
K-Theory 29: 117–145, 2003.
c© 2003 Kluwer Academic Publishers. Printed in the Netherlands. 117

Anti-Wick Symbols for Infinite Products
in K-Homology

ALEXANDR KOSYAK1 and RICHARD ZEKRI2

1Institute of Mathematics, Ukrainian National Academy of Sciences, Tereshchinkivs’ka, 3, Kiev,
252601, Ukraine. e-mail: kosyak@imath.kiev.ua
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Abstract. We consider infinite products in K-homology. We study these products in relation with
operators on filtered Hilbert spaces, and infinite iterations of universal constructions on C∗-algebras.
In particular, infinite tensor power of extensions of pseudodifferential operators on R are considered.
We extend anti-Wick pseudodifferential operators to infinite tensor products of spaces of the type
L2(R), and compare our infinite tensor power construction with an extension of pseudodifferential
operators on R∞. We show that the K-theory connecting maps coincide. We propose a natural
definition of ellipticity for anti-Wick operators on R∞, compute the corresponding index, and draw
some consequences concerning these operators.
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1. Introduction and Notations

Differential operators on infinite-dimensional spaces arise as natural objects in
several contexts. Representations of infinite dimensional groups entail considering
partial derivations with respect to an infinite number of variables (see [12]). Infinite
tensor product representations of the Canonical Commutation Relations are stud-
ied in [15]. In a recent paper, N. Higson, G. Kasparov and J. Trout construct an
inductive limit Hilbert space, on which a C∗-algebra, and an infinite dimensional
analog of the harmonic oscillator act in a natural way (see [8, 18]). The purpose
of this work is the study of infinite products in K-theory, and their relations with
pseudodifferential operators on infinite product spaces. We construct an inductive
limit C∗-algebra B, and a filtered Hilbert space. We shall study different kinds of
extension of B by an ideal of operators, associated to the filtration of this Hilbert
space. The algebra B can be viewed as an algebra of symbols of pseudodifferential
operators, and is closely related to the C∗-algebra which appears in [8]. However,
our construction depends on the choice of coordinates. For this reason, B does
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not carry the action of a locally compact group. (This algebra is rather adapted to
the setting of [12]. This will be discussed in a subsequent work.) The definition
of B rests on infinite iterations of Kasparov product by the Bott element ([9–11]).
We use the description, due to J. Cuntz ([6]), of K-homology by homomor-
phisms from universal constructions qA, or εA, to the compact operators. The
Bott periodicity theorem in K-homology can be described as a KK-equivalence
of the C∗-algebras εC, εC ⊗ qC, and εC ⊗ C0(R2). We shall define a homo-
morphism from εC to an algebra of matrices over εC ⊗ C0(R2), which realizes the
equivalence. This map will be constructed in a way compatible with the projection
at the origin, of R × R2 onto R. Iterating the homomorphism will give rise to
our inductive limit C∗-algebra, B, with a natural representation by local operators
on a filtered Hilbert space N∞. The subspaces N n of the filtration are of the type
L2(R2n). We relate B to inductive limits of operators of pointwise multiplication by
continuous functions on the odd-dimensional cospheres S2n+1, hence to symbols
of anti-Wick pseudodifferential operators. The natural frame for these inductive
limit operators is a Fredholm theory relative to the sequence of the commutants
of the projections on the subspaces N n. Local operators relative to the filtration
are bounded linear operators on N∞, which fulfill an approximate compatibil-
ity condition with the filtration. Compact operators relative to the filtration are
defined accordingly and fit into an exact sequence analogous to the usual Calkin
exact sequence. Fredholm operators relative to the filtration are classified by the
map �-ind, which is defined in [13]. Our construction yields an extension of B
by Kloc(N∞), entailing pseudodifferential operators on R∞. This extension can
be viewed as an internal product of an infinite number of KK-elements. Infinite
external products will correspond to another type of extension of B by Kloc(N∞).
One does not obtain, from external product, operators which can be interpreted as
pseudodifferential operators. However, the corresponding extension is homotopic,
in a suitable sense, to an extension of B by the usual compact operators on N∞.
This makes the connecting map in K-theory computable in a simple way. To relate
these two types of constructions, we shall appeal to a notion of local homotopy
which is weaker than homotopy but under which the index map �-ind remains
invariant. This enables us to show that the K-theory connecting maps coincide
and to derive some consequences concerning elliptic operators on the space R∞.
The universal construction qA is introduced in [6]. Its odd analogue εA is studied
in [21]. We refer the reader to [1, 19] for details concerning infinite tensor products
of Hilbert spaces, and to [13] for Fredholm theory on filtered Hilbert spaces. Let
us now introduce some notations.

We denote by Cb(Y ), C0(Y ) the C∗-algebras of continuous bounded, respec-
tively, vanishing at infinity, functions on a locally compact space Y . We shall
denote by S the C∗-algebra C0(R), and, for any C∗-algebra A, we denote by
SA = S ⊗ A the suspension of A. We let M(A) be the C∗-algebra of multipliers
of A, and Ã be the C∗-algebra generated by A, and the unit element of M(A).
We identify S̃ with the C∗-algebra of continuous functions on the circle T. We



ANTI-WICK SYMBOLS FOR INFINITE PRODUCTS 119

shall denote by diag(a1, a2, . . . , an) the n× n diagonal matrix whose entries are
diag(a1, a2, . . . , an)j,j = aj , 1 � j � n. As usual, Mn(A) will denote the algebra
of n × n matrices over the C∗-algebra A. Given a morphism φ, between two C∗-
algebras A, and B, we shall call amplification of φ the morphism φ ⊗ IdMn

from
Mn(A) to Mn(B). When no confusion can arise, the morphism φ and its amplifica-
tion to matrices will be denoted in the same way. If D = A/J is an exact sequence
of C∗-algebras and a is an element of A, the image of a in D will be denoted by
a + J .

Given an infinite-dimensional separable Hilbert space H, we denote by K(H)

the C∗-algebra of compact operators on H, by L(H) the C∗-algebra of bounded
linear operators on H. The norm of a bounded operator T ∈ L(H), will be denoted,
as usual, by ‖T ‖. Given an operator T ∈ L(H), whose norm is less or equal to 1,
we set

U(T ) =
(

T
√

1 − T T ∗
−√

1 − T ∗T T ∗

)
.

Given a vector ξ ∈ H, we denote by [ξ ] the projection on the subspace Cξ ⊂ H.
Inductive limits of spaces will be denoted by

H∞ = lim−→n
(Hn), N∞ = lim−→n

(N n), etc.

Given a C∗-algebra A, we shall denote by QA = A ∗ A the free product of A

by itself, and by qA the kernel of the map which identifies the two copies of A

(see [6]). The algebra QC is generated by two projections that we shall denote by
p, and p. The morphism of QC onto C which sends p to 1, and p to 0 will be
denoted by πp. The morphism πp is defined accordingly. We shall denote by EA

the universal C∗-algebra generated by A, and a self adjoint unitary F , by E1A the
ideal of EA generated by (1 + F)A, and by εA the ideal of E1A generated by
the commutators [F,A]. The algebra ES̃ is generated by the symmetry F , and a
unitary, of S̃, that we shall denote by ζ . Given A and B two C∗-algebras, we let πε

be the canonical projection from εMn(A ⊗ B) to Mn(εA ⊗ B), which sends the
symmetry F to 1Mn

⊗F ⊗ 1B . (Here, F denotes the symmetry of the multipliers of
εA, and, for any C∗-algebra D, 1D denotes the unit element of the C∗-algebra D̃.)

