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Introduction

Regular representations play an important role in the theory of representations
of locally compact groups. The decomposition of a regular representation into
irreducible representations contains all the irreducible representations for finite
and compact groups and many irreducible representations of locally compact
Lie groups. In the case of locally compact groups a regular representation itself
is always reducible, since along with a right regular representation there exists a
left regular one commuting with it. It is known (see Dixmier [5], 1969) that the
following theorem holds for unimodular groups. .

Theorem A. The commutant of a right regular representation is generated by
operators of a left representation, and the commutant of a left representation by
operators of a right representation.

Therefore it is natural to wish to construct an analogue of the reguiar
representation in the case of infinite-dimensional groups and to investigate its
properties. By an analogue of a regular representation (right or left) of an
infinite-dimensional group G we mean homomorphisms

UR UL G U(s# = L, (G, G, dy):
3 f(x) = (UMD Nx) = (dp(xt) [du(x)) '*f (x1) € 2,
# 3 fx) > (UHOS Nx) = (du(e =" x) jdu(x)) Pf(t %) € #,

* Previously unpublished, Manuscript received 27 September 1990, Translated by J. Danskin.
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= where Grs a topologma_

B . space ¢, where ¢’ is the space conjugate to dJ appeared in the 1961 monograph
' [7, by Gel’fand and-Vilenkin.-

*  Regular representatlons R — U(LQ(Rm R, dw)) of the commutatlve grouP , R
R of finite sequences. of real numbers, connected w1th various Rﬁ“—quam-mvan-"-
ant measures: on the group R®=R'xR'x > RP, were studred by '

Samoilenko in the monograph [18]

The so-called energy representation £ of the group C“’(X G) of smooth

mappings with compact support of a Riemannian manifold X into a-compact
semisimple Lie group G was studied in the papers [8, 1, 21,9, 2, 3]. Ismagilov
introduced that representation in [8] for G = SU2 and X a-domain in R". In the

general case it was introduced in [1] and [21]. The 1rreduc1b111ty and mutual-

nonequivalence of such representations for various metrics were first proved in
[8] in the case d = dim X = 5 and G = SU,. In [21] Vershik, Gel'fand and Graev
proved the irreducibility and nonequivalence in the case d 2 4 and G a compact
semisimple Lie group. In [2] Albeverio, Hoegh-Krohn, and Testard proved
irreducibility for d = 3, and, under additional conditions, for d = 2. Reducibility
for d =1 was proved in [2] and [9].

The connection with the regular representation in the case d = 1 was noted in
the papers [1], [2], [3], [9]. In [1] Albeverio and Heegh- Krohn proved that, in
the case x = [0, /), the energy representation E is unitarily equivalent to the right
~ regular representation

URCo([0, 1), G) - U(L,(C(0, 1), G), CH{10, 1, G), dW)),

where C([0, 1), G) is the space of smooth paths and dW is the Wiener measure
on C([0, #), G), defined by the left Brownian motion on G. In [9} Ismagilov
- proved, for the group C([0, 1],.G, that along with a right representation U*.
equivalent to the energy representation E, there exists a left representation U".

This proved the reducibility of the energy representation in the case d = 1. We
have already noted that the authors of [2] had proved . this fact as well. -
There they also studied the right and left regular representations U®, U* of =

the groups CP(R', G) and C*=(S', G). Together with Vershik, they proved
_ in [3] that the representations of U% and U*, constructed in [2], are factor-rep-
resentations, and that Theorem A holds for them They also presented expan-
sions of. the representatlons Ur and UL into dlrect integrals of u-reduclblc
_ representatlons . .

- up or a topologlcal G-spaee contalmng G as a dense' Y
subgroup G c G' and s a qUam-mvanant measure on’ Sl o

. & It : seemns- “that . the first "analogue to .a regular representatron.:
o ¢ -, U(L2(¢ b, di)) of an mﬁmte—drmensmnal commutative. group of a kernel
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Okamato and Sakurai-in [141 constructed left and right representations U*
nd U by the formula
T g ey O(E)—>U(9f Lz((E®E)* O(B), dv))

' .for the group O(E) = lim O(m), where E ~ Ry, O(m) is the orthogonal group in
C R™(E ®E)*~M is. the space of real matrices of infinite order, and v is the

O(E)-bi-invariant standard Gaussian measure on (E ® E)*, and showed that
the representation .

O(E) x O(E) 2 (&1, 82) = 0.4(81, &) = U(8)U*(g2) € U(#)

. decomposés into a countable direct sum of irreducible representations. In [15]
they carried ‘the results of [14] over to the unitary group U(E), where

E=C=(X,R) is the space of real C™-functions on the compact Riemannian
manifold X, and U(E) the goup of invertible operators on E which are
isometries in the space L,(X). In {16], Pickrell constructed a left regular

representation
' U™ U(eo) = UL (M, U(c0), dv))

of the group Ufoo) = lim U{m), where M, is the space of all complex miatrices
of infinite order and v 1s the standard Gaussian measure on M., and showed
that U may be decomposed into a direct sum of irreducible representatrons In

[13] Nessonov constructed a right regular representation
UR By - U(L,(B*®, BY, dv))

of the group B of matrices of the form x =exp ¢ + s, where ¢ is a diagonal
matrix with a finite number of nonzero real elements. s is a finite complex
strictly upper-triangular matrix, B= is a group of arbitrary matrices of the form
x=expt+s, v is the standard Gaussian measure on 5=, and proved the
irreducibility of UR,

In [10] we proved the existence of a family of Gaussian measures pf on the

~group B* of upper-triangular real matrices of infinite order with units om the

principal diagonal, having the property (B): A right action of the group B is
admissible and ergodic, and a left action is inadmissible. We constructed a family
of right regular representations

. TR* B — U(L,(B=, B, dut))

of the group.B;‘;" of finite upper-triangular matrices; B < B*. R. S. Ismagilov -

" stated the following conjecture: For these representations, property (B) is equiva-

lent to irreducibility. G. 1. Ol'shanskil proposed. the following: To nonequivalent
measures there correspond nonequivalent representations. The objective of this



. “paper 15 the_ proof of thicse ‘Gor
3 {pr'odlictf-,mezisixfes; (see also ;[11])_.: E

.t

- In §1, we construct on' the group B> a family of Gaﬁssian’measurés u“; that’

244 A V.KOSYAK' . b (. L

-

. "It is likely that these -conjectures, are valid for . other inﬁnitéidiiﬁeiisiqnal

" groups, and for measures which are not necessarily Gaussian., The question as

-to ther decomposition of ‘a. reducible regular representation of thé group By

remains open. T

have property (B) and a family of right regular representations T'®* of-the group

Bg. In §2 we show that property (B)is equivalent to the irreducibility of T%%.
The proof of that irreducibility is based on the By-ergodicity of the measure uf
and on the fact that the operators of multiplication by an independent variable
may be approximated by the generators of one-parameter groups. In §3 we
prove that to nonequivalent measures there correspond nonequivalent represen-
tations. The proof is based on the calculation, using partial Fourier transforms
on the group B=, of the spectral measures of a family of commutative sub-
groups BS'mc By, meN, and on a comparison of those spectral measures
using Hellinger integrals. In §4 we carry out the proofs of some technical
lemmas. ' o

We would like to express our deep gratitude to R. S. Jsmagilov for turning
his attention to this hypothesis, and for his constant emcouragement and
observations, which essentially simplified some of the proofs. Also we thank G.
L. Ol'shanskii for his interest in the work and useful discussions of these
questions. '

§1. Regular representations

Suppose that Bg is the group of finite upper-triangular real matrices of infinite
order with units on the principal diagonal, B~ the group of all upper-triangular
matrices with units on the principal diagonal, and b its Lie algebra, i.e. the set
of all strictly upper-triangular matrices. If one denotes by E,., k,n € N, the

_ matrix units of infinite order, then the elements of the group By (resp. B*) are

matrices I + X, X = 3 s < n XknEsn, Where only a finite number of elements x,, are
nonzero (the x,, are arbitrary), ’ '

+ bm = {x = Z xk"Ek"}.

k<n

Suppose that B(m, R) is the subgroup of 'Bf{’ of matrices of the form

B(m!R) = {t =I + Z . 'xknEkn} .

k<wnsm

‘Gomjctures for the group, B and. Gaussian .
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' Obviously’. B=lim B(mi; R).- We will equip BF with the inductive limi
, topology.: .7 .." ™ o |

“+Since the gitoup G =B is not locally c_oxi;pact, there is no G-invarian

. mieasure on it (A. Weil [22]), nor any G-quasi-invariant measure either (Da

_Xit_ig’X—ia [23]). Accordingly, some kind of analogue has to be constructed o

" some completion G .of the group G. If one chooses the group B* to serv
in the role of such a completion G, then on the group B= there already exis

many different BP-quasi-invariant measures, for instance Gaussian measures
There is no basis whatever for giving preference to any of those measures
Therefore it makes sense to consider all measures or all measures in a certai

. class.

It is conveniént to construct the measure first on the corresponding Li
a!_gebra b=, and then to transfer it to the group B*™ using the exponentia

 mapping.

We will be dealing with matrices b = (b, )x <, Of positive numbers. We wil
denote the set of such matrices by #. We define a Gaussian measure y, on th
space b as follows:

. b -
dlub (‘x) = ® dp'kn (xkn) = ® —kn exp( _bknx.%n) dxkn-
k<n k<n 3
Let u¢ be the measure on B* which is the image of the measure y, under th
mapping p:

b sxp(x)=1+xeB”  pf(d)=p{p™'(4).

In fact x =¥, ., X, Ey, are the canonical coordinates of the second kind fo:
p(x) = I + x. Indeed, write x,, = 72 X4 Ern. Then obviously
p)=T+x = (T +x,) (I + 1) +x5)
‘ =" exp(x,) - exp(Xs) exp(x,).
Copsider the ﬁght and left actions R,, L, of the group By on B*:
R.s=st, 5E B°°;

Ls=t1s, t € BY,

Denote by (u£)®, (u£)% the images of the measure pf under the mapping

‘R;, L,: B* - B>, It turns out that the measure u% is always B2-right-quasi-in

variant (Lemma 1.1), but it is not always Bg-left-quasi-invariant (Lemma 1.2)
Therefore we can construct a family of analogues of the right 7% and left T-



(if:they exist) reguldr representations.of the group B in the space’. - -
Cnn U UHG) SL@Bdug), | bed . L

#B) 2109 = @000 = (D) s €y

and

O 216 - 100 ~(LCD) - < o). 1)

Theorem 1.1. The right regular representation T®* of the g}'oup BE isirre-

ducible if and only if no left shifts L,, t € B®, are admissible Jor the measure ug,
bed. ‘ '

The proof of this theorem will bé given at the beginning of §2 below.

