9.1) and (B.9.2) hold. Then (B.9.3) defines a
multifunctor.

Proof. Let us show that ⊡[J ]
T is compatible with multiplications. Let ϕ : I → L be a map

in Mor S. Let fl ∈ CT ((Ai)i∈ϕ−1l;Bl) = C((TAi)i∈ϕ−1l;Bl), l ∈ L, h ∈ CT ((Bl)l∈L;C) =

C((TBl)l∈L;C), g
j
l ∈ D((Dj

i )i∈ϕ−1l;E
j
l ), l ∈ L, kj ∈ D((Ejl )l∈L;F

j), j ∈ J . We must show
that

⊡[J ]
T ((fl)l∈L ·CT h, ((gjl )l∈L ·D k

j)j∈J) = (⊡[J ]
T (fl, (g

j
l )j∈J))l∈L ·CT ⊡

[J ]
T (h, (kj)j∈J). (B.10.1)

The left hand side of (B.10.1) equals[(
T ⊡[J ] (Ai, (D

j
i )j∈J)

)
i∈I

(ξ)i∈I→
(
⊡[J ](TAi, (D

j
i )j∈J)

)
i∈I

(⊡[J](∆,(1)j∈J))i∈I→
(
⊡[J ](TTAi, (D

j
i )j∈J)

)
i∈I

⊡[J](Tfl,(g
j
l )j∈J)l∈L→(

⊡[J ](TBl, (E
j
l )j∈J)

)
l∈L

⊡[J](h,(kj)j∈J)→ ⊡[J ] (C, (Fj)j∈J)
]
. (B.10.2)

The right hand side of (B.10.1) is[(
T ⊡[J ] (Ai, (D

j
i )j∈J)

)
i∈I

(∆)i∈I→
(
TT ⊡[J ] (Ai, (D

j
i )j∈J)

)
i∈I

(Tξ)i∈I→(
T ⊡[J ] (TAi, (D

j
i )j∈J)

)
i∈I

(T⊡[J](fl,(g
j
l )j∈J))l∈L→

(
T ⊡[J ] (Bl, (E

j
l )j∈J)

)
l∈L

(ξ)l∈L→
(
⊡[J ](TBl, (E

j
l )j∈J)

)
l∈L

⊡[J](h,(kj)j∈J)→ ⊡[J ] (C, (Fj)j∈J)
]
. (B.10.3)

Using multinaturality of ξ we can write (B.10.3) as follows:[(
T ⊡[J ] (Ai, (D

j
i )j∈J)

)
i∈I

(∆)i∈I→
(
TT ⊡[J ] (Ai, (D

j
i )j∈J)

)
i∈I

(Tξ)i∈I→(
T ⊡[J ] (TAi, (D

j
i )j∈J)

)
i∈I

(ξ)i∈I→
(
⊡[J ](TTAi, (D

j
i )j∈J)

)
i∈I

(⊡[J](Tfl,(g
j
l )j∈J))l∈L→

(
⊡[J ](TBl, (E

j
l )j∈J)

)
l∈L

⊡[J](h,(kj)j∈J)→ ⊡[J ] (C, (Fj)j∈J)
]
. (B.10.4)

This coincides with (B.10.2) by (B.9.1).
The compatibility with units is expressed by equation (B.9.2).

B.11 Lemma. There is a natural multifunctor C→ CT , identity on objects, whose action
on morphisms is given by

((Ai)i∈I
f→B) 7→ ((TAi)i∈I

(ε)i∈I→ (Ai)i∈I
f→B).

Proof. Let us show that the described map is compatible with multiplications. Let ϕ :
I → J be a map in Mor S, fj ∈ C((Ai)i∈ϕ−1j;Bj), j ∈ J , g ∈ C((Bj)j∈J ;C). The equation
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to prove is

[
(TAi)i∈I

(ε)i∈I→ (Ai)i∈I
(fj)j∈J→ (Bj)j∈J

g→ C
]
=
[
(TAi)i∈I

(∆)i∈I→ (TTAi)i∈I
(Tε)i∈I→ (TAi)i∈I

(Tfj)j∈J→ (TBj)j∈J
(ε)j∈J→ (Bj)j∈J

g→ C
]
. (B.11.1)

It follows from the axioms of comonad and from the multinaturality of ε.
The compatibility with units is obvious (recall that the unit of an object C in the

multicategory CT coincides with ε : TC→ C).

For every map f : [I]→ [J ] in MorO with f(0) = 0 define

λfT =
[
T ⊡[J ] (A, (Ci)i∈I)

ε→ ⊡[I] (A, (Ci)i∈I)

λf·→ ⊡[J ] (⊡f−1(0)(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)j∈J)

]
.

Since both ε and λf· are multinatural transformations, so is λfT . Moreover, Lemma B.11

implies that λfT is invertible (it coincides with the image of λf· under the multifunctor
described in the lemma).

B.12 Proposition. The collection of multifunctors ⊡J
T and multinatural transformations

λfT defines an action of D on CT .

Proof. Let [I]
f→ [J ]

g→ [K] be maps in MorO such that f(0) = 0 and g(0) = 0. Let
fk denote the restriction f | : f−1g−1k → g−1k, k ∈ [K]. We must prove the following
equation:

λfT · λ
g
T = λfgT ·⊡

[K](λf0T , (λ
fk
D )k∈K). (B.12.1)

We have

⊡[K] (λf0T , (λ
fk
D )k∈K) =

[
T ⊡[K] (⊡f−1g−10(A, (Ci)gfi=0

i∈I ), (⊠i∈f−1g−1kCi)k∈K)
ξ→

⊡[K] (T ⊡f−1g−10 (A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

⊡[K](ε,(1)k∈K)→

⊡[K] (⊡f−1g−10(A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

⊡[K](λ
f0
· ,(λ

fk
D )k∈K)→

⊡[K] (⊡g−10(⊡f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)gj=0

j∈J ), (⊠j∈g−1k ⊠i∈f−1j Ci)k∈K)
]

=
[
T ⊡[K] (⊡f−1g−10(A, (Ci)gfi=0

i∈I ), (⊠i∈f−1g−1kCi)k∈K)
ε→

⊡[K] (⊡f−1g−10(A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

⊡[K](λ
f0
· ,(λ

fk
D )k∈K)→

⊡[K] (⊡g−10(⊡f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)gj=0

j∈J ), (⊠j∈g−1k ⊠i∈f−1j Ci)k∈K)
]
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by (B.9.2). Therefore, the right hand side of equation (B.12.1) can be written as[
T ⊡[I] (A, (Ci)i∈I)

∆→ TT ⊡[I] (A, (Ci)i∈I)
Tε→ T ⊡[I] (A, (Ci)i∈I)

Tλfg·→ T ⊡[K] (⊡f−1g−10(A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

ε→

⊡[K] (⊡f−1g−10(A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

⊡[K](λ
f0
· ,(λ

fk
D )k∈K)→

⊡[K] (⊡g−10(⊡f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)gj=0

j∈J ), (⊠j∈g−1k ⊠i∈f−1j Ci)k∈K)
]
.

This equals

[
T ⊡[I] (A, (Ci)i∈I)

ε→ ⊡[I] (A, (Ci)i∈I)
λfg·→

⊡[K] (⊡f−1g−10(A, (Ci)gfi=0
i∈I ), (⊠i∈f−1g−1kCi)k∈K)

⊡[K](λ
f0
· ,(λ

fk
D )k∈K)→

⊡[K] (⊡g−10(⊡f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)gj=0

j∈J ), (⊠j∈g−1k ⊠i∈f−1j Ci)k∈K)
]

by the axioms of comonad and by the naturality of ε. From Lemma B.11 it follows that

λfT · λ
g
T =

[
T ⊡[I] (A, (Ci)i∈I)

ε→ ⊡[I] (A, (Ci)i∈I)
λf·→

⊡[J ] (⊡f−10(A, (Ci)fi=0
i∈I ), (⊠i∈f−1jCi)j∈J)

λg·→
⊡[K] (⊡g−10(⊡f−10(A, (Ci)fi=0

i∈I ), (⊠i∈f−1jCi)gj=0
j∈J ), (⊠j∈g−1k ⊠i∈f−1j Ci)k∈K)

]
.

Equation (B.12.1) follows now from the analogous equation for λ·’s.
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Appendix C

An action of graded categories on Kleisli multicategory of

quivers

In this chapter we construct the main examples of actions: the action of the symmetric
Monoidal category gr-Cat of graded k-linear categories (or rather of symmetric multicate-

gory ĝr-Cat) on the Kleisli multicategory of quivers and on Q. We construct the necessary
intertwiner between the action on Qu and the lax Monoidal comonad T⩾1. The action on

Q lifts to an action of d̂g-Cat on the multicategories A∞, A
u
∞ of (unital) A∞-categories.