When a tensor product of C∗-algebras A1 ⊗A2 ⊗· · ·⊗An is considered, the ele-
ments of each tensorial factors are considered as generators in M(A1 ⊗A2 ⊗· · ·⊗
An). We shall use subscripts 1, 2, . . . , n to refer to elements of the tensorial factors
A1, A2, . . . , An. Similar notations hold when considering products of spaces, and
coordinates. We shall use the notations zk, z

′
k, ωk, etc., to refer to complex coordin-

ates in the unit ball of Cn. We shall use the notations Xk for complex coordinates
in Cn ≡ T ∗Rn. Complex conjugates will be denoted by X̄k, z̄k, etc. . . Derivation
with respect to a variable t will be denoted by ∂t .
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2. Iterated Constructions with Universal C∗-algebras

In this section, we construct an algebra which will serve as a replacement of con-
tinuous functions, when considering the infinite-dimensional Euclidean space R∞
instead of Rn. The Bott element is described as a homomorphism from the C∗-
algebra εC to M4(εC ⊗ εS). This homomorphism extends, in a natural way, to
matrices over εC⊗ (εS)⊗n. We form the corresponding inductive limit C∗-algebra.
At the level of KK-theory, this amounts to considering the Kasparov product of
an infinite number of successive suspensions of the Bott element. Each subalgebra
εC ⊗ (εS)⊗n corresponds to operators of pointwise multiplication on the space
L2(R × Cn). In view of representing our algebra in a way similar to an algebra of
symbols, the inductive limit homomorphisms are required to be compatible with
evaluation at the origin, from C0(R × Cn × C), onto C0(R × Cn). We recall that
analog constructions were already set up in the work of Higson, et al. ([8]), in
a different manner. A slightly different version of the inductive limit C∗-algebra
constructed here has also been studied in [13].

2.1. STRICTLY POSITIVE ELEMENTS IN qC, AND IN εC

The product in KK-theory is based on the existence of suitable positive multipliers
M, and N , which is established by the Kasparov Technical Theorem ([10]). In order
to carry over the product to an infinite number of elements, a special choice of M
and N has to be made. The construction of these operators entails considering some
strictly positive elements of the C∗-algebra qC, and of εC. (We shall follow in this
subsection, the general method of [10].)

DEFINITION 2.1.1. Let A be a C∗-algebra, and k be an element of A. Then k is
said to be strictly positive in A, if, for any self-adjoint element a of A, and for any
real ε > 0, there exists C > 0, such that a < Ck + ε in Ã.

Remark 2.1.2. Suppose that there exists a sequence (xn) of elements of A,
whose linear span is dense in A. Then, for k be strictly positive in A, it suffices
that for any integer n, there exists Cn > 0, such that x∗

nxn < Cnk.

Indeed, for any positive element a ∈ A, and any ε > 0, there exists a finite
linear combination S = ∑

n<n0
cnxn, cn ∈ C, such that ‖S∗S − a‖ < ε. Since,

by Cauchy–Schwarz inequality S∗S � n0
∑

n<n0
|cn|2x∗

nxn, we obtain the desired
majoration for positive elements. Assume now that a is self-adjoint. There is a
unique pair (a+, a−) of positive elements of A, such that a+a− = 0, and that
a = a+−a−. The inequality a � a++a− shows that the desired majoration extends
to self-adjoint elements. The following criterion will be applied to the definition of
M and N .
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LEMMA 2.1.3 (Kasparov, [10]). Let A be a unital C∗-algebra and let x, y be two
elements of A, with x positive. The existence of the norm limit limα→0+(x + α)−1y

is equivalent to the condition: ∀ε > 0 , ∃C > 0 /yy∗ �Cx4 + εx2. �
PROPOSITION 2.1.4. (i) Let p and p be universal projections generating the
algebra QC. Let e and F be the universal projection and symmetry generating
EC. Set q = p − p, and de = i[F, e]. Then q2 (resp. de2) is a strictly positive
central element of qC (resp. εC.)

(ii) The element

M = (de2 ⊗ 1 + 1 ⊗ q2)−1(1 ⊗ q2) + (de2 ⊗ q2)(1 + de2 ⊗ 1)−1

is well defined as a positive central multiplier of εC ⊗ qC.
Proof. (i) Since pq = p(p − p) = q − qp, we have pq2 = q2p. Similarly,

pq2 = q2p. It follows that q2 is a central element in QC. The C∗-algebra qC is
generated, as a linear space, by the set G = {qn, pqn/n > 0}. For any x ∈ G, there
exists a positive real number Cx , such that x∗x �Cxq

2.
Remark 2.1.2 shows that q2 is a strictly positive element of qC. In a similar

way, one shows that de2 is central and strictly positive. A generating set of εC is:
G = {den, eden, Fden, Feden/n > 0}.

(ii) To show that M is a multiplier of εC ⊗ qC, it suffices to show that for
any z ∈ εC ⊗ qC, the norm limit limα→0+(de2 ⊗ 1 + 1 ⊗ q2 + α)−1(1 ⊗ q2)z

exists. Since (de2 ⊗ 1 + 1 ⊗ q2 + α)−1(1 ⊗ q2)� 1,∀α > 0, we can restrict our
attention to elements of the form z = x ⊗ y, with x a positive element of εC,
and y a positive element of qC. We shall establish the following: ∀ε > 0, ∃C >

0, /((1 ⊗ q2)(x ⊗ y))2 �C(de2 ⊗ 1 + 1 ⊗ q2)4 + ε(de2 ⊗ 1 + 1 ⊗ q2)2. The result
will follow from Lemma 2.1.3. For any ε > 0, there exists a positive real number r,
such that x⊗1 � r(de2⊗1)+ε and 1⊗y � r(1⊗q2)+ε. Since −1 � −p � q �p,
we have q2 � 1, hence de2 ⊗q2 � de2 ⊗1 � de2 ⊗1+1⊗q2. It follows from these
inequalities that x ⊗ y � (r2 + 2εr)(de2 ⊗ 1 + 1 ⊗ q2) + ε2, and that

(1 ⊗ q2)(x ⊗ y)� (r2 + 2εr)(de2 ⊗ 1 + 1 ⊗ q2)2 + ε2(de2 ⊗ 1 + 1 ⊗ q2).

Raising to the square each side of this inequality we obtain

((1 ⊗ q2)(x ⊗ y))2 � 2[(r2 + 2εr)2(de2 ⊗ 1 + 1 ⊗ q2)4 +
+ ε4(de2 ⊗ 1 + 1 ⊗ q2)2]. �

THEOREM 2.1.5. There exist two positive central elements M and N of M(εC⊗
qC) such that:

(i) M + N = 1,
(ii) M(εC ⊗ QC) + N(EC ⊗ qC) ⊂ εC ⊗ qC,

(iii) Id ⊗ πp(M) = 1, Id ⊗ πp(N) = 0,
(iv) M and N are invariant under the exchange of the projections p and p.
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Proof. In view of Proposition 2.1.4, it suffices to show (ii). Let x be a positive
element of εC. For any positive real ε, there exists a positive real number r, such
that

x ⊗ p � (rde2 ⊗ 1 + ε)(1 ⊗ p)� r(de2 ⊗ 1 + 1 ⊗ q2) + ε.

