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Abstract. An analog of the quasiregular representation is defined for the group of infinite-order
finite upper triangular matrices. It uses G-quasi-invariant measures on some G-spaces. The crite-
rion for the irreducibility and equivalence of the constructed representations is given. This criterion
allows us to generalize Ismagilov’s conjecture on the irreducibility of an analog of regular represen-
tations of infinite-dimensional groups.
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1. Let G = BN
0 be the group of matrices of the form I + x, where x is an infinite-order finite

upper triangular matrix, let G̃ = BN = {I + x = I +
∑

1�k<n xknEkn} be the group of arbitrary
upper triangular matrices, where Ekn , k, n ∈ N, are infinite-order matrix units, and let

µ = µ(b,0) =
⊗
k<n

(bkn/π)1/2 exp(−bknx
2
kn) dxkn

be a centered Gaussian product measure on BN . Let Rt(x) = xt−1 and Ls(x) = sx be the right
and the left actions of the group G on G̃ and let µLs( · ) = µ(L−1

s ( · )). We define an analog of the
right regular representation TR,µ , G � t �→ TR,µ

t ∈ U(L2(G̃, dµ)), of the group G by the formula
(TR,µ

t f)(x) = (dµ(xt)/dµ(x))1/2f(xt), f ∈ L2(G̃, dµ). In 1985, R. S. Ismagilov put forwarded the
following conjecture.

Conjecture 1. The analog of the right regular representation

TR,µ : G → U(L2(G̃, dµ))

of the group G is irreducible if and only if
1) µLs ⊥ µ for all s ∈ G \ {e},
2) the measure µ is G-right-ergodic.
It is clear that Ismagilov’s conjecture is of interest for an arbitrary infinite-dimensional group G

and a G-quasi-invariant measure µ on the topological group G̃ containing the original group G as
a dense subgroup. In the case G = BN

0 , G̃ = BN and µ = µ(b,0) , Ismagilov’s conjecture was proved
by the author in [1, 2]. For arbitrary product measures on the group BN with some condition on
the moments, it was proved in [3]. In the case of the diffeomorphism groups for the interval and the
circle, it was proved in [4]. An open question is whether this conjecture holds in the general case.

An analog of the right regular representation for infinite-dimensional groups (current groups)
was first defined and studied in [5–8]. For arbitrary infinite-dimensional groups it was defined in [4].

2. Let us consider a G-space X , where G is some group. With every G-space X and an arbitrary
G-quasi-invariant measure µ on X , one can associate the unitary representation G � t �→ πα,µ,X

t ∈
U(L2(X, dµ)) of the group G by the formula (πα,µ,X

t f)(x) = (dµ(αt−1(x))/dµ(x))1/2f(αt−1(x)),
f ∈ L2(X, dµ), where G � t �→ αt ∈ Aut(X) is the action of G in the space X and Aut(X) is the
group of measurable automorphisms of X .

Let us consider the subgroup α(G)′ = {g ∈ Aut(X) | {g, αt} = gαtg
−1α−1

t = e for all t} in
Aut(X). Necessary conditions for the irreducibility of the representation πα,µ,X are the following:
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1) µg ⊥ µ for all g ∈ α(G)′ \ {e},
2) the measure µ is G-ergodic.
With regard to the description of the commutant of the right regular representation for a locally-

compact group (the commutant is generated by operators of the left regular representation [9]) and
Conjecture 1, it can be expected that these conditions turn out to be sufficient too.

Conjecture 2. The representation πα,µ,X : G → U(L2(X, dµ)) is irreducible if and only if
1) µg ⊥ µ for all g ∈ α(G)′ \ {e},
2) the measure µ is G-ergodic.

3. Examples. We will show that Conjecture 2 holds for the group G = BN
0 , for some G-spaces

X{p} that are sets of cosets of the group G̃ = BN with respect to some subgroups, and for noncen-
tered Gaussian product measures µ

{p}
(b,a) =

⊗
k∈{p}

⊗∞
n=k+1 µ(bkn,akn) on X{p} . For the case of cen-

tered Gaussian product measures µ
{p}
(b,0) , see [10]. The proof is also valid for arbitrary product mea-

sures with some conditions on the moments. Conjecture 2 also holds for the group G = SL0(∞,R),
for some G-spaces that are subspaces of the space Mat(∞,R) of real infinite-order matrices, and for
arbitrary product measures with some condition on the moments. This problem will be considered
in a separate publication.

Let us consider the following subgroups X{p} and X{p} of the group BN, where {p} = (p1, p2, . . . )
is a finite subset of the set of positive integers:

X{p} =
{
I + x ∈ BN

∣∣∣ I + x = I +
∑

k∈{p}

∞∑
n=k+1

xknEkn

}
,

X{p} =
{
I + x ∈ BN

∣∣∣ I + x = I +
∑

k∈N\{p}

∞∑
n=k+1

xknEkn

}
.

Obviously, the right action of the group G = BN
0 is well defined on the set of left cosets X{p} \BN ,

and we have X{p} \BN � X{p} . In the case where X = X{p} , the group α(G)′ ⊂ Aut(X) obviously
contains the image of the following group B({p},R) with respect to the left action L : B({p},R) →
Aut(X{p}):

B({p},R) =
{
I + x ∈ BN

∣∣∣ I + x = I +
∑

k,n∈{p}, k<n

xknEkn

}
.