The latter is a generalization of the tensor product of differential graded categories. Ten-
sor multiplication with an algebra in the category dg-Cat (a ‘strictly’ monoidal differential
graded k-linear category) gives a multifunctor Au

∞ → Au
∞. For instance, the algebra Z

from Section 10.1 produces the multifunctor of shifts −[ ] : Au
∞ → Au

∞.

C.1 Intertwiner ξ for action of graded categories and T⩾1. Let us define an
intertwiner ξ for the action of graded categories on quivers and the comonad T⩾1:

ξ : (T⩾1, τ) ◦ (⊠[J ], ζ)→ (⊠[J ], ζ) ◦ [(T⩾1, τ), (Id)J ] :
∏
[J ]

(Qu, (gr-Cat)J)→ Qu.

This natural transformation is defined as

ξ =
[
T⩾1 ⊠[J ] (A, (Cj)j∈J)

κ→ ⊠[J ] (T⩾1A, (T⩾1Cj)j∈J)
⊠[J](1,(µ)J)→ ⊠[J ] (T⩾1A, (Cj)j∈J)

]
.

In order to prove that it is an intertwiner, we introduce another natural transformation:

ξ̃ : (T, τ̃) ◦ (⊠[J ], ζ)→ (⊠[J ], ζ̃) ◦ [(T, τ̃), (Id)J ] :
∏
[J ]

(Qu, (gr-Cat)J)→ Qp,

which is defined as

ξ̃ =
[
T ⊠[J ] (A, (Cj)j∈J)

κ→ ⊠[J ] (TA, (TCj)j∈J)
⊠[J](1,(µ)J)→ ⊠[J ] (TA, (Cj)j∈J)

]
.

C.2 Lemma. The natural transformation ξ̃ is Monoidal.

Proof. We have to prove the equation

⊠i∈IT⊠[J ](Ai,(C
j
i )j∈J)

τ̃ → T ⊠i∈I
u ⊠[J ](A, (Cj)j∈J)

TζI → T ⊠[J ](⊠i∈I
u A,(⊠i∈ICj)j∈J)

=

⊠i∈I⊠[J ](TAi,(C
j
i )j∈J)

⊠I ξ̃↓
ζ̃I→⊠[J ](⊠i∈ITAi,(⊠

i∈ICij)j∈J)
⊠[J](τ̃ ,(1)J)→⊠[J ](T ⊠i∈I

u Ai,(⊠
i∈IC

j
i )j∈J)

ξ̃↓

447
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It suffices to prove the equation obtained from this one by composing both paths with the
inclusion⊠[J ](T in, (1)j∈J) : ⊠[J ](T⊠i∈I

u Ai, (⊠i∈IC
j
i )j∈J) ↪→ ⊠[J ](T⊠i∈IT⩽1Ai, (⊠i∈IC

j
i )j∈J).

Using the diagram

T ⊠[J ] (⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

⊂
T⊠[J](in,(1)J)→ T ⊠[J ] (⊠i∈IT⩽1Ai, (⊠

i∈IC
j
i )j∈J)

⊠[J ](T ⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

ξ̃↓
⊂
⊠[J](T in,(1)J)→⊠[J ](T ⊠i∈I T⩽1Ai, (⊠

i∈IC
j
i )j∈J)

ξ̃↓

which commutes by the naturality of ξ̃, we can reduce the initial equation to the following
one:[

⊠i∈IT ⊠[J ] (Ai, (C
j
i )j∈J)

τ̃→ T ⊠i∈I
u ⊠[J ](A, (Cj)j∈J)

TζI→ T ⊠[J ] (⊠i∈I
u A, (⊠i∈ICj)j∈J)

⊂
T⊠[J](in,(1)J)→ T ⊠[J ] (⊠i∈IT⩽1Ai, (⊠

i∈IC
j
i )j∈J)

ξ̃→ ⊠[J ] (T ⊠i∈I T⩽1Ai, (⊠
i∈IC

j
i )j∈J)

]
=
[
⊠i∈IT ⊠[J ] (Ai, (C

j
i )j∈J)

⊠I ξ̃→ ⊠i∈I ⊠[J ](TAi, (C
j
i )j∈J)

ζ̃I→ ⊠[J ] (⊠i∈ITAi, (⊠
i∈ICij)j∈J)

⊠[J](τ̃ ,(1)J)→ ⊠[J ] (T ⊠i∈I
u Ai, (⊠

i∈IC
j
i )j∈J)

⊂
⊠[J](T in,(1)J)→ ⊠[J ] (T ⊠i∈I T⩽1Ai, (⊠

i∈IC
j
i )j∈J)

]
.

(C.2.1)

Applying Lemma B.6 we replace the left hand side of (C.2.1) by

[
⊠i∈IT ⊠[J ] (Ai, (C

j
i )j∈J)

τ̃→ T ⊠i∈I
u ⊠[J ](Ai, (C

j
i )j∈J)

T in→ T ⊠i∈I T⩽1 ⊠[J ] (Ai, (C
j
i )j∈J)

T⊠I κ̃→ T ⊠i∈I ⊠[J ](T⩽1Ai, (T
⩽1C

j
i )j∈J)

Tσ(12)→ T ⊠[J ] (⊠i∈IT⩽1Ai, (⊠
i∈IT⩽1C

j
i )j∈J)

κ→ ⊠[J ](T⊠i∈IT⩽1Ai, (T⊠
i∈IT⩽1C

j
i )j∈J)

⊠[J](1,(κ)J)→ ⊠[J ](T⊠i∈IT⩽1Ai, (⊠
i∈ITT⩽1C

j
i )j∈J)

⊠[J](1,(⊠ITµ)J)→⊠[J ](T⊠i∈IT⩽1Ai, (⊠
i∈ITCji )j∈J)

⊠[J](1,(⊠Iµ)J)→⊠[J ](T⊠i∈IT⩽1Ai, (⊠
i∈IC

j
i )j∈J)

]
.

(C.2.2)

The right hand side of (C.2.1) equals

[
⊠i∈IT ⊠[J ] (Ai, (C

j
i )j∈J)

⊠Iκ→ ⊠i∈I ⊠[J ](TAi, (TC
j
i )j∈J)

σ(12)→

⊠[J ] (⊠i∈ITAi, (⊠
i∈ITCji )j∈J)

⊠[J](τ̃ ,(1)J)→ ⊠[J ] (T ⊠i∈I
u Ai, (⊠

i∈ITCji )j∈J)
⊠[J](T in,(1)J)→

⊠[J ] (T ⊠i∈I T⩽1Ai, (⊠
i∈ITCji )j∈J)

⊠[J](1,(⊠Iµ)J)→ ⊠[J ] (T ⊠i∈I T⩽1Ai, (⊠
i∈IC

j
i )j∈J)

]
.

(C.2.3)

Let m ∈ Z⩾0 and let S ⊂ I ×m be a subset that satisfies the condition pr2 S = m. Let
Si = {p ∈ m | (i, p) ∈ S}, mi = |Si|, i ∈ I. Restricting (C.2.2) and (C.2.3) to the direct
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summand ⊠i∈ITmi ⊠[J ] (Ai, (C
j
i )j∈J) of ⊠

i∈IT ⊠[J ] (Ai, (C
j
i )j∈J) we arrive at the following

equation:[
⊠i∈ITmi⊠[J ] (Ai, (C

j
i )j∈J)

P→ ⊠[J ] (⊗p∈m⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈I⊗p∈mT χ((i,p)∈S)Cji )j∈J)

⊠[J](1,(⊠I⊗mµ)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈I ⊗p∈m C

j
i )j∈J)

⊠[J](1,(⊠Iµ)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈IC

j
i )j∈J)

]
=
[
⊠i∈ITmi ⊠[J ] (Ai, (C

j
i )j∈J)

R→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈ITmiC

j
i )j∈J)

⊠[J](1,(⊠Iµ)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈IC

j
i )j∈J)

]
, (C.2.4)

where

P =
[
⊠i∈ITmi ⊠[J ] (Ai, (C

j
i )j∈J)

⊠i∈IλSi↪→m

→ ⊠i∈I ⊗p∈mT χ((i,p)∈S) ⊠[J ] (Ai, (C
j
i )j∈J)

κ̃−1

→ ⊗p∈m ⊠i∈IT χ((i,p)∈S) ⊠[J ] (Ai, (C
j
i )j∈J)

⊗m⊠I κ̃→ ⊗p∈m ⊠i∈I ⊠[J ] (T χ((i,p)∈S)Ai, (T
χ((i,p)∈S)C

j
i )j∈ J)

⊗mσ(12)→ ⊗p∈m ⊠[J ](⊠i∈IT χ((i,p)∈S)Ai, (⊠
i∈IT χ((i,p)∈S)Cji )j∈J)

κ̃→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊗p∈m ⊠i∈I T χ((i,p)∈S)Cji )j∈J)
⊠[J](1,(κ̃)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠

i∈I ⊗p∈m T χ((i,p)∈S)Cji )j∈J)
]
,

R =
[
⊠i∈ITmi ⊠[J ] (Ai, (C

j
i )j∈J)

⊠I κ̃→ ⊠i∈I ⊠[J ](TmiAi, (T
miC

j
i )j∈J)

σ(12)→ ⊠[J ] (⊠i∈ITmiAi, (⊠
i∈ITmiC

j
i )j∈J)

⊠[J](⊠i∈IλSi↪→m,(1)J)→ ⊠[J ] (⊠i∈I ⊗p∈m T χ((i,p)∈S)Ai, (⊠
i∈ITmiC

j
i )j∈J)

⊠[J](κ̃−1,(1)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈ITmiC

j
i )j∈J)

]
.