It follows that

(x ⊗ p)(1 ⊗ q2)� r(de2 ⊗ 1 + 1 ⊗ q2)2 + ε(de2 ⊗ 1 + 1 ⊗ q2).

Proceeding as in the proof of Proposition 2.1.4, one shows that the norm limit
limα→0+(de2 ⊗ 1 + 1 ⊗ q2 + α)−1(x ⊗ p)(1 ⊗ q2) exists, hence, is an element of
εC ⊗ qC. We omit the proof for N , which is analogue. �
2.2. CANONICAL HOMOMORPHISMS AND THE C∗-ALGEBRA B

DEFINITION 2.2.1. Let λ be the homomorphism defined on generators by

λ: εC → M2(εC ⊗ qC),

e →
(

e ⊗ p 0
0 e ⊗ p

)
,

F →
( √

M(F ⊗ 1)
√
N√

N −√
M(F ⊗ 1)

)
.

The map λ: EC → M2(EC ⊗ QC) restricts to εC → M2(εC ⊗ qC) thanks to
Theorem 2.1.5 (ii).

The following proposition will be useful to carry over the external product in K-
homology to infinite tensor powers (see 4.2.6).

PROPOSITION 2.2.2. The composition πpλ: εC → M2(εC) is the embedding of
εC in the upper left corner in 2 × 2 matrices.

Proof. This follows from (iii) in 2.1.5 �
DEFINITION 2.2.3. Let F and ζ be the generators of ES̃. Recall that ζ ζ ∗ = ζ ∗ζ
is the unit of S̃, and that F 2 = 1, is the unit of ES̃. Consider the unitary u =
ζ + 1 − ζ ζ ∗. Since ζ − ζ ζ ∗ ∈ S, [F, u] ∈ εS, and u is an element of M(εS).
Set P = (1 + F)/2, and T = PuP . Let µ be the homomorphism defined, on
generators by:

µ: qC → M2(εS),

p →
(

e 0
0 0

)
,

p → W ∗
(

e 0
0 0

)
W,
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with

W =
(

T (P − T T ∗)1/2

−(P − T ∗T )1/2 T ∗

)
+

(
1 − P 0

0 1 − P

)
.

DEFINITION 2.2.4. We shall denote by j the composition j = (Id ⊗µ)λ: εC →
M4(εC⊗εS). Given any integer n ∈ N, we define jn+1: M4n(M2(εC)⊗(εS)⊗n) →
M4n(M2(εC) ⊗ (εS)⊗n) ⊗ M4(εS) accordingly. We set Bn+1 = M4n(M2(εC) ⊗
(εS)⊗n), and denote by B the inductive limit C∗-algebra of the system (Bn, jn)n� 1.

Note that, through the identification εC � M2(S), explained after Definition
3.2.3, we have πε(ε(M2(εC))) � M4(εS) and, for any integer n, πε(εBn) �
(M4(εS))

⊗n. This is the reason why we have chosen to use 2×2 matrices over εC,
rather that εC itself in the definition of Bn. This is not essential but this choice will
make algebras and spaces of representation easier to handle, especially in Section 4.

PROPOSITION 2.2.5. (i) For any integer n, K0(Bn) = 0, K1(Bn) = Z, and jn is
a KK-equivalence; (ii) K0(B) = 0, K1(B) = Z.

Proof. Recall that εC is KK-equivalent to S, and that εS is KK-equivalent to
C ([21]). In the setting of [6], the maps (jn) correspond to products with the Bott
element. Passing to inductive limits, we obtain the K-theory of B. �

3. Anti-Wick Operators on Infinite-Dimensional Euclidean Space R∞∞∞

We shall represent the C∗-algebra B, constructed in 2.2.4, as an algebra of operators
on a (filtered) Hilbert space N∞, in a way analogous to symbols of pseudodiffer-
ential operators acting by pointwise multiplication by functions on the cotangent
space. We also describe the associated extension of anti-Wick operators on R∞. We
begin by recalling the class of anti-Wick symbols on Cn and the anti-Wick isometry
I . We give explicit formulas describing an extension of anti-Wick symbols on Cn+1

and the corresponding extension of pseudodifferential operators on Rn+1. These
extensions rest on a representation of the C∗-algebra Bn as continuous functions
on the cosphere S2n+1 and on the usual lifting (completely positive map), which
extends, along the ray to the origin, continuous functions on S2n+1 to the closed unit
ball B2n+2. The C∗-algebraBn has a natural representation by continuous functions
on the cylinder T × (D2)n vanishing on the boundary of each of the disks D2. The
construction we have chosen consists in mapping this cylinder to a closed subset of
the cosphere, by projecting each point along the ray to the origin. In this manner,
we obtain continuous functions which extend naturally to the all cosphere. The
construction carries over to infinite dimensional Euclidean space using the estim-
ates of [13] and the special choice of the operators M, and N , made in Section 2
(see also 4.2.3).
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3.1. OPERATORS ON Rn

We recall the construction of the extension of anti-Wick operators on Rn+1, and
describe it as a C∗-algebra morphism, from ε(S⊗(εS)⊗n) to M2n+1(K(L2(Cn+1))).

DEFINITION 3.1.1. The class of anti-Wick symbols (of order 0), 8(Cn) con-
sists of the functions f ∈ C(Cn), such that for any z ∈ Cn, |z| = 1, the limit
limρ→∞ f (ρz) exists, uniformly in z, over all the unit sphere (see also [17]).

Set, for any X ∈ Cn, Z(X) = X(1 + |X|2)−1/2. The map Z is a homeomorphism,

from Cn onto the open unit ball
◦

B2n= {z ∈ Cn/|z| < 1}. An anti-Wick symbol of
order 0 is a continuous function f on Cn, such that f ◦Z−1 extends to a continuous

function on the closure of
◦

B2n.

DEFINITION 3.1.2. (i) Let I : L2(R) ↪→ L2(C) be the anti-Wick isometry (see
[17, 13].) We shall denote by P I = II ∗ the projection on the subspace I (L2(R)).
Raising I to the tensorial power n yields the anti-Wick isometry I⊗n: L2(Rn) ↪→
L2(Cn). When no confusion can arise, we shall refer to I⊗n by the letter I , in-
dependently of the integer n. We use similar convention for the projection P I .
When necessary, we shall refer to tensorial factors by subscripts. For instance,
I⊗n = I1 ⊗ I2 ⊗ · · · ⊗ In and use similar notations for the projection P I .

(ii) Let f be an anti-Wick symbol. We shall denote by Mf the operator of
pointwise multiplication by f on L2(Cn). Explicitly,

Mf ξ(X) = f (X)ξ(X), ∀ξ ∈ L2(Cn), X ∈ Cn.

The operator with anti-Wick symbol f is defined by Df = I ∗Mf I . The notation
Df will equally refer to the compression of Mf to the subspace I (L2(Rn)) of
L2(Cn).

