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Regular representations play an important role in the theory of representations
of locally compact groups. The decomposition of a regular representation into
irreducible representations contains all the irreducible representations for finite
and compact groups and many irreducible representations of locally compact
Lie groups. In the case of locally compact groups a regular representation itself
is always reducible, since along with a right regular representation there exists a
left regular one commuting with it. It is known (see Dixmier [5], 1969) that the
following theorem holds for unimodular groups.

Therefore it is natural to wish to construct an analogue of the regular
repre~entation in the case of infinite-dimensional groups and to investigate its
properties. By an analogue of a regular representation (right or left) of an
infinite-dimensional group 0 we mean homomorphisms
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Theorem A.
operators of
operators of

The commutant of a right regular representation is generated by
a left representation, and the commutant of a left representation by
a right representation.

Ui?, U’: 0 ~—* U(2 = L2(O, 0, dg):

2 a f(x) —+ (U’tQ)f)(x) = (dp(xt)/dp(x)) “2f(xt) e 2,

2 9 f(x) i—i (U”(t)fl(x) = (dpQ - ‘x)/dj4x)) “2fQ - ‘x) e 2,
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where & is a topological group qr a topological G-space contçimn,g G as a dense
sub~roup G a c5~ and ,i is a qilasi-invanant measure on C

It seems that tije first analogue to a regular representation
4’ —, U(L2 (4,’, 4,, dp)) of an infimte-dimensional commutative group of a kernel
space 4’, where 4” is the space conjugate to-4,, appeared in the 1961 monograph
[7], bSr Gel’fand:and.Vilenkin: ..

• Regular representations ~r —b U(L2(W°, R~°, dw)) of the commutative gtoup
R~° of finite sequences of real numbers, connected with vanous R~°-quasi-invari
ant measures: on the group R~ = R’ x IC x ~ R~’, were studied by

• Samoilenko in the monograph [18].
The so-called energy representation E of the group C~(X, G) of smooth

mappings with compact support of a Riemannian manifold I into a compact
semisimple Lie group G was studied in the papers [8, 1, 21, 9 2, 3]. Ismagilov
introduced that representation in [81 fdr G = SU2 and I a domain in It’. In the
general case it was introduced in [1] and [21]. The irreducibility and mutual
nonequivalence of such representations for various metrics were first proved in
[8] in the cased = dim I ≥ 5 and G = SU2. In [211 Vershik, Gel’fand and .Graev
proved the irreducibility and nonequivalence in the case d ≥ 4 and G a compact
semisimple Lie group. In [2] Albeverio, Hzegh-Krohh, and Testard proved
irreducibility for d ≥ 3, and, under additional conditions, for d = 2. Reducibility
for d = I was proved in [2] and [9].

The connection with the regular representation in the case d = I was noted in
the papers [1], [2J, [3], [9]. In [1] Albeverio and Heegh-Krohn proved that, in
the case x = [0, t), the energy representation Eis unitarily equivalent to the right
regular representation

Ui?: C,([O, t), G) —‘ U(L2(C([0, t),G), C~iJO, t), 13), dW)),

where C([0, t)~ G) is the space of smooth paths and dW is the Wienei~ measure
on C([O, t~, G), defined by the left Brownian motion on G. In [9J Lmagilov
proved, for the group C([0, lJ,.G, that along with a right representation U’~.
equivalent to the energy representation E, there exists a left reprcsen~ation U’.

This proved~ the reducibility of the energy representation in the case d = I. We
have already noted that the authors of [2] had proved this fact as well..
There they also studied the right and left regular representations UR, UL of
the groups C~°(W, G) and C~(S’, G). Together with Vershik, they proved
in [31 that the representations of UI? and VL, constructed in [2], are factor~rep
resentations, and that Theorem A holds for thehi. They also presented expan
sions of. the representations U’~ and U’- into direct integrals of irreduciblc
representations. . . . . . . .
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Okamato and Sakurai in [14} constructed left and right representations UL
and U’~ by the formula

~ Ui’?: 0(E) -‘ U(Yt’ =L2((E~E), 0(E),dv))

for the group 0(E) = jj~ 0(m), where E ~ R~°, 0(m) is the orthogonal group in
ftm (Ei~E)c~M is tKe space of real matrices of infinite order, and v is the
0(E)-bi-invariant standard Gaussian measure on (E ~ E) *, and showed that
the representation

0(E) x 0(E) a (g1,g,)i—’oi~(g1,g2)= U~~(g3U1’?(g2) e U(t)

decomposes into a countable direct sdm of irreducible representations. In [15]
they carried the results of [14] over to the unitary group U(E), where
E = C~(X, R) is the space of real C~-functions on the compact Riemannian
manifold I, and U(E) the goup of invertible operators on E which are
isometnes in the space L2(I). In [16], Pickrell constructed a left regular
representation

U’: U(co) —‘ U(L2(M~, U(cc), dv))

of the group U(cx) = lim U(m), where M~ is the space of all complex matrices
of infinite order and v is the standard Gaussian measure on MC, and showed
that U’- may be decomposed into a direct sum of irreducible representations. In
[13] Nessonov constructed a right regular representation

UI?: Eg’ —, U(L2(B~’, fl~’, dv))

of the group E~° of matrices of the form x = exp £ + s, where / is a diagonal
matrix with a finite number of nonzero real elements. s is a finite complex
strictly upper-triangular matrix, ~ is a group of arbitrary matrices of the form
x = exp £ + s, v is the standard Gaussian measure on E~, and proved the
irreducibility of Ui?.

In [10] we proved the existence of a family of Gaussian measures p~ on the
group B’° of upper-triangular real matrices of infinite order with units on the
principal diagonal, having the property (B): A right action of the group fl’ is
admissible and ergodic, and a left action is inadmissible. We constructed a family
of right regular representations

TI?4: B~’ —, U(L2(r, B~°, dpg))

of the group B~° of finite upper-triangular matrices: B~° c B~. R. S. Ismagilov
stated the following conjecture: For these representations, property (B) is equiva
lent to irreducibility. G. I. Ol’shanskii proposed the following: To nonequivalent
measures there correspond nonequivalent representations. The objective of this
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paper is the proof of these copjectures for the group B~° and Gaussian
product-Measures (see also fill)

It is likely that these conjectures are valid for other infimte-dimensional
groups, and for measures which ar& not necessarily Gaussian The question as
to the~ decomposition of a reduôible rtgulay representatipn of the grqup fl
remains open. .

In §1, we cànstrUct on the grout B~ a family of Gaussian measures pg that
have prOperty (B) and a family of right regular representations T~’:6 of.the group
B~°. In §2 we show that property (B) is equivalent to the irreducibility of T~.
The proof of that irre4ücibility isbased on the B~°-ergodicity of the measure td
and on the fact that the operators of multiplication by an independent ~ariab1e
may be approximated by the generators of one-parameter groups. In §. we
prove that to nonequivalent measuies there correspond nonequivalent represen
tations. The proof is based on the calculation, using partial Fourier transforms
on the group B°’, of the spectral measures of a family of commutative sub
groups B00m a Bg°, m e N, and on a comparison of those spectral measures
using Hellinger integrals. In §4 we carry out the proofs of some technical
lemmas.

We would like to express our deep gratitude to R. S. Ismagilov for turning
his attention to this hypothesis, and for his constant encouragement and
observations, which essentially simplified some of the proofs. Also we thank G.
I. OPshanskii for his interest in the work and useful discussions of these
questions.

§ 1. Regular representations

Suppose that B~° is the group of finite upper-triangular real matrices of infinite
order with units on the principal diagonal, B the group of all upper-triangular
matrices with units on the principal diagonal, and b°’ its Lie algebra, i.e. the set
of all strictly upper4riangular matrices. If one denotes by Ek~, k, ii c N, the
matrix units of infinite order, then the elements of the group B~° (resp. B°’) are
matrices I + x, x = <,,XkflE,,J,, where only a finite number of elements Xkn are
nonzero (the Xkn are arbitrary),

bc0={x= Z’k~4lcn}.
k<n

Suppose that B(m, R) is the subgroup of B~° of matrices of the form

B(m,R) ~1+ z. .XkflEkfl}.
- k<n≤m
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Obviously B~’ = lim B(m, R) We will equip B~°’ with the inductive him
topology ft.

Since the group 0 = BJ’ is not locally compact, there is no G-invarian
measure on it (A Weil [22)), nor any G-quasi-invariant measure either (Da

r Xing~ Xia [23]). Accordj~gly, some kind of analogue has to be constructed 0]
some completion C of the group 0. If one -chooses the group B to serv
in the role of suàh a completion 0, then on the group B°’ there already exis
many different B~°-quasi-invariant measures, for instance Gaussian measure~
There is no basis whatever for giving preference to any of those measure~
Therefore it makes sense to consider all measures or all measures in a certai]
ëlãss.

It is• convenient to construct the measure first on the corresponding Li
algebra b~, and then to transfer it to the group B°’ using the exponentis
mapping.

We will be dealing with matrices b = (bkjk<,, of positive numbers. We wil
denote the set of such matrices by ~. We define a Gaussian measure Pb on th
space b~ as follows:

dpb(x)= ® dpkfl(xkfl)= 0 ~J~exP(—bkflxL)dxkfl.
k.cn k<n 7~

Let jt~ be the measure on B~ which is the image of the measure Pb under thi
mapping p:

5°’ ~ x i—’ p(x) = I + x c B°’, pg(A) = Pb(P -

exp(xm) exp(x3) exp(x2).

Consider the right and left actions B,, L, of the group B~’ on B~:

R,s=st, L,s=’ts, t eB~°, sc B°’.

Dehote by (pg)f,, (pflL; the images of the measure pg under the mapping:
R1, L,: B~ .—* B°’. It turns out that the measure pg is always B~’-right-quasi-in
variant (Lemma 1.1), but it is not always B~°-left-quasi-invariant (Lemma 1.2)
Therefore we can construct a family of analogues of the right T~ and left T’~

In fact x = ~are the canonical coordinates of the second kind fo:
p(x) = I + x. Indeed, write X,,, = Er: Xk,nEkm. Then obviously
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(if they exist) regular representation~ of the

2(b)=L2(B~,dpg),

They are

t~b) 9f(x~ I. (T~f)~±)

2(b) 9 (T~fl(x)-~ (dfl~Q~1x))II2fl - ~ C 2(b). (12)

Theorem 1.1. The right regular, representation T~ of the group B~° is irre
ducible if and only jf no left sh(fis L,, 1 e Br, are adrnissi6le for the measure pg,
b e ~.

The proof of this theorem will be given at the beginning of §2 below.
We constructed the respresentations (1.1) and (1.2) in [10], but we did not

consider the question of their irreducibility. The analogue to the representation
Tlz~, for the standard Gaussian measure p~, I = (bkjk<fl, bk,, 1, was con
structed independently by N. I. Nessonov [13], who proved its irreducibility.
However, Nessonov’s method, based on the Fourier transfoim and the law of
large numbers, did not include the case of an arbitrary b c .~.