The equation

P =
[
⊠i∈ITmi ⊠[J ] (Ai, (C

j
i )j∈J)

R→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈ITmiC

j
i )j∈J)

⊠[J](1,(⊠i∈IλSi↪→m)J)→ ⊠[J ] (⊗p∈m ⊠i∈I T χ((i,p)∈S)Ai, (⊠
i∈I ⊗p∈m T χ((i,p)∈S)Cji )j∈J)

]
holds by the coherence principle. Therefore, equation (C.2.4) reduces to the equation[

TmiC
j
i

λSi↪→m

→ ⊗p∈m T χ((i,p)∈S)Cji
⊗mµ→ TmCji

µ→ C
j
i

]
= µ,

which expresses the associativity of µ.



450 C. An action of graded categories on Kleisli multicategory of quivers

⊠
i∈
I

u
T

⩾
1
⊠

[J
]
(A

i,
(C

j i
) j

∈
J
)

τ
I

>
T

⩾
1
⊠
i∈
I

u
⊠

[J
] (
A
i,
(C

j i
) j

∈
J
)

T
⩾
1
ζ
I

>
T

⩾
1
⊠

[J
]
[⊠

i∈
I

u
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
]

⊠
i∈
I
T

⊠
[J

]
(A

i,
(C

j i
) j

∈
J
)
τ̃
I

>

in

>

T
⊠
i∈
I

u
⊠

[J
] (
A
i,
(C

j i
) j

∈
J
)

in

∨
T
ζ
I

>
T

⊠
[J

]
[⊠

i∈
I

u
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
]

in

>

⊠
i∈
I

u
⊠

[J
]
(T

⩾
1
A
i,
(C

j i
) j

∈
J
)

⊠
I u
ξ

∨
ζ
I >
⊠

[J
] (
⊠
i∈
I

u
T

⩾
1
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
)

⊠
[J

] (
τ
I
,(
1
) J

) >
⊠

[J
] (
T

⩾
1
⊠
i∈
I

u
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
)

ξ

∨

⊠
i∈
I
T

⩽
1
⊠

[J
]
(T

⩾
1
A
i,
(C

j i
) j

∈
J
)

in

∨
⊠
i∈
I
ξ
′ >

<

⊠I
T⩽

1
ξ

⊠
i∈
I
⊠

[J
]
(T

A
i,
(C

j i
) j

∈
J
)

⊠
I
ξ̃

∨
ζ̃
I

>
⊠

[J
] (
⊠
i∈
I
T
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
)

⊠
[J

] (
in
,(
1
) J

)

∨
⊠

[J
] (
τ̃
I
,(
1
) J

)
>
⊠

[J
] (
T

⊠
i∈
I

u
A
i,
(⊠

i∈
I
C
j i
) j

∈
J
)

ξ̃

∨

⊠
[J

] (
in
,(
1
) J

)

>
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C.3 Proposition. The natural transformation ξ is Monoidal.

Proof. In the diagram displayed on the facing page the quadrilateral on the floor, the
ceiling, the left and the right walls-quadrilaterals clearly commute. The pentagon on
the floor commutes by Lemma B.6. Commutativity of the left triangle follows from the
equation

ξ̃ =
[
T ⊠[J ] (Ai, (C

j
i )j∈J) = T⩽1T⩾1 ⊠[J ] (Ai, (C

j
i )j∈J)

T⩽1ξ→

T⩽1 ⊠[J ] (T⩾1Ai, (C
j
i )j∈J)

ξ′→ ⊠[J ] (TAi, (C
j
i )j∈J)

]
,

which is due to the fact that ξ̃ coincides with ξ on T⩾1 ⊠[J ] (Ai, (C
j
i )j∈J) and it coincides

with ξ′ on T 0 ⊠[J ] (Ai, (C
j
i )j∈J). The front wall commutes due to ξ̃ being Monoidal. Since

⊠[J ](in, (1)J) is an embedding, the back wall commutes as well, that is, ξ is Monoidal.

C.4 Proposition. ξ satisfies conditions (B.9.1) and (B.9.2).

Proof. Let us show that ξ satisfies condition (B.9.1). Consider the diagram displayed at
Fig. C.1. Here the floor, the ceiling, the left and the right walls clearly commute. The
commutativity of the back wall has to be proven. We prove instead that the front wall
commutes. Since ⊠[J ](in, (1)J) is an embedding, the back wall will have to commute as
well.

The front wall expands to the equation[
T ⊠[J ] (A, (Cj)j∈J)

κ→ ⊠[J ] (TA, (TCj)j∈J)

⊠[J](1,(µ)J)→ ⊠[J ] (TA, (Cj)j∈J)
⊠[J](∆̃,(1)J)→ ⊠[J ] (TT⩾1A, (Cj)j∈J)

]
=
[
T ⊠[J ] (A, (Cj)j∈J)

∆̃→ TT⩾1 ⊠[J ] (A, (Cj)j∈J)
Tκ→ T ⊠[J ] (T⩾1A, (T⩾1Cj)j∈J)

T⊠[J](1,(µ)J)→ T ⊠[J ] (T⩾1A, (Cj)j∈J)
κ→ ⊠[J ] (TT⩾1A, (TCj)j∈J)

⊠[J](1,(µ)J)→ ⊠[J ] (TT⩾1A, (Cj)j∈J)
]
,

which we are going to verify. It is equivalent to the following equation between matrix
elements:[
Tm ⊠[J ] (A, (Cj)j∈J)

κ̃→ ⊠[J ] (TmA, (TmCj)j∈J)
⊠[J](1,(µm)J)→ ⊠[J ] (TmA, (Cj)j∈J)

⊠[J](λg,(1)J)→ ⊠[J ] (⊗p∈n ⊗g−1p A, (Cj)j∈J)
]

=
[
Tm ⊠[J ] (A, (Cj)j∈J)

λg→ ⊗p∈n ⊗g−1p ⊠[J ] (A, (Cj)j∈J)
⊗nκ̃→

⊗p∈n ⊠[J ](⊗g−1

A, (⊗g−1pCj)j∈J)
⊗n⊠[J](1,(µg

−1p)J)→ ⊗p∈n ⊠[J ](⊗g−1pA, (Cj)j∈J)
κ̃→ ⊠[J ] (⊗p∈n ⊗g−1p A, (⊗nCj)j∈J)

⊠[J](1,(µn)J)→ ⊠[J ] (⊗p∈n ⊗g−1p A, (Cj)j∈J)
]
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Figure C.1:
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for an arbitrary non-decreasing surjection g : m ↠ n. Since a graded category with
objects set S is an algebra in (Q/S,⊗IS, λf), it satisfies equation (2.25.1). This allows to
rewrite the above equation in the form:[
Tm ⊠[J ] (A, (Cj)j∈J)

κ̃→ ⊠[J ] (TmA, (TmCj)j∈J)
⊠[J](λg,(λg)J)→ ⊠[J ] (⊗p∈n ⊗g−1p A, (⊗p∈n ⊗g−1p Cj)j∈J)

⊠[J](1,(⊗p∈pµg
−1p)J)→ ⊠[J ] (⊗p∈n⊗g−1pA, (⊗p∈nCj)j∈J)

⊠[J](1,(µn)J)→ ⊠[J ] (⊗p∈n⊗g−1pA, (Cj)j∈J)
]

=
[
Tm ⊠[J ] (A, (Cj)j∈J)

λg→ ⊗p∈n ⊗g−1p ⊠[J ] (A, (Cj)j∈J)
⊗nκ̃→ ⊗p∈n ⊠[J ](⊗g−1pA, (⊗g−1pCj)j∈J)

κ̃→ ⊠[J ] (⊗p∈n ⊗g−1p A, (⊗p∈n ⊗g−1p Cj)j∈J)

⊠[J](1,(⊗p∈nµg
−1p)J)→ ⊠[J ](⊗p∈n⊗g−1pA, (⊗p∈nCj)j∈J)

⊠[J](1,(µn)J)→ ⊠[J ](⊗p∈n⊗g−1pA, (Cj)j∈J)
]
.