If f vanishes at infinity, Df is compact, and ∀f, g ∈ 8(Cn), Dfg − DfDg is
compact. For completeness, we recall the formula

(I (ξ))(X) = π−1/4
∫

ξ(t)e−(t−a)2/2e−itbdt, ∀ξ ∈ L2(R), X = a + ib ∈ C

(see [17]). It will be also convenient to consider functions admitting continuous
extensions along the rays which are contained in some specified hyperplanes in
Cn. These partial symbols are defined in 5.1.1

Before turning to the construction of anti-Wick operators, let us recall some
definitions, and fix notations, which will be necessary in the sequel. An (inver-
tible) extension of a C∗-algebra A by a C∗-algebra B is a completely positive
continuous map, of norm less or equal to 1, σ : A → M(B), such that, for any
a, b ∈ A, σ (ab) − σ (a)σ (b) ∈ B. Such a map provides a C∗-algebra homo-
morphism

.
σ : A → M(B)/B (the Busby invariant of the extension). There is an
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exact sequence A = D/B, where D is any C∗-algebra isomorphic to the fibered
product A ⊕ .

σ M(B) = {(a,m) ∈ A ⊕ M(B)/
.
σ(a) = m + B}. If A is separable,

the Stinespring extension theorem shows that we can enlarge σ to a C∗-algebra
homomorphism, φ: A → M2(M(B)) and find a projection P ∈ M2(M(B)) such
that [φ(A), P ] ⊂ M2(B), and that, ∀a ∈ A, σ (a) = Pφ(a)P . The pair (φ, P )

is alternatively described by a homomorphism, E , from εA to M2(B). The data
E, σ , and

.
σ are in one to one correspondence, up to homotopy (a homotopy is a

continuous path of maps in the relevant category). For the sake of simplicity, we
shall equally refer to an extension by the morphism E = (φ, P ), the completely
positive map σ or the Busby invariant

.
σ . The set of such extensions A = D/B will

be denoted by Ext(A,B). We refer the reader to [4, 9, 10] for more information.

DEFINITION 3.1.3. Denote by ζ the unitary, and by P the projection generating
ES̃ (see 2.2.3.) Let β be the homomorphism defined on generators by

β: εS → M2(C(D2)),

ζ →
(

z (1 − |z|2)1/2

−(1 − |z|2)1/2 z

)
= U(z),

P →
(

1 0
0 0

)
.

Considering S as the ideal of C(T), consisting of the continuous functions vanish-
ing at the argument θ = 0, we define, for any integer n, IdS ⊗ βn: S ⊗ (εS)⊗n →
M2n(C(T × (D2)n)) accordingly.

DEFINITION 3.1.4. Let

S2n+1 = {(z′
1, z

′
2, . . . , z

′
n+1) ∈ Cn+1 /

∑
|z′

i|2 = 1}

be the unit sphere in Cn+1, and

F2n+1 = {(z′
1, z

′
2, . . . , z

′
n) ∈ S2n+1 / |z′

i|� |z′
1| , ∀i � 1}.

We denote by hn: T×(D2)n → F2n+1 the homeomorphism defined, in coordinates,
by

hn((z1, z2, . . . , zn+1)) = (z1, z2, . . . , zn+1)/


∑

i � 1

|zi|2



1/2

,

and by hn∗: C(T × (D2)×n) → C(F2n+1) the C∗-algebra morphism hn∗(f ) =
f ◦ h−1

n .

Let (ω1, ω2, . . . , ωn+1) be an n+ 1-tuple of pairwise commuting normal elements,
such that

∑n+1
i=1 ω∗

i ωi � 1. The universal C∗-algebra generated by the ωi’s is the
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algebra of continuous functions on B2n+2. Similarly, we denote the generators of
C(S2n+1) by z′

1, z
′
2, . . . , z

′
n+1.

DEFINITION 3.1.5. For any integer n, we let ρn be the homomorphism defined
on generators by

ρn: C(S2n+1) → M2(C(B2n+2)),

z′
1 →

(
ω1 (1 − ∑

i � 1 |ωi|2)1/2

−(1 − ∑
i � 1 |ωi|2)1/2 ω1

)
,

z′
i →

(
ωi 0
0 ωi

)
, ∀i > 1.

The map βn of Definition 3.1.3 sends (εS)⊗n to functions on (D2)n vanishing on
the boundary ∂((D2)n). Since the map hn sends T×∂((D2)n) onto the boundary of
F2n+1, we shall consider functions in the image of hn∗βn as functions on the sphere
S2n+1, which vanish outside the interior of F2n+1. We can now make the following
definition:

DEFINITION 3.1.6. The anti-Wick extension, DAW[Cn+1]: ε(S ⊗ (εS)⊗n) →
M2n+1(K(L2(Cn+1))) is the C∗-algebra morphism associated to the couple ((IdM2 ⊗
ρn)(IdM2 ⊗hn∗)(IdS ⊗βn) , IdM2n+1 ⊗P I) (see 3.1.2 and the following discussion).

PROPOSITION 3.1.7. The morphism DAW[Cn+1] is expressed, using complex co-
ordinates (X1, X2, . . . , Xn) ∈ Cn+1 on generators by

DAW[Cn+1]: ε(S ⊗ (εS)⊗n) → M2n+1(K(L2(Cn+1)))

∀1 � j � n + 1, ζj → (IdM2)
⊗j−1 ⊗ U(Xj(1 + |X1|2)−1/2)

⊗(IdM2)
⊗n+1−j

∀1 < j � n + 1, Pj → (IdM2)
⊗j−1 ⊗

(
1 0
0 0

)
⊗ (IdM2)

⊗n+1−j

P1 →
(

P I
1 0

0 0

)
⊗

[ n+1⊗
j=2

(
P I

j 0
0 P I

j

) ]
= Q

Here ζ1 is the generator of C(T) which corresponds to the first tensorial factor S.
Similarly, ζj , j > 1 refers to the (j − 1)th tensorial factor εS. Similar subscript
conventions are used for referring to projections.

Proof. These formulas are established by a straightforward computation. We
remark that for each integer j , the unitary DAW[Cn+1](ζj ) is a continuous function,
defined on the closed set

F ′
2n+1 = {(X1, X2, . . . , Xn+1) ∈ Cn+1/ |Xj |2 � 1 + |X1|2},
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and that DAW[Cn+1](ζj ) is a diagonal matrix on the boundary of F ′
2n+1. Note that,

for j > 1, the unitary U(Xj(1 + |X1|2)−1/2 is not defined outside F ′
2n+1. But the

commutator[
U(Xj(1 + |X1|2)−1/2,

(
1 0
0 0

)]

vanishes on the boundary of F ′
2n+1. In consequence, we can, without changing

this morphism, extend the image of ζj by setting DAW[Cn+1](ζj ) = (IdM2)
⊗j−1 ⊗

U(Xj |Xj |−1) ⊗ (IdM2)
⊗n+1−j on the complement of F ′

2n+1 (or use any diagonal
unitary matrix). Although the extended unitary is not a continuous function, our
morphism DAW[Cn+1] is well defined since the commutator vanishes on the com-
plement of the interior of F ′

2n+1. �
The completely positive map σAW[n+1], associated to DAW[Cn+1] is defined by

σAW[n + 1](x) = QDAW[Cn+1](x)Q, ∀x ∈ S ⊗ (εS)⊗n. Note that σAW[n + 1](x)
factors through the anti-Wick isometry I : L2(Rn+1) ↪→ L2(Cn+1), and can be
considered as an operator on L2(Rn+1) ⊗ Cn+1. In fact, the algebra σAW[n + 1]
(S ⊗ (εS)⊗n)+M2n+1(K(L2(Rn+1))) is generated by anti-Wick pseudodifferential
operators on Rn+1.