Lemma 1.1. For t C B~ the measures (pg)Jt~ and pg are always equivalent.

Proof. Under the transformation ‘R,: B~° -. B~0 only a finite number of coordi
nates change:

where

B~9x=I+).xkflEkflF_+R,(x)I+Z~kflEkfl,
k<n ‘ k.cn

n—I

Xkn=Xkn+~ ~ X~,t,,,+4,, (fk<n≤N=NQ),
r’~k+I

Xkn=Xkn (fn>N:

It. follows that the question reduces to the . equivalende of two nàndegenerate
Gaussian measures in finite-dimensional space. But. then they are obviously
equivalent because each of them is equivalent to Lebesgue measure..
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umma 1.2. Suppose that t e B~°. Then the measures (fl)L~ and pg are equiva
lent if and only j(

— _____
-‘kk+I —

a, I, -
kin

L <cc,
,n=k±2 Uk+ urn

tkk+I=J+tEkk+I, kcN, teW.

We will show that the condition (j4)” —pg is equivalent to (1.3). Indeed,
since

+ ~ =

0 ~ 0.”- 0

010 .“0

0 ~-- 1 xkk±I+

= 0 --- 0- 1

then p~’u + is a product measure,

--- 0 --- 1 Xkk÷I Xkk+2

“ 0 ~“ 0 1 Xk+Ik+2 “

p~i = (Q4g)L~- /2~,’kk 1(x) = ( 0
n-cm

n ≠ k.k + I

0 (PkmGPk÷Ini~÷I(Xkrn~xk÷Irn)).
In=k+2

The denshies of its factors relative to the factors of the measure Pb are equal
10

• .fdpt~tI\

dp~÷1 )(xkk+I) = exp(—bkk+ l(XkklI + 02 + bkk÷ IX~k÷ I),

d(pk~ ®Pk+Irn) (Xkm,-Xk+I~) =exp(—bk~(xkTh + tXk+I,j2+bkmX~rn).

In vi& ot the criterion for equivalence of product nieasures ([20], §16, Theorem
I), the condition P + a Pb 15 equivalent to the convergence of the following

group B~° in the space..

and

(1.1)f(xt) Er(b) Proof. We write

k eN. ‘ (1.3)

[

0

t X~~+t Xk+Ik,+2 ~•• Xj~,,~+t ~

Ik±2 Xk + am

Pnrn(xnrn))® L,kk÷I (xkk÷l)kk + I
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product U
~ ‘d L,kk÷I\I,2

jJ.....J (Iikk+I ) (xkk+I)clMkk±I(xkk+l)
& “Mkk÷i -~ - - - - -

‘U ~ IdPkmøMk+IM) 2’ ~I~2
x fJ I I ,, -~ ~

,n_k+2JR2\”V’km’aAMk÷lm) /

X d(14r,, 014± imXX&m, Xk+ In,)

I~Xkk: ~+t)2 —bkk± 14+ ~)

xexp(—bkk±lx~k+l)dxkk+I fl (km k+Im)
,n—k±2 ~

X f exp( —~(bkTh(xk~ + tXk+ im)2 — bkrnX~+ im))

xexp(—b~~xj,, ~bk+I,nX~+lm)dXkmdXk+Im

/ b t2’. ‘.1)2
=ex~(— kk-I-I ) fi ( k+Im)

“ m=k+2\ ~

x

/ b - 2’. / 1,- \I/2

dxk+Im=exP(— kk+I ) fi ( k+In,

\ 4 jm~+~j
Uk+Immt 4

/ Li 12\/ / g2 Li
=exp(— kk+I )( fl (1+”A~j• kin

\ 4 J\m.~k+2\ ~rVk±Im

Thus the, convergence of the product fl is equivalent to the convergence of
the series

CL (Ià_ 1. j.-1
‘-‘kk±IW)— UkmVk+lm.

m=k±2

Since the one-parameter groups

Gkk±I={tkk+leB~Itkk+l.=I+tEkk÷I,teR1},. keN,

generate the group B~°, then the condition that i4’ Mo; t e Br-, is equivalent
to the condition that pft’*& + — ~ k s N which proves the lemma.
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Remark 1 1 From what we have proved it follows in particular that the
conditions Stk+ 1(b) <cc, k e N, and

-S~(b)-= ~ bkThbJ<c13, k,n eN, k-cn,
-. m—n±I

are equivalent. -.

Lemma 1.3. The- measure pg. given on B~, is B~-ergodic relative to the right
action. - -

Proof. It is well known that any measurable function on R~0 with the standard
Gaussian measure, invariant under any change of the first coordinates, coincides
almost everywhere with a constant function ([19], §3, Corollary 1). Therefore

• - the proof follows from the fact that the measure Mo is a tensor product of

measures, and the fact that the subgroup B(m, R) of the group Bt’ acts
transitively on the subgroup B(m, R) a B°’.

§2.- Irreducibility of representations

The proof of the irreducibility of a right regular representation is based on the
ergodicity of the measure s~Z relative to right shifts by elements of the group B8°,

• and on the fact that the operators of multiplication by the independent variables
may be approximated by the generators of one-parameter groups.

Proof of Theorem 1.1. The necessity is obvious. We will prove the sufficiency.
Suppose that (~g)Li±pg, -t e B~°. Then, by Lemma 1.2,

St,jb)=cc, k,ncN, ~c<~

We denote by W(b) the set of selfadjoint or skew-selfadjoint operators in
X(b) adjoined to the algebra W(b) = (T7’° It c Bfl”, and show that

JTl(b)zi{x,<,,,äpq_bpqxpq~k<n,p<q,k,n,p,qeN}.

We give the notation for the generators of the right shift A ~ = A L~°:

ALb T~’°(I ÷ tEk.~)~, k, ii eN, k <ii.

We calculate directly that

k
P.O —Ak,, — L Xmk(Dmn~bmnXmn), Xkkl, k<n, 8kfl8/Ukk,r (2.1)



then

1
+~i— =Yi~ +ji—;

LU112 LIIn

JY~dPb=O and

We multiply both sides of• (2.2) by ç, N1≤ n ≤ N2, such
that—~Z2’LN b1~t~ = 1, and sum on ii: -

N r b4 b2b2
1fr012@)j12 ~ 121 ~ k~ 21T

n=N, nL4bl2b?~+2bI~2b2~]
N2 N,

~z~E t~[bL+b1~b2j= ~ t~y,,.
n=N1 n=N1

Now we choose the t~ so as to minimize o.12(b). It is easy to see that

2b1~ / N2 1.2 “ —I

2’,i \&~N
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Lemma 2 1

{Xmn, 8pq — bpqxpqjm <n,p <q, m, n,p, q e N} c ~P(b)
• We w111 ~arr3iout.the.probfby’1nduetion.

• :‘ ~Bas~iof the: induction. We will proVe that. ‘.

~ b1~x1~, O2~+ +b~~ 1x~÷ ~, k = 2,3,... }o W(b).

Indeed, the opefator x~ May be approximated by a linear combination of
operators Af~A~, ii >2. For the proof of this we use a method of calculation
due to R; S. Ismagilov (Lemmas 2.2—2.4). The original proof of Lethmas 2.2
and 2.4 was more comjlicated (see [111).

Lemma 2.2. The operator x12 may be approximated by a linear combination of
operators A~A~ jf and only If

c12(b.) = Z 1!! =

Proof. We calculate the deviation of x12 1 from the linear span of the vectors
Ai~A~1, N1 ≤n ~N2. Since

A ~, = ö1,, — b1~x1~, A ~, = x12(ô1~ — b1~x~~) + (82n — b~x2~)

(see (2.i)), then

A~ 1 = x12(b~,,xf,, — b1~) + b1~b,,,x1~x2,,

• = —~b1~x12 +b1~x~y1~ + b1~b~x1~x11. (2.2)

We have made of a change of variables:

2 “2 ‘1
Xli? j\ ~

*
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We,write •~ . ‘

IN2’ .•\ N2

th1~b) = ~ t~Af,,Af,, — x12 ) 1 = ~ t~bLx12.y1~ + ~ ~
• \n~N1 / ,,=NI

Since’ all the terms are uncorrelated, then

f N, N2 ) / N2 b2’c’
mini ~ t~y,, ~ t~b1~ = —2~=4( ~ —~ ) , (2.3)

(,n=N1 n=N, J \n=N1 ~ /

the minimum being taken on at

Hence, with the optimal choice for 1,,, we get

/ pq2

~w2(b)JI2=4( ~
n~N1

We will require that ~ b~~y;1 = ~, i.e.

• 2 b~,, = 1 ~b!!!
n~3 In+ In 2n n=3 + m bIn n=3 2,,

Thus

x12 e W(b), ôIk —blkxk =A~ c ~P(b), k>l,

• - ~2k —b~x2k =A~ —x12(ôIk —bkxIk) c LP(b), k >2.

Now. we will show that the convergence Z’i N1 t,,A~ —. x12 of the self-
• adjoint operators ANN, = N1 t,,A i~A ~, (the selfadjointedness of the opera

Lors ANN follows, from the commutation relations ~A f~,, A~,1J = 0, n, q ≥ 3,
the skew-selfadjointness A,,: (ArJ* = —Ar,,, and the fact that the 1,, are real)
to the selfadjoint operator A = x12 holds in the strong resolvent sense. By

Theorem VIII.25 of [17], it suffices to show theconvergence AN,fl,f-Af for
anyf e D, where D is a common essential domain for all the operators AN,N2

N2 N2 N2

Z t~A~,AL1=x~2+ ~ t,,b’,,x12y1,,+ S tnbinb~nx1nxm.
n=NI n=N1 •
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and A For the role of D we choose a dense set consisting of finite linear
combmatioris of arbitrary mononuals

- X~ ~‘-x~ “~~• ~ 21’ a —0 1 .

Ik.-.2k ‘

i .c~j Obviously D is a common essential domam for the operators AN1 N2 and
A, since .Dconsists of analytic vectors for.the operators AN Ifl2 and ~A. Suppose
that] c-V. Sincefis. cylinddcal, then there exists an n0 e N such thatf does. not
depend on the variables xi.n, xj~ for n > n0: . -

Suppose that N1-> ti0. Then .

7 N2 2 /N2 2

= Wxi2 I~2. ( 1— ~ t~(bf~x?~ —b1~) ) 1 + ( ~
\ n=N1 /
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Lemma 2 3 The operator x,,~,, 1 <Ic, may be approximated by operators A f~A g,,
k<n, if and only ~f

=

:Proof. By formula (2.1),

•/1 k I-.

E bL( £ E =~,
n—k+I \j—Im—I

1. 1’

S~ A~,= 5 Xmk(Dmn~bmnXmn).
J=I n~~I

I 1’ . I /

A~ 1 = 5 5 bjnbtnnXjlXjnXmkXnrn + 5 b~nnymnxn,jxn,ic —~ 5 bmnxn,jx,n~c.
j.-~Im=I ,n=l 111=1

• J≠m

• We multiply both sides of the equation through by numbers ç, N1 ≤ n ≤ N2,
such that rZn~N, ~ = I. Then

oiyjb):=( s ~ ARAR — 1=( 5IN2 xIk) IN2

it in /cn
\n=Nj

N2

t A~A~ +~ Sit in kit
n,-.,’1

lck.