The last two arrows in both sides coincide. The previous compositions ending in
⊠[J ](⊗p∈n⊗g−1pA, (⊗p∈n⊗g−1pCj)j∈J) coincide due to coherence principle of Remark 2.34.
Therefore, the considered diagram is commutative, and ξ satisfies equation (B.9.1).

Let us show that ξ satisfies condition (B.9.2). The equation to prove is[
T⩾1 ⊠[J ] (A, (Cj)j∈J)

ξ→ ⊠[J ] (T⩾1A, (Cj)j∈J)
⊠[J](ε,(1)J)→ ⊠[J ] (A, (Cj)J)

]
= ε.

It is obvious, since both sides vanish on the summand Tm ⊠[J ] (A, (Cj)j∈J) of the source,
and give the identity morphism on T 0 ⊠[J ] (A, (Cj)j∈J). This accomplishes the proof of
the proposition.

Relations between lax Monoidal subjects translate to multicategory setting due to

Theorem A.8. Thus, for the action of multicategory ĝr-Cat on multicategory Q̂u and the
multicomonad T⩾1 there is an intertwiner ξ, a multinatural transformation that satisfies
conditions (B.9.1) and (B.9.2) of Section B.9. Therefore, there is an action of the multi-

category ĝr-Cat on the Kleisli multicategory Q̂u

T⩾1

. Shifting the latter by [1] we get an

action of ĝr-Cat on Q.

C.5 An action of a symmetric-Monoidal-category. Each symmetric Monoidal
category D defines a symmetric-Monoidal-category in sym-Mono-Cat, hence, a symmetric-

Monoidal-category D̂ in SMCatm. In particular, this holds for D = (V-Cat,⊠I , λf), the

category of graded k-linear categories, V = gr(k-Mod). So D̂ = V̂-Cat is a symmetric-
Monoidal-category in SMCatm.

We have seen that D̂ acts on the symmetric multicategory A = Q̂u

T⩾1

, the Kleisli

multicategory of graded quivers. It is constructed via the comonad T̂⩾1 : Q̂u → Q̂u

denoted also T⩾1. Objects of A are graded quivers. Multimaps f : (Ai)i∈I → B are
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morphisms of quivers f : ⊠i∈I
u T⩾1Ai → B, or equivalently, morphisms of quivers f :

⊠i∈ITAi → B such that f
∣∣
⊠i∈IT 0Ai

= 0. The bijection between the two presentations is

established in (7.9.1) and (7.9.2). The composition in A is given by (7.11.2), (7.11.3).
We describe the action in particular case n = 2, it is a symmetric multifunctor ⊡ :

Q̂u

T⩾1

⊠D̂ → Q̂u

T⩾1

. On objects A ∈ ObQ and C ∈ ObD we have A⊡C = A⊠C ∈ ObQ.
To multimorphisms f : ⊠i∈ITAi → B ∈ A , g : ⊠i∈ICi → D ∈ D the action ⊡ assigns the
multimorphism

f ⊡ g =
[
⊠i∈IT (Ai ⊠ Ci)

⊠Iκ→ ⊠i∈I (TAi ⊠ TCi)
σ(12)→

(⊠i∈ITAi)⊠ (⊠i∈ITCi)
f⊠(⊠Iµi)→B⊠ (⊠i∈ICi)

1⊠g→B⊠D
]
, (C.5.1)

where µi : TCi → Ci are iterated composition maps for the category Ci.
The extension to n > 1 is the following. On objects C0 ∈ ObQ and Cp ∈ ObD , 1 ⩽

p ⩽ n, we have ⊡p∈[n]Cp = ⊠p∈[n]Cp ∈ ObQ. To multimorphisms f : ⊠i∈ITC0
i → A0 ∈ A ,

gp : ⊠i∈IC
p
i → Ap ∈ D , 1 ⩽ p ⩽ n, the action ⊡[n] assigns the multimorphism

f ⊡ g1 ⊠ · · ·⊠ gn =
[
⊠i∈IT (⊠p∈[n]C

p
i )

⊠i∈Iκ[n]

→ ⊠i∈I ⊠p∈[n]TCpi
σ(12)→ ⊠p∈[n] ⊠i∈ITCpi

⊠[n](f,⊠Iµ1
i ,...,⊠

Iµni )→ ⊠[n] (A0,⊠
i∈IC1

i , . . . ,⊠
i∈ICni )

⊠[n](1,g1,...,gn)→ ⊠p∈[n] Ap
]
,

where µpi : TC
p
i → C

p
i is the composition map for the category C

p
i .

C.6 Another presentation of an action. Let A be an object of Cat-category C.
Then, as in any 2-category, C(A ,A ) is a strict Monoidal category. We reformulate an
action of a Monoidal-category D on A in terms of the Monoidal category C(A ,A ).

C.7 Proposition. Let (⊡[n], λf) be an action of a Monoidal-category (D ,⊗I , λfD) on
object A of a Monoidal Cat-category (C,⊠I ,Λf). Then the functor

ℵ : C(1,D) −→ C(A ,A ),

A 7−→
(
A

ΛI .
∼
→A ⊠ 1

1⊠A→A ⊠ D
⊡[1]

→A
)
= (−⊡ A),

h : A→ B 7−→
(
A

ΛI .
∼
→A ⊠ 1

1⊠A→
1⊠h⇓
1⊠B
→A ⊠ D

⊡[1]

→A
)
,

extends to a Monoidal functor (ℵ, αn), where the source category is equipped with the
Monoidal structure described in Section A.11.

Proof. Let C1, . . . , Cn be objects of C(1,D). We have to construct an isomorphism

αn : (((−⊡ C1)⊡ C2)⊡ . . . )⊡ Cn → −⊡ (⊠i∈nCi).
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For m > 0 define maps pm : [m] → [m − 1], pm(0) = pm(1) = 0, pm(k) = k − 1 for
0 < k ⩽ m. Then for n ⩾ 0 we have

(((−⊡ C1)⊡ C2)⊡ . . . )⊡ Cn = ⊡p1(· · ·⊡pn−1 (⊡pn(−, C1, C2, . . . , Cn))).

Notice that ⊡p1 = ⊡[1]. Define a map qn : [n] → [1], qn(0) = 0, qn(k) = 1 for 0 < k ⩽ n.
Then

−⊡ (⊠i∈nCi) = ⊡[1](⊡qn(−, C1, C2, . . . , Cn)).

Define αn as the unique 2-isomorphism such that the following equation between
2-isomorphisms holds:

λqn =
[
⊡[n] ⋋(pi)

1
i=n

→ ⊡pn ·⊡pn−1 · . . . ·⊡p3 ·⊡p2 ·⊡[1] αn

→ ⊡qn ·⊡[1]
]
: ⊠[n](A ,D , . . . ,D)→ A .

For instance, q0 = I . : [0] → [1], q0(0) = 0 and α0 = λI . : Id = ⊡[0] → ⊡q0 · ⊡[1],
X → X ⊡ 1. For n = 1 we get α1 = id : ⊡[1] → ⊡[1]. For n = 2 we obtain

α2 =
[
(−⊡ C1)⊡ C2 = ⊡[1](⊡VI(−, C1, C2))

(λVI)−1

→ ⊡[2] (−, C1, C2)
λIV→ ⊡[1] (⊡IV(−, C1, C2)) = −⊡ (C1 ⊠ C2)

]
, (C.7.1)

that is,

α2 =
[
⊡VI ·⊡[1] (λVI)−1

→ ⊡[2] λIV→ ⊡IV ·⊡[1]
]
.

We have to prove that 2-isomorphisms α satisfy for each non-decreasing map ϕ : I → J
the equation

•
j∈J

•
i∈ϕ−1j(−⊡ Ci)=== •

i∈I(−⊡ Ci)
αI →−⊡ (⊠i∈ICi)

=

•
j∈J(−⊡⊠i∈ϕ−1jCi)

•j∈Jαϕ
−1j

↓
αJ →−⊡ (⊠j∈J ⊠i∈ϕ−1j Ci)

−⊡νϕ↓

Clearly, •
j∈Jαϕ

−1j is the horizontal composition of 2-morphisms αϕ
−1j.