3.2. OPERATORS ON R∞ AND ANTI-WICK SYMBOLS ON C∞

We shall extend the construction of anti-Wick operators to R∞. For completeness,
we first recall some definitions on filtered Hilbert space and compact operators
relative to filtrations (see [13]; remark that our notations are slightly different).

DEFINITION 3.2.1. Let (Hn, vn) be a sequence of Hilbert spaces Hn, and isomet-
ries vn: Hn ↪→ Hn+1. We shall denote by H∞ the corresponding inductive limit
Hilbert space and by C the filtration of H∞ by the subspaces Hn. For any integer
n, we denote by ωn: Hn ↪→ H∞ the canonical isometry and by Pn be the range
projection of ωn. For m > n, we let vm

n : Hn ↪→ Hm, be the composition of the
v′
ks, n� k < m. A sequence of operators on (H∞,C) is a sequence of bounded lin-

ear operators (Tn ∈ L(Hn))n∈N. The sequence (Tn) is locally uniformly convergent
to an operator T ∈ L(H∞) if, for any integer n0, the sequence (ωnTnv

n
n0
ω∗

n0
)n� n0

is norm convergent to T ωn0ω
∗
n0

.

We recall from [13] that Ldiag(H∞) is the subalgebra of L(H∞), consisting of
the operators T such that [T , Pm] = 0, for all integers m, greater or equal to
some integer N . We denote by Ldiag(H∞) the Banach subalgebra of operators
T ∈ L(H∞), such that the sum

∑
n ‖[Pn, T ]‖ is finite, and by Lloc(H∞) the

norm closure of Ldiag(H). Elements of Lloc(H∞) are said to be local (relative to
C). We let Kloc(H∞) be the ideal of Lloc(H∞), of operators whose compressions
to the subspaces Hn are compact operators on Hn. The following inclusions of
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closed two sided ideals hold: K(H∞) ⊂ Kloc(H∞) ⊂ Lloc(H∞). An operator
T ∈ Lloc(H∞) is Fredholm relative to C if T + Kloc(H∞) is an invertible element
of Oloc(H∞) = Lloc(H∞)/Kloc(H∞). The set of Fredholm operators relative to
C will be denoted by Floc(H∞). Fredholm operators relative to C are classified
by the map � − ind. Given an operator T ∈ Floc(H∞), there exists an integer
N , such that, for any m�N , PmT Pm is a Fredholm operator on the space Hm.
We define � − ind(T ) to be the class of the sequence (ind(PmT Pm))m�N , in the
group E∞

i=1Z/
⊕∞

i=1 Z. There is a corresponding dimension map, � − dim, which
is an isomorphism from K0(Kloc(H∞)) to E∞

i=1Z/
⊕∞

i=1 Z. Note that local uniform
convergence implies strong convergence. The following criterion will be useful to
establish local uniform convergence and the localness of the limit of sequences of
operators on (H∞,C).

PROPOSITION 3.2.2. Let (Tn) be a sequence of operators on the filtered Hilbert
space (H∞,C). We assume that Hn+1 = Hn ⊗H1. If

∑
n ‖(Tn ⊗ Id − Tn+1)vn‖ <

∞, the sequence (Tn) converges locally uniformly to an operator T ∈ L(H∞), and

∀n ∈ N, ‖[Pn, T ]‖ �
∑
j � n

‖(Tj ⊗ Id − Tj+1)vj‖ +

+
∑
j �n

‖v∗
j (Tj ⊗ Id − Tj+1)‖

Proof. See [13]. �
We shall now proceed to define an extension of anti-Wick operators on R∞.

DEFINITION 3.2.3. Let βAW[R × Cn] be the homomorphism defined on generat-
ors, by

βAW[R × Cn]: S ⊗ (εS)⊗n → M2n(S ⊗ C0(Cn)),

∀y ∈ S, y → y ,

∀2 � j � n + 1, ζj → DAW[Cn+1](ζj ) ,

∀2 � j � n + 1, Pj → DAW[Cn+1](Pj ).

In other words, we have DAW[Cn+1] = (βAW[R × Cn],Q) (the notation Q was
introduced in Proposition 3.1.7).

The C∗-algebra εC is isomorphic to the algebra M2(S). For instance, the map
sending

e to

(
1 0
0 0

)

and

F to

(
1/

√
1 + x2 x/

√
1 + x2

x/
√

1 + x2 −1/
√

1 + x2

)
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is an isomorphism, under which the canonical grading γ , of εC (γ (e) = e, γ (F ) =
−F) corresponds to the map sending the matrix(

f1,1(x) f1,2(x)

f2,1(x) f2,2(x)

)
to

(
f1,1(−x) −f1,2(−x)

−f2,1(−x) f2,2(−x)

)
.

The morphism βAW[R × Cn], once enlarged to 2 × 2 matrices, defines a homo-
morphism from εC⊗(εS)⊗n to M2n(εC⊗C0(Cn)) that we shall denote in the same
way. The notation γ will refer equally to the grading of εC and to the grading of
M2(S).

We are interested in the study of an analog of the operators of pointwise mul-
tiplication for an infinite tensor power of the space L2(R) and of corresponding
anti-Wick pseudodifferential operators. We construct the filtered Hilbert space H∞,
by letting

H = L2(R), H1 = (H ⊕ H) ⊗ C4, and Hn+1 = Hn ⊗ H1.

We choose a sequence of unit vectors en ∈ H, and define the isometries vn(ξ) =
ξ ⊗ (en+1 ⊕ 0) ⊗ (1, 0, 0, 0). This amounts to considering, in the setting of [1], an
infinite tensor product of Hilbert spaces, with stabilisation

⊗∞
n=1 en. The associated

inductive limit space is our analog of L2 functions on R∞. The cotangent space is
dealt with in a similar way: set N =L2(C), N 1 = (N ⊕N )⊗ C4. Let I : H ↪→
N be the anti-Wick isometry (see [17, 13]). We set εn = I (en), and construct
the space N∞ with stabilisation

⊗∞
n=1 εn. There is an isometry I∞: H∞ ↪→ N∞

which extends the I⊗n’s in a natural way. Anti-Wick operators on R∞ will be the
compression to I∞(H∞) of suitably defined symbols acting on N∞.