We constructed the respresentations (1.1) and (1.2) in [10], but we did not
consider the question of their irreducibility. The analogue to the representation
TR for the standard Gaussian measure tr, I=(b i <n» b, =1, was con-
structed independently by N. 1. Nessonov [13], who proved its irreducibility.
However, Nessonov’s method, based on the Fourier transform and the law of
large numbers, did not include the case of an arbitrary b € &.

Lemma 1.1. For t € BY the measures (pﬁ)‘"’r and uf are always equivalent.

Proof. Under the transformation R, : B= — B> only a finite number of coordi-
nates change: )

Bmax =I+ Z'xknEanRl(x).=I+ 2 i’J’m-E)‘n'n

k<n k<n
where : ol . ..
iknzxkn'l'. Z xkrtm+tkn ifk<"SN=N(t)!
. r=k+1 . :
Kien = Xjn ifn>N.

It follows that the question reduces to the equivalence of two nondegenerate
Gaussian measures infinite-dimensional space. But then they are- obviously
" equivalent because each of them is equivalent to Lebesgue measure.

o
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ose that . & B.‘;"'. Then the measures (u£)* and p% are equiva-

_ -
Shoa®= Y 5 Im <o, " keN, (1.3)
m=k+2V%k+1m
Proof. - We write -
' ' tus1=I+tE,,,, keN, teR

We will show- that the condition (U)o ~ pg is equivalent to (1.3). Indeed,

~since .
L’k;+l(x) =
0 l,t 0. g - 0 1 Xek 41 Xt 4 2 Xiem
¢ -~ 01490 « 0 - 6 - 0 1 X w1kt Xt tm
0 1 xpyr+t Xppro b ! Xeyikso Xem 1 Xppim
N 0O - 0. i X le+2 Xk + 1m
then gfux +1 is a product measure,
Ly pPYLne—1V. L — ® L’kk+1( )
Be' = {(uf) D g +1(X) = B (Xm) @ Hy B+t (e 11
u:;:km+l

®( ® (tiom @ By 4 1)tk +1(X g+ Im))‘
m=k+2

The densities of its factors relative to the factors of the measure y, are equal

o :
] di L’kk-i-i . . )
) (di;k_tl—) (rre+1) = €XP(— bk 1 (g1 + 07+ b 1 X0 41 ),
*kk + 1
d(ﬂkm ® e im)L"‘-" +1

: s’ m) =ex ——b,,,xm—i—tx‘ )2+ bpnxi).
.‘?(ﬂkm®#k+1m) ka Xie g 1m) P(— B (s, %+ o) km Xk

" In view of the criterion for equivalence of product measures ([20], §16, Theorem
1), the condition pfux +1 ~ g, is equivalent to the' convergence of the following
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. product]]
t;m. T
H J(dpkk-i-) (x"'”')dp"“l(xkkﬂ)
Al ® Mic s 1m) 7. )m R
X - i O Mk v 1) 4,
'""I_kl"'zJ;z(d(ﬂkm@ﬂk_,_lm) e+t '(ka’)-_ck.-a-]m)‘. ;

x d(ﬂkm ® B+ lm)(kas Xy im)

b 12 ) S o
= ("—’;"—‘) L‘,exp(—%(bm.;(xm; + 02— by 1 Xk 1)

2 ' B bimBr 4 1m Y
xexp(_bkk+lxkk_+l)dxkk+l H T S—

meak 42 T
[ eXD(—Aun G+ 501 = i 1)

2 2 ‘ . '
X exp( _bkmka - bk + l.mxk_-l- lm) dka dxk+ Lm

_ b B (Besim P

S G DRGNS A S}

12

Y oo. ’ .
Ay = exp(_bkk%) 1 _bk_mb_

=k+2 km
M bk+1m+t27

L)
= exp| ——&+1" 4= .
. p( 4 mﬂ-{d 4 bk+|m

Thus the, convergence of the product [1 is equivalent to the convergence of
the series

Sk = Y  bembilime
‘ m=k+2 ]
Since the one-parameter groups
G+ = {ti+1 € BE| L r =T+ By 1t € Rj}:' k € N

generate the group B, then the condition that Hgt~ s t € B, is equwalent
to the condition that ufu +1 ~ p,, k € N, which proves the ]emma.
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" IRREDUC[BIL

Rema:k 1 1 From what we have provcd it follows in partlcular that the

Acondmons S,,,=+ l(b) <@, ke N and

(b) $  bbil<w, kneN, k<n,

men+]

are equlvalent

' Lemma 1.3. The measure ,ub, given on B*®, is By-ergodic relative to the right
ct:on .

Proof. It is well known that any measurable function on R* with the standard
Gaussian measure, inivariant under any change of the first coordinates, coincides
almost everywhere with a constant function ({19, §3, Corollary 1). Therefore

‘the proof follows from the fact that the measure u, is a tensor product of

measures, and the fact that the subgroup B(m, R) of the group B$ acts
transitively on the subgroup B(m, R) = B=.

§2.. Irreducibility of representations

The proof of the irreducibility of a right regular representation is based on the

ergodicity of the measure pf relative to right shifts by elements of the group B,
and on the fact that the operators of multiplication by the independent variables
may be approximated by the generators of one-parameter groups.

Proof of Theorem 1.1. The necessity is obvious. We will prove the sufficiency.
Suppose that (ug)* Lug, t € BP. Then, by Lemma 1.2,
| L) =, kneN, k<n

We denote by W(b) the set of selfadjoint or skew-selfadjoint operators in
#(b) adjoined to the algebra W(b) = (T#* |t € BF)", and show that

W(B) 2 {Xins Opg — bpgXpg |k <n,p <g, k,n, p,q € N}.

. We give the notation for the generators of the right shift A%, = AR:

Aft = jT’”’(I+tEk,,) . kneN, k<n
=0

We ca]culate dlrectly that .

E xmk(amn bmnxmn)! Xex = 1! k < n, aku = a/akkn (21)

m=]
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A .
.o

S s By b [ <1 p <g3mymop g eNY S W)

W w111 c‘arry;(.)ut.thé proof by induction.
" . Basis of the induction. We-will prové that . "’ o

_ - {xlza Ok = blkxl_ka ‘azk'+| +b2k-5.- 1-7.‘72k+ k=2, 3:--_- : }C W(b) . 7
Indeed, the opefator x;, miay be ‘approkiméted by a linear'cqmbirigtion of
operators AR A%,, n > 2. For the proof of this we use a method of calculation
-due to R: 8. Ismagilov (Lemmas 2.2-2.4). The original proof of Lemmas 2.2
and 2.4 was more complicated (see [11]).

Lemma 2.2. The operator x,, may be approximated by a linear combination of

operators AT AR if and only if

= b _

012(b) = Z

X n=3 bZn B
Proof. We calculate the deviation of x,,1 from the linear span of the vectors
AL AR Y, N, <n < N,. Since
ATy =8, — bix, A% =x12081n — b1aXiy) + (85, — bypX2,)
(see (2.i)), then
A anfn l = xlz(b%nx%n - bln) + blnbiuxlnxbr
= =D X1z + biaXiV1n + b1abonX1n X, (2.2)

We have made of a change of variables:

1 1 1
2 _f.2 _ _ 1.
xln_(xln 2b1n)+2b1n Yin +2b|n ]
then : '

» L,
J}’:adl‘b=0 and Jy%nd#a=%€-

We multiply both sides of (22) by £, NySns<N, such

that —3 32 4 b,,2, =1, and sum on n:

n=, n="N,

Na i Na . "Ny .
2 LATAS I =xp+ Y tbhLxoy,+ ) bnbrab2y X1 X2 -
n=MN, ) E .
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| We write

,:.: K ‘J-vz‘. . . R | - Nz . . S -
wtl(b) =( ZN lnAﬁlAiqn - le) 1= ZN tnb%nxfz-yln + ZN tubianr:xlann'
: =4 n=N;p . =N .

. Since-all the terms are uncorrelated, then

ey + e

' 2 _
Il“’*’-@" - 4123, * 2b,,2b,,

= =
Mgt

2

Nz
:Z tﬁ[b{',, +b1nb2n] = Z trzx)’u'
. r=N, n=NnN,
Now we choose the ¢, so as to minimize w,,(b). It is easy to see that

Nz Na My bZ -1
i =N,

n=N, n=Ny In

the minimum being taken on at

P N\k=n, Yk
Hence, with the optimal choeice for ,, we get

Na B2 \—1!
||co,2(b)|f2=4( ) éﬂ) .

n= N, ?u

We will require that }'=_, b2 vy = oo, i.e.

- 2 o 1

z 1n

_ < bln__ .
rr=3rb%n+blnb2n_n§31+b2n'b;rl_w¢n§3b2n“w. D

Thus"
X € W(b), O —byxy =Af e W(b), k>1,
on —byxy = A — X120 —buxyy) € W(b), k>2.

Now: we will show that the convergence YAt t,A R AR > x, of the self-

adjoint operators Anw, =22 n, 1,45 4%, (the selfadjointedness of the opera-
tors A4y, v, follows from the commutation relations [Af,, Af] =0, n,qg =3,

the skew-selfadjointness A4 Ri(AR)*=—AR and the fact that the t, are real)

lo the. selfadjoint operator A = x,, holds in the strong resolvent sense. By

Theorem VII1.25 of {17], it suffices to show the convergence Ap, n,f— Af for

-any f e D, where D is a common essential domain for all the operators Ay, v,
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f

and’ 'A;‘For the roler of D
combmaucms of arbitrary monormals

x“ = x"‘*x""x“” : x",‘;c"x“'z* e cx,, = 0, Lo,

i é ] Obwously D is'a common éssential dormain for the operators AN ['N2 and

k A, since D consists of analytic vectors for-the operators A, n, and-4. Suppose a
that f € D. Since f is.cylindrical, then there emsts an n, € N such that fdoes not -

depend on the variables x,;, xs,; for n >
Suppose that N, > n,. Then :

N:
(xlz_ f tARAR)I“
n-N;

=|(ma (1 3, neetont.- bl,,))fz

nm N,

2

(- 3 4 G Bhxta =) +bubatioa) ) 1]

-Ny
N .
(' i tnblanHxlann)
1 .

n= .

