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1.Unitary representations of the infinite-dimensional groups and the Ismagilov
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2. The orbit method for infinite-dimensional groups.
3. Von-Neumann algebras and infinite-dimensional groups.
4. Representations of the braid groups and of the quantum groups.

1. It is well known that a general approach towards construction irre-
ducible representations of infinite-dimensional topological groups
does not exist. We try to develop such an approach using dynamical sys-
tem and the ergodic theory. Let (X,B) be a measurable space and let
Aut(X) denote the group of all measurable automorphisms of the space X.
With any measurable action α : G → Aut(X) of a group G on a space
X and a G-quasi-invariant measure µ on X one can associate a unitary
representation πα,µ,X : G → U(L2(X,µ)), of the group G by the formula
(πα,µ,Xt f)(x) = (dµ(αt−1(x))/ dµ(x))1/2f(αt−1(x)), f ∈ L2(X,µ). Let us set
α(G) = {αt ∈ Aut(X) | t ∈ G}. Let α(G)′ be the centralizer of the subgroup
α(G) in Aut(X) : α(G)′ = {g ∈ Aut(X) | {g, αt} = gαtg

−1α−1
t = e ∀t ∈ G}.

The following conjecture has been discussed in [20,22,24, CV].

Conjecture 1 The representation πα,µ,X : G → U(L2(X,µ)) is irreducible
if and only if

1) µg ⊥ µ ∀g ∈ α(G)′\{e}, (where ⊥ stands for singular),
2) the measure µ is G-ergodic.

This conjecture is known as the Ismagolov conjecture, in the case when
X = G̃ is a complition of the group G in a suitable topology. The corre-
sponding representation we call regular. Now this conjecture is proved for
a lot of infinite-dimensional groups, for example for inductive limit BN

0 (or
BZ

0 ) of nilpotent [5,7,14,CV], solvable [25,CV] and simple groups [24,31,CV],
for the group of a circle diffeomorphisms [8,CV] etc. Whether it holds in
the general case over the field C is an open problem. We have construct
the so-called quasiregular representations of the group BN

0 (k) of infinite up-
per triangular matrices with coefficient in a field k = C in [19,20,22,CV]
(resp. in a finite field Fp in [30,CV]) and give the criteria of the irreducibility
and equivalence of the constructed representations. The new phenomenon is
discovered: the Ismagilov conjecture in not valid in the case of the field Fp.
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2. Unitary representations of the infinite-dimensional nilpotent
group and the orbit method. Let Ĝ be the dual of the group G. Our
aim is to describe Ĝ for G = lim−→n

Gn where Gn = B(n,R) is the group of all
n× n upper triangular real matrices with units on the principal diagonal.

We can consider also G̃ = lim←−nGn. The group G is the group of infinite
matrices of the form I+x where x is finite (resp. arbitrary) upper triangular

matrix. It is shown in [30,CV] that Ĝ ⊃
⋃
n Ĝn = ˆ̃G, but Ĝ \

⋃
n Ĝn 6= ∅.

Namely Ĝ \
⋃
n Ĝn 3 ”regular” and ”quasiregular” representations of the

group G (see definitions in [20,28,CV]).
One may use Kirillov’s orbit method [5, 6] to describe Ĝn. For infinite-

dimensional nilpotent group G there are no orbit method. We would like to
develop the orbit method in this case.

The basic result of the method of orbits, applied to nilpotent Lie groups
Gn, is the description of a one-to-one correspondence between two sets:

a) The set Ĝn of all equivalence classes of irreducible unitary representa-
tions of a connected and simply connected nilpotent Lie group Gn.

b) The set O(Gn) of all orbits of the group Gn in the space g∗n dual to
the Lie algebra gn = Lie(Gn) with respect to the coadjoint representation.

In [5, 6] it is proved that all irreducible representations Ĝn are obtained as
induced representations IndGn

H Uf,H associated with a points f ∈ g∗n and the
corresponding subordinate subgroup H ⊂ Gn. The induced representation
IndGn

H Uf,H is defined canonically in the Hilbert space L2(H\Gn, µ).
A. Kirillov [6], Chapter I, §4, p.10 says: ”The method of induced repre-

sentations is not directly applicable to infinite-dimensional groups (or more
precisely to a pair G ⊃ H) with an infinite-dimensional factor H\G)”.