Let x be element of Bn+1. Then x acts, through βAW[R×Cn], on the space ((N⊕
N ) ⊗ C4)⊗(n+1). This action is described as follows: Consider B1 = M2(εC) �
M4(S). The algebra S acts on N ⊕ N , by the formula given in Proposition 3.1.7,
and B1 acts on (N ⊕ N ) ⊗ C4 = N 1. Now, assume that the action of Bn on N n

is defined. We have Bn+1 � Bn ⊗ M4(εS). Again, the action of εS is given by
the formula in 3.1.7, so that Bn+1 acts on N n ⊗ (N ⊕ N ) ⊗ C4 � N n+1. This
action consists of pointwise multiplication by matrix-valued functions. Denote by
eval: C0(Cn×C) → C0(Cn) the evaluation at the origin; explicitly [eval(f )](X) =
f (X, 0), ∀X ∈ Cn. We shall now explain the construction of a C∗-morphism from
B to Lloc(N∞). From Definition 3.2.3, we obtain (considering εS as a subalgebra
of the multipliers of S ⊗ εS), a C∗-morphism from εS to M2(C0(C)) that we shall
denote by β̃ (hence, βAW[R×C] = IdS⊗β̃). Composing β̃ with the evaluation map
yields a C∗-morphism from εS to M2(C). This composition sends the generator

ζ to

(
0 1

−1 0

)
,

and the projection

P to

(
1 0
0 0

)
.
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Using Definition 2.2.3, we compute the composition

(IdM4 ⊗ eval)(IdM2 ⊗ β̃)µ(x)= Diag(πp(x), 0, πp(x), 0)∈M4(C),∀x ∈ qC.

Now, we come to the composition evalβ̃µλ: εC → M8(εC). (In several places,we
shall shorten notations, omitting to denote identity maps on matrices.) Recall that
the definition of λ is given in 2.2.1. It follows from Proposition 2.2.2, and from
the invariance of M and N under the exchange of p and p (see 2.1.5), that for
any x element of εC, evalβ̃µλ(x) = Diag(x, 0, 0, 0, 0, γ (x), 0, 0). (Here we have
chosen the idenfication M4 ⊗ M2 � M8, which consists in considering an element
of M4 ⊗M2 as a 4×4 matrix, whose entries are 2×2 blocks.) We can, in the same
manner, compute the image of an element x ∈ εC ⊗ (εS)⊗n. Such an element is
sent by the map

IdM2(εC) ⊗ (µ ⊗ Id(εS)⊗n)(λ ⊗ Id(εS)⊗n),

to

M4((εC ⊗ εS) ⊗ (εS)⊗n) � εC ⊗ (εS)⊗n ⊗ M4(εS).

Applying evalβ̃ on the last tensorial factor, we obtain

evalβ̃µλ(x) = Diag(x, 0, 0, 0, 0, γ (x), 0, 0).

The C∗-algebra B is the inductive limit of the system (Bn, jn), Bn is a matrix
algebra over εC ⊗ (εS)⊗n−1, and jn is the composition (IdεC ⊗ µ)λ, enlarged to
a map on Bn by tensoring with identity on matrices (see 2.2.4). It follows that, for
any

x = m ⊗ x1 ⊗ x2 ∈ Bn, m ∈ M4(n+1)/2(C), x1 ∈ εC, x2 ∈ (εS)⊗n−1,

we have evalβ̃jn(x) = Diag(m⊗x1⊗x2, 0, 0, 0, 0,m⊗γ (x1)⊗x2, 0, 0). Proceed-
ing as in [13], we shall obtain a C∗-morphism from B to Lloc(N∞), in the following
way: The space N∞ is the inductive limit of the spaces N n,N n+1 = N n ⊗ N 1

and isometries sending the vector ξ ∈ N n to the vector whose first compon-
ent is ξ ⊗ εn+1, and whose (seven) other components are equal to 0. For each
integer k, choose a real number 0 < rk , and a continuous increasing function
φk: R+ → [0, 1], such that φk(r) = 0,∀r � rk, and φk(r) → 1 when r → ∞.
Replacing, in the definition of βAW[R × Cn] each generator Xk by Xkφk(|Xk|), we
obtain a new C∗-algebra morphism, homotopic to the original one, that we shall
denote by βAW[R × Cn; (φk)k � n]. Since εk is a function of rapid decrease, we can
choose rk in such a way that

∫
|x+iy|>rk

|εk(x + iy)|2dxdy < 2−2(k+1). The results of
the above computation at the origin remain now valid for evaluation at any point of
the closed disk |z|� rk. It follows that, for any x ∈ Bn and for any ξ ∈ N n, with
‖x‖ = ‖ξ‖ = 1, we have (denoting by vn+1

n : N n → N n+1 the isometries defining
the inductive system):

‖(βAW[R × Cn−1, (φk)](x) ⊗ IdN 1)(vn+1
n (ξ)) − (βAW[R × Cn, (φk)] ×

× (jn+1(x)))(v
n+1
n (ξ))‖� 2−n
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In view of Proposition 3.2.2, we conclude that the sequence of morphisms
DAW[Cn+1; (φk)k � n] defines a C∗-morphism from εB to Kloc(N∞). This morph-
ism is the extension of the anti-Wick operators on R∞. Replacing, in the definition

of DAW[Cn+1; (φk)k �n], the projection Q by the projection
(

1 0
0 0

)
⊗ (IdM2)

⊗n,

yields an element of Ext(S ⊗ (εS)⊗n, C0(Cn+1)). The inductive limit homomorph-
ism is the extension of anti-Wick symbols on C∞. (Note that there is no simple
manner to express these anti-Wick symbols on C∞ as functions on a space, but,
they arise as operators on the filtered Hilbert space N∞ in a natural way.)

DEFINITION 3.2.4. We shall denote by DAW[C∞; (φn)]: εB → Kloc(N∞) the
extension of anti-Wick operators on R∞, described above.

4. Infinite Tensor Power of Some KK-Elements

We shall study another method for constructing extensions of the C∗-algebra B
by Kloc(H∞), which is based on external product in KK-theory. We describe ex-
tensions of the C∗-algebra S by K(L2(R)) by Dirac pairs. Such a pair consists
of an operator T , and of a projection Q, such that T T ∗ and T ∗T are equal to
the unit on the range of Q, modulo compact operators. A homomorphism from
εS to K(L2(R) ⊕ L2(R)) is canonically associated to the pair (T ,Q). Consistent
triples are defined, such that a filtered Hilbert space N∞, and a representation of the
strict inductive limit

⋃
n Bn into Ldiag(N∞) can be constructed. This representation

is the infinite tensor product of the representations attached to the Dirac pairs.
The construction is carried over in details for infinite tensor power of the abstract
Toeplitz extension, and of the anti-Wick extension on R. Note that these products
are not extensions of pseudodifferential operators on Rn. But the advantage of
these infinite tensor power constructions is that we shall obtain, from the Toeplitz
extension, an extension of B by the usual compact operators on H∞, to which we
shall compare the infinite tensor power of the anti-Wick extension. The link with
the extension of anti-Wick operators on R∞ will be established in Section 5.

4.1. ASYMPTOTIC HOMOTOPY

Recall that an asymptotic morphism from a C∗-algebra A to a C∗-algebra B is a
family of maps (ψt)t∈[0,∞), from A to B, such that,

∀ a ∈ A, b ∈ A, ‖ψt(ab) − ψt(a)ψt (b)‖ → 0, ‖ψt(λa + µb) − (λψt(a) +
+ µψt(b))‖ → 0,∀λ,µ ∈ C, and ‖ψt(a

∗) − ψt(a)
∗‖ → 0,

when t goes to infinity (the real t will be called the asymptotic parameter). The
map t → ψt(a) is required to be norm continuous, for any a ∈ A. Asymptotic
morphisms were defined by A. Connes and N. Higson (see [5, 7]), in relation
with exact functors on C∗-algebras. We shall be interested in a special class of
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asymptotic morphisms, those which can be realized as homomorphisms, from A,
to a C∗-algebra containing B.