"z"

2

+ I

2

= |xafI*-

(1— AR b.,,))l

Ny
( ¥ banbatin )1
B = NI

since, by what has been proved,
(x,2 Z 1, ARAR )
=l | (1— 3 L ott,-0)1

will be small for 'appropnate Ny, N,.

2
+ILA? -0,

2

Jloor28) 2=

2z 2

. Na
+ ( Z tnblnblnxlnxh)l

n=N,

The induction step. Suppose that the iﬁclusion
{Xps B <M S P, B = Doy Xy, 1 SRS pym >n} c W(b)
holds. We will show that then
(Xpr1sOprim = bpiimXprim |1 <P+ 1 <m) < W(b).

We will present the proof of this assertion in the form of some lemmas.
It may happen that the operators X, { <k, can 'be approximated, in analogy

with x,,, by operators Af AR, k <n. However, the followmg conmderattonS»

show that thxs is not always p0331ble for .

St()=0, . k<n

':"hoose a dense set cons1stmg of ﬁmte lmear_-. LS
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' Lemma 2 3 The operator Xigy 1 < k may be’ approxzmated by opemtors ARAR,
k<n, rfand only 1f

._a,k_(b)_=' 3 b(z £,

n=k41 F=1lmel

- .
b,,,,,) =00, -I<k.

-Proof, * By formula (2.1),

oL . k
Alﬁ 2121 xﬂ'(ajn - bjuxjn)s Afn = Z xmk(amn - bmnxmn)'
= m=1 )

Therefbre
!

. - k ‘
A#:A l - Z xj[(ajn - bjnxjn) Z xmk(amn - bmnxmn)l
f m=1

i=1

. ! . k
=jzl xjf(ajn - bjnxjn) ("_ Z xmkbmnxmn) 1

m=1
i k
= Z Z bjnbmnlexjnxmkxmn - Z bmn b D -
= = o]
! k i
= EI Z b b ;Ixjn kX + Z bmnxmnxm!xmk z bmnxmlxmk'
= =1 moe m=1
JEm

On making the substitution

1
x?ml = Ve +E— H jymn daub =Oa

we get

{ k !
E Z b ‘b.rrme1 icxmn+ Z bmnymn Xt Xt — Z bmnxm.!xmk-

J=lm=1 me=1
j#m

We multiply both sides of the gquation through by numbers t,, Ny <n £ N,,

~ such that —3372 v byt, = 1. Then

‘N N
djlk(b)==( Z tA nAR — x.rk)1=( 22 LARAR +4 Y tnblnxfn)l

r=N| n= N, Py
=1

L)
= Z tn Z Z b;tbmnxjijnxmkxmn_% Z bmnxmlxmk

nzle . —Im— m=1

|
+ Z bmnymn m.l'xmk +b%nyhrx!kj| -

m=1
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‘»

‘ ,Therefore

' mn . i
I@MMW 23“[2'2155;+4Z4maw“

L AT
‘ R S A B
Nm@WVZF[EE%%+Zb]
= N 1 _;n= )
'.N'," B ‘
= Z ti z z.bjnbmn
n=N, m=1j=1

Using (2.3), we get

EXCIE R

me=1j=1

(z me%)f)“. B

Example 2.1. Suppose that w_eight bW = (b)) . . has the form

U TO R T0 N 1 DA U AV LI (n +2)* )
( b4y bSH. b§l. 2 )—( 1 (n+1)2 1

b=1, k#23

Obviously, SE(6M) =0, k < n, but

0 B S w 1
WO BT LR B

It follows from Lemma 2.3 that for the weight ™ it is not possible to

approximate any operator Xp, I <k, fxuf, k23, by operators AR AR The
operator x,, may however be so approx1matcd It is better to appro:urrtate with
operators of the type

‘(aln - blnxfn)Afni k < n.

Lemma 24, For the approxtmation of the 'variables X, | <k, by the operators

(@i — brxi)AL,, k <n, it is necessary and sufficient that

n=k+.1 7 -—-‘l.m'#t'

] ’ k -1 -
w®= 3 b( 5 b,,,,,) —w; 1<k
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’ (ahl = blnxln)A 1 (ain blnxln) Z mk(amn bmuxm;:)'l

me=|1

= (aln b[u xln) Z Xk ( bmn Xpin ) 1

Z binbmnxmkxln X — b!nxlk

m=1

On making the substitution

1
Xiw =Y + gs
in

_ we get ﬁnally

K
(aln blnxln)Aknl = Z blnbmnxlnxmkxmn + bn?ny!nx[n — %blnxfk‘ (2.4)

m=1,
Now we multlply both sides of equatlon (2 4) through by ¢,, N, <n < N,,
choosing the ¢, so that ‘

Ny

Z b,rntn = —2.

n=N,
Then

Ny
Wy (b):= ( 2 0B — buxp)AL, — x4)1

=N,

Ny Tk
= Z tn [ Z blnbmnxlnxmkxmn + b?nylnxﬂc] L)

) n=pN, ekl
R N A
los® =5 2| 3 i DE§ g S b,
- n=N, m=1,m=#{ Ymk (/3 n=N; m=1

) Accordingly, by formula (2.3),

min{ oo (t;) ||

Na ~1Y 1
z binn } 4(2 b;zn(E bt’n mn) ) .
. n=N| n=N;
We require that ’

o A _|. 0 k . -1
;_'-1 b!zn ( Z ‘blnbmn) = Z b,r,, ( Z bmn+ b!n) = 00, l < k,
= =1 ) n | m=1,
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which is equivalent to

o k -1
ou®) = zlb,,.( 3 b,,.,,) —w, <k o

n=k-+ mm1l mel

However, Example 2.1 shows that, for the weight 5, it is, as before, not
possible to approximate any operator f-sx,f, k3, by operators
(01n — b1pX1n)A - As before, x), can be.

It turns out that for any ¢ =2,3,... there exists a p <gq such that the
variables X,, can be approximated by operators (9,, — b,»X,.)4 X n>q.

Lemma 2.5. Suppose that Skq(b) w0,k=1,2,...,q— 1. Then there exists a
p < q such that ¢,,(b) =

Proof. We will carry out an induction. Suppose that ¢ =3 and
|

l = b
Shp)= Y 7=, Sp®)= Z Py - o,
4b3 b3k

Suppose the contrary, i.e. that

blk

g;(b) = . _Pu < and o, < 0,
() k2=:4 bay + by »(6) = Z 4 b +b3k
From the fact that ¢,,(b) < oo it follows that by, < by, + by, k = kg, s0 that
00 by
d5(b) > —=—— =0,
2(0) kz;cu bk +b3k kazu;cn by + 2by;

since S (b) = 0. The resulting contradiction proves the assertion for ¢ =3.

Suppose that SE,(b) =o0, k=1,2,...,¢ — 1, implies o,,(b) = for some
p<g. We will prove this for g+ 1. Suppose the contrary, i.e. that
Oy 1(B) <00, r=12,...,4 From

- bln

Gige1(B) = 2, 2,,__,_1—<°O
=g+ b
- mgz mn

it follows that &,, <Y%t%b,,, n = n,. We substitute this into G, 11 (B) <0,

r=2...,q. We have

2] g+ 1 -1
0 >0,,,,0)> 3 b,,,(b,,,+‘2 y b,,,,,) . r=23,...,4
n=ny m=2 m#r
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This last'is equivalent to

o +1 -1
0'(1+1(b) = Z bru ( qz bmn) < 0, 2srs= 49

n=g+2 m=2 m#r

while Sk,,_,.l(b) = 00, 2 <k <gq, which contradicts the induction hypothesis,
after the notations bl,, =by, w1 k <n, are adjusted. : O

The following example shows that, for any g, there might be only one p < ¢
with g,,(b) = 00.
Example 2.2, Suppose that b2 =n? 1=k <n, bj}) =1, 1 <k <n. Then
SEBM) =00, k<gq, 0,0P)=w, 6,07 <0, l<p<g

There remains some “adjustment” of the operators (8,, — b, x,)AR,, k <n, in
order that the variables x,, [ < k, might be approximated.

Lemma 2.6. Suppose that SE,(b) =0, k <n. Then the variables Xu, | <k, are
approximated by the operators

where
Afc'l.'""'"’) = z xmk(amn _bmnxmrr)! X = 1:

under an appropriate choice of n,eN, l1<n <k, m¥*n, [#]
leij2=r<k—-2.

Proof. This amounts to a proof of the inductive step. Suppose that the
inclusion
{Xmes B <1 S D3 By = B Xy | L <1 £ p,m >n} = W(b)
is satisfied. We will prove that then
(Xps1sBpstm —BpsimXpsrm | I<p+1<m} < W(b).

For the approximation of x;,,, by the operators (8), — b Xi)Af, 1., in view of
Lemma 2.4, it is necessary and sufficient that

el ptl -1
alp+l(b)= Z bln( E bmn) = 00, l<p+1

n=p+2 mal mapl

In view of Lemma 2.5, one of the seties o, ,(b), I <p + 1, diverges.
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Hence, for some n, <p +1, g, ,.,(b) = o0, i.e. we may approximate X1
by the operators (9,,, — bonXn )AL, .. In view of Lemma 2.5, X,,+1 mMay be

approximated by the operators ,, 41, if and only if
*® r+1 -1
ot ®= 5 b T o) =e i<ksp rem,
n=;r+_2 mas 1, m etk ey

By Lemma 2.5, one of the series o), (b) diverges. Suppose that
o), 1(b) = co. Then we may approximate Xn,p+1, Where n, # n,, by operators

nznA},"ﬂl,_,, and so forth, As a result we obtain a sequence n,, . .., n, such that
the variables x,,.,, k=1,...,p, may be approximated by operators
ATV ia ™ -0, and {n,,...,n,} is a permutation of {1,..., p}. From

L)
—_ — AR
ap+ Im bp-f- lmxp+ lm — Ap+ im z xrp+ l(arm - brmxrm)
. r=1

it follows that the inclusion
ap+lm"_'bp+lmxp+lm € W(b): m>P+1:

holds; this completes the proof of Lemma 2.1.