Denote in this proof by ϕ′ : [I]→ [J ] the map ϕ′(0) = 0, ϕ′(i) = ϕ(i) for i ∈ I. Denote
by rj the map rj = id1 ⊔ ▷ ⊔ id : 1 ⊔ ϕ−1j ⊔

⊔
k>j ϕ

−1k → 1 ⊔ 1 ⊔
⊔
k>j ϕ

−1k for j ∈ J .
We may assume that I = n, J = m. The above equation can be equivalently written as
follows:

•
j∈m

•
i∈ϕ−1j⊡pn+1−i ==== •

i∈n⊡pn+1−i
αn

→⊡qn ·⊡[1]

=

•
j∈m(⊡rj ·⊡p1⊔ϕ−1]j,m])

•j∈mαϕ
−1j

↓
αm

→⊡ϕ′ ·⊡qm ·⊡[1]

(⋋(ϕ′,qm))⊡[1]

↓
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To prove this equation we compose it with

⋋(pi)
1
i=n =

[
⊡[n] ⋋(vj)j∈m

→ •
j∈m ⊡vj •j∈m⋋

(pn+1−i)i∈ϕ−1j

→ •
j∈m

•
i∈ϕ−1j⊡pn+1−i = •

i∈n⊡pn+1−i
]
,

where

vj = •
i∈ϕ−1jpn+1−i = ▷ ⊔ id

=
[
1 ⊔ ϕ−1j ⊔

⊔
k>j

ϕ−1k
rj
∥

id1 ⊔▷⊔ id
→ 1 ⊔ 1 ⊔

⊔
k>j

ϕ−1k
p1⊔ϕ−1]j,m]

∥
▷⊔id
→ 1 ⊔

⊔
k>j

ϕ−1k
]
,

see Proposition B.4.
Using the definition of αn we reduce the equation to prove to the following commutative

diagram:

⊡[n]

•
j∈m⊡vj

⋋(vj)j∈m

←
⊡ϕ′ ·⊡[m]

λϕ
′

↓
⊡qn ·⊡[1]

λqn

→

•
j∈m(⊡rj ·⊡p1⊔ϕ−1]j,m])

•j∈m⋋
(rj ,p1⊔ϕ−1]j,m]

)

↓
== ⊡ϕ′ · (•j∈m⊡pj)

⋋(pj)
1
j=m

↓
αm

→⊡ϕ′ ·⊡qm ·⊡[1]

(⋋(ϕ′,qm))⊡[1]

↓
λqm

→

The right square commutes due to condition (B.2.1). The left pentagon commutes due to
the independence of ⋋ of triangulation of a polygon, as explained before Proposition B.4.
The proposition is proven.

C.8 An algebra produces a multifunctor. As above, let D denote the symmetric
Monoidal category D = (gr-Cat,⊠I , λf) of graded k-linear categories. Recall that Q =

[1]Q̂u

T⩾1

is the symmetric multicategory, whose objects are graded k-linear quivers, and
multimaps are

Q((Ai)i∈I ;B) = Q̂u

T⩾1

((Ai[1])i∈I ;B[1]) = Q(⊠i∈I
u T⩾1(Ai[1]),B[1])

≃ {f ∈ Q(⊠i∈IT (Ai[1]),B[1]) | f
∣∣
⊠i∈IT 0Ai

= 0}.

The multiquiver Q is isomorphic to A = Q̂u

T⩾1

via the shift map A 7→ sA = A[1]. The

action (⊡[n] : ⊠[n](A , D̂ , . . . , D̂) → A , λf) translates via this isomorphism to the action

(⊡[n] : ⊠[n](Q, D̂ , . . . , D̂) → Q, λf). In particular, as quivers (A ⊡ C)[1] = A[1] ⊠ C and
A⊡C = (A[1]⊠C)[−1]. In general, on objects A ∈ ObQ, Cp ∈ ObD , 1 ⩽ p ⩽ n, we have

⊡[n](A,C1, . . . ,Cn) = {⊠[n](A[1],C1, . . . ,Cn)}[−1],
{⊡[n](A,C1, . . . ,Cn)}[1] = ⊠[n](A[1],C1, . . . ,Cn)
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as quivers.
Suppose that A : 1 → D is an algebra in D . In details: 1 is the Monoidal category

with one object ∗ and one morphism 1, A is a graded k-linear category, equipped with
a strictly associative multiplication functor ⊗A : A ⊠ A → A and the strict unit functor
ηA : 1p → A. In other words, A is a strictly monoidal graded k-linear category such that

the tensor product factors as A× A→ A⊠ A
⊗A→A, through a graded functor ⊗A.

The algebra A defines an algebra Â : 1̂ → D̂ in the sense of multicategories (a

multifunctor, see Definition 3.20). Any multifunctor B : 1̂→ D̂ (an algebra in D̂) equals

Â for some algebra A : 1 → D (Proposition 3.30). The functor of Proposition C.7

MCatm(1̂, D̂)→MCatm(Q,Q) takes an object Â of the source to the object F = 1⊡ Â :
Q→ Q of the target, which is a multifunctor.

In details: the multifunctor Â takes the only object ∗ ∈ Ob1 to the object A ∈ ObD .
The map

Â =
[
1̂((∗)i∈I ; ∗)

ηA→D(A,A)
D(⊗IA,1)→D(⊠IA,A) = D̂((A)i∈I ;A)

]
is found as 1 7→ ⊗IA from (3.28.1). The resulting multifunctor F is the composition

F = 1⊡ Â =
(
Q

ΛI .
∼
→ Q⊠1̂

1⊠Â→ Q⊠D̂
⊡→ Q

)
.

It takes a quiver Q ∈ ObQ to the quiver Q⊡A. The multifunctor F operates on morphisms
via the map

1⊡⊗IA =
[
Q((Ai)i∈I ;B)

λI .
∼
→ Q((Ai)i∈I ;B)× 1̂((∗)i∈I ; ∗)

1×Â→

Q((Ai)i∈I ;B)× D̂((A)i∈I ;A)
⊡→ Q((Ai ⊡ A)i∈I ;B⊡ A)

]
, f 7→ f ⊡ (⊗IA). (C.8.1)

If A were commutative, then Â would be a commutative algebra in the source of

SMCatm(1̂, D̂) → SMCatm(Q,Q). So it would define a symmetric multifunctor 1 ⊡ Â :
Q→ Q which is a commutative multimonad. Our main example of Section 10.1 is not of
this kind.

C.9 Remark. One can show that there is no algebra morphism θ : Z⊠Z→ Z, m×n 7→
m + n, with invertible maps θ : (Z ⊠ Z)(n ×m, k × l) → Z(n +m, k + l). In particular,

Z is not commutative. The shift multifunctor −[ ] = 1 ⊡ Ẑ : Q → Q corresponds to Z

via construction of Section C.8. The algebra morphism ηZ : 1 → Z gives a multinatural
transformation of multifunctors u[ ] : IdQ → −[ ]. However, no multinatural transformation

of multifunctors −[ ][ ] → −[ ] comes from algebra Z.
Nevertheless, there is a graded functor ⊗ = ⊗1 : Z ⊠ Z → Z – a morphism of D . It

can be viewed formally as a (non-Monoidal) morphism between functors Z⊠ Z : 1→ D
and Z : 1→ D , that is, an element of Cat(1,D)(Z⊠ Z,Z). The Monoidal functor

Cat(1,D)→ Cat(Q1,Q1)
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constructed in Proposition C.7 takes this morphism to a morphism of functorsm[ ] : −[ ][ ] =

(1 ⊡ Ẑ)2 → −[ ] : Q1 → Q1, where Q1 is the underlying category of the multicategory Q
(the shifted Kleisli category of quivers). The action functor ⊡ : Q1⊠D → Q1 is the

restriction of the action multifunctor ⊡ : Q⊠D̂ → Q. The associativity and the unitality
of ⊗1 : Z⊠Z→ Z imply the associativity and the unitality ofm[ ]. Therefore, (−[ ],m[ ], u[ ])

is a monad in Q1 such that the functor −[ ] lies under a multifunctor −[ ] : Q → Q, and
u[ ] : IdQ → −[ ] is a multinatural transformation of multifunctors. Moreover, it is shown
in Section 10.20 that m[ ] satisfies condition (4.35.3). According to Corollary 4.35 the

algebra Z in D produces a Q-multifunctor −[ ] = (1 ⊡ Ẑ)′ : Q → Q and a Q-monad

(−[ ],m[ ], u[ ]) : Q→ Q.

C.10 Action of differential graded categories on A∞-categories. The action

⊡ : Q⊠ ĝr -Cat → Q in SMCatm constructed in Section C.8 extends to the action in
SMCatm

⊡ : A∞⊠ d̂g-Cat→ A∞ .