Let us set B(m,R) = B((1, . . . ,m),R).
On the group X{p} , we define the noncentered Gaussian product measure

dµ{p}(x) = dµ
{p}
(b,a)(x) =

⊗
k∈{p}

∞⊗
n=k+1

(bkn/π)1/2 exp(−bkn(xkn − akn)2) dxkn,

where b = (bkn)k<n , bkn > 0, and a = (akn)k<n , akn ∈ R
1 . Let us write TR,µ,{p} = πR,µ{p},X{p}

.
The representations TR,µ,{p} will naturally be called an analog of quasiregular representations.

Theorem 1. The representation TR,µ,{p} : BN
0 → U(L2(X{p}, dµ{p}

(b,a))) is irreducible if and
only if

1) (µ{p}
(b,a))

Ls ⊥ µ
{p}
(b,a) for all s ∈ B({p},R) \ {e},

2) the measure µ
{p}
(b,a) is BN

0 -right-ergodic.

Remark 1. Condition 2) holds for all product measures. It may not hold for some other
measures.

Remark 2. In the case {p} = n, n ∈ N, the group B({p},R) is trivial, and Condition 1)
disappears. But the representation TR,µ,{p} is irreducible in this case as well.



67

Theorem 2. Two irreducible representations TR,µ,{p} and TR,µ′,{p′} are equivalent, TR,µ,{p} ∼
TR,µ′,{p′}, if and only if

1) {p} = {p′},
2) µ{p} ∼ (µ′){p′} .

For the measure µ
(1,...,m)
(b,a) , m ∈ N, the assertion below holds.

Lemma 1. The following conditions are equivalent :
1) (µ(1,...,m)

(b,a) )Lt ⊥ µ
(1,...,m)
(b,a) for all t ∈ B(m,R) \ {e},

2) SL
pq(µ) = SL0

pq (µ) + SL1
pq (µ) = ∞ for all p < q � m, where

SL0
pq (µ) =

1
4

∞∑
n=q+1

bpn

bqn
, SL1

pq (µ) =
1
2

∞∑
n=q+1

bpna
2
qn.

The idea of the proof of the irreducibility for {p} = (1, . . . ,m). Let us denote by Am the von
Neumann algebra generated by the representation TR,µ,m := TR,µ,(1,...,m) , Am = (TR,µ,m

t | t ∈ BN
0 )′′ .

Moreover, let 〈fn | n = 1, 2, . . . 〉 be the closure of the linear space generated by vectors {fn}∞n=1 in
a Hilbert space H .

Now let Condition 1) of Theorem 1 hold. By Lemma 1, this is equivalent to the divergence of
the series SL

pq(µ) for all p < q � m. Therefore, using Lemmas 2 and 3 (see below), it is possible
to show that the operators of multiplication by the independent variables xkn , k < n, 1 � k � m,
can be approximated in the strong resolvent sense by the generators Akn = d

dtT
R,µ,m
I+tEkn

|t=0 , i.e., that
the operator xkn is affiliated to the von Neumann algebra Am . This is denoted by xkn η Am in [9].
In this case, an A ∈ (Am)′ must be the operator of multiplication by some essentially bounded
function a : Xm → C. The commutation

[A, TR,µ,m
t ] = 0 for all t ∈ BN

0 implies that a(xt) = a(x) for all t ∈ BN
0 . Therefore, by the

ergodicity of the measure µ
(1,...,m)
(b,a) on the space Xm = X(1,...,m) , we have A = a = const.

Let us set Dkn = ∂/∂xkn − bkn(xkn − akn). The generators Akn , k < n, have the form

Akn =
k−1∑
r=1

xrkDrn + Dkn, k � m, Akn =
m∑

r=1

xrkDrn, k > m.

Let ∆p = {1, . . . , p}. For an arbitrary subset dp ⊂ ∆p , 1 � p � m, we set A
dp
pn =

∑
r∈dp

xrpDrn ,
p < n, xrr = 1, r ∈ N.

Lemma 2. xpq ∈ 〈Adp
pnA

dq
qn1 | q < n〉, 1 � p � m, p < q, if and only if

Σdp,dq
pq =

∞∑
n=q+1

b2pn∑
r∈dp

brn
∑

s∈dq
bsn

= ∞.

Moreover, in this case, we have xpq η Am.
Let the inverse element of I + x = I +

∑
xknEkn ∈ X{p} have the form (I + x)−1 = I +∑

x−1
knEkn ∈ X{p} .
Lemma 3. x−1

pr ∈ 〈(x−1
pk + apk)xrk | m < k〉, p + 1 � r � m, if and only if

σpr(µ) =
∞∑

k=m+1

1
2brk

+ a2
rk

1
2bpk

+
∑m

s=p+1,s �=r( 1
2bsk

+ a2
sk) + 1

2brk

= ∞.

Moreover, in this case, we have x−1
pr η Am.

The particular cases m = 1, 2, 3 were considered in [11].
The author expresses his gratitude to the referee for useful remarks.
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