Thus we have adjoined to the von Neumann algebra W(b) = (TR |t € BY)"
the operators of multiplication by the independent variables x,,, & <n,
k,n e N. Therefore the von Neumann algebra contains the operators

{Uin(t) =explitx,,) |t e R, k,n e N, k < n}.

Now suppose that the bounded operator 4 € L(L,(B, duf)) commutes with
all the operators (TR |t € BE). We will show that then it is a multiple of the
identity: 4 = 17, 1 e C.. Indeed, in this case 4 commutes with the operatars
Uia(f). Hence A is the operator of multiplication by an essentially bounded
function: 4 =f,(x). In view of the commutation relations [f2(x), TR*} =0, we
conclude that the function f,(x) is invariant relative to the action of the group
B f4(x) =f4(xt) for almost all x € B™, t By . In view of the ergodicity of
the measure g, f,(X) = const, i.e. 4 = Al, as we were required to prove. [J

Thus we have constructed a family 7%%, b ¢ ®, of analogues to regular
representations of the group By. Among these the irreducible representations
are distinguished by the condition b € #¢: _ :

@F={b €RB|SLB)Y= Y byl =0,kn EN,k<"}-

m=n+1
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§3. Equivalence of representations

The question naturally arises as to which of the irreducible representations 7%¢,
b e #*, are equivalent.

Theorem 3.1. The irreducible representations T**" and T**® are equivalent if
and only if the measures p,« and w,o are equivalent.

It is well known (see [17], Chap. II) that two product measures p, and p,¢
are equivalent if and only if
bi? + 5N\
HEWM, 59) = Hpyw, ) ='(kI<-[H~( 4b0b@ > 0. 3.1
Theorems 2.1 and 3.1 give a final description of the regular representations 744,
b e &, of the group Bg.

Theorem 3.2. Among the right regular representations T**, b € &, the irre-
ducible ones are distinguished by the condition b € B*. Among the irreducible
representations, equivalent ones. are distinguished by the condition

H(upoy, ppen) > 0.

The proof of Theorem 3.1 is based on an explicit computation of the spectral
measures o= of the restrictions of the representations 724 to the infinite-
dimensional commutative subgroups

BE’"CBEUZBBD=‘"=B(IJ]"'"'BoDthIJ:'I:

and on the comparison of these spectral measures using Hellinger integrals. The
calculation of the spectral measure o'~ makes use of a partial Fourier trans-
form, due to N. I. Nessonov [13], carrying the generators of one-parameter
groups of B§~ into operators of multiplication by a function.

The sufficiency is obvious. Indeed, suppose that g, ~ g, . Then gfa, ~ pfe,
and the unitary operator U: s#£(b™) — 5#(6) of multiplication by the function
(dugos/dugen)(x), where H#°(b) = L,(B™, duf), will intertwine the representations
TR and TR je.

UTH™Y = TEOU, e BE.

Necessity. We will prove that T4 ~ TR¥? implies that g, ~ pye. Denote
by W(b) = (T®* |t € BY)" the von Neumann algebra generated by the opera-
tors (TR | t € BY), by W(b) the set of selfadjoint or skew-selfadjoint operators
4 = | X dE(X) adjoined to the algebra W(b), i.e. such that their spectral projec-
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tors E£,(A) lie in W(b), and by A € #(R') the o-algebra of Borel sets on the axis.
Suppose that W,(b) = {x., | k <n} is the set of operators of multiplication by
the independent variables f— x,,f in the space #(b). Then, as we proved in
Theorem 2.1, W,(b) = W(b). Suppose that

Vm={(k!n)|k<nsm}a Dm={(kgn)lksm<n}, meN, V,

¥

pir= @ e pPm= O ens

k) eV, (k) € Oy,
HVm(b) = L,(B"=, (ui=)?),  Hm(b) = Ly(BOm, (u5'm)?),
where

va = {x [=4 BSD lx = I"l‘ Z xknEk.n}’

ki) eV,
BDM:{XEBm|x=I+ Z xknEk."},

ke,
BP»=BP"nBZ.

We note that B=~ is a commutative subgroup of the group B*. Then
W(b)Om = {iAR? |k, m) € O,,}

is a commuting family of operators of the set W(b). We recall that the spectral
measure o(A) of a family A =(A)..n of selfadjoint operators 4,, k € N,
commutative in the sense of resolution of identity, is any scalar measure (A, 4)
on the g-algebra #(R*) 3 A, generated by cylindrical sets with Borel bases

CCR®) ={Clky, ... kp Ay A ={x e R X, €A,..., % €b,}]
A eBRY,i=1,...,nk,..., k,neN}

equivalent to the joint resolution of identity E, of the family A of operators,
defined on the cylindrical sets by the formula

E (Ckyy ..k Ay, A) = B (A)) - B (A).

Suppose that o5~ = g(W g is the spectral measure of the family of operators
W(b)O=, m e N.

Assume that the representations TR*" and T#*® are equivalent, i.e. that
there exists a unitary operator U: (™) - #(BP) such that
UTRH" = TREDY ¢ & B2, We will write for short TR0 L TR,

The proof of necessity rests on two lemmas.
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Lemma 3.1. Suppose that a5 ~ 6 ;5. Then

] [m]
Uei~peh, meN

Lemma 3.2. Assume that T and T®*® are equivalent irreducible unitary
representations: TR L TRED  Thon W, (W) ~ W, (bP) with the same inter-
twining operator U, and Uxy, = X, U, k <n.

The necessity of Theorem 3.1 follows from Lemma 3.2. Indeed,
TR o TR = W, (5D ~ W, (b®P) = o(W, (b)) ~ o(W,(6P)).

But the spectral measure (W, (%)) of the family of operators of multiplication
by independent variables in the space #(b) is obviously equivalent to uf.
Hence we have

(W, (b)) ~ a(W (BP®)) = ufay~ pim = thhary ~ M O

The proof of Lemma 3.1 comes down to the explicit calculation of the
spectral measures o;'=, m € N, and the calculation of the Hellinger integrals
H(o s, 658)- .

We recall the definition and properties of the Hellinger integral {[12], Chap.
2, §2). '

Suppose that p and v are two probability measures on the measure space
(X, %). Assume that A is a probability measure such that u <4, v <4, for
example A = (i + v)/2. The Hellinger integral for g and v is defined as follows:

f74
- [ B [Eu

[t does not depend on A, and has the following properties:
(HI) 0< H(u,v) <1 (the Schwarz inequality);
(H2) Hp,v) =1l u=yv;
(H3) H(p, v) =0 ply;
(H4) u~v = H(y,v) >0.

The converse to (H4) does not hold in general.
We fix on a number m € N and do a Fourier transform %, of the space
H# "(b) @ A Om(b), in which the operators 4% of the family W(b)™~ act.
Write b% = p—=1(B"~), b5 = p ~'(B"=). Suppose that

l= E tknEkn € bvms y = z yknEIm: X = Z xkﬂEkn € me'

ka<n<m ks<sm<n ksm=<n
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Obviously B~ is a commutative normal subgroup in B=, Consider the semj.
direct product B¥=p< BB, Obviously :

L+t+y =+ U +1) = p(y)p(t) € BVn><Bm,
For the function
S(p)p(1) € H7n(b) @ # On(b) = Ly(B < B m, (ufn @ pfm)?)
we define the partial Fourier—Weiner transform (see [4], or [5), Chap. II, §6)

(F Yo )PD) = Fa(p(p(0) = exp(%' 5 x%,,,b,:,')

(e} & Oy,

« f _ exp(i 5 xk,,yk,,)f(p(y)p(t» Sy (o)

ke O ot
= x5, 9) [ explin MR Sz ),

where (b/2),, =b,,/2, k <n, and B is the diagonal operator (Bx),, = b,,x,,.
(k,n) € O,,. #,, is a unitary operator from H#Vn(b) ® H# Pm(b) into

H V() ® H On(b "), (b~ V) = by,
Suppose that

(k,m) e 01,

Z = Z zk,,Ek,, e me.

k<m<n

We will calculate p(y)p(£)p(z). We have
O eOR0p@) = PP ().
Since B~ is a normal subgroup in BVMRBDm, then
p(D)p(2)p(t) ~' = Ad ., p(z) € BOm.
Therefore the mapping PP oAd,,op operates from B9~ into

b=n: @,y b =B ¢t & b, A direct calculation yields

n—1
zt= PonZ = p(t)z = Lp(l)z’ (p(t)z)lm =Ziy + z U 2y, k<n
rek+1

Since, for x, z € b%n, p(x)p(z) = p(x + z), then

P(NP(Np(2) = p(¥)p(z)p(1) = p(y + 27)p(Y).
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In the Fourier images the operators T3, p(z) € B§'~, take the form

fm(p(x)';,(z)) - exp(gB—‘x, x)) J , €xp ix, ) (p(»)p(0)p(z))

(RSO ) S EOD =)

; , d(ui~ @ p5m)"(p(y + Z')p(t)))”2
<. ity 000 (RS

x d( ) (0(¥)

=expd(B 15, 9) || anp iCx, 90y + 29000) e oy +2)

= exp(—i(x, 2D (p(x)p(1)).
Here we have made the substitutions
w=y-z' y=w—z expi(x,y) =expilk, w) exp(—i(x, z).
Accordingly,
(FnTEEF 7 ) p(x)p()) = exp(—ilx, p(N2)f (0(x)p(D))-

The generators i4f2 now go over into id &2, the operators of multiplication by
the following functions:

T8 = exp(—iCx, p(OD) |o—o

dz,m
d g—1 n—1
=i expl —i ) xp,,(z,,,, + ¥ 1.z, )) = (xk,, + Y X,
dzkn (pg) e O,y z=p+1 z=0 r=1
= (P(’ T)x)lm = (Lp(lf)(x))kn: (ka n) € Du ' (32)

Since _
F 2 HV(D) ® H Dm(b) - #m(b) @ H (b T)

1 4 unitary operator ([5], Chap. II, Theorem 5.1), then the spectral measure of
the family i4 &, (k, n) € O,,, is equivalent to the spectral measure g, of the
lamily of operators iA%?, (k, n) € UJ,,. The measure ¢ 2= on the group B~ and
s image g'm#~'(4) = ¢ F~(p(A)) on the algebra b™» will be denoted by the
sume symbol: g ['m,
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We will show that the measure ¢ 5= on the algebra b™~ has the following form
for 4 € #(b"~»), where #(b"~) is the o-algebra of Borel sets on b=

o§n(A) = j () i A) dufEn(o). (3.3
Indeed, by the definition of o= we have

o5 m(A) = (u3m @ u 5= )((2, X} € B x b9 | L, ny(x) = p(tT)x € A)

f (pm ) HAD(A) dufm(r) :