/ N \ ~ . / . 2
~ ~ )j9 = (x12— 5~ )f

\ n..N1 /1 \ n.-’N1 . 7

= ~(xI2 (i — ~j ~ — b1i)f~ + iIf~I2 ~ tnbinb2iixinxza)~
n~N1 n=N1

f N2 \ 2

= MxiJiI2 . (1 — S t~(b~~xf. — b1~) ) 1
\ n=Ni 1

f/V2 2

+I~fI~2 ( 5 tnbinbmx1nxm )1 -.0,
/

since, by what has been proved,

/ N2 \ 2

1ko12(b) ~2_ (xi,, — S t~A1~A2~ ) i
\ n=N1 /

• Therefore
- j - 1’

A~Ag,, 1 = 5 Xfl63Jn — b~~x,j 5 Xm1’Q3mn — bmnxmjl
j=I m=I

.1 . / 1’

=5 o~—bj~xjj(— S xm1’b,nnxmn)1
J=’. \ m=I 7

.1 1’ 1

= S S bjnbninXjlxJnxmkxmn — S b,,,,t XmiXmk
j=I,ni=I ‘n—I

j~ mt b ~+ b~X~flX~IX~ ~
J#m

On making the substitution

i r
X~,n=Ymn+~~, jYmn’4tbO~

we get
will be small for appropriate N1, N2.

The induction step. Suppose that the inclusion

{xnm,n<m≤p,anm_bnnixnm,l≤n≤p~m>n}cW(b)

holds. We will show that then

(x,,~,,8p÷i’n~bp~i’nxp+’n~l<p+l<m}CW(b)..

We will present the proof of this asseflion in the form of some lemmas.
It may happen thai the operators Xik, 1< k, can be approximated, in analogy

with x12, by operators Aj~Af~, k <n. However, the following considerations
show that this is not always possible for - -

N2 r.’ A I—I

S tn I S S~ —~ 5 bfl,flxmtxmic
n~’Np L/=Im.=I ,n=I

- j#m

+5~ + b~~~~mxi1’]. -

- k<n.



• •,—i•
-~ 2 I ______-r- fl2AI~ I. ~)‘.2fl

~ pm ‘“ml”,nk ~.V jj~ S.&j/~

Nj nc I I

Ilthi~Q~)ll~~2 ~ ~ £ b1,b,,,~+ £ bL~
n=N1 Lm’~Ii=I m=Ij76m.

N2 k ~:
— V .2 V V•I, I.
— L~ n 2.. 2.. UJnUpln

n—N1 m=IJ=I

Obviously, SL(bt1’) = ~, k <n, but

1
b~i+”+b~?

It follows from Lemma 2.3 that for the weight b°~ it is not possible to
approximate any operator XIk, I <k, f—i xj, k ≥ 3, by operators A i~A ~. The
operator x~2 may however be so approximated.. Jt is better to approximate with
operators of the type .

~ k<n.

Lemma 2.4. For she approximation of the variables x~, 1 <k, by the operator.’
(ö~ b,nx,jAj,,, k <n, it is necessary and sufficient that

1 k

~ b,~(. ~ bmn) =co;
n=k+,I \m= I,m,e/ J

Xin =YIn +j~Th

/ N2
wIk(b)i=( ~ tn(ô,p—b1nx,n)AL —x,k)l

\fl=Nj

min{ N2
Jj~Ik@) 1121 ~ ~ = _2} = 4

I n=N1
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Therefore

= 2

I. i—I j2UjnUmn - Inn

16b;,b~k ~ ,n= I 4bmlbmk

-1

Using (2.3), we get

/ Nz I k I
lIthIk@)112=ç ~ bLç 2 2 bmnbin) )

n=N1 m~IJ=I

Example 2.1. Suppose that weight bm = (bfl<fl has the form

0

k... b~ b~~1 bW+2 ... = ... 1 (n + 1)~ 1 :::)~1... b~j~ b~jl+1 b~÷2 ...) (... n2 1 (n +2)2

bW.el, k≠2,3.
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prooL.Wehave . .

k

(o, — bnx1jAL I = (ô,~- — b,nx1n) ~ Xmk(ônin — bmnXmji -

ni—I

Ic

=(ô,n—b,nx,n) ~
,n—I -

Ic
= ~ blnbmnxmkxlnxmn — b,flx,k.

tn—I -.

On making the substitution

we get finally

Ic

(ô1n — b,nx,JAL 1 = ~ ~+~ —~ (2.4)
I #1

Now we multiply both sides of equation (2.4) through by t,, N1 ≤ n ≤ N2,
choosing the t, so that

N2

£ b1nt. = —2.
n=N1

1< k,

Then

k ~ 3.
N2 r Ic ~1

= 2 ~ I 2 b1j,bmnXjnXp.jcXm~ +~ I.
n—N1 Un— l.,n≠I J

N2 r Ic binbmn b~,
Ilw~bIl2 ._... 2 t~ I £

n=Nj [In— Inn.! b~k bIk

Accordingly, by formula (2.3),

9 N2 Ic
I=Z~ t~ bj~~bpm.

J n=N1 ,n=I

1 <k.

/ N2 / Ic
I V ‘.2 1 V I. I.

~ Ujj~ ~ L.~InVmn

\n=Ni \m=I

We require that

• • • 1* / Ic
• ~ b,~( 2t3inknn) = £ b1n( 2 bnin+bin) =~,

I \ni= I • J n=k+ I \m= l.tn#I
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which is equivalent to This last is equivalent to

~ b,~( ~ b,j=co, 1<k. C c~~1(b)= ~ b~,( q±I b~~’1<cc, 2≤r ≤q,
n=k+ Z \m-. tm,’? I n=q+2 ‘~m-.2.mør I

while S~. ~(b) = cc, 2 ≤ k ≤ q, which contradicts the induction hypothesis,
However, Example 2.1 shows that, for the weight b°~, it is, as before, not after the notations 8,, = b,~ + ~, + i, k <n, are adjusted.

possible to approximate any operator f~’XIkf, k ~ 3, by operators -

(O~,, — b1~x1jA ~,. As before, x12 can be. The following- example shows that, for any q, there might be only one p < q
It turns out that for any q = 2, 3,... there exists a p <q such that the with Upq(b) = cc.

variables 4q can be approximated by operators (ô~, —~n > q.

Example 2.2. Suppose that bW n2, I k <n, b~ = 1, 1 <k <n. Then
Lemma 2.5. Suppose that St~(b) = cc, k = 1,2, . . . , q — 1. Then there exists a -

S~(b21) = cc, k <q, a1q(b0~) = cc, o-~(b~2~) <cc, 1 <p <q.
p <q such that ~pq@) = cc.

There remains some “adjustment” of the operators (O,~ — b1~x,jA~~, k <n, in
Proof. We will carry out an induction. Suppose that q = 3 and order that the variables X,k, I <k, might be approximated.

V ulk S~(b) = —~ = cc. Lemma 2.6. Suppose that Sf-~(b) = cc, k <n. Then the variables X,k, 1< k, are
k_4b3k approximated by the operators

Suppose the contrary, i.e. that 1~A~,1 n,) = (B,~ — b,~x,jA°” ‘er)
kn

~ b1~ <cc and c23(b)= £ - <cc. where
e13(b)= Z . +b~ k~4blk+t)3k k

k = 4 O2~

From the fact that u13(b) <cc it follows that blk <b~ + bak, k ≥ Ic0, so that = x,~(O,~fl — bmnxmn), Xkk = 1,m I m~{n i,.... n,.}

~ b under an appropriate choice of n~ c N, 1 ~ n1 <k, n1 ≠ n~, i ≠j,b~ v
k=k0blk +bik k.,~k0b2k +2b3k cc, Ic i,j ≤r ≤k—2.

since S~(b) = cc. The resulting contradiction proves the assertion for q = 3. Proof. This amounts to a proof of the inductive step. Suppose that the
Suppose that Stq(b) = cc, k = 1, 2, . . . , q — 1, implies c~~(b) = cc for some inclusion

p <q. We will prove this for q + 1. Suppose the contrary, i.e. that
~rrq+iQ) <cc, r=1,2 q. From {Xnm,fl <m ≤p;Dnm—b,,,,,xnm 1 ≤n ≤p,m >n}c J~P(b)

= ~ b1~ <cc is satisfied. We will prove that then
q+I

n—fl2 ~ bm,, {x,p+j,op÷tm_bp÷imxp+i,nIl<p+l<m}cW(b).
= 2 For the approximation of x,~ + byi the operators (O,~ — b,~x,jA÷ i,,, in view of

it follows that b1~ <~Lt~ bmn, n ≥ n0. We substitute this into Crc + (b) <cc. Lemma 2.4, it is necessary and sufficient that
r=2,...,q. We have / ~,+1 —l

a~~÷1(b)= Z b,~( Z bmj =cc, I<p+l.
/ q+I

cc >Crq+i(b) > ~ b~(b~~ +2 ~ b~ ) , r =2,3,... ,q. - n=p+2 \m=I,m,’i J
nfl0 \ ,n=2,n,ør j In view of Lemma 2.5, one of the series c,~+1(b), l-<p + 1, diverges.



/ t’+I

= ~ b,~ ( ~
n=p+2 \m... I,nl#r.n1
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Hence, for some n1 <p + 1, c~1~~1(b) = cc, i.e. we may approximate x~1,,÷1

by the operators (8,,,,, —~ ,,,. In view of Lemma 2.5, x,,.,.1 may be
approximated by the operators ,AA~VI,, if and only if

bmn) =cc, 1~k≤p, r≠n1.

By Lemma 2.5, one of the series ~ 1(b) diverges. Suppose that
(b) = cc. Then we may approximate x,,~ ~, where n2 ≠ n1, by operators

,,2,,A5~}I,,, and so forth. As a result we obtain a sequence n1,. . . , ni,, such that
the variables Xnkp + ~, k = 1, . . . , p, may be approximated by operators
nknAp÷ ~,, “‘~ — ~, and {n1, . . . , nj,, } is a permutation of {1, . . . ,p}. From

it follows that the inclusion

ôp+im~bp+jmXp÷i~ e W(b), m>p+l,

holds; this completes the proof of Lemma 2.1.
Thus we have adjoined to the von Neumann algebra W(b) = (T~° Jr e B~’)”

the operators of multiplication by the independent variables Xkn, k <n,
n e N. Therefore the von Neumann algebra contains the operators

{UkflQ) = exp(Lx~,,) It c H.’, k, n eN, k <n}.