DEFINITION 4.1.1. Let (H∞,C) be a filtered Hilbert space, and denote by Pn

the projections on the subspaces of the filtration (see 3.2.1). Let (ψt)t∈[0,∞) be an
asymptotic morphism, from a C∗-algebra A to K(H∞). The asymptotic morphism
(ψt) is said to be realizable if, for any a ∈ A, the net (ψt(a))t∈[0,∞) is strongly
convergent to an operator ψ∞(a) ∈ Kloc(H∞), and if, for any integer n0, the net
(P n0ψt(a)P

n0)t∈[0,∞) is norm convergent in K(P n0H∞). We define, for such an
asymptotic morphism, ψ∞(a) = limt→∞ψt(a), ∀a ∈ A.

PROPOSITION 4.1.2. Let (ψt): A → K(H∞) be a realizable asymptotic morph-
ism. Denote by ψ∞: A → Kloc(H∞) the associated morphism of C∗-algebras.
The induced map (ψ∞)∗: K∗(A) → K∗(Kloc(H∞)) is the composition of the map
(ψt)∗: K∗(A) → K∗(K(H∞)) induced by the asymptotic morphism (ψt), and of
the canonical embedding K∗(K(H∞)) ↪→ K∗(Kloc(H∞)).

Proof. This is essentially a reformulation of the results of [13]. The map
�-dim: K0(Kloc(H∞)) � EZ/

⊕
Z extends the usual dimension map on

K0(K(H∞)). �
DEFINITION 4.1.3. Let A be a C∗-algebra and ψ(0), ψ(1) be two C∗-morphisms
from A to Kloc(H∞). The morphisms ψ(0) and ψ(1) are homotopic in r.asympt
(A,Kloc(H∞)) (or asymptotically homotopic) if there exists a homotopy of asymp-
totic morphisms, with homotopy parameter s, H(s): A → K(H∞)[0, 1], such that,
for every s ∈ [0, 1], the asymptotic morphism H(s) is realizable, H(0)∞ = ψ(0), and
H(1)∞ = ψ(1).

4.2. DIRAC PAIRS AND CONSISTENT TRIPLES

We now come to the construction of infinite tensor powers in K-homology. An
efficient way of handling Fredholm modules over εS will be to consider Dirac
pairs, as defined below. Consistent triples will furnish a filtered Hilbert space, on
which our infinite products will act in a natural way.

DEFINITION 4.2.1. (i) Let H be a Hilbert space, let T be a linear operator on
H, and Q be a projection on H. The pair (T ,Q) is called a Dirac pair (on H), if
‖T ‖� 1, [Q,T ] ∈ K(H), Q(1 − T ∗T ) ∈ K(H), Q(1 − T T ∗) ∈ K(H).

(ii) We shall denote by D(T ,Q): εS → K(H ⊕ H), the C∗-algebra morphism,
defined, on generators, by

[D(T ,Q)](ζ ) = U(T ), [D(T ,Q)](P ) =
(

Q 0
0 0

)
.
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DEFINITION 4.2.2. Let L be a linear operator on H ⊕ H. Consider the partition
{1, 2, 3, 4} = {i, j}∪{k, l}, with k < l. Let U(i,j) be the unitary on H⊕H⊕H⊕H

defined by U(i,j)(ξi, ξj , ξk, ξl) = (ξ1, ξ2, ξ3, ξ4).

We define

L(i,j)(ξ1, ξ2, ξ3, ξ4) = U(i,j)((L(ξi, ξj ), 0, 0)).

In particular, if L is the identity on H⊕H, then L(1,3)(ξ1, ξ2, ξ3, ξ4) = (ξ1, 0, ξ3, 0).

PROPOSITION 4.2.3. Let µ: qC → M2(εS) be the morphism defined in 2.2.3.
Let H be a Hilbert space and (T ,Q) be a Dirac pair on H. The composition
(IdM2 ⊗ D(T ,Q)) ◦ µ is given on generators by

(IdM2 ⊗ D(T ,Q)) ◦ µ: qC → K(Q(H) ⊕ Q(H) ⊕ Q(H) ⊕ Q(H)),

p →
(

1 0
0 0

)(1,3)

,

p → [W ∗
(

1 0
0 0

)
W ](1,3), W = U(QTQ),

(The canonical inclusion

K(Q(H) ⊕ Q(H) ⊕ Q(H) ⊕ Q(H)) ↪→ K(H ⊕ H ⊕ H ⊕ e)

is understood; the superscript (1, 3) refers to Definition 4.2.2.)
Proof. Let u be the unitary introduced in Definition 2.2.3. Remark that

D(T ,Q)(ζ ) = D(T ,Q)(u), hence D(T ,Q)(e) = 1. Set

K = U(QTQ + 1 − Q), K̃ = Diag

( (
K 0
0 1

)
,

(
1 0
0 1

))
.

An explicit computation yields

(IdM2 ⊗ D(T ,Q)) ◦ µ(p) =
(

1 0
0 1

)(1,3)

,

(IdM2 ⊗ D(T ,Q)) ◦ µ(p) = K̃∗
(

1 0
0 1

)(1,3)

K̃.

In restriction to qC, this homomorphism remains unchanged if the matrix(
1 0
0 1

)(1,3)
is replaced everywhere by the matrix

(
1 0
0 0

)(1,3)
. The decomposition

1 = Q + (1 − Q) gives the result. �
DEFINITION 4.2.4. Let (Hn, vn) be a sequence of Hilbert spaces and isometries.
Assume that there is a Hilbert space H1, such that, for every integer n,
Hn+1 = Hn ⊗ H1. Let A be a C∗-algebra, suppose we are given a sequence of
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homomorphisms jn: A⊗n → A⊗n+1, and a sequence of representations λn: A →
L(H1), such that

∀n ∈ N, ∀ξ ∈ Hn, ∀a1, a2, . . . , an ∈ A, [(λ1 ⊗ λ2 ⊗ · · · ⊗ λn+1)jn ×
× (a1 ⊗ a2 ⊗ · · · ⊗ an)](vn(ξ)) = vn([(λ1 ⊗ λ2 ⊗ · · · ⊗ λn) ×
× (a1 ⊗ a2 ⊗ · · · ⊗ an)](ξ)).

Then, ∀ a1, a2, . . . , an ∈ A, the sequence

((λ1 ⊗ λ2 ⊗ · · · ⊗ λn+p)jn+p−1 . . . jn+1jn

(a1 ⊗ a2 ⊗ · · · ⊗ an) ∈ L(Hn+p))p∈N,

defines an operator on H∞ = lim−→(Hn, vn). We obtain a representation of A∞ =
lim−→(A⊗n, jn). We shall refer to this representation as the infinite tensor product of

the sequence of representations (λn) and denote it by
⊗∞

n=1 λn.

This infinite tensor product representation can be described explicitly as follows:
for any integer m, denote by ωm the canonical embedding of Hm into H∞. Let p, q
be any pair of integers and choose any integer m� max(p, q). Let ξ be element of
Hq and let x be element of A1 ⊗ A2 ⊗ · · · ⊗ Ap. Then

[( ∞⊗
n=1

λn

)
(x)

]
(ωq(ξ)) = ωm

([( m⊗
n=1

λn

)
(jm−1 . . . jp(x))

]
(vm

q (ξ))

)
.