- [, @) oA s,
Since the measure

d# gm = ® d#kn

(k) € ¥y,

on b¥~ is equivalent to the standard Gaussian measure

1
dui=(f) = —exp(~t2,)dt,,,
uy(£) (M@Vm \/1_r p(—15,) dt,

then the measure (3.3) is equivalent ([5], §18, Theorem 1) to the following
measure:

o d) = j YR A) dyeir). (3.4

In order to caIculate the Hellinger integrals H™ = H(o,\", gy") of the mea-
sures o,," and t:rb2 on the space b=, we calculate the Hellmger integrals
H™" = H(g o, o5 of the projections ¢P-» of the measure ol on the
finite-dimensional subspaces b=~ of the space b=, where

X = Z xr.rEr.s} s

{re) e OO trn

some = {x e 40

Own={r,D e 0, |1<r<m<s<m+n},
and make use of the fact that lim, , ., H™" = H™
We will show that for orthogonal measures pu5 L p5iz the relation
H™ = lim H™ =0

holds. Accordingly, by property (H3) of the Hellinger integral, oL oLy this
proves Lemma 3.1.
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Calculation-of the integrals H™". We denote by dI™"(x) Lebesgue measure on
pCms, and calculate the density doms/dl™". Then, by definition, the Hellinger
integral H™" is equal to

g dogign(x) dops5 (ON? L
H# =J;Um(dli‘”)'(x) dﬁfﬂ( )) dI™(x). (3.5)

Suppose that f is a one-to-one measurable mapping f:R"—R’, dx de-
notes Lebesgue measure on R”, and du is a measure equivalent to Lebesgue

measure. .
u = [ s, 2 =0

Then

W) = p(f-(A4) = L ) d(s) = j e o L2

in which we have made the substitution x = f~'(y).
Since, for any ¢ € b¥, L,,n is an automorphism of the space b™~~ for any
m,neN, then, for A4 e #(b"~) we have, by formula (3.6), with

fix) = L (x):
cPmo(A) = J (pb AN LiTy( A) duym(t)

% D:i" e Lﬂ U . Vo
=L,m L ( i )(Lpun(x))—dST;(;’)ﬁ-’i))d: ") (0. (37

It follows from (3.2) that the Jacobian of the mapping z = L, »(x) is equal to
unity for any ¢ € b%~. Therefore (3.7) implies the following formula for the
density do Dmefdim™:

(G o= (L) @t aut=o

b —1 r—1 2
= H }L) exP( - Z (xr.r + Z terks) ) ®
6Ym \(r.) € Oy p T (rs) & Opn k=1 Apa) e ¥y

1
% Xp 2y4 —_ Y b—l, X", 3.8
(\/_ © ( tpq) Ip“') ’I;[l ( ) ( )

T
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where

o )l 5 o))

X ® ( exp( —#£2) dt,,). 39
7 (3.9)

i=1

Consider the matrix x™”" & R” x R" and vectors ¢, x;, ..., x, € R™

Xjp Xz e Xy, b
Xa) Xz - Xy )
m,n — N
x - ] t= »
xml. -xmz xmn tn
Xy X12 Xin
X321 X2z Xzr;
X = X2 = el XTI L
Xomi xmz Xomn

Then (3.9) may be written down in a more convenient form;

!!,m+1n(b 1 xm+ iy = H V j exp( m+i+ib;+lk(xm+,k+(xk,t)))

x \/;_m exp(— ||¢[|») 4.
By (3.8),
da Bm+n d Dl
(;,f'ﬁl,, )(x) Y+ In(p =t g i) (;,Lm) (x™") (3.10)
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Therefore, - ‘writing = a = (@)1, b=({b)k-1s =08 mrw)
bk =(bﬁ)+l,ni+1_-l_-k)_ls k= 1, vee gy, WE have:

e [ (i () e
cym a5 (280 o ) (@ s w@ o).
: (3.11)
Write

G(a, b, x™") = j g, X7 Il X Y @) ks
R* =1

= J;" (k]i[l \/% Lm f:xp(—‘él (X 4 12 + (s ‘))2)

X \/—%CXP(—"tHZ) dt f[ \/b;"J- exp(—é:l b (%, o 1 + (X t))z)
\/lgexp(—lltllz) dt)) ® B (3.12)

Our goal in the calculations that follow is to obtain an explicit expression for
the function G™" (¢, b, x™"), m,n € N,

X

Lemma 3.2. For any sequences a =(a,,...,a,), b=(b, ..., b}, mneN, of

positive numbers, and any matrix

x X
xm_n=( 11 n),
Xenl  *** Xn

the representation

man mey < 4akblc ém.n(a, xm.n)gm.n(b, xm_'") 144
G (GI, b, X ) = {k:l;[l (ak + bk)z l:ém.n( 2ab xm."):r

a+b’

(3.13)

holds, where

r

{m.n(a’ xm,n) =14+ i ]__[ ak‘[xkl, Xigz+ e o xk'], (314)

r=llzk) gk ak,Sni=1
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(%15 X2, « -+ » X, ] = det((x;, X,)7y- 1) is the Gram determinant of the vectors
X1, X2+ » X, € R™, and 2abf(a + b) is the sequence

2ab \  2a.b,
a+b/, a.+b’

Now we state two more lemmas needed in the proof of Lemma 3.1.

Lemma 3.4. The estimate

gmra, xmr)Em(b, X )

< 2m+ 1 2mn
ﬁm,. 2ab e 2 [P @19
a+b’
holds, where
HP-H(a,b)zmax{ %ai?i 1<k|<k2 <kp5n}a ISPSH.
i=1 ke Uk

Lemma 3.5. If the product []=[1f-1mx =0 of positive numbers my 21
diverges, then, for any p € N, lim,_, ,J1~/T["" =0, where

P
[ = max{ 11 m,
i=1

1$k.<k2<---<k,,Sn}, [1"= [1 m.
k=1
Suppose that Lemmas 3.3-3.5 hold. Lemma 3.1 follows from them.

Proof of Lemma 3.1. We will show from its opposite, i.e. from the condition

uSp L up, (3.16)

that H"*' =lim,_ H"+*'"" =0, m=0,1,
(see (3.1)) to the condition

. Condition (3.16) is equivalent

(b5 + b2
A = 0. (3.17
Ume, ., 400

Suppose that m =0, and pjd, L g, Le.

F G+ o2

k=2 ADURBRR
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we will show that then o ft L o 3f. Indeed,
af{},= &{fAfk =0y — by X l 1 <k}woug ~ o {xw | 1 <k}wonp-1s

since the partial Fourier transform % carries the i(9,x — bucxie) into operators
of multiplication by x,, (see (3.2)). Accordingly,

, GO+ G’
oih L oy = #5,'%-))-1 1 #g(zn—l had k]—.-lz k%bﬁ?bﬁ?)t‘

b{R +bi)°
= H ( Lbﬁl)b(;)) = ‘@#Ehli‘ﬂz’)-

Suppose that (3.17) holds. Write

IRG T

P= e {k n=m+2 4bi'1r3bﬁ:)

12ksSm+]

Then, in view of Lemmas 3.3 and 3.4 and formulas (3.11) and (3.12), we get

14
1_[2m.n (a(m+ l), b(m+ l))

m -1 wn
H i = 22"' Hn.n (a(m + l)’ b(m+ 1))
Applying that inequality sufficiently many times, we get
R %k —2n (40
Hm+1.n < I’I 22k 31_[ (a ) Hp—l,n’ (3.18)

Kep Hn " (a W pekyy
where
a® = @@y a® =B, .0 BO =), bF =k )

Since lim,_, ., [[*" (@®, %) < for
lim,_ . []"" (a*?, b‘P) = co, then, by Lemma 3.5,

p<k=m+1 and

lim []*-2" (a®, b"‘))/l—["'" (@®,b®) <0, p<k<m+l,

-

and

2p—2n a(P) b(P)
lim H ( ) =
R Hn n (a(P) b(p))
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By property (H1) of the Hellinger integral, 0 < H? = lim,, , , H?" < 1, Therefore
we finally find from (3.18) that

Hm-i-l_ hm Hm-l-ln_o

H— X

This completes the proof of Lemma 3.1.

§4. Proofs of Lemmas 3.2-3.5

Proof of Lemma 35. If all m,<C, then [P"<C’, so tha
[T/ TT" < C?| []*"—0 as n - co. In the contrary case there exists an infinite
sequence  (k(m)i_i, k(1) =1, k(2)=min{k |m,>m},... kn+1)=
min{k | my > my,}, for which

lim my,, = co, Wiy < Mgy oy, 1 € N

H—s 0

For r,n € N, r < p, we denote by k(r, n) € N numbers such that

k(p’n) <k(P -Lin<-- '<k(lan)’

P
H, Mirm = HP'" -
Fa=

Suppose  that n e [k(r), k(r + 1)) nN. Then k(1,n) = k(r), k(2,nm) 2
k(r—1),...,k(p,n) 2 k(r — p + 1), so that

"
[T / [I"" =t oy iy * Moy / kI_[1 my

n - fKr-pt -1 -y
S(H mk) S( 1 m,,) -0 ifn—-oo,
1

k= k=1

k#k(1,n),... kp,n). |
Proof of Lemma 3.4, We rewrite inequality (3.15) in the following form:

(1+ f} ) H akf{xkl,---,xk,])

r=l1gk <k, Sni=]

x (1+ 5 3 1‘[ by[xg .. ,])

J=[1$q|< gy EnRl=

SC(Hi ) Ha b [pl,...,x,,,])z. (3,19

I=118Sp < ---<pSnimli
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Then inequality (3.19) follows from the following system of inequalities, ob-
ained by comparing the coefficients on [x;,...,xc ], [xe,,..., %] X%
[x x, ), 1S r,s <n, in the right and left hand sides of (3.19).
Xgpr v o774
L 1sC- 1 ab
: kh 1<r<
[xk:!' "’xk,]‘i[:[i + H blqs C- 2{].:[[ ak,+bk, ¥ h,

[xk,’- --:xk] '[x‘n" t ’x'h]: ‘HI aklrl—[l + 1—[ 4, 1_[ bkl

r=1

r 2a.by & 2a,b, |
<C-2 L. 9 l<rs<sn (3.20)
C !];:Il ak, + bk; t=1 aqr + bﬂt

Now we relax the inequalities (3.20):

2a, b
H“ka'l‘nbkfsn(ak,-i'bk,)sc 2H Rl AL I<r<n,

i=1 8+ bk,

L4

].—[ ay, ]._I b‘h + ].—.[ a, " Hl bl’q < !Hl (ak: + bk:) l-ll (a'!r + b‘h)
i= | =1 =1 £ = t=

<C-2 Ir_[ 2aklbkr . = zaqf : b‘h

, 1<r, s€n (3.21)
im1 G+ by, nya, b,

From (3.21) we get

(@, +be) - (ax, +b: ) & (a,+b,)?
("= r—1 2 K Arts— ] { i 9 L/}
max{z H 4ak;bk, 2 .l:ll 4ak,~bk, =1 4(1 ' b?r

i=1
n} — 22m—] HZm.rr;

Sr,sSn}

= max {22 - 'HM')— 1<k < <k, <
i=h daby

this proves Lemma 3.4.