To objects A ∈ ObA∞ and C ∈ Obdg-Cat this multifunctor assigns the quiver A ⊡ C ∈
ObQ, equipped with the differential bA⊡C : id→ id : A⊡C→ A⊡C, which is an element
of Qp(T (sA⊠ C), sA⊠ C)(id, id), specified by its components:

bA⊡C
1 = b1 ⊠ 1− 1⊠ d : sA⊠ C→ sA⊠ C, (C.10.1)

bA⊡C
n =

[
T n(sA⊠ C)

κ→ T nsA⊠ T nC
bAn⊠µ

n
C→ sA⊠ C

]
, n > 1.

C.11 Proposition. bA⊡C is a codifferential.

Proof. Let us prove that A ⊡ C is a differential A∞-category. This means the existence
for sE = sA ⊠ C of two anticommuting codifferentials b̂′ : TsE → TsE, d̂′ : TsE → TsE,
where the components d′n of the second codifferential vanish if n ̸= 1. In our case d′ is
specified by d′1 = 1 ⊠ d : sA ⊠ C → sA ⊠ C, and b′ : T⩾1(sA ⊠ C) → sA ⊠ C is given by
b′1 = bA1 ⊠ 1, b′n = bA⊡C

n .

As d2 = 0 we have (d̂′)2 = 0. The anticommutativity condition b̂′d̂′ + d̂′b̂′ = 0 reduces
to equations

b′nd+
n∑
i=1

(1⊗(i−1) ⊗ d⊗ 1⊗(n−i))b′n = 0
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for all n ⩾ 1. In our case we find in Qp:

n∑
i=1

(1⊗(i−1) ⊗ d⊗ 1⊗(n−i))b′n

=
n∑
i=1

[
T n(sA⊠ C)

⊗n[(1)p<i,1⊗d,(1)p>i]→ T n(sA⊠ C)
κ→ T nsA⊠ T nC

bAn⊠µ
n
C→ sA⊠ C

]
= −

n∑
i=1

[
T n(sA⊠ C)

κ→ T nsA⊠ T nC
bAn⊠⊗n[(1)p<i,d,(1)p>i]→ sA⊠ T nC

1⊠µn
C→ sA⊠ C

]
= −

[
T n(sA⊠ C)

κ→ T nsA⊠ T nC
bAn⊠µ

n
C→ sA⊠ C

1⊠d→ sA⊠ C
]
= −b′nd

due to C being a differential graded category.
Let us show that b̂′ is a codifferential, that is,∑

i−1+j+k=m

(1⊗(i−1) ⊗ b′j ⊗ 1⊗k)b′i+k = 0 : T n(sA⊠ C)→ sA⊠ C.

This would imply that the difference b̂′ − d̂′ is a codifferential. Define the map g =
id⊔ ▷ ⊔ id : m = i− 1 ⊔ j ⊔ k→ i− 1 ⊔ 1 ⊔ k = n, depending on m, i, j, k, n, such that
m = i−1+j+k and n = i+k. The summands of the above sum are in bijection with pairs
(g, i), where g : m ↠ n is a surjection and i ∈ n is such that g| : m∖ g−1{i} → n∖ {i}
is bijective. Such a summand is

{
Tm(sA⊠ C)

λg→ ⊗p∈n ⊗g−1p(sA⊠ C)
⊗n[(1)p<i,κ,(1)p>i]→ ⊗n [(sA⊠ C)p<i,⊗g

−1isA⊠⊗g−1iC, (sA⊠ C)p>i]

⊗n[(1)p<i,b
A
j ⊠µ

g−1i
C ,(1)p>i]→ T n(sA⊠ C)

κ→ T nsA⊠ T nC
bAn⊠µ

n
C→ sA⊠ C

}
=
{
Tm(sA⊠ C)

λg→ ⊗p∈n ⊗g−1p(sA⊠ C)
⊗n[(1)p<i,κ,(1)p>i]→ ⊗n [(sA⊠ C)p<i,⊗g

−1isA⊠⊗g−1iC, (sA⊠ C)p>i]
κ→ ⊗n [(sA)p<i,⊗g

−1isA, (sA)p>i]⊠⊗n[(C)p<i,⊗g
−1iC, (C)p>i]

⊗n[(1)p<i,b
A
j ,(1)p>i]⊠⊗n[(1)p<i,µ

g−1i
C ,(1)p>i]→ T nsA⊠ T nC

bAn⊠µ
n
C→ sA⊠ C

}
=
{
Tm(sA⊠ C)

κ→ TmsA⊠ TmC
λg⊠λg→ ⊗n [(sA)p<i,⊗g

−1isA, (sA)p>i]⊠⊗n[(C)p<i,⊗g
−1iC, (C)p>i]

⊗n[(1)p<i,b
A
j ,(1)p>i]b

A
n⊠⊗n[(1)p<i,µ

g−1i
C ,(1)p>i]µ

n
C→ sA⊠ C

}
(C.11.1)
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due to coherence principle of Remark 2.34. Since the category C is an algebra in the
Monoidal category of k-quivers with the object set ObC, we have[

TmC
λg→ ⊗n [(C)p<i,⊗g

−1iC, (C)p>i]
⊗n[(1)p<i,µ

g−1i
C ,(1)p>i]→ T nC

µn
C→ C

]
= µmC

(that is, composition in C is associative). Thus (C.11.1) equals{
Tm(sA⊠ C)

κ→ TmsA⊠ TmC
(λg·⊗n[(1)p<i,b

A
j ,(1)p>i]·bAn )⊠µm

C→ sA⊠ C
}
.

The sum of such expressions over all allowed pairs (g, i) gives

(b̂′)2 pr1
∣∣
Tm(sA⊠C)

=
{
Tm(sA⊠ C)

κ→ TmsA⊠ TmC
(b̂A)2 pr1 ⊠µ

m
C→ sA⊠ C

}
= 0,

hence, b′ is a codifferential.

To A∞-functor f : ⊠i∈ITsAi → sB ∈ A∞ and differential graded functor g : ⊠i∈ICi →
D ∈ D

def
= dg-Cat the action ⊡ assigns multimorphism f ⊡ g in Q, given by (C.5.1):

f ⊡ g =
[
⊠i∈IT (sAi ⊠ Ci)

⊠Iκ→ ⊠i∈I (TsAi ⊠ TCi)
σ(12)→

(⊠i∈ITsAi)⊠ (⊠i∈ITCi)
f⊠(⊠Iµ)→ sB⊠ (⊠i∈ICi)

1⊠g→ sB⊠D
]
.

C.12 Proposition. The multimorphism f ⊡ g is an A∞-functor.

Proof. The A∞-structures in question are differences of two A∞-structures, b
′ and d′. Let

us prove that f ⊡ g is an A∞-functor with respect to both these A∞-structures, hence for
their difference as well. First we show this for d′. The only non-vanishing component of
d̂′ is the first one, thus, equation (8.8.1) in Qp reads[

⊠i∈nTmi(sAi ⊠ Ci)
f⊡g→ sB⊠D

1⊠d→ sB⊠D
]

=
[
⊠i∈nTmi(sAi ⊠ Ci)

∑n
i=1 1

⊠(i−1)⊠(
∑mi
j=1 1

⊗(j−1)⊗(1⊠d)⊗1⊗(mi−j))⊠1⊠(n−i)

→

⊠i∈n Tmi(sAi ⊠ Ci)
f⊡g→ sB⊠D

]
. (C.12.1)

Since g is a chain functor, the left hand side equals[
⊠i∈nTmi(sAi ⊠ Ci)

⊠nκ→ ⊠i∈n (TmisAi ⊠ TmiCi)
σ(12)→ (⊠i∈nTmisAi)⊠ (⊠i∈nTmiCi)

f⊠(⊠nµ)→ sB⊠ (⊠i∈nCi)
1⊠
∑n
i=1 1

⊠(i−1)⊠d⊠1⊗(n−i)

→ sB⊠ (⊠i∈nCi)
1⊠g→ sB⊠D

]
=
[
⊠i∈nTmi(sAi ⊠ Ci)

⊠nκ→ ⊠i∈n (TmisAi ⊠ TmiCi)
σ(12)→ (⊠i∈nTmisAi)⊠ (⊠i∈nTmiCi)

1⊠
∑n
i=1 1

⊠(i−1)⊠(
∑mi
j=1 1

⊗(j−1)⊗d⊗1⊗(mi−j))⊠1⊠(n−i)

→ (⊠i∈nTmisAi)⊠ (⊠i∈nTmiCi)

f⊠(⊠nµ)→ sB⊠ (⊠i∈nCi)
1⊠g→ sB⊠D

]
,
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which is equal to the right hand side of (C.12.1).
Now we shall prove that f⊡g is an A∞-functor with respect to the A∞-structure b