Now suppose that the bounded operator A e L(L2(B~, d14)) commutes with
all the operators (T,I?~ t c Br). We will show that then it is a multiple of the
identity: A = 21, 2 c C’. Indeed, in this case A commutes with the operators
Ukfl(t). Hence A is the operator of multiplication by an essentially bounded
function: A =fA(x). In view of the commutation relations [f4(x), T~°] = 0, we
conclude that the function f4(x) is invariant relative to the action of the group
Br:fA(x) =fA(xt) for almost all x c B~, t c Br. In view of the ergodicity of
the measure Mo’ f4 (X) = const, i.e. A = 2!, as we were required to prove. U

Thus we have constructed a family TRO, b c .~, of analogues to regular
representations of the group Br. Among these the irreducible representations
are distinguished by the condition b £

~
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§3. Equivalence of representations

The question naturally arises as to which of the irreducible representations T’~°,
b € ,~ L, are equivalent.

Theorem 3.1. The irreducible representations TMW and TR~(2) are equivalent if
and only (1 the measures Mo (I) and Mo C2 are equivalent.

It is well known (see [17], Chap. II) that two product measures J4U, and P012)

are equivalent if and only if

H(b°~, b’2~) = H(p00), /4(2)) = (kufl,@~~P2)~ >0. (3.1)

Theorems 2.1 and 3.1 give a final description of the regular representations T’~°,

b c ~, of the group fl.

Theorem 3.2. Among the right regular representations TRo, b e ~, the irre
ducible ones are distinguished by the condition b c ~ L~ Among the irreducible
representations, equivalent ones, are distinguished by the condition
HQt00;, P02) >0.

The proof of Theorem 3.1 is based on an explicit computation of the spectral
measures ~ of the restrictions of the representations T’~° to the infinite-
dimensional commutative subgroups

B~mcBr:Br=. . . =B~ .fl2B?I,

and on the comparison of these spectral measures using Hellinger integrals. The
calculation of the spectral measure c~m makes use of a partial Fourier trans
form, due to N. I. Nessonov [13], carrying the generators of one-parameter
groups of BFm into operators of multiplication by a function.

The sufficiency is obvious. Indeed, suppose that Moo) P0(2). Then ~ ‘~‘ /4(2),

and the unitary operator U: r(b~’~)-. .r(b~2~) of multiplication by the function
(dpg()/dp~~)(x), where t°(b) = L2(B°°, dpfl, will intertwine the representations
7’fl~~(~) and TRb(2), i.e.

= T~°~22U, t c Br.

Necessity. We will prove that T’~°~° TR.0~ implies that Moo) “-‘ P0(2). Denote
by Wb = (T7’° I e Br)” the von Neumann algebra generated by the opera
tors (T~° It e Br), by W(b) the set of selfadjoint or skew-selfadjoint operators
A = J1 dE(2) adjoined to the algebra W(b), i.e. such that their spectral projec
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tors EA(A) lie in W(b), and by A e ~(R’) the a-algebra of Borel sets on the axis.
Suppose that W1 (b) = {xkfl j k <n } is the set of operators of multiplication by
the independent variables f—* X~~flf in the space 2(b). Then, as we proved in
Theorem 2.1, W1(b) c W(b). Suppose that

V~={(k,n)Ik<n≤m}, EJ~={(k,n)Ik≤m<n},

—p~m.. ® /4,,’ Pb — 0 i4~,

(k,n) e V,,, (k,n) S

SVm(b) = L2(B”m, (pKsn)P), 2°m(b) = L2(BDm, (p.~Jm)P),

BVm=4xeBgo~x=J+ x XkflEkJ,
I. (k,n) e V,,1

eB~x=I+ Z xkflEkfl}l
( (k,n)ECm

B~m=BDmnB~’

We note that B°m is a commutative subgroup of the group B~. Then

W(b)°m=(1A]I(k,n) e Llm}

is a commuting family of operators of the set W(b). We recall that the spectra!
measure a(A) of a family A = (Ak),, eN of selfadjoint operators A,,, k e N.
commutative in the sense of resolution of identity, is any scalar measure a(A, A)
on the a-algebra ~(Rc~) a A, generated by cylindrical sets with Borel bases

C(Rj=={C(ki,...,k,,,Ai,...,Aj={xeRtEhIx,,cAi

A, c ~(R’), i = I, . . . , n, k1 k~, ii E N),

equivalent to the joint resolution of identity EA of the family A of operators.
defined on the cylindrical sets by the formula

EA(C(kI, . . . , k,,, A1 A,,)) =E,,(A1)

Suppose that c?~ = a(W~ç’) is the spectral measure of the family of operators
W(b)Cm, m c N.

Assume that the representations T~?bo) and T1W2) are equivalent, i.e. that
there exists a unitary operator U: 2(b°~) — t(b~2~) such that
UT,~° = T,R.~~2)U, t € B~°. We will write for short T’~”°~ ~ TR.Mz).

The proof of necessity rests on two lemmas.

meN.

Lemma 3.2. Assume that TR4O) and TR~~2) are equivaleht irreducible unitary
representatioM: T~~W ~ T~11. Then W1 (b (0) H’1 (b (2)) with the same inter -

twining operator U, and UX,,,, = Xi,, U, k <n.

The necessity of Theorem 3.1 follows from Lemma 3.2. Indeed,

TR~~ TRMz) H’1 (b~°) If1 (b~2~) ~ a(H’1 (b°~)) — a(H’1 (bt2~)).

But the spectral measure a( W1 (b)) of the family of operators of multiplication
by independent variables in the space 2(b) is obviously equivalent to p~.
Hence we have

a(W1(b°~)) — c(U71(b~2~)) —~ p~~> ~Ug(2) ~ Pbm P62.

The proof of Lemma 3.1 comes down to the explicit calculation of the
spectral measures o~’”, m e N, and the calculation of the Hellinger integrals
H(a~, a~).

We recall the definition and properties of the Hellinger integral ([12j, Chap.
2, §2).

Suppose that p and v are two probability measures
(K, ~). Assume that A is a probability measure such
example A = (p + v)/2. The Hellinger integral for p and

Hos~v)=I~~JLJ~dA.
It does not depend on A, and has the following properties:

(HI) 0 ≤ H(p, v) ≤ I (the Schwarz inequality);

(H2) H(p,v)=lc.p=v;

(H3) H(p,v)=0c~p±v;

(H4) p —, v ~. H(p, v) >0.

The converse to (H4) does not hold in general.
We fix on a number m e N and do a Fourier transform F,,, of the space

.)rv..(b) Ø2°~(b), in which the operators Aj of the family W(b)°m act.
Write bS’m =p~(B~~), bCm =p_I(BCm). Suppose that

I ~ t,,,,E,,,, e bVn~, y = £ YkflEkfl, x = ~ x,,,,E,,,, C
k.<n≤m k≤m<n k~,n<n

I

=0~

IRREDUCTBTLITY AND EQUIVALENCE OF FlNrrE UPPER-TRIANGULAR MATRICES 261

Lemma 3.1. Suppose that °~i3 ‘— a~. Then

meN, V1

where

on the measure space
that p <A, v <A, for
v is defined as follows:
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Obviously BDm is a commutative normal subgroup in B~. Consider the semi.
direct product BVmD<B~m. Obviously

l+t+Y=(J+Y)(I+t)__p(y)pQ)EBV>.cBDn.

For the function

flp(y)pQ)) e tVm(b) 0r Qm(b) = L2(BVm ><fi0m, (J4%m 0 u?—Y)
we define the partial Fourier—Weiner transform (see [4], or [5], Chap. II, §6)

(Fmflp(X)P(t)) =Jm(p(x)pQ)) = ex~Q z xLb~)
(k.n) e 0,,,

xJ expQ ~ xkflYkfl)fco(Y)Pw) d(p~;)P~p(y))
80m (k.n) E

= expC(B’x, x)) 1Dm expQ(x, y))f(p(y)pQ)) dp~(y),

where (b/2)k,, = bkfl/2, k <n, and B is the diagonal operator (Bx)k,, = bkflxk,,,
(k, ii) E Em. F,,, is a unitary operator from tVm(b) ®XIDa~(b) into

tvm(b)OrDm(b_I),(b_I)k,,b~I, (k,n) e Em

Suppose that

z = ~ ZkflEkfl e b°m.
k≤m.cn

We will calculate p(y)pQ)p(z). We have

p(y)pQ)p(z) = p(y)pQ)p(z)pQ) - ‘pQ).

Since B°rn is a normal subgroup in B~’m>cB°m, then -

pQ)p(z)pQ) — = Ad,,~p(z) c B°~.

Therefore the mapping ~ p —‘ o Adpu) o p operates from b°rn into
b°rn: ~0pW~ bDrn ~ b0m, r e bVm. A direct calculation yields

Zt~= 9p~Z = pQ)z = L~Q)z, (pQ)z)kfl = Zk,, + >: tkrZrn, k <n.
r~k+ I

Since, for x, z e b°m, p(x)p(z) = p(x + z), then

p(y)pQ)p(z) = p(y)p(z’)pQ) = p(y + z’)pQ).
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jn the Fourier images the operators T~, p(z) e flm, take the form

.1_0(x)pU)) ~—‘ exp(~(B1x, x)) T exp i(x, y)f(p(y)pQ)p(z))
B 0m

fdQ4m 0 j~~m)P(p(y)p(t)p(z~\h/Z
0 p~m)P(p(y)p(t)) ) d(J4~ç)P(p(y)) = exp(~j(B~x, x))

x I exp i(x, y)f(p(y + z’)pQ)) (a1(~%m 0 p~Jm)P(p(y + z’)pQDN~’2
d(,uKm ®p~m~(p(y)p~) )

x dQ4fr)P(p(y))

= exp(~(B - ‘x, x)) f exp i(x, y)f(p(y + z’)pQ)) dp~”)~(p(y + z’))
jil D,n

= exp( —i(x, Z’DJm(P(X)P(t)).

Here we have made the substitutions

It’ = y + z’, y = w — z’, exp i(x, y) = exp i(k, w) exp( —i(x, z’)).

Accordingly,

(~m T;~t; fl(p(x)p(t)) = exp( — i(x, p(t)zDfip(x)pQ)).

the generators iA~ now go over into iA~”, the operators of multiplication by
the following functions:

d
= exp( — i(x, p(t)z)) ~ =

dzk,,

d /
= i— exp{ —i z ~+ ~ tpr2rq1) = (xkfl +~~‘ trkXrn~

dzkfl \. (p.q)eD~ z=p+I // Iz~~o \ r=I /

= (L~~0(x))~,,, (Ic, ii) c E,,. (3.2)

SinCe

Fm: tVm(b) G2°m(b) _.tVm(b) GtCm(b~)

is a unitary operator ([5], Chap. JI, Theorem 5.1), then the spectral measure of
the family iA~”, (Ic, n) e Em, is equivalent to the spectral measure J~m of the
family of operators ilj, (k, ii) € Em. The measure g~m on the group B°m and
its image c~m.P’(A) = g~m(p(A)) on the algebra b°rn will be denoted by the
same symbol: g~m~
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We will show that the measure on the algebra b°’” has the following form Calculationof the integrals H’””. We denote by dlm”’(x) Lebesgue measure on
for A e .~(5Dm), where ~(5Dm) is the a-algebra of Borel sets on 5°’”: 5°ms, and calculate the density dofm~1/d1’”’~’. Then, by definition, the Hellinger

c?m(A) = I ~m)L~T,(A) djz~’”(t). (3.3) integral H~ is equal to
H’”4 = I fdo~°crc”(x) _______ dl’””'(x). (3.5)

Indeed, by the definition of a~ we have Jb°mM dl’””'(x) dl’”4(x) )
= (~~‘“ 0~ )((t, x) e 5”” x 5°’” I L~, 0(x) = pQ 7)x e A) ~ Suppose that f is a one-to-one measurable mapping f: R” —, R”, dx de

notes Lebesgue measure on R”, and dji is a measure equivalent to Lebesgue
= I (Mc)c(;T(A) dys~mQ) measure:

= I (p~an1)PL~ir(p(~) d(p~m)P(pQ)). jz(A) = g(x) d(x), dp(x)
(x).