Proof of Lemma 3.2, Suppose that 7% and T#¥* are equivalent irreducible
unitary representations, U:#(b™) — #(b®) is their intertwining operator:
{ !R,MH TR b(Z)U t e BO We will show that then

Uxy, = x,,, U, k,neN, k<n, (3.22)
Iadeed. by Lemma 3,1, then for any m e N, By~ 15, de.

(b&? +68)?
kY e O, 4bfcln)b$¢2n) < (323)
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We know from the proof of Lemma 2.2 that Y Y2 » £,(b™AREPARIY iy
H(bWY), where y, = (b{V)% + b V5L and

w=-20 (1, 5 o0 = —2(0n+ow- 5 spepreg)”

(3.24)
ol @ o = |( 3 neoageage s 3 wOpra) 1
= 3 BEOMERGN " +bRsg)
=3 BOONOR® +bi6g)
= 4(,:21. bﬁL’(}JSL’ +b51.’)“)_l. (3.25)

We will show that U3z , (PO ARED ARIDY _y i #(B@). As in the proof
of Theorem 2.1, for this it suffices to show the convergence of the operators in
question on the unit vector 1 € #(b¥). We have

"Cﬁ ” 12(b (1)) ”ir(b(l)) =

Ny Na 2
(Z L(BARPALED 1+ tn(b('))%bﬁ)xm)l

a=N, n= Ny )
= T 2eOUER)GR) - +RBD] < ¥ 2GMGR) + bRbP]
n=Ny n=N, ~—

" 2w B bR bR+ bR
— Dp (L) | ” . . 26
4(,.,2,“"‘,"(“"*”5"’ ) L FO 0 50 o ren O

We will show that
. DB bR+ 6P
LB B v o
Indeed, condition (3.23) is equivalent to the convergence of the series
(682 — b2

wmcn, DRbE

which is equivalent to the convergence of the series

2GR/~ 1)’ <o

kne O,

1.

< 00,
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It follows from th.fs that for any m € N and & > 0 there exists of an n, € N such

that
B2 /682 — 1| <e, k=1,2,....m, n2zn,.

ﬁemfore
$op(o0) - 1|< £ g o5 o) s

Accordingly

im 3 bsgz()"f b},‘,,’)_l= I, meN. (3.27)
k=1

=00 | s
{3.27) implies an estimate for the right side of (3.26):
Ny -1
N A R wo )

HHN‘

and this is small for appropriate &, and N,. Here we take account of the fact
that

SHED) = T BREGE) " =w

{see (1.3)). .
We will write (N,, N;) = o0, (N, N;) =(N,(p), No(p)), if

Na(p)
lim Y BNGEE +54)) "= o0,
P Ni(p
In the left side of the expression {3.26) there is the expression
N2
3 2 tEMERx,.
H= N1
We will show that
N
im 1Y LGOHR=-1

NNz = iy
indeed,
L B 2
H 1
lim § Y (M@

N[ N3)— o n=nN,
O B R 3 VL S
=*m..1,$§§‘m(,,§~,bm+bgu) Dl B+ B8 B - 7
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since

% an(bn - I)

"= N,

<

% anbn(f a,,,)—l—l

H=N, -N

(£2)

< max |6, —1|-0
Ny<n<N,

as N, — oo. Here we have written
| @ =bRO +6 Y b, =bRGM),
and used the fact that ' '
Jim bR =1

Thus, in the left side of (3.26),

N
LY 4,™bRx, - —x,.

n= Ny

Accordingly

v ( * Lo ff"’Aﬁ:”"’) = ¥ LGB L,
=N, A=Ny
in .#(b(z)). Hence Ux12 = X2 U.
Analogously we show that Ux, = x, U, | < k. Indeed, by Lemma 2.4, x, is
approximated by the operators

N
Y . (ONB, — buxi) ALY
n=»N,
and

2
"w”c(b(l)) ".Etf’(b(')) =

N.
( 224 1, (b)Y, — b x, ) AR "'xlk) 1

=N,

A

vz tz(bm) Z BIHL _4( % bﬁ)(i bﬂz)_l)_l_)o,

=N, moen | =Ny -

where

£,(bM) = — 25 ( S BMBD - f (biD)? (Zk: B nbm)—n)—_:

=] n=N;,
k Noy k — 1Y -1
=-2( % o0 ¥ o (5 a0) )
o=} nuNl el
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We will show that
R
: . U( Z 3 (b“))(a!rr _b}”xm)ARb( ) x,k

ne=N,

in #(bP). Indeé_‘d,

2

Na
(f 6Ny~ 11 5 t,,(b“’)bs:)x,,,)l

D) ||3e'<b_<2ii =

n=N, #(5@)
Ny & -1\ -2
=% aew) ¥ bsz>bsza=4( 5 bs:s(z bs,:;) )
n=N, g me=1 n= N, mel
v — k —EY -2
< ¥ bfﬁ;(i bs,:z.) g 4( § bs,?(z bs,:z,) )
n=N, =] moe= | n=N| =
No k -1 k 1
« 3o (£ om) ewem £ o2 (L 00)
n=N, | m=1 m=1

Using (3.27), we get the estimate

N2 & —1\ !
66 ruen < (5 o (2 2) )

which is small for appropriate N,, N, (see the proof of Lemma 2.4). The equation

lim z £, (BD)BR

Ny, Nz)—'w n=N,

| Bo_ b\ &b R
= — 1 i . = —1
= (Nl.ll:'rzr)l—voo(";h” i b(l)) n=zN] Z b“) bg)

m=1 m=1

completes the proof of Lemma 3.2.

Proof of Lemma 3.5. We note that the function G™"(a, b, X™"), X™" € R" x R",
is invariant relative to O(m), the orthogonal group of space R™. Indeed,

G™(a, b; OX™) = G™(a, b, Ox,, . .., 0x,)

=‘|‘ (ﬁ \/%.[ exP(“i e (X + 1k +(O.xk,t))2)\/1n—mexp(—-"1"2) dt
ff exp z b(x,, . w+(Oxy, 1) )\/——exp(——||t||2) dt)

x ® dxm+ e — =G™ (as b, Xy ones xn) = Gm"(as‘b: Xm.")' (328)

k=1
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It suffices to prove equation (3.13) for G™*!, n € N. Indeed, for m <n,
equation (3.13) for G™" is a special case of the equation for G*~ ', since for
X,...,%X, ER"cR",

(BRI o det((xk,s xkj):‘;_:'= 1) =0

for r >m.
We will need some formulas. It is well known that for 4 € End(R*), 4 >0,

# Lk exp( —(dx, x)) dx = d:t = (3.29)
Suppose that
mneN, c,¢,...,c,eR", deR", ¢ =(x)s-1, k=1,...,n,
C=(cu) eR"XR", &,...,5, R, & =(u)ki1-

Then

V(Cysn vy Cpy ) =

1 exp(_ i (ck’ t)z - (ds t)) exP( —'(t: t)) dt
T R k=1
_ 1
det( + A(c))
where A(C) = (4,(CN;=1, Aij(c) = (€, C;)me-
Indeed, we make a substitution ¢t = T + T, in the left side of (3.30) such that

the terms linear in T vanish.
Since

expGUI + A(C) ™" d, d)), (3.30)

3 (e 4,0 = U+ ACHS ),
then

T (o T+ T+ {d T+ T) +(T+ T, T+ Ty)

k=1
=((+ACNT+Tp), T+ Ty) + @, T+Ty)
= (I + ACC)T, T) + A + AC)NT,, T) + @, T)
+(( + ACNTy, To) + (d, To).

We choose T, so that (2( + A(C)T, +d, T) =0, ie. To=—(I + A(C))~'d/2.

Then

(U + ACCYTo, To) +(d, Ty) = (d To)— YU+ AC) " d, ).

1
.V(Cls'--scnsd)=ﬁj;m
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Therefore

exp(—((+A(C)T, T)) dT - expG(( + A(C) ™" d, d)),

so that formula (3.30) follows from formula (3.29).
We now use formula (3.30) in order to transform G™"

’ ” /4
: ( I1 a,‘bk) n
G"a, b, X} = “ﬂﬁ"— L" (J;m eXP(—kZ (X 1ie + (X5 1)) 2)

I - 2
X \/Q—I;exp( _(t: t)) dt J;m exp(—kaz-:l bk(xm-l- 1k + (xks t)) )

iz o '
) ® dxs
k=1

1
* o

n /4
- ("E['\/_ ) Lﬂ (Lm e;(p(——éjI au(x,, D2 —2 é. A X 4 11 (X f))

< o0 [ o= 5 b 072 £ brrentao0)

1 a. +b -
x \/n_mexp(—(t, 1) dt) ® exp( L 5 erznuk) Xy 4 1k
Now we make the substitutions .

