Pretriangulated A_{∞} -categories. Corrections

Yuri Bespalov¹, Volodymyr Lyubashenko² and Oleksandr Manzyuk³

September 24, 2023

 $^1 \rm Bogolyubov$ Institute for Theoretical Physics, Metrologichna str., 14-b, Kyiv 143, 03143 Ukraine; bespalov@imath.kiev.ua

²Institute of Mathematics, NASU, 3 Tereshchenkivska st., Kyiv-4, 01601 MSP, Ukraine; lub@imath.kiev.ua

³Institute of Mathematics, NASU, 3 Tereshchenkivska st., Kyiv-4, 01601 MSP, Ukraine; manzyuk@mathematik.uni-kl.de

Section 1.9 "Synopsis of the book". A multicategory C is called *closed* if (citation added): A multicategory C is called *closed* (cf. [Lam69, p. 106]) if

8 lines before Proposition 1.19: 'More explicitly, the component of degree 1 of the graded k-module $A_{\infty}(n)$ ' has to be 'More explicitly, the component of degree 0 of the graded k-module $A_{\infty}(n)$ '

Above Proposition 3.6: The injection $\operatorname{Par} \lambda_{\mathcal{PMQ}}^{\phi}$ is not split in general. Proof of Theorem 3.24, bottom of page 86: Both $\otimes_{\mathcal{V}}^{I \sqcup 1}$ should be $\otimes_{\mathcal{V}}^{J \sqcup 1}$.

Before Definition 4.7 of a closed multicategory: The definition of a closed Set-multicategory was first given by Joachim Lambek [Lam69, p. 106] in an equivalent form to the following /Definition 4.7/.

Equation (10.28.2): Both \mathcal{B} should be \mathcal{A} .