JA dxJR ~m

Since the measure Then

dg%m = 0
(k.n) e p1(A) = p(f’~ 1(A)) = g(x) d(x) = gU’ (y))

on 5”’” is equivalent to the standard Gaussian measure TA df~(y) dy, (3.6)

in which we have made the substitution x =f(y).
dp~mQ) = ® exp(—t~q) dtpq, Since, for any e 5”’”, ~ is an automorphism of the space 5°’”.” for any

(P.c) e V~ m, n e N, then, for A c ~(5Dm.n) we have, by formula (3.6), with

then the measure (3.3) is equivalent ([5], §18, Theorem I) to the following f(x) = L;~,!0(x):
measure:

a?’”(A) = I (pDm)L~)r)(A) dp~mQ). (3.4) c~’””(A) = I (jfmIjL~ir)(A) dpT’”(t)
JbVm

In order to calculate the Hellinger integrals H’” = H(c~”, as’”) of the mea- = f I ~ (L~(,fl(x)) dl’”” (L~,0(x)) dl’””'(x) d,4””Q). (3.7)
sures az’” and cs’” on the space ~ we calculate the Hellinger integrals by .JA dl’””' dl’””Xx)

= H(c~”', a~”') of the projections a~’”•” of the measure on the
finite-dimensional subspaces 5°’”.” of the space 5°’”, where It follows from (3.2) that the Jacobian of the mapping z —, L~Qr)(X) is equal to

unity for any i e 5”’”. Therefore (3.7) implies the following formula for the

b°’”” = {x c 5°’” .~ = Z xrsErs}~ density dc~°’”~’/dl’”~:
(ri) E

(x) = I Idj ~= {(r, s) c El~ 1 ≤ r ≤ m <s ≤ m + n}, \ dl’”’ ) Jb~n, dl’”’” )(L~~1r~(XDdi4m(t)

and make use of the fact that lim~._,,H’”’” = H’”.
We will show that for orthogonal measures p~ I ~ the relation = LV_ ( pj ,j~if) exp( — z (x,~ + Z tkrXks”) ‘1

\ (ri) E ~ I J(p,q) Vm\(r,s) 6

H’”=limH’”~=O
I 2q)dtpq)holds. Accordingly, by property (113) of the Hellinger integral, a~ç’ .1. a~q; this x — exp( — = fT i/i”(b ‘, x”'), (3.8)

proves Lemma 3.1.
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where Therefore, writing a = (ak)Z..j, b = (bk)Z.,. I, a,~ = In + 1k) ~

1x11 ... bk = (b~ ~+ +~) ~, k = 1,. . - , n, we have:
x~TeRrxw, xr.n=( ... Ida~Cm

m±l.n)
\xri ... Hm÷~=f~ (~m±I.n(a,x ~ d1~

(d Omn’ ~1/2/ 11
/ n+m f r—I 2 x ~ (b, xm+ln) Go_f ~x”~~) ( 0 dxm+Ik®dlm~~(xmi) -dl”~ I / \k—I~r.n(b_I~xr.n)=(H !~-~) I exp~— ~ b~ ~ tfrxtk) ) (3.11)

k—I ~J ~ I Jr—I k=m+ I f—I

‘—I /
x ® ç~—1~ exp(—t~) dtir). (3.9) :

G~(a, b, xmj = (i/i”’ + t~~(a, Xmt I.n)Qjm + 1~(b, X’~ + lj)1’2 0 ~‘Xn, + 1k

Consider the matrix xm-” e R” x It’ and vectors t, x1,..., x c Rn: = j’11 ~n !~-~ I exp(— > Ok(Xm+ 1k + (Xk, 1D2)

fl~\kl~J7t JRm .~ k=IIxii x12 --. x1~~

I X21 X~ X2~ ‘2 x ~~J_exp(._ 1,112) di ~ Th-~ f exp(— ~ bk(Xm+lk +(xk, tD2)
I ... I, ~= I..-I k=I~J7t Rn.

[ Xmi X,~2 xmnJ [t~J x_~!_exp( \I/2,jri, _Mt112)dbo) 0 dx~~1~4 (3.12)

[ X11 I X12 IXinl Our goal in the calculations that follow is to obtain an explicit expression for
I i I I I X2n the function Gm.n(a, b, ~ m, ii c N.xI= I .-- I’ ~2= •.. ~, xn=I__.I

[ Xn11 J LXm2J [xmnJ Lemma 3.2. For any sequences a =(a1,..., an), b =(b1,.., ba), m,n eN, of
positive numbers, and any matrix

Then (3.9) may be written down in a more convenient form:
x1,\

Xm.n = cxn., ... xmn)

I’ /
~ I.n(~_l X~4 i~ = ~ ~Ik ~ ~ b;~ ~~(xn.+ 1k +(Xk, tD2) - the representation

k—I 71 Rn. k=n,+2

I “ 4a~<b,~, ~ln.Il(a, x~’~p~~”(b, x~j1 /4
____________________________________________________________

;m.n (x exp( —~ 111112) dt. QnI.n(a b, X~”) = ~k=I (ak + bk)2 [ 2ab (3.13)

I ~ ~a+b~x)] f
holds, whereBy (3.8),

IdaF— +

d1m~ ‘-~ (x) = ~ “~(b - ~ x~ ‘~ (dc~n~n) (x~~) (3.10) ~ x~’~) = 1 ÷ ~ ~2~”~ xkj, (3.14)r=I I≤k,.ck2c-ck,≤ni=l



holds, where

IP(ak+bk)2Ilkkk≤}
I-JP~~ (a, b) = max~ £L.i= 4ak,bk, I

= fL.(k)\n j..(k) — (b(r)
tug )g~..fl L’g — ~ k,,n+I
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[x1, x2, . . . , = det((x,, ~ ~) is the Gram determinant of the vectors
X1, X2,.. . , X~ e R”, and 2ab/(a + b) is the sequence

( 2ab N
— a~, + ~

Now we state two more lemmas needed in the proof of Lemma 3.1.

Lemma 3.4. The estimate

~m.n(a, xmAgm~(b, XmA) ~ 22mn÷I fl2” (a, b)

[~m.n ( 2ab xm.n’~
k~a+b’ )J

(3.15)
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We will shéW that then (4~I) .L a ~. Indeed,
ED1

Ugo— a{i4i~ 81k — blkxlk 11< k}ro,(b) ~i <k}~g.’og~—i~,

since the partial Fourier transform t carries the i(ôlk — blkxlk) into operators
of multiplication by Xlk (see (3.2)). Accordingly,

to ((bW)—’ +(bc2i)—’)2

O) .1 c~j, ~ f~(aI))-l .1 P(bo))-~’ k-2 4(bWbS3i) —l

ç2))2(bUi+b~ =coep~thJ-sM2).
k—2 4bfl~bck

Suppose that (3.17) holds. Write

max {k~ ñ (bW+b~)2
I≤k≤ni+1 n=m+2 4b~2b~?2

Then, in view of Lemmas 3.3 and 3.4 and formulas (3.11) and (3.12), we get

1/4

Htm~”~ ≤ {rm—’ fln(a(m+ I), b(m+flfl.fl (a°” + I), b(m + I))

Applying that inequality sufficiently many times, we get

1/4
Jnl+ I fl2k — 2,n (a~”~, b~~) r

H””~ ≤ fi 2~—~ ~ (3.18)
~k=p H~ (am, b(k>)

= (a(k))n a$”~ = (b~L±
r r=l,

Since lim~,~ fin.?? (a~, b(k)) <x for p <k ≤ m + I and
~ finn (a~, ~ = ~ then, by Lemma 3.5,

fl2~2.~ (am, b(’4)/fi~ (a~, b~~) < az, p <k ≤ m + 1,

— 2,n ~ bt~~)
lim =0.

n —. to

I ≤p~<n.

Lemma 3.5. If the product fi = fix°.. Imk = az of positive numbers ml. ≥ 1
diverges, then, for any p c N, limo flPn/flm.’2 = 0, where

flP.n—max{fimk~ 1 ≤k1 <k2< <~ ≤n}~ flnA_fim

Suppose that Lemmas 3.3—3.5 hold. Lemma 3.1 follows from them.

Proof of Lemma 3.1. We will show from its opposite, i.e. from the condition

(3.16)

that H”~ = 1im~._~ H~÷1” = 0, m = 0, 1 Condition (3.16) is equivalent
(see (3.1)) to the condition

~
H ‘. to, kn.’ =~ (3.17)AlJl)3.(2)

(k,n) E 0m + I ~Ukn Vkn

Suppose that m = 0, and ~ i~ i.e.

~ (MI) i_ h(2)½2
~ Wlk ~Ulk) —

11 Abdfl1.(2)
k=2 ~UIkU~k

where

and

I~I~.” (a°’~, b~”~)
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By property (Hi) of the Hellinger integral, 0 ≤ H~ = limn...cc, Hr-” ~ I. Therefore Then inequality (3.19) follows from the following system of inequalities, ob
we finally find from (3.18) that tamed by comparing the coefficients on [x41, - - - , X,,,], [Xk1, - - - X/j >c

[Xc i,..-’ Xq~l, 1 Si-, s ≤ ii, in the right and left hand sides of (3.19).HTh+I = lim H”~-”=0.
1 ~ C 1-

2J~~J 2a4,bk, 1≤r≤n,This completes the proof of Lemma 3.1. [Xk,,. - - Xk,]. fl a4, + fl b,~, ≤ C - ______

f—I f—I I a4, —i—b41’

r S S r
§4. Proofs of Lemmas 3.2—3.5 [X41,. . . , - [Xq1 ,.., xq,l: H a4, H bq, + H aq, H b4,

i—I ‘—I ,~i i..I
Proof of Lemma 3.5. If all in4 ≤ C, then fl” ≤ C”, so that
H”” I H~ ≤ C” / if’-” —*0 as n —. co. In the contrary case there exists an infinite ≤ C - 2 fi 2a41b4, 2aq,bq, I ≤ r, s ≤ ii. (3.20)
sequence (k(n))°.~1, k(1) = 1, k(2) =min{k rn4 >m1) k(n + I) = ,..1a41+b4, ,_~

min{k I rn,~ > rnk(~)}, for which Now we relax the inequalities (3.20):

lim rn4(~) = ~ inMfl) <ink(~ + ~. n e N. r 20k,&c,

1 ≤ r ≤ n,H u14~ + H b4, ≤ H (a4, + b41) ≤ C -2 1J a4, + b41’
For r,n eN, r ~<p, we denote by k(r, ii) eN numbers such that ‘‘ i=1

r S S r r £

H a4, H bq,+ H tiq1 - H b4, <H (a41+b41) H (aq,+bq,)
H mk(,.fl)H”*”. f..i ,—.I ‘‘ f..I ‘=1 rI

‘—I

ñ 2a,~,b,,, ñ 2a~, b,,, 1 ≤ r, s ≤ n. (3.21)Suppose that ii e [k(r), k(r + 1)) nN. Then k( I, ii) ≥ k(r), k(2, ii)? ≤ C -2 114 + 1’4, ,_~ a~, + bq,
k(r —1),..., k(p, n) ≥ k(r —p + 1), so that

from (3.21) we get
in

— rn~ / H — k(I.n) in4(211) - rn4(~) / H m4 r = maxf ~ (a~,+b4,) , 2~’— n (at, +b4,)2 ~ (a~ +bq,)2 I <r, s ≤
I 4=1

. ,‘ 4a,~,b4, ~— 4a41b4, ,t’i 411q1 - bq, —
/ fl —l /k(r—p+ I)— I

2,,.≤( H ink) ≤j n ~4) ~o ifn~co, =max{22m_1 H ~4,+~2 }=22m_ fl2mn;
1≤ki<•••<k2m≤fl\k=I \ 4=1

f=I 4ti41b4,
k 0 k(1, ii) k(p, ii). ins proves Lemma 3.4.