“k +bk 2Z
* ¥ 2 .2 _ k
7 m+lk =%k Xmulk = ’
} /A +bk

WX Zy kzk

ﬂ
by X2

Ryld) = —~—"P—b— d6) = (d,(BD)iars ) = 3 2B _ (2 (b), 2),

ak+ & k=1 ak bk

x(@) = XS, Xe(D) = X/ by,

= (dp(a));1= ls dp(a) = (—’ep(a)’ Z), fp(a) ( k(a))k 13

bkxpk

‘iﬂ(a) = ('fpk(b))z=ls -’%pk(b) =\/a—_+b— .
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We get

. —_ z _E% " — . 2_
G™(a, b,X)_.{kl;[1 @ +bk)2} L ( L ) exp( ,,);‘. (x,(a), D — (2/2d(a), 1))

1 ”
< eR(— G D de [ o= £ e 0t~ V340, )

1 2 1
x 7;; exp(—(t, 1) dt) ﬁ exp(—(z, 2)) dz

T i (@ + b)) det(Z + A(X(@))) det(T + A(X (b)))} _

X L exp{((/ + 4(X(a))) ~ ' d(a), d(a)) + ((I + AX (b)) ' d(b), d(b)}

X \/lﬁexp(—(z, z)) dz. 7 (3.31)

Denote by R,(a), A,(a), 1<p, g <n, respectively, the elements of
the matrix (14 A(X(a)))~' and the cofactors of the matrix (14 A(X(a))) "
Then

Ag,
Rl = Gatr + K@)

Therefore

(( + A(X(a)) ~' d(a), d(a)} + (] + AX (b))~ d(b), d(b))

= ’Z"l . (Rpy(@)(%,(a), 2)(%,(a), 2) + Ryg(2,(B), 2)(%,(0), 2))

P =

- (Rw(a) S 2.(@ui, @)z + Ry(B) 3 J?p,-(b)z,-fq,-(b)zj)
ij=1 ii=1

py=1

A

=-i=. S Ro@)2,(@5(@) + ) | R,,q(b)f,,,.(b)yeq,.(b)) 22,

P =

= z Rij(“» bs X)Zfzjs

L f=1
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where
n

Rfa, b, X)= ¥ 1 (Rpo(@)2p(0)%5(@) + R, (B)%,/(0)%; (b))

' 4.0 .o |
Got(7 + XY O (b))

3 45,()
__-P.qZ“! (det(I + A(X(a))) Jepf(ﬂ)qu(a) +

et 4 ,, S
= Gt + A @) det(l T ARG, 2, (St + AXOD4,,(@%,(@)5 a)

ry(a, b, X)
det(I + A(X(a))) det(7 + A(X(D))) '

+det(! + AQX@N) A,y (B)2,1(8)%,(5)) =

Accordingly,
(( + AX(a))) ' d(a), d(a)) + (T + AX (b))~ d(b), d(b))
= ((det(I + ACX(a))) det(J + AXB)) ' 3. ryla, b, N)ziz. (3.32)
=1 .
Substituting (3.32) into (3.31), we get
o B 4a.b, 1 14
G, b, X) = {,,1__[. (@ + b,)? det(7 + A(X(a))) det(I + A(X(b)))}
(r(a, b, X)z, 2) 1
x L exP{det(I ¥ AX(@) det(l + A(X(b)))} Nz exp(—(2, 2)) dz
l 4akbk 1 1 114
wen (@ + B)? det(T + A(X(@))) det(d + A(X (D))

B Ha, b, X)
det(] + A(X(a@))) det(7 + A(Xi (b))))

X detz(l

-__{ " dab, det(7 + A(X(a))) det(f + AX(®)) e
ka1 (@ + b,)? det*(det(I + A(X(a))) det(J + AXB)N — r(a, b, X ))}

(3.33)
Since  4,,(a), 4,,(b), det(I + A(X(a))), det(J + A(X(b))) are polynomials in

'_hc Xy i=1,...,m, j=1,...,n, then the r,(a, b, X), and accordingly
‘!Cl(det(f + A(X(a))) det(J + A(X(B)) — r(a, b, X)), are also polynomials in Xy

Suppose that
X=(xu) X(@) = (Xpu/a) eR" xR% x,(d),.. ., %.(a) € R",
x*(a) = (xpk\/a—k)}:"= 13 J-.El(a): LIS f.-n(a) € Rns x~p(a) = (xpk\/a_k)z= l-
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Write
AX(@) = (4,(X(@))=1
Ay(X(@) =(F (@), (@), AX(@)=(L(X(@))7y=15
Apy (X(@)) =(x,(a), x,(a)).
Then the following equation holds:

det(I + A(X(a))) = det(/ + A(X(a))) = ﬁ’"-"(&, X). (3.34)
Indeed, since the equation
ks - e s Xeey) = det(Oeg, X )ig=1) = x |Ma - (X, (3.35)

lspy<~<p.Sm

Xiys -+ Xe, € R, then
det( + A(X(a)))
14 (F(a), %i(a)  (Ki(a), X3(a))
(@), H1(@) 1+ %a(a), %2(a))

(%,(a), X(a))

(%3(a), Xu(a))
= det :

(Xn(a), X, (a)) (Zm(a), X2(a)) 1+ (Zn(a), %n(@))

“1+Y Y E@.. 5@

s=l 1Spy<-<p, s m

“1+Y Y |Mpem(@)P

s=118p <ap,Sm
18k )< <ckysn

“1+% ¥ n a, [xk,, e ) = (E7(a, X) = detll + AXO)),

s=1l1=sk <<k, =ni=

We will prove equation (3.13) for G+ by induction on n € N. Suppose that
n = 1. Write

x,(a) = x“\/a_,, %) = X34/ @2, Ei(@) = (xll‘\/a_ls xli\/E;),
det(l + AQX@) = 1 + Fi(@h K@) =1+ 3, b,
k=1

W XarZ bkxlk k

2 2 2
det(l +AX@) =1+ 3. bk, d(@)= \/__ dib) = ¥ Jaib
(T + ACX (@)~ d(a), d(a)) + (I + A(X(b))) ), dB) = (61, 2+ (e D
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where

¢ = 1 ( ay Xy d2X12 )
\/1+ Z auxt, Ja +b Ja,+b

€= 1 ( by xi; baxy, )
\/1+Zbk \/ai'l'bl \/az“"b
By (3.31) and (3.30) we have

G'*a, b; x11, X12)

{ 2 4akbk 1 1+
M G b detld + AX (@) detd + AXE)) o = A(C))} :
But, by (3.34),

det(I+A(C))=det(I+,Z(C))=detH I—(c, 1)  —(crhc)
—(e2, 1) [—(c;02)

: ﬁ,_%_)f‘i,_ i blzcxfk

_ =%t |y fidet b

2 2
L+ ) apxdy T+ Y bexiy
k=1 k=1

2 2 \2
b x i 2 2akbk ?
RO R I 2
_ (kgl ak"'bk) _ ( +kzl ak+bk )
2 2 . 2 »
(l+k2l a,,x?,c)(l+ ¥ bkxfk) (1+ Y a,,x%k)(l + Z b,,xfk)
= k=1 k=1 K=

which implies (3.13) for G'*(a, b; x,,, X;2).

We will prove that if equation (3.13) holds for G"~'"(q, b X— 1), then it
h‘olds for G™(a,b, X*). In view of the invariance of G™(a, b, OX)=
G*(a, b, X}, O € O(n), we may suppose that the matrix X = X™" is triangular:

X X2 0 Xiper Xip

X2 Xy 0 Xguoy D
X =

X Xpogz o 0 0

X 0 0 0
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Then we may express the function Emnn(a, X) as follows: then

n—1 2
.L' exp("‘an (xn+ n+ rgl Lx, + lnxul) )ﬁ exp(—12) di,

n—1 2
a (xn+ n+ 2 trxrl)
- .. _ r=|

Ve T A T+a%, !

r

@ X)=1+3 % a5

r=liskj<cack, snt=1

r

ak,[xk,s sy xk,]
ret 1Sk gk, Sn—1iml

+ i Z lll:lak,[xkls---sxk,_pxn]'

r=llsk) <k =ni=

.on—1 2
For the matrix X we find from property (3.35) that .[ Cxp(—b;(xn+ ut Y Lx,+ tnxnl) )% exp(—17) dt,
. R! ra=| n

Beys oo s Xuy i %0 = 2 | Mg O

l<py<~<p.=n

n—1 2
b[ (xn+1] + Z trxrl)

r=1

1
——————¢xXp\| —
Sitbxg " T F b2,

Therefore

) | M Lozoere e, (X

l=p|<ps<<p,sn

=x£‘2$ <Z< = |M£2I'v':-‘5{.-__l|(IX)|2=x%"[kal’ et lxkr-|]’
Pz <prsh

G(a, b, X™) = ((1+ ayx3)(1 + byx2y)) ~#G"= (@, B, X"~ ),

where the Mf2%  ('X) are minors of the matrix where
~ -~ 7 b
Yoo Xan—a Xz Xin a=G)5-, b=0)p.., d4=—"— ) =1
, Xy eee 0 Xgg o 0 l " l+ax} T+ bx2)
X= " N ‘Xz - , i
G =a, by =b,2<k <n.
X vre 0 Xp_12 -+ 0 .
Since
"Xkys oo ‘X, _, the columns of the matrix 'X. Therefore
24, b, 2a,6, 1

gnn(a, Xrn) = &mn =g, X7 4 a,x3,87 7 1 (g, X). (3.36) i+ b (Trap2)(+bix) @, (LT axi) " +b;(L+ biak) ]

Analogously one proves that _ 2a/b(a,+b)!
T 14 2a,b,x%(a, + b))
Era(a, Xn7) = §r= (e, X ok axBERT a X). (BT) Orxm @+
o . 14&9“._-: da,b, (1 +a,x2) %1 + b, x2,)?
Since @ +6) (I +a,x2)(1+bx2 )a, + b,)%(1 + 2a,b,x2,(a; +&,)712
1 1 ay? 4a,6)(1 + a,x2 )1 + b, x2))
exn( —a +tx2 —— ex _t2 dt=__—ex (_ )’ (3.38' = 1% 1% nl 1<vnl
Jo xpt =2t M o= ™ TTrar TG F )AL+ 2a,b, x5 G + b))
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then

(@, Xr ) =14 ¥ R C AN

rellsk <<k sniml

n a r .
=1+ 3 (_-_l__ x I1 ak,-[xl’xkzs--~’xk,]

2
l+ayxiasp, <<k sni=2

r=l

r

rY ak. 1)