Firstly we need to define the notions of induction in the case when
the space H\G is infinite-dimensional. Since the corresponding homoge-
neous space H\G is infinite-dimensional, the unique G-quasi-invariant mea-
sure on H\G ( existing in the finite-dimensional case) should be replaced

by some G-quasi-invariant measure on the completion H̃\G of the initial
space H\G in a certain topology. Hence the procedure of induction will
not be unique but nevertheless well-defined (if a G-quasi-invariant measure
exists). So the uniquely defined induced representation IndGHUf,H in the
Hilbert space L2(H\G, µ) should be replaced by the family of induced rep-

resentations IndG̃,µH Uf,H in the Hilbert spaces L2(H\G̃, µ) corresponding to
different completions G̃ of the group G and different G-quasi-invariant mea-
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sures µ on H\G̃. Secondly the remarkable fact is that it is sufficient to
consider only the Hilbert completions of the initial group G and the spaces
H\G. The Hilbert-Lie groups appear naturally in the representation the-
ory of the infinite-dimensional matrix group. Every unitary representation
of the group GL0(Z,R) = lim−→n

GL(2n − 1,R) can be extended by continuity
to a unitary representation U2 : GL2(a) → U(H) of some Hilbert-Lie group
GL2(a) depending on the representation [4,CV] .

Let us denote by B2(a) the completion of the subgroup BN
0 ⊂ GL0(Z,R)

in the Hilbert-Lie group GL2(a). Since BN
0 =

⋂
a∈AB2(a) (see [4,CV]) we

conclude that B̂N
0 =

⋃
a∈A B̂2(a). It leaves to describe B̂2(a). The problem

of developing the orbit method for the Hilbert-Lie group could be more easy,
since the corresponding Lie algebra b2(a) is a Hilbert-Lie algebra the pairing
and the dual b2(a)∗ are well defined.

3. Von-Neumann algebras and infinite-dimensional groups. The
first example of a non type I factors appeared in the work of J.von Neumann
as the second commutant of the regular representation if the discrete ICC
group. In this case the von Neumann algebra is II1 factor. It is natural to
study the von Neumann algebra, generated by the representations of infinite-
dimensional groups. Let µb be the infinite tensor product µb = ⊗1≤k<nµbkn

of
one-dimensional Gaussian measure dµbkn

= (bkn/π)1/2 exp(−bknx2
kn)dxkn on

the group G̃ = BN (resp. G̃ = BZ), such that (µb)
Rt ∼ µb ∼ (µb)

Lt , ∀t ∈ G.
The right TR and the left TL regular representations of the group G = BN

0

(resp. G = BZ
0 ) are naturally defined in the Hilbert space L2(G̃, µb), T

R, TL :
G→ U(L2(G̃, µb)). Let us denote by AR

G and by AL
G the corresponding von-

Neumann algebras, generated by the right and the left regular representations
AR
G =

(
TRt | t ∈ G

)′′
, AL

G =
(
TLs | s ∈ G

)′′
(see [12,13,CV]).

Problem 1. Describe the commutant
(
AR
G

)′
and find the condition on

the measure µb when the corresponding von-Neumann algebras AR
G and

AL
G are factors.

Theorem 2 [12,CV] We have
(
AR
G

)′
= AL

G if µb(x
−1) ∼ µb(x). Operator of

the canonical conjugation Jµ is defined by (Jµf)(x) = ∆
1/2
µ (x)f(x−1), JµT

R,µ
t Jµ =

TL,µt ∀t ∈ G, where ∆µ(x) = dµb(x
−1)/dµb(x) is the modular operator.

Theorem 3 [13,CV] Representation TR,L(t, s) = TRt T
L
s , T

R,L : BN
0 ×BN

0 →
U(L2(BN, µb)) is irreducible if SR,Lkn (µb) =

∑∞
m=n+1 bkm/S

L
nm(µb) =∞, where

SLkn(µb) =
∑∞

m=n+1 bkm/bnm.
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AR
G is factor if the representation TR,L : G × G → U(L2(G̃, dµb)) is irre-

ducible [13,CV]. If (µb)
Rt ∼ µb ∼ (µb)

Lt , ∀t ∈ G then AR
BZ

0
is factor if

SR,Lkn (µb) =
∑∞

m=n+1 b
2
km(bkm + SRkm(µb))

−1(bnm + SLnm(µb))
−1 = ∞ where

SRkn(µb) =
∑k−1

r=−∞ brn/brk [17,CV].