Proof of Lemma 3.4. We rewrite inequality (3.15) in the following form: Proof of Lemma 3.2. Suppose that T~~W and T~?M2) are equivalent irreducible
Unitary representations, U: f(b~’~) —. j~°(b(Z) is their intertwining operator:

/ m p
I + > Z H a41[x4 1’,Rb =~ t c B~-’. We will show that then

r=I I≤k,c...-ck~≤nLI

UX4~=X,,.JJ, k,n.eN, k<n. (3.22)

x( ~ £

1 + ~ H bq,[Xq ,.. , xq,i) Indeed, by Lemma 3.1, then for any rn eN, jz~ — p~, i.e.
s—I I≤q,<...<q,Enf=I

______ (b~ + b~)2ñ 2a~,.,b,,,, , - 3.1~ H <03. (123)
t=I I ≤pI <---<p,≤n 1=1 a~, + b~, (k,n)c °_ 4bWbS?2
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Ii, — (
II II IIr(b(o) — Ii!L

/ N2
=4( E

We will show that

bWbW+b~urn— =1.
n-.~ b~ b~ + b~

—

< ~,

(k.n) ~ Q_ to, kn

m /01 \—I

lim > Z b~”’ =1,
r \k=I “1

-I)-’

— ‘I<c
that

Therefore

Accordingly

k=1,2,...,m, n≥n0.

We know from the proof of Lemiirn 2.2 that~—x,, ~

.t(b’9, where y,, = (bç~)’ + bWbW and

= —2b~ ~ (bç~)’y~’)~ = —2 +b~)- ~
k N1 k N1

(3.24)
N, \ 2

t~(b9AffA~~ + ~ c(bm)jb1~xj2) 1
n=N1 /

- N2

= Z t~(b°>)~[(bW)’(bW) ‘ + b~b~j]
‘I—NI

N2

E t~(b~’~)[(bW)<’~ + b~’,~b~]

/ N2
= 4( E bW(b~ +bW)—’ ) . (3.25)

\n=N1 /

We will show that ~ N, t0(b~’~)A A~M2)) —. x~, in .*‘(b°~). As in the proof
of Theorem 2.1, for this it suffices to show the convergence of the operators in
question on the unit vector 1 c ,t(b (2)) We have

IN, P12 \ 2

11th II ,2(bm) M’r(b(2)) = ( ~ c(b~))AfQ)A~M2) + ~ t~(b’-°)~bj’)x,~ ) 1
n—N1 n—N1 / .Jflb”I

N2 N2

= ~ t~(b~’~)a[(b~)2cW) —‘ + b~b~fl > t~(b~’~)I(bW)’ + b~’jb~fl
n—N1 n—N1

—2 N2 ~ b?~ b?~+b~
+b~)~) n2~v, b~2 +bW b?~ b~ +bSi (3.261

Indeed, condition (3.23) is equivalent to the convergence of the series

that

it follows front this that for any m e N and a > 0 there exists of an n0 e N such

b~ (~ b~?) — l~ ≤ k~l b~~’2 -- I (S bV2) ≤ me.

m eN. (3.27)

(3.27) implies an estimate for the right side of (3.26):
IN2

lIthl,(b)II~nb2~ ≤ C’( ) b~i(b~i +bW)~
/

and this is small for appropriate N, and N,. Here we take account of the fact

= b~(b~) —l =

(sec (1.3)).
We will write (N,, N,) .-~ ~; (N,, N,) = (N, (p), N,(p)), if

N2(p)

lint )~ b~(b~ +bS2Y’ = cc.
P~ Nj(p)

In the left side of the expression (3.26) there is the expression

N2

~
n=N1

We will show that
N2

lirn ~ ~ t~(b~’~)bW = —1.
(Ni,N,)—’cc n—N1

N2

lim ~
n= Nj

lirn
(N, .N,)—. ~

which is equivalent to the convergence of the series

Indeed,

/ N, br” N’ N2 br’> b?~
Z In , In n

n = Nj bj~ + ~ ~ + b’~~n n—N1 n n
(b~/b~—1)2<az

k.n e



274 A. V. K0SYAIC

since

IN N~ I IN KN
S ~ a~) —ij≤~ ~ an(bn—1) ~

n—N3 ~n—N1 n—N1 n—Nj

≤ max
Nj≤n≤N2

as N3 —, az. Here we have written

= bç~(bç’j + b~) ‘, bn =

and used the fact that

urn bW(bW)—’=l.
n —

Thus, in the left side of (3.26),

N2

5 tn(bW)b~xi2_+ —x32.
n—Np

Accordingly

u ( ~ = ~ tn(b~’~)Afi’3A~612’ —‘x12
/ n=N2

in t(b~2~). Hence Ux32 = x12 U.
Analogously we show that UXIk = Xlk U, 1 <k. Indeed, by Lemma 2.4, Xik is

approximated by the operators

N2

S r~(b°~)(8,~ — n
n=N1

and

Vo,k(b~’~) Jj~(bO)) = 5 t~(b°~)(o,~ — b5,~)x1n)AR~t~W — iii
xIk) 112

kn
liv’ —N, Iir(bU))
N2 k / N2 k )~‘)~1_~o

—5 r~(b’~) 5 b~b°) =4( 5 5
n—N3 rn—I \n=N, (rn—I

n ‘nfl

where

/ k N2 ( Ac

= —2bM~ ( S 5 (b~)2 5 bP)bo)))
\rn—i n—Nj n Inn

/ k N2 / Ac
2( 5 5 5= — \rn~I n~N1 ~m_ i •~~) )~

rRREDUcTBTLITY AND EQUIVALENCE OF FINITE UPPER-TRIANGULAR MATRICES 275

We will shów~that
IN,

U ç tn(b”~)(din — bWxiiA —, X,k
n—Nj

in t(b”~). Indeed,

iIth,Ac@°~) lI%’(b(~)) = K ~ ~_b~n2)XijAf.;b(Z) +2 ~ tfl(bo)b~2XIk) ~
n—Nj nNj

N2 Ac / N2 / k \—I\—2

><E t~(b°~) 5 b5~~bg~=4( 5 5
n=Nj in—I \n=Np \rn—I

N2 Ac / k \—2 / N2 / k \—I\—2

x 5 b~?) S S bW~) =4(~ S b12~Z M.2)
n=Np rn—! \rn—I I n—N3 rn=I

N2 / Ac \—I Ac / k \—I

S b5,~)( 5 bg~) b~~(b~~)—’ 5 b~( 5
n—N1 \rn— I J rn—I \rn—I

Using (3.27), we get the estimate
/ N2 / k \—l\—I

Ilth,kQ°~) il3r(bm) ≤ C ( 5 ~ ( 5 b5,~ ) )
\n—N, \rn—I I

which is small for appropriate N3, N2 (see the proof of Lemma 2.4). The equation
N2

lim ~ 5 t~(b~’~)b5~
(N,.N,)—’~ n—N3

/ Nz b5’~ N2 b5° b52~
lim (5 Ac S Ac

(Nj,N2)—.oo I\I ~ b~ n=N3 n,~l b~,2 n

completes the proof of Lemma 3.2.

Proof of Lemma 3.5. We note that the function Gm~l(a, b, X~•~), X’”” e R” x R”,
is invariant relative to 0(m), the orthogonal group of space R”. Indeed,

G”(a, b; 0X~) = G”~(a, b, Ox1 OXn)

= .Ln (Act, ‘j 1Km exP(_E ak(x~+ 1k + (OxAc, t))2) _=, exp(— k’ 112) dt

kUl ‘j 1Km exP(_z b*(X~+ 3k +(OXk, 0)2) ~L= exp( — it liz) dt)

x 0 dx~~ 3k = G”(a, b; x1,..., x~) = G’n~(a, b, Xmj. (3.28)
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It suffices to prove equation (3.13) for G”~4’, ii c N. Indeed, for m <ii, Therefore
equation (3.13) for Gmfl is a special case of the equation for G” ~ sjnce for
X , X,~ ERtm c ~“( —((I+A(C))T, T)) dT- exp(~((I+A(C))~ d, ci)),

[xk,...,xk,J=det((xk,,x~)J=.3=O -,

for r > m. so that formula (3.30) follows from formula (3.29).
We will need some formulas. It is well known that for A e End(Rj, A > 0, We now use formula (3.30) in order to transform Gm,’~:

_!_ [ exp(—(Ax
..J?JR* ,xDdx=,1_~—. (3.29) (El akbk)

Suppose that k=~11_ f~J1 exp(— ~ ak~x,fl÷Ik+cxk,rD~
G~(a, b, I) =

\JRm k=I

m,n cN, c1,c2,...,c, eR”, deRm, ck=(cpk)PI, k=1 ~, 1
x —txp(—(t, 1)) cit I exp(— > bk(X~+Ik +(x

C=(c~k) cRmxRn, Ci,.,C~ eR”, C~(c~k)Z_I. JRm \ k—I k~t))2)

Then 1 \I/2
x —exp(—(t, tDdt) 0

1 f exp(— ~ ~ 1)2 — (d, o) exp(—(t, t)) di k= I

k=I / n 1/4

1 exp(~((I + A(C))’ ci, d)). (3.30) C H akbk) J 1~ E a~(x~, j~2 —2 ~ akx~÷ Ik(xk,_________________ = I