′. Let
(ℓi)i∈n ∈ (Z⩾0)

n∖{0}. A partition j1+ · · ·+jm = (ℓi)i∈n, where j1, . . . , jm ∈ (Z⩾0)
n∖{0},

determines a collection of isotonic maps gi : ℓ
i → m, i ∈ n, such that |g−1i (p)| = jip,

p ∈ m, i ∈ n. The summand in the left hand side of (8.8.1) corresponding to the chosen
partition reads[

⊠i∈nT ℓ
i

(sAi ⊠ Ci)
⊠i∈nλgi→ ⊠i∈n ⊗p∈m ⊗g

−1
i (p) (sAi ⊠ Ci)

κ−1

→

⊗p∈m ⊠i∈n ⊗g
−1
i (p) (sAi ⊠ Ci)

⊗p∈m⊠nκ→ ⊗p∈m ⊠i∈n(T g
−1
i (p)sAi ⊠ T g

−1
i (p)Ci)

⊗p∈mσ(12)→

⊗p∈m ((⊠i∈nT g
−1
i (p)sAi)⊠ (⊠i∈nT g

−1
i (p)Ci))

⊠p∈m(fjp⊠(⊠i∈nµg
−1
i

(p)))
→ ⊗p∈m (sB⊠ (⊠i∈nCi))

⊗p∈m(1⊠g)→ ⊗p∈m (sB⊠D)
κ→ TmsB⊠ TmD

bm⊠µm

→ sB⊠D
]
.

Due to coherence principle of Remark 2.34 and the fact that g is a functor, it is equal to[
⊠i∈nT ℓ

i

(sAi ⊠ Ci)
⊠nκ→ ⊠i∈n (T ℓ

i

sAi ⊠ T ℓ
i

Ci)
σ(12)→ (⊠i∈nT ℓisAi)⊠ (⊠i∈nT ℓ

i

Ci)

(⊠i∈nλgi)⊠(⊠i∈nλgi)→ (⊠i∈n ⊗p∈m T g
−1
i (p)sAi)⊠ (⊠i∈n ⊗p∈m T g

−1
i (p)Ci)

κ−1⊠κ−1

→ (⊗p∈m ⊠i∈n T g
−1
i (p)sAi)⊠ (⊗p∈m ⊠i∈n T g

−1
i (p)Ci)

⊗p∈mfjp⊠(⊗p∈m⊠i∈nµg
−1
i

(p))
→ (⊗p∈msB)⊠ (⊗p∈m ⊠i∈n Ci)

1⊠κ→ (⊗p∈msB)⊠ (⊠i∈n ⊗p∈m Ci)
1⊠(⊠i∈nµm)→ (⊗p∈msB)⊠ (⊠i∈nCi)

1⊠g→ (⊗p∈msB)⊠D
bm⊠1→ sB⊠D

]
. (C.12.2)

Since the category Ci is an algebra in the Monoidal category of k-quivers with the object
set ObCi, we have

[
T ℓ

i

Ci
λgi→ ⊗i∈m ⊗g

−1
i (p)Ci

⊗i∈mµg
−1
i

(p)

→ TmCi
µm

→ Ci
]
= µℓ

i

,

therefore (C.12.2) equals[
⊠i∈nT ℓ

i

(sAi⊠Ci)
⊠nκ→ ⊠i∈n (T ℓ

i

sAi⊠T
ℓiCi)

σ(12)→ (⊠i∈nT ℓ
i

sAi)⊠(⊠i∈nT ℓ
i

Ci)
(⊠i∈nλgi)⊠1→

(⊠i∈n ⊗p∈m ⊗g
−1
i (p)sAi)⊠ (⊠i∈nT ℓ

i

Ci)
κ−1⊠(⊠i∈nµℓ

i
)→ (⊗p∈m ⊠i∈n ⊗g

−1
i (p)sAi)⊠ (⊠i∈nCi)

(⊗p∈mfjp)⊠g→ (⊗p∈msB)⊠D
bm⊠1→ sB⊠D

]
. (C.12.3)

Let us transform the right hand side of equation (8.8.1). Let 1 ⩽ q ⩽ n be fixed, and let
r, k, t be integers such that r + k + t = lq, r, t ⩾ 0, k ⩾ 1. Put p = r + 1 + t and denote
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ϕ = id⊔ ▷⊔ id : ℓq = r⊔ k⊔ t→ r⊔ 1⊔ t = p. The corresponding summand in the right
hand side of (8.8.1) is[

⊠i∈nT ℓ
i

(sAi ⊠ Ci)
⊠n[(1)i<q,λ

ϕ,(1)i>q]→

⊠n [(T ℓ
i

(sAi ⊠ Ci))i<q,⊗p[(sAq ⊠ Cq)j∈r, T
k(sAq ⊠ Cq), (sAq ⊠ Cq)j∈t], (T

ℓi(sAi ⊠ Ci))i>q]
⊠n[(1)i<q,⊗p[(1)j∈r,κ,(1)j∈t],(1)i>q]→

⊠n [(T ℓ
i

(sAi⊠ Ci))i<q,⊗p[(sAq ⊠ Cq)j∈r, T
ksAq ⊠ T kCq, (sAq ⊠ Cq)j∈t], (T

ℓi(sAi⊠ Ci))i>q]
⊠n[(1)i<q,⊗p[(1)j∈r,bk⊠µk,(1)j∈t],(1)i>q]→ ⊠n [(T ℓ

i

(sAi ⊠ Ci))i<q, T
p(sAq ⊠ Cq), (T

ℓi(sAi ⊠ Ci))i>q]
⊠nκ→ ⊠i∈n [(T ℓ

i

sAi ⊠ T ℓ
i

Ci)i<q, T
psAq ⊠ T pCq, (T

ℓisAi ⊠ T ℓ
i

Ci)i>q]
σ(12)→ ⊠n [(T ℓ

i

sAi)i<q, T
psAq, (T

ℓisAi)i>q]⊠⊠n[(T ℓ
i

Ci)i<q, T
pCq, (T

ℓiCi)i>q]

f(ℓ1,...,ℓq−1,p,ℓq+1,...,ℓn)⊠(⊠n[(µℓ
i
)i<q,µ

p,(µℓ
i
)i>q])
→ sB⊠ (⊠i∈nCi)

1⊠g→ sB⊠D
]
.

By coherence principle of Remark 2.34 it equals[
⊠i∈nT ℓ

i

(sAi ⊠ Ci)
⊠nκ→ ⊠i∈n (T ℓ

i

sAi ⊠ T ℓ
i

Ci)
σ(12)→

(⊠i∈nT ℓ
i

sAi)⊠ (⊠i∈nT ℓ
i

Ci)
⊠n[(1)i<q,λ

ϕ,(1)i>q]⊠⊠n[(1)i<q,λ
ϕ,(1)i>q]→

⊠n [(T ℓ
i

sAi)i<q,⊗p[(sAq)j∈r, T
ksAq, (sAq)j∈t], (T

ℓisAi)i>q]

⊠⊠n[(T ℓ
i

Ci)i<q,⊗p[(Cq)j∈r, T
kCq, (Cq)j∈t], (T

ℓiCi)i>q]
⊠n[(1)i<q,⊗p[(1)j∈r,bk,(1)j∈t],(1)i>q]⊠⊠n[(1)i<q,⊗p[(1)j∈r,µ

k,(1)j∈t],(1)i>q]→
⊠n [(T ℓ

i

sAi)i<q, T
psAq, (T

ℓisAi)i>q]⊠⊠n[(T ℓ
i

Ci)i<q, T
pCq, (T

ℓiCi)i>q]

f(ℓ1,...,ℓq−1,p,ℓq+1,...,ℓn)⊠(⊠n[(µℓ
i
)i<q,µ

p,(µℓ
i
)i>q])
→ sB⊠ (⊠i∈nCi)

1⊠g→ sB⊠D
]
. (C.12.4)

Since the category Cq is an algebra in the Monoidal category of k-quivers with the object
set ObCq, it follows that[

T ℓ
q

Cq
λϕ→ ⊗p [(Cq)j∈r, T

kCq, (Cq)j∈t]
⊗p[(1)j∈r,µ

k,(1)j∈t]→ T pCq
µp

→ Cq
]
= µℓ

q

.