22k <<k, Sni=1

v
a H akr[xh Xy« nrs xk’]
i=2

! (1+a1x§1+ i ( Y

= 2
l+axy rel \2sky< <k Sh
r

-+ Z ]__[ ak,[xkp- --1xk,] +a.x§,

22k <<k Sni=1

x( Y I1 aki[xkl,...,xkr]))
2sky<-<ksni=]l
1 n r
(1 + 2 z H e [xx 5 - - "xk,]'i'alxﬁl

=
1 +a,x5, Foltsk <o <k snizl

y (1 +3 Y Tl ,xk’]))

p=l2sk <<k Sni=]

1

el GRRMCRSY) +axie e nX))'
17¥nl

Therefore

G™(a, b, X) =((1 +a,x7)(1 + b x%)) G (G, B, X"~

n dapb, (1 +axi)(d + B x2)(1 + 2a,b, x5 (@ +5)7Y
ey (e + b)* (1 +2a,b,x2 (@ + b)) (1 + a, x4 )1+ b xh)

("= (g, X" ) + g, x3, £ e, 1 X))
x (En (b, X7~ + by x, &7 (b, 1 X))

2ab a 2a,b, o o f 2ab ))2
n—1 n—1n et Sl SR n—lin—1 . X
((‘f m(a+b:X )+al+blxnl€ (a+b 1

b 4
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when (3.37) is taken into account, this completes the proof of (3.13) for
G**(a, b, X™")- : ' :

Now we shall prove that formula (3.13) is valid for G™* '(a, &, X" Y. If we
write

Xip X%z X3 o Xiasd Xy Xz - X
| %y Xap x 0 Xy X e X
1| X X2 X o 2 22 2
X=X""'= , X — ",

Xai Xnz 0 e 0 Xnl Xnz s 0

Xay Xop  ver Xag

. Xy Z; -+ 0

Y =
Xnl Xuz - 0

(we may bring the matrix X into such a form, since G™*(a, b, X) is O(n)-
invariant), and use (3.36) for "7+ '(a, X), then equation (3.13) may be rewrit-
ten-in the form

12
& (a, X™) + @, X} &7 a1 X))
% nA, b’ Xn.u + bn xz" n—1in b, ]X
a, b, X) = (E™ (B, X™) + by oy XTp i1 £ (D, X))
(Gn.n-f—l(a’ b, X))4
et (@ 0P v 28D s
_{kl;[l 4a.b, } (6 (a+b’X )
20,010,401 5 noiaf 2ab _
+an,+l+b“”"_+lxin+1§ a1b’ Xl (3.39)

f_’Or Kig g1 = 0, (3.39) is (3.13) for G"*(a, b, X). Since G™"* Y(a, b, X) is an even .
lunction in x,,.,, then &g, b, X) is also even. Taking account of (3.33), we
conclude that 6(a, b, X) is a polynomial:

P
B(Q:b’X)= Z gk(a’ b: X)x%,r:+l.: p<d),
k=0

ni (g, + b)) 2 2ab
8 = ..._..-.—-k k nna n,n
(@, 5, X) {,El i } r (—a+b,x ) (3.40)
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A direct calculation yields

9%0(a, b, X)

20,(a, b, X) =
14 ) ax:[!rr+l Xip41=0
_ I (ak+bk)2}ll2 4,41 bpar gy, f 200
B {kl;l| 4akb,, (£ /o + b,,+| é (ﬂ' + b ’ X— ) (341)
Indeed,
629 a gn—l.n(a IX) b én—l,n(b IX)
— 9 , b, X n 41 L] n+ 1 . >
Z ) Rt o T £ (6, X"
frGrn+1
—2 ax%’l+|
Gn,n-f—l Xy =0
But for the function _ ‘
. n 1 -1/4
G(a, b, X)=(H akbk) G"+1(a, b, X)
k=1
we have
DG +1 N azG"‘
(Gn.n+| -1 = (G -1
) ame-hl Xin 1 =0 ( ) ax%n-l-l Xin +1=0
N Fles oG C @, +b
= —2G)! ,2t +br2| _ a1 n+1,
. ( ) (a+laan+l +labn+l) X +1=0 2

which makes it possible to use the following formula, which was already proved:

n+1

. —1/4
Gla, b, X)|,M,=o=(n akbk) G+ (g, b, X)
1

Xin +1=0

4n+l én,n(a, X"'")f"‘"(b, Xu.n) 1/4
=tn+1 2 -
H (@ + b,)? (5"‘" ( 2ab X"'n)) }

a+b’

k=1
On calculating

aZGn.n+ 1

Gn.n+l -1
( ) ax%ﬂ+l

Xln+1=0

and substituting into 820/0x3, . ,, we get (3.41).
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We will prove that

a%

27 =0, 2<ks<p
ax%ﬁ+l

Xin+1=0

To do this we will show that the following limit exists:

lim G+, b, X) > 0. (3.42)

Xln+ 1™

Indeed, integrating over ¢, € R' and using (3.38), we get

n+1 1/4
.) ( 1 akbk)
=
G"‘n+ l(a, b’ X) - ___;T:— .|‘Rn+l

n I 2
‘ 2
X eXp| — Z a (xm+lk+ Z trxrk) —Gn 1 X1
Rt —1 k=1 r=2

n+1 »t 2 a4l —1 m 1 o
+ (kz;l @ X i (xm+ e+ rg?_ trxrk)) (1 + kgl akx%k) ) k(?z ﬁ exp(—¢3) dt,

n m 2
XJ. exP(_ 2 b (xm+!lk + 2 zrxrk) — bk Xt
Rm—1

& =1 r=2

n+ 1 L 2 n+1 5 -1
+( Y bexy (xm+lk + 3, trxrk)) (1 +kzl bkxlk)
K= =2 -

m 1 yz A+l n+ 1 L1 5 —1/4
X ® T exp(—t,zc) dtk) k‘ dx,,,_,_ 1k ((1 +k§,l akx:;k)(l +kgt bkxlk)) .

k=2./m

n+1 m 2 H+t 2 —1
(Z @y X\ (xm+lk + 3 lrxrk)) (1 +k21 QX7
kwm ] 2 =

r=

I n n 2 n41 ) —1
=(Z Y axyX.+ Y akxlkxm+lk) 1+kzl A X1y
k=1 k=1 =

r=2

2
- (@ 1 X tn 1 X 1 1)
- n+1

1+ ¥ axi
K=

for

{=(lyy t,...,8,) ELmhl(a)={t e R™—!

m n
Yot Y axx, =0
r=2 k=1
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and
(nil biXix (x,,,+ e+ i x,,cs,))z (1 +nil ﬂ'kx?k) > (bn+1x|nn-};llxm+lﬂ+l)
o = k= T+ 3 bk
for
s=(33,....8,) €L, _,(®) ={s e R iz S’kil bkxlk;xrk > 0}
and

x(m+l)=(xm+”, P ,xm+ln) € Dn(a)mD"(b)’

D,,(a) = {xm+l e R”

n
Z QX X v 16 = 0}

k=1

Y BaXee Xy ik 2 0}

k=1

D"(b) = {x(m+ D= Rr

and D,(a, b) = D,(a) nD,(b) # I, because of a,, b, >0, k=1,...
lowing estimate holds for G™"*+!(a, b, X):

n ) 14
H akbk)

Gn.n+1(a, b, X) 2(

"tk Jpaeb)
x(.[ exp(—kz ak( Xme 1k + Z txrk)) ®
Ly, (“) =1 r=2 r=23

X f exp(— 3 b (x,,,+,k+ Y er,k)) ®
F—] ko] pe=2 k=2

(@ 1 1 X1n s 1 Xm s 10 1) 5
n+1 =y 1 Xk In

1+ Z aex iy
k=1

exp( —) dt,

i

1/2
- oxp(~51) dsk)

X eXp 5

2
(bn+lxln+lxm+ln+l) b 2
t n+ 1 T 01X mtin+

1+ E b xty

K=

- n+1 n+1 -4
* (k®l dxm+lk)®dx”'+'"+‘ : ((1 + 2 akx%k)(l + 2 bkx%k)) .
- K=1 k=1

. 1, the fol-

(

= . Since

n-l'» 1 n+1 b s —1/4 1 J‘
2 -
1 +k§l akxlk)(l +k§,' kxlk)) \/; o

(an+lxln+lxm+in+1) (bn+lxln+lxm+ln+l)
xexPZ n+1 nel

I+ Z akxlk 1+ Z bkx,k
k=l k=1

2
- n+1x$n+ln+l _bn+llxm+ln+l) dxm+]n+l

n+1 n+1 b ) —1/4 1 j‘
—_ 2 1 x —
= ((1 + kgl akxik)( + kzl k lk)) \/E .
Qi (1 + i akxfii) b,y 1(1 + kzl bkx%k)
k=1 p

1 —
xexPi - n+ 1 n+1
1 -+ Z ak.x%g. 1 4 kzl bkx%k
k=1 . =

X Xk 4 int Xy 4 in1

-

n+1 1
(1 + Z ak.x%k)(l + 2 bkx%k)
k=1 .

k=1
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n n4+1
(an+l (1 + 3 akx%k)(l + kZ] bkx%k)
K= -

1 Ay 1Bns .
2 (an-i-l (1 “+ kzl akx%k) bn+l + bn+1 (1 + kg‘l bkx%k) a4 1)
1 1
n 2
ay . ibn+1 (2 +kzl (Clk + bk)x%k)

>0

" n+1 2
+ b, (1+ Y bkx%k)(l + 3 akx%k))
k=1 k=1
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for

(n+l )IM
im G™+Ya,b X)> "L—J

Xin 410 [

A. V. Kosyak

any collection (x,,, ..., x,,) € R", then.

[T acbe

Dpla, b

Coa m N om o
1
X exp| — a RE )
(J_:_m @ p( kgl & (‘xm+ et rg,z l,x,k) ) k@z ﬁ exp( —¢2) dt,
3 i AW 173
X expl — b L 2
_[_m ) F‘( k; k(xm+ e+ Ezs,xrk) ) k@z \/E exp( —s3) ds,c)

n n =142
X k@l dxm+ 1 2_”2(5!,,4_ lbn+ ])_ 174 (2 + Z (ak + bk)xf,,) > 0.

k=l

Thus (3.41) is proved.

Accordingly, 8,(a, b, X)=0for2<k < P, since, in the contrary case, taking
accpunt of (3.39) and (3.40), we would arrive at a contradiction with (3.42).
This completes the proof of Lemma 3.3.

(1
(2]

(3]
4]
t5]
(6]
{7

(3
{9
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