,/det(I+A(c)) = ~ Rn\JRrn \ k=I k=I

where A(C) = (A,1(C))7~.. ~, A,1(C) = (E~, Ej)Rn. 1
Indeed, we make a substitution I = T + T0 in the left side of (3.30) such that exp( — (t, t)) di [ ex~(_ > b~(x~, f)2 —2 ~ bkX~ + IkG~k,

the terms linear in T vanish. JIt”’ k I k I

Since 1 \I/2 7 ~ 2
x exp(—Q, i)) di) 0 expç~— 2 Xm+ 1k) ~m+

Z (ck,t)2+Q, t) =((I+A(CDI, t),
Now we make the substitutions

then

xk(a) =XkS,/~, xk(b) Xk%JE,> (ck,T+TD)2+(d,T+To)+(T+To,T+To)
n ak+bk22 Xm+Ik=S/~

k=I 2

= ((I + A(C)XT + T0), T + T0) + (d, T + T0)
)ni 4(a)— ~ flkXpkZk =çt~(a),z), xP(a)=(xPk(aDk,(1(a) (d~(a) p=I’ — _____

= ((I + A(C’))T, T) + 2((I + A(CDT0, T) + (d, T) i S/ak + bk

+ ((I + A(C))T0, T0) + (d, T0). “ b~xP,<z~ —akx~I. d(b) =(d~(b));1, 4(b) = ______
xPk(a) = _________ _________ (2~(b), z),

We choose T0 so that (2(1 + A(CflT0 + d, T) = 0, i.e. T0 = —(I + A(CD’d/2. ~,/a + bk’ k= I 5./ak + bk —

Then
‘I bkxpk
k I, xpk(b) = _______

((I+A(CDT0, T0) +(d, T0) =(~, T0)= —~((I+A(CD~ d, d). - I~(a) —GePk(b)) = s/ak +bk



I. “ 4c4b,,, 1”~ ~ ((• exp(_- ~
UUIcak+bk)21 JRfl~JRm \ p=I

I I’ /

x —exp(—-(t, Odt exp( —

.JRm p_.I

1 \I/2
x —exp(—Q, t)) di)

—5 ~ 1 V’4
— lkUI (ak + bk)2 det(J + 4(1(a))) det(I + A(I(bD) I

x J exp{((I + A(X(aD) -‘ d(a), d(a)) + ((I + A(I(b))) - ‘d(b), d(b)

1
x —exp(—(z, zDdz.

A
Rpq(a) = pq

det(J + A (X(am~

x I expI (r(a, b, X)z, z)
JRn ldet(I + 4(1(a))) det(I + A(I(bD)} ~ exp( — (z, z)) dz
~ 4a,<b,~

— (ak + bk)2 det(I + 4(1(a))) det(I + 4(1(b)))

x det2(I — r(a, b, I)
det(I + 4(1(a))) det(I + 4(1(b))) )~

J 4c4b~ ~I/4

~kUI (ak + bk)2 det2(det(I + 4(1(a))) det(I + A(X(b)DI — r(a, b, XDJ

- (3.33)
Since Apq(a), Apq(b), det(I + 4(1(a))), det(J + 4(1(b))) are polynomials in
(he x~, i = 1, . . . , m, j = I n, then the r,/a, b, 1), and accordingly
dct(det(i + 4(1(a))) det(I + A(I(b)DI — r(a, b, I)), are also polynomials in xu.
Suppose that

I(xpk), I(a)=(xPk..J) cRmxW; x1(a) x~(a) eRm,

x4(a) (xpkq’~); i, 21(a), . . . , 2m(a) e

det(J + 4(1(a))) det(I + 4(1(b)))
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We get

Gm~(a, b, I) =
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where
II

R~(a, b, I) = ~ (R,,~(a)4(a)±q,(a) + Rpq@):Qpt(b)2q,(b))
p4—i

Apq(a) %(a)%,(a) + Apg(b)

= (&gi + A(X(aD) detU + 4(1(b)))
1

= det(I + A(~(a))) det(I + 4(1(b))) ~ (det(I + A(1(b)DApq(a)%(a).c,(a)p,q = I

r,j(a, b, I)
+ det(I + 4(I(aD)A~~(b)%(b)~~(b)) = det(1 + A(r(a))) det(I + A(l(b)D

Accordingly,

((I + A(I(a))) d(a), d(a)) + ((I + 4(1(b))) —‘ d(b), d(b))
‘I

= ((det(I + 4(1(a))) det(J + 4(1(b)))) Z rU(a, b, I)z1z~. (3.32)
4JI

Substituting (3.32) into (3.31), we get

Gm”(a, b, I) = I1f!J 4akbk 1 1/4
(a~ + bk)2 det(I + 4(1(a))) det(I + 4(1(b))) }

(x~(a), t)2 — (2..J~d(a), 0)

(x~(b), t)2_(2..J5d~(b), t))

~=exp(—(z, z)) dz

(3.31)

Denote by Rpq(a), Apq(a), 1 ≤ p, q ≤ n, respectively, the elements of
the matrix (1 + A(1fr4)) —‘ and the cofactors of the matrix (1 + A(I(aD) -‘.

Then

Therefore

((I + 4(1(a))) —‘ d(a), d(a)) + ((I + 4(1(b)))—’ d(b), d(b))

~ (Rpq(a)(.tp(a), z)(%(a), z) + Rpq(~kp(b), z)(~q(b), z))

= ~ (Rpq(a) ~ ±~1(a)z1,11(a)z~ + Rpq(b) 5
p.q= I i.j= I Lj= I

=~.:_ .Rpq(a).tpj(a)%(a) + z Rpq(b)*pi(b);Qaj(b)) Z~Zj

R1~(a, b, I)z~z~,

1/4

~~(a) =(xpk..J~)ZI.



nA(X(a)) = (A1~(X(aj)) ,~

A~~(X(a)) = (2~ (a), $, (a)), 2(1(a)) = (Apq(X(a)))

Apq(X(a)) =(x~(a), x~(a)).

Then the following equation holds:

det(I + A(X(afl) = det(I + A(X(a))) = ~m~(à I). (3.34)

Indeed, since the equation

• . . , X,~j = det((xk,, Xk~);i= 3 =

in which the M~;;;% (x) are minors of the matrix I, holds for the vectors
e it”, then

det(I + A(X(aj))

=1+ £
s—I I≤p~C-<p,≤m

=1+ ~ Z
s=I I≤p1<.<p,≤m

I≤k1<ck,≤n

(21 (a), 2,,ja))

(22(a), 2n,Ql))

1 + (2m(a), 2m(a))

= 1 + ~ LI a,,[x~ ,..., = (r~(a, X) = det(I + A(X(bD).
s1 14k1c.<k,≤ni=I

We will prove equation (3.13) for G~”~’ by induction on n e N. Supposethat
n = 1. Write

x2(a) = x12,J’~, 2~ (a) = (x1i,J~, x,2,,/~),

det(I + A(X(aD) = 1 + (21(a), 21(a)) = 1 + k1 akxlk,

det(I+A(X(b)))=l+ ~

(U + A(X(aTh -‘ d(a), dEa)) + ((1 + A(X(bD) -‘ d(b), d(b)) = (c1, z)2 + (c2, z)2.

2 b~xfk ‘I
— k=Iak+bk I

2 I
I + ~ b~x~

k=I J
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Write
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where

— 1 ( a1x~1 a2x12 N~1 ~Ji kEI akx~k LJai +b1 ‘~Ja2+b2)’

(3.35)

— 1 ( b1x~1

.1+ Z bkxfk
~2 \I 2

k—I

By (3.31) and (3.30) we have

G’2(a, b; x11, x12)

b2x12

q’a2+b2

1 + ~2I(a), 2~ (a))

(22(a), 2~(a))
= det

(2m(cl), 2~(a))

(2~(a), x2(a))

1 + 22(a), 22(a))

(im(a), 22(a))

2 4akbk 1

{kUI (ak + bk)2 det(I + A(X(aD) det(I + A(X(bD) det2(I — A(C))}

But, by (3.34),

det(I + A(C)) = det(! + 2(C)) = detN
1 — (c1 , c1)
—(c2, c1)

= [1

2 2 •2
ç. akxlk

— k=Iak-bbk

— (c1, c2)

I — (c2, c2)

1l+z
k=I

a,~

x1(a) =x11,1G,

/ 2 3, 2\2

( ~
\k=I a,,, k

(i+~ akxfk)(1+Z

/ 2 2akbk 2

\ k_lak+bk)
(i+ E

bkx~) — (i + k~I

k—I

2

d(a) =
k—I

akx~k)(I+)bkxIk)

ak X k

,k+ bk’

2

d(b) =
k—I

which implies (3.13) for G’2(a, b; x11, x12).
We will prove that if equation (3.13) holds for G” (a, b, X~ I.n), then it

holds for G”(a, b, xnn). In view of the invariance of G”(a, b, OX) =

G”(a, b, I), 0 e 0(n), we may suppose that the matrix I = X”” is triangular:

bkxkzk

xl’
x21

xn — II

xnI

x12 x,~__, x,~

x22 •.. x2~_1 0

0 0
0 “. 0 0
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I) = 1 + ~ II a4x,<,, . . - ,

r=I I≤k1-c<k,≤ni=I

=1+ ~ fl ak,[xk,,..,xkj
r—l I≤k1<<k,≤n—Ii~I

S I~I
r=I l≤k1.c<k,—ni—I

For the matrix X we find from property (3.35) that

- . , — ~, = S Af~;:t-~,~r(X) 2

I≤PI<•••<Pr~~fl

= S IMkt~;:~’.4~:~(1)l2
I—pj<p2<<p,≤n

=4, 5
2≤P2<...<Pr≤n

a1 (xn

I exp(—bj(x~+,, +~
JR’ \ r~nI

/
1 I

ex~~
~J1+b,x~,

Then we may express the function ~ ““(a, X) as follows:

+

then

I exp(—ai
JR’ “

= ~1 + a1x~ exp(

n—I

+ ~ t,x,~ + ~x~1) ) 3= exp(—t~) din

n—I 2~

ii + ,~i trxri) \
1+a,x~,

21
+tnxni) )~ exp( —t~) dt~

where the ~ - 1(’X) are minors of the matrix

n—I

+r~

Therefore

x21

= x31

Xl”

X2~_1

0

0

2~

_______ trxri) ‘~

l+b,x~,

l’ Ia’G””(a, b, I””) = ((1 + a, x~, )( I + b1x~,)) — “4G” — ‘-“(a, & X —

x12

1~~ = ~22

X~ — 12

Xkr_i~ X,,].

(3.36)

— ay2 ‘~ (3.38)
1 + ax2)’

where

xl”-

--.0

0

‘Xk, ‘Xk — the columns of the matrix I~ Therefore

~““(a, X”-”) = ~n.n — I(~, Xl’-” — I) + a~xf~C” — ~ ‘(a, ‘X).

Analogously one proves that

Since

=(a~)~,,

2a,b1

Since

JR~ exp(

2J, 6
=

a, ______a, = ________ ________

l+a,x~1’ 1+b1x~,’

€4 a,<, = bk, 2 ≤ k ≤ n.