Problem 2. Determine the type of the corresponding factors. We
prove that the corresponding factor is III1 for the case of the group BN

0

[34,CV]. For the group BZ
0 it is proved in [29,CV] (work in progress in col-

laboration with I.Dynov).

4. Representations of the braid groups Bn and of the quantum
groups. Our aim is to describe the dual B̂n of the braid group Bn.
It is natural to compare the representation theory of the symmetric
group Sn and of the braid group Bn. We know almost everything about
representation theory of the symmetric group Sn. We know the description
of the dual Ŝn in terms of Young diagrams. We know even the Plancherel
measure on Ŝn. The Young graph explains how to decompose the restriction
π |Sn−1 of the representation π ∈ Ŝn, etc.

The braid groups Bn are defined by the generators σi, 1 ≤ i ≤ n−1 and
by the relations σiσi+1σi = σi+1σiσi+1, σiσj = σiσj for | i − j | ≥ 2. The

dual B̂n of the group Bn is known only for the commutative case when n = 2.
In this case B2

∼= Z hence B̂2
∼= S1. The representation theory for the braid

groups Bn is much more complicated than for Sn. The reason is the following.
In the case of the group Sn we have the essential (quadratic) relation σ2

i = 1,
hence Sp (π(σi)) ⊆ {−1, 1}. In the case of the group Bn we do not have these
conditions. Since σiσi+1σi = σi+1σiσi+1 we have Sp (π(σi)) = Sp (π(σi+1)),
but the spectra Sp (π(σi)) may be almost arbitrary.

The Hecke algebra Hn(q) see f.e. [2] appears as the factor algebra of
the group algebra of the group Bn subject to the following quadratic relation
σ2
i = (q − 1)σi + q, 1 ≤ i ≤ n − 1, hence Sp (π(σi)) ⊆ {−1, q} and Hn(q) ∼=

C[Sn]. This is a reason why the representation theory of Hecke algebras is
well developed.

The next step is to impose the polynomial condition pk(σi) = 0 on the
generators σi where k is the order of the polynomial pk(x). For k = 3 the
corresponding algebra is called Birman–Murakami–Wenzl type algebra
or simple BMW algebra see [9, 12] (see also [10] ) and so on.

The situation becomes much more complicated if no additional conditions
on the spectra are imposed. We shall study this general case.
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In [11] I.Tuba and H.Wenzl gave the complete classification of all
simple representations of B3 for dimension ≤ 5. In [1] E.Formanek et al.
gave the complete classification of all simple representations of Bn for
dimension ≤ n.

In the work [32,CV] with S.Albeverio we have constructed a
[
n+1

2

]
+ 1

parameter family of irreducible representations of the braid group B3 in
arbitrary dimension n ∈ N, using a q−deformation of the Pascal tri-
angle. This construction extends in particular results by S.P. Humphries [3],
I. Tuba and H. Wenzl [11], and E. Ferrand (2000). The irreducibility and
the equivalence of the constructed representations is studied. For example
the representations corresponding to different q and n are nonequivalent.

There is a striking connection [33,CV] between these representations
of B3 and a highest weight modules of the quantum group Uq(sl2), a one-
parameter deformation of the universal enveloping algebra U(sl2) of the Lie
algebra sl2. The starting point for all these considerations is some homomor-
phism ρ3 of the braid group B3 into SL(2,Z) :

ρ3 : B3 7→ sl2
exp7→ SL(2,Z), σ1 7→ ( 0 1

0 0 )
exp7→ ( 1 1

0 1 ) , σ2 7→ ( 0 0
−1 0 )

exp7→ ( 1 0
−1 1 ) .

The constructed representations may be treated as the q−symmetric
power of this fundamental representation or as an appropriate q−exponen-
tial of the highest weight modules of Uq(sl2).

We plan to generalize these connection between the representations
of the braid group Bn and the highest weight modules of the Uq(sln−1) for

arbitrary n using the so-called reduced Burau representation b
(t)
n see

c.f. [2]. We note that in particular ρ3 = b
(−1)
3 .

Let g be the Lie algebra defined by a Cartan matrix A and let B be
the corresponding braid group. Denote by U(g) the quantized enveloping
algebra of g over the field C(v), and let V be the integrable U(g)−module.
In [8] G. Lusztig defined a natural action of B on V which permutes the
weight space of V according to the action of the Weyl group on the weights.
This rather general but different approach allows us also to construct the
irreducible representations of the braid group B (see [7]).
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