Thus (C.12.4) is equal to[
⊠i∈nT ℓ

i

(sAi ⊠ Ci)
⊠nκ→ ⊠i∈n (T ℓ

i

sAi ⊠ T ℓ
i

Ci)
σ(12)→ (⊠i∈nT ℓ

i

sAi)⊠ (⊠i∈nT ℓ
i

Ci)

⊠n[(1)i<q,λ
ϕ,(1)i>q]⊠1→ ⊠n [(T ℓ

i

sAi)i<q,⊗p[(sAq)j∈r, T
ksAq, (sAq)j∈t], (T

ℓisAi)i>q]⊠(⊠i∈nT ℓ
i

Ci)

⊠n[(1)i<q,⊗p[(1)j∈r,bk,(1)j∈t],(1)i>q]⊠(⊠i∈nµℓ
i
)→ ⊠n [(T ℓ

i

sAi)i<q, T
psAq, (T

ℓisAi)i>q]⊠ (⊠i∈nCi)
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f(ℓ1,...,ℓq−1,p,ℓq+1,...,ℓn)⊠g→ sB⊠D
]
. (C.12.5)

Comparing (C.12.3) and (C.12.5) we conclude that equation (8.8.1) for f ⊡ g is obtained
from the corresponding equation for f by tensoring the latter with

⊠i∈nT ℓ
i

Ci
⊠i∈nµℓ

i

→ ⊠i∈n Ci
g→D

and by composing both side of the obtained equation with

⊠i∈nT ℓ
i

(sAi ⊠ Ci)
⊠nκ→ ⊠i∈n (T ℓ

i

sAi ⊠ T ℓ
i

Ci)
σ(12)→ (⊠i∈nT ℓ

i

sAi)⊠ (⊠i∈nT ℓ
i

Ci).

This proves the proposition.

C.13 Action of differential graded categories on unital A∞-categories. Let us
prove that the action constructed in Section C.10 restricts to the action in SMCatm

⊡ : Au
∞⊠ d̂g-Cat→ Au

∞ .

C.14 Lemma. Let A be a (strictly) unital A∞-category and let C be a differential graded
category. Then the A∞-category A⊡ C is (strictly) unital.

Proof. For any object X of A and U of C pick up the element Xi
A
0 ⊗ 1U ∈ sA(X,X) ⊗

C(U,U). We claim that it is a unit element for the object (X,U) of A ⊡ C. Indeed,
(Xi

A
0 ⊗ 1U)b

A⊡C
1 = Xi

A
0 b1 ⊗ 1U − Xi

A
0 ⊗ 1Ud = 0 and for any Y ∈ ObA, W ∈ ObC and for

any morphisms p ∈ sA(Y,X), q ∈ C(W,U) we have

(p⊗q).(1⊗(XiA0 ⊗1U))bA⊡C
2 = (−)q[(p⊗Xi

A
0 )⊗(q⊗1U)](bA2 ⊗µ2C) = (p⊗Xi

A
0 )b

A
2 ⊗(q⊗1U)µ2C

= p⊗ q + p.(hbA1 + bA1 h)⊗ q = p⊗ q + (p⊗ q).[(h⊗ 1)bA⊡C
1 + bA⊡C

1 (h⊗ 1)],

where the homotopy h : sA(Y,X) → sA(Y,X) satisfies (1 ⊗ Xi
A
0 )b

A
2 = 1 + hbA1 + bA1 h.

Similarly, ((Xi
A
0 ⊗ 1U)⊗ 1)bA⊡C

2 is homotopic to −1. Therefore, A⊡ C is unital.

C.15 Proposition. Let f : ⊠i∈ITsAi → sB be a unital A∞-functor, and let g : ⊠i∈ICi →
D be a differential graded functor. Then the A∞-functor f ⊡ g is unital. This gives the
action in SMCatm

⊡ : Au
∞⊠ d̂g-Cat→ Au

∞ .

Proof. The A∞-categories Ai ⊡ Ci, B ⊡D are unital due to Lemma C.14. If I = ∅, the
statement is trivial.

Assume that I is a 1-element set, and consider f : TsA→ sB, g : C→ D and

f ⊡ g =
[
T (sA⊠ C)

κ→ TsA⊠ TC
f⊠µ→ sB⊠ C

1⊠g→ sB⊠D
]
.
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For arbitrary objects X of A and U of C the first component (f ⊡ g)1 takes Xi
A
0 ⊗ 1U to

(Xi
A
0 f1) ⊗ (1Ug) = (Xi

A
0 f1) ⊗ 1g(U), which is homologous to Xf i

B
0 ⊗ 1g(U). Thus, f ⊡ g is

unital.
Let |I| > 1, let j ∈ I, and let Xi ∈ ObAi, Ui ∈ ObCi for i ∈ I, i ̸= j. Then

(f ⊡ g)|(Xi)i ̸=j ,(Ui)i ̸=j
j = f |(Xi)i ̸=j

j ⊡ g|(Ui)i ̸=jj : Aj ⊡ Cj → B⊡D,

where the differential graded functor g|(Ui)i ̸=jj = µd̂g-Catj↪→I ((Ui)i<j, idAj , (Ui)i>j, g) : Cj → D is
defined as in (8.18.1). On objects and morphisms of Cj it gives the expected expression

(g|(Ui)i̸=jj )( ) = g((Ui)i<j, , (Ui)i>j). Since the A∞-functor f |
(Xi)i̸=j
j is unital, so is (f ⊡

g)|(Xi)i ̸=j ,(Ui)i ̸=j
j by the above I = 1 case. The A∞-functor f⊡g is unital by Proposition 9.13.

Let us show that the action ⊡ : Au
∞⊠ d̂g-Cat → Au

∞ is a generalization of the tensor
product ⊠ : dg-Cat ⊠ dg-Cat → dg-Cat of differential graded categories. Let a unital
A∞-category come from a differential graded category. This means that bAn = 0 for n > 2
and the unit elements Xi

A
0 are strict. Let C be a differential graded category. Then the

quivers A⊠ C and A⊡ C = (A[1]⊠ C)[−1] are isomorphic via degree 0 map

ϕ =
(
A⊠ C

s⊠1→A[1]⊠ C
s−1

→ (A[1]⊠ C)[−1]
)
.

We claim that this is an isomorphism of differential graded categories

ϕ : (A⊠ C,mA
1 ⊠ 1 + 1⊠ d,κ · (mA

2 ⊠ µC))→ (A⊡ C,mA⊡C
1 ,mA⊡C

2 ),

where composition in A⊠ C is

(A⊠ C)⊗ (A⊠ C)
κ→ (A⊗A)⊠ (C⊗ C)

mA
2 ⊠µC→A⊠ C.

Indeed, ϕ is a chain map,

ϕmA⊡C
1 = (s⊠ 1)s−1sbA⊡C

1 s−1 = (s⊠ 1)(bA1 ⊠ 1− 1⊠ d)s−1

= (mA
1 ⊠ 1 + 1⊠ d)(s⊠ 1)s−1 = (mA

1 ⊠ 1 + 1⊠ d)ϕ : A⊠ C→ A⊡ C,

compatible with the composition:

(ϕ⊗ ϕ)mA⊡C
2 =

[
((s⊠ 1)s−1)⊗ ((s⊠ 1)s−1)

]
(s⊗ s)bA⊡C

2 s−1

= [(s⊠ 1)⊗ (s⊠ 1)]κ(bA2 ⊠ µC)s
−1 = κ[(s⊠ s)⊗ (1⊠ 1)](bA2 ⊠ µC)s

−1

= κ(mA
2 s⊠ µC)s

−1 = κ(mA
2 ⊠ µC)ϕ : (A⊠ C)⊗ (A⊠ C)→ A⊡ C.

Since the compositions in A⊠C and A⊡C are identified by ϕ, the identity morphisms of
A⊠ C are mapped by ϕ to identity morphisms of A⊡ C.
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pp. 151–190. MR 2275593

[Kon95] Maxim Kontsevich, Homological algebra of mirror symmetry, Proc. Internat.
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7, U.F.R. de Mathématiques, 2003, arXiv:math.CT/0310337.

[LM06a] V. V. Lyubashenko and Oleksandr Manzyuk, Free A∞-categories, Theory
Appl. Categ. 16 (2006), no. 9, 174–205, arXiv:math.CT/0312339. MR
2223034

[LM06b] , Unital A∞-categories, Problems of topology and related questions
(V. V. Sharko, ed.), vol. 3, - Proc. of Inst. of Mathematics NASU, no. 3,
Inst. of Mathematics, Nat. Acad. Sci. Ukraine, Kyiv, 2006, arXiv:0802.2885,
pp. 235–268.

[LM08a] , A∞-algebras, A∞-categories and A∞-functors, - Handbook of Algebra,
vol. 5, Elsevier Science Publ., North Holland, 2008, pp. 143–188.

[LM08b] , A∞-bimodules and Serre A∞-functors, Geometry and Dynamics of
Groups and Spaces (Mikhail M. Kapranov, Sergiy Kolyada, Yuri I. Manin,
Pieter Moree, and Leonid Potyagailo, eds.), - Progr. Math., vol. 265,
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ometry and Mathematical Physics, - Contemp. Math., vol. 431, 2007, suivi
d’un appendice par B. Keller, Le dérivateur triangulé associé à une catégorie
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