1

~““(a, I”-”) = ~“ — ‘-“(a, 1”— In) + a,x~1 ~“ — I.n ‘(a, 1X).

1 __________________ _____________
— 2)dt_lexP(—a(y+:x)2)7=exp( t _____

(3.37)

(1 +a,x~,)(I +b,x~1)

— 2a,b,(a,+b,)—’
~1 +2a,b,x~,Qs1 +b,)’

a, (1 + a,x~,) —‘ + b, (1 + b,x~1) —‘

4a,b,(l +ax~,)2(l +b,x~324a,8
(a, +6)2 (l+a,x~i)(l+b,x~,)(a,+bi)2(1+2a,b,x~i(a, +b3’)2

4a,b,(1+a1x~3(1+b1x~1)
(a1 +b32(1 +2a1b,x~,(a~+b~)~)2’



x3’
Ix=,

00(a, b, K) = ~

~ (cE~

(k=I 4akbk

I
IRREDUCIBILIfl AND EQUIVALENCE OF FINITE UPPER-TRIANGULAR MATRICES 285

when (3.37) is taken into account, this completes the proof of (3.13) for
G~”(a, b, I””).

Now we shall prove that formula (3.13) is valid for G” + ‘(a, b, K”~ ‘). If we
write

X11 X12 x,3 •.. Xin+ I Xj, X12 --

x=x~’= X21 Xn xn ::: 0 x2, x22 :::
xnI xnz 0 ... 0 x,,, x~2 •.. 0
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then

~n-_ hn(~, yn— In) = 1 + £ S fl a,~,[xk,, . . . , X,J
r—I I≤k,<’<k,≤n1~~l

=1+rtI(l+~IX~I2≤kz<~<kr El ak,[x,,xk2 Xkrl

2≤k,<<k,≤fli~I )+ 5 fl ~ xkj

— 1 2 (1+aix~i+ t ( 5 a, FT ak,[x,,xk2,. .

1 + alxn, r=I 2≤k2~C<k,≤fl i=2

p

+ S flak,[xk,...,xkj+a,XL
2≤k,<<k,≤ni~I

Xk
~2≤k,<-<k,≤fli~I -0)

l+~x~(
= 1+5 5 flak,[xk ,xki+a,xfl,

rI I≤k1<<k_Sfli=I

/ n p

\ r~I2≤k,<<k,≤n1I ))x(1+ S S U ak,[xk,,..., Xkj

— (~ — 1~(a, X~ — ~) + a1 x~, ~n — In — 1(a, ,X))

— I + a,x~,

Therefore

G~”(a, b, K) = ((1 + a,x~~)(1 + b,x~1))~14Gn (a, 5~ X~— ,•~)

J 4a~b~ (1 + a,x~,)(l + b,x~3(1 + 2a~b1x~,(a, +
= [k=I (ak + bj2 (1 + 2a1b,x~,(a, + b,)~)(1 + a,x~,)(1 + b,x~1)

(en— ln(a, xn_ In) + a,x~, ~“— “ ‘(a, ,X))
x (~ 11b, Xn — In) + b,x~, ~— ‘.~ — ‘(b, ,X))

x
2ab 2((~niJ2ab r_i.n)+ 2a1b~ x~lcn_I•n~I(a+b~IX))

a,+b,

x2I x22
z32

x2n
0

0xnI xnz

(we may bring the matrix K into such a form, since G”~ (a, b, K) is 0(n)-
; invariant), and use (3.36) for ~ ‘(a, K), then equation (3.13) may be rewrit

ten in the form
1/2

(~nn(a, K””) + a~ + , xi,, + , ç~” — “'(a, ‘A’))
x (~“•“(b, K””) + b~ + ~ , ~“ ‘“(b, ‘K))

O(a, b, K)
(G”’”’ ‘(a, b, K))4

Jfl+I (ak + bj21”2 ~ ( 2ab

ikU, 4akbk J i\

~ 2a~~1b~, x~+,e_t~2ab ~‘x)). (3.39)
~ a+b

For x,~, = 0, (3.39) is (3.13) for G””(a, b, K). Since G””'~ ‘(a, b, K) is an even
lunction in x,,,~,, then O(a, b, K) is also even. Taking account of (3.33), we
conclude that O(a, b, K) is a polynomial:

1~ p 2k8(a,b,K)= 5 O~(a,b,K)x,~÷1,p<cC,
k=O

/ 2ab
~ k~a+b’ r~). (3.40)
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A direct calculation yields

826(a, b, I)28,(a, b, X)=
öxf~+, I~,~+1~o

= ~n’ (a~ + bk)21 1/2 4a~÷ 1b~.1. / 2ab 1rn) (3.41)
lk=I 4akbk I a~~1+b~÷1 ça+b’

Indeed,

______ I = 9(a, b, K) i”— L~~(a, ‘K). ~ ,~“ “~b, ‘K)
ôxf~~1 ~ ~_ ~ In.??) + C~(b, K~)

a2Gn~~~ ~ii

—2 8X~1 jj
G””4~ j(x,~÷,...o

But for the function

fnl-I \—I/4
O(a, b, K) = fl a,<b,~ ) G?U?+ ‘(a, b, I)

k—I I

we have

______ a2O I(G~÷1) 82x =(C)~ ãx~÷, Lin÷,=o
I.,+l

ad +bZ:d)i
ôiz~ ,I+I Inln+=o 2

which makes it possible to use the following formula, which was already proved:

fn+I 1/4 I

k—i akbk) G~~~(a,b,I)I
d(a, b, X)I~_~=ç~fl

‘en ~j~O

4” + ~nn(a, X”~)~””(b, K””)J 1/4
= In ÷ i

U’ (ak + bk)2 (~n.n ( 2ab xn.n))2 ~k=I \a+b
On calculating

a2G~l+I I
(Qn.n+ I) —

ôx?~+,

and substituting into ô28/ôx~,,~ , we get (3.41).
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We will prove that

a2’cO
2k ~ 2≤k≤p.

vxi~+i x1~.1.1-.O

To do this we will show that the following limit exists:

urn G””~ ‘(a, b, I) > 0. (3.42)
X In + I

Indeed, integrating over i~ c R’ and using (3.38), we get
/n±l \I/4

(flakbk
G??n+I(a b X)—”~’

— ~ R11+I

f IT / m
exp~ — Z ak(x~÷Ik+ ~ t~Xrjj —a~÷1x~,÷,~+1

\JR—’ \ k=I \ r=2 J

+c!akxlk(xm÷,k +Ztfltrk)) (i +“j’ akxIk)~)~ 3= exp(—tfldt,,

I / “ / ~n
xl exp~ — Z bklXm+Ik+ Z trXrk) bk+IXrn±In+I

JR”’ \ k—I \ r=2 /
fn+I / at \\2/ n+I

+(~Z bkXIk(X~,÷Ik+ ~ t,Xr&~fl(1+ > bjcxf~
kal r=2 // \ k=I

ITT I 1/2 ~+I n+I n+I—..~ —1/4

xØ7 exP(_tDdtk) k-~ dx~+ 1k ((i £ akx~k)(l £ bkxfk))

Since

/n+i / at \\2/ n+I

(~ akxIk(x~÷Ik+ £ trXrk)) 11+ E akxlk/c~I r=2 JJ \. k—I

fat a n \2f n+I

~ ~ >~ akx,kx~÷Ik) (1+ Z akxlk
r~2 k=I k-~I J \ kI

~ (a~,÷ 1x,~÷ iXm+ In+ )2
n+I

1 + Z akx,k
k—I

for

I = (t2, 13 ‘~) e L~_ ,(a) = c R r=2 t,E akxlkx,k ~ o}
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DnCa) { I= x”~eWI ZakxIkx~fl+Ik≥0}.
Ik=I

D~(b) = {xm+ ~ c R~ bkXlkXm+ 1k ~ o}

and D~(a, b) = D~(a) nD~(b) 00, because of a~, bk >0, k = I n, the fol
lowing estimate holds for G~”~ (a, b, X):

fn+I \I/4

II akbk) “ .fD~(~.b)
> k—I

x exp(_ ~ a~ 1k + ~ trXrk) ) ® —~— exp(—t~) dtk
L_,_1(a) k=I r=2 r=2

x f exp(_ Z b~ (Xm+Ik + E YrXrk)) ~ exp(—s~)
Lni_i(b) k—I r—2 k—2

c/(an+ixin÷jxm+in+i —a~+1x~,+1~÷1

)2

xexp~ ni-I

1 + ~
k’. I

)2
(bn+iXin+iXm+in+i

n+I )( n+I 1/4

ãm+Ik)ødtni+In+1((1+ Z akxfk
k— I

akx~)( n+I

1/4 1
1+ ~ bkxh)) ~

k’ I

IXm + In ± I)

,,+1
1 + Z bkx~,.

k= I

— + + In + — + + In + dXm + In + I

akx~k)( n+1

1+ ~
k.’ I

I ( “ ) bfl+I(

~ [ afl±l 1+ ~ 1+ Z bkx~kxexp1 — k—I k=l2 n+I — n+l

~_ 1+ ~ akx~ 1+ Z bkx~k—I k—I

XXL+In+I] dXm+in+i

+

and

(k~I bkxlk

for

and

2 n+I —I

1k + Z Xrksr)) (i + k~I akx?k) > (bn+IXIn±lXm+In+l)
— n+l -,

I + ~
k—I

s=(s2,..., Sm) CLm_I(b)= {~ c W”~- r~2 3~ k>I bkxlkx,k ≥ o}

xm÷i,jeDn(a)nDn(b),
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Since

,t+I

+~
k=.I

I /(an±IxIn+ IXm+In+ I) __________________xexp~j
~ 1-I- ~ a*xf~

=((i +k~I

Gn.n~(a, b, I)

1/2

dsk)

+

ni-I

+z
k—I

X 1k +

n+ I

I + >

+ bn +

1/4

+ :~; akxlk))

I f ‘.1/4

f2(c+I( n Ni ( n

1+ ~ akxlk)bn+I+bn+I 1+ £ bkx~)afl÷I)J
k—I k—I

~ b ( 2)>0

1

a~÷1 n+I\2+ E (ak+bk)%)
k—I
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n / n

x © dxm+ik.2_i/l(afl+lbfl+I)_I/4(2+ Z (ak+bk)x?,~
k=I \ k=t

Thus (3.41) is proved.

Accordingly, Bk(a, b, I) = 0 for 2 ≤ k ≤ p, since, in the contrary
account of (3.39) and (3.40), we would arrive at a contradiction
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for any collection (x,1,. . - , x,j c R~, then

/n+i \i/4

I fl t4b~
lim G”~ ‘(a, b, I) ~ \k—I

D~(a.b)

x
\JL~ — (a)

xç
— (6)

a~(.~m+ia + Z trXrtc) ) ê~*exp(_rnd~
k—I r—2 k=2

/ n / in 1 \i/2
exp( — ~ bkiXm÷Ik+ £SrXrk ) ) 0

\ k~l \ ‘—2 // k~I

>0.

This completes the proof of Lemma 3.3.
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