DEFINITION 4.2.5. A consistent triple on a Hilbert space H is a triple (T ,Q, ξ),
where (T ,Q) is a Dirac pair on H, and ξ ∈ H is a unit vector such that
QTQ(ξ)= 0.

THEOREM 4.2.6. Let H be a Hilbert space. Assume that for each integer n, a
consistent triple (Tn,Qn, en) on H is given. Set H1 = (H ⊕ H) ⊗ C4. We define
a sequence of Hilbert spaces and isometries (Hn, vn), by ∀n ∈ N, Hn+1 = Hn ⊗
H1, vn(ξ) = ξ ⊗ (en+1 ⊕ 0) ⊗ (1, 0, 0, 0), ∀ξ ∈ Hn and set H∞ = lim−→(Hn, vn).

Then, (
⊗∞

n=1 IdM4 ⊗D(Tn,Qn)) ◦ πε is a well defined homomorphism from εB to
Kloc(H∞).

Proof. For each integer n > 0, πε(εBn) = (M4(εS))
⊗n. It follows from 4.2.3

that, for any x, element of qC and for any integer n,

[(IdM2 ⊗ D(Tn,Qn)) ◦ µ(x)]((en ⊕ 0) ⊗ (1, 0)) = πp(x).((en ⊕ 0) ⊗ (1, 0)).

We conclude from 2.2.2, that Definition 4.2.4, can be applied, with Ap = M4(εS)

for every integer p. �
DEFINITION 4.2.7. We shall refer to the infinite tensor product representation of
theorem 4.2.6 by using the notation

⊗∞
n=1(D(Tn,Qn), en), or the notation:⊗∞

n=1 D(Tn,Qn), if no confusion can arise.
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PROPOSITION 4.2.8. Let ((Tn,Qn, en))n∈N and ((T ′
n,Qn, en))n∈N be two se-

quences of consistent triples on a Hilbert space H, such that ∀n ∈ N, Qn(Tn − T ′
n)∈ K(H). Then (

⊗∞
n=1 D(Tn,Qn)) ◦ πε is homotopic to (

⊗∞
n=1 D(T ′

n,Qn)) ◦ πε, in
r.asympt(εB,Kloc(H∞)).

Proof. Let, for s ∈ [0, 1], n ∈ N, T (s)
n = (1 − s) Tn + s T ′

n. Then (T (s)
n ,Qn, en)

is a consistent triple. Let p be any positive integer, and let t ∈ [0, 1]. We define the
asymptotic morphism with asymptotic parameter p + t and homotopy parameter s
by

C
(s)
p+t = ⊗

( p⊗
k=1

D((T
(s)
k ,Qk), ek)) ⊗ D((T

(ts)

p+1,Qp+1), ep+1

)
⊗

⊗
( ∞⊗

q=p+2

D((Tq,Qq), eq)

)
πε.

It is easily checked that C(s)
p+t is a homotopy of realizable asymptotic morphisms

with endpoints

C(0)
∞ =

∞⊗
n=1

(D(Tn,Qn), en) and C(1)
∞ =

∞⊗
n=1

(D(T ′
n,Qn), en). �

COROLLARY 4.2.9. Let ((Tn,Qn, en))n∈N be a sequence of consistent triples on
a Hilbert space H, such that ∀n ∈ N, Qn(en) = en. The following hold:

(i) ∀n ∈ N, (QnTnQn, 1, en) is a consistent triple on Qn(H).

(ii) The operator
⊗∞

n=1(Qn ⊗ IdM4(C)) is a well defined projection on H∞. We
shall denote it by Q∞.

(iii) (
⊗∞

n=1 D(Tn,Qn)) ◦πε is homotopic, in r.asympt(εB,Kloc(H∞)), to the com-
position of (

⊗∞
n=1 D(QnTQn, 1)) ◦ πε , with the canonical embedding of

Kloc(Q
∞(H∞)) into Kloc(H∞).

Proof. (i), and (ii) are obvious. Assertion (iii) follows from Proposition 4.2.8,
and from the equality

Tn + K(H) = (QnTnQn ⊕ (1 − Qn)Tn(1 − Qn)) + K(H),

which holds for every integer n. It is easy to check that

D((QnTnQn ⊕ (1 − Qn)Tn(1 − Qn)),Qn)

is the composition of D(QnTnQn, 1), with the embedding of K(Qn(H)⊕ Qn(H))

into K(H ⊕ H). �
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4.3. INFINITE TENSOR POWER OF THE TOEPLITZ EXTENSION

In this subsection, we let H be the space l2(N) and denote the canonical basis of H
by (δn).

DEFINITION 4.3.1. Let V be the unilateral shift (coisometry of index 1: V (δn) =
δn−1,∀n > 0, V (δ0) = 0). We let Dτ = D(V , 1): εS → K(l2(N) ⊕ l2(N)). Note
that (V , 1, δ0) is a consistent triple on l2(N).

PROPOSITION 4.3.2. The composition IdM2 ⊗Dτ ◦µ is expressed on generators
by

IdM2 ⊗ Dτ ◦ µ: qC → M4(K(l2(N)),

p →
(

[δ0] 0
0 0

)(1,3)

,

p → 0.

Proof. This follows from 4.2.3. �
DEFINITION 4.3.3. We shall denote by D⊗∞

τ , the inductive limit representation⊗∞
n=1(D(V , 1), δ0). The morphism D⊗∞

τ ◦ πε: εB → K(H∞) ⊂ Kloc(H∞) will
be referred to as the infinite tensor power of the Toeplitz extension.

Remark 4.3.4. Note that, although the infinite tensor product construction 4.2.7
yields, in general, a map to Kloc(H∞), the infinite tensor power of the Toeplitz
extension, D⊗∞

τ ◦ πε is a homomorphism from εB to K(H∞), since [δ0] is an
operator of rank 1. This shows that the associated connecting map, from K1(B) to
K0(Kloc(H∞)) factors through the embedding of K0(K(H∞)) = Z into
K0(Kloc(H∞)) = EZ/

⊕
Z, as the subgroup which consists of the classes of

constant sequences of integers.

4.4. INFINITE TENSOR POWER OF ANTI-WICK EXTENSIONS

In what follows, we denote by MX the unbounded operator on L2(C), defined
by (MX(ξ))(X) = Xξ(X). We refer the reader to ([16], chapter 5) for details
concerning the harmonic oscillator, and the basis of Hermite functions.

PROPOSITION 4.4.1. Consider the operator I ∗MXI , with domain the space of
smooth functions of rapid decrease. Let DX be its closure and write DX =
phase(DX)|DX| the polar decomposition of DX.

(i) There exists a unitary U : l2(N) → L2(R), such that U ∗phase(DX)U = V .
(ii) Let ψ : R+ → [0, 1] be a continuous function, such that limr→∞ ψ(r) = 1.

Then, phase(DX) − phase(DX)ψ(|DX|) is a compact operator on L2(R).
(iii) phase(DX)ψ(|DX|) − DX|X|−1ψ(|X|) is a compact operator on L2(R).
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Proof. Set

ρ0(t) = π−1/4 exp(−t2/2), ∀t ∈ R, A = 2−1/2(t + ∂t),

A∗ = 2−1/2(t − ∂t).

Let (ρn)n∈N be the basis of Hermite functions. Recall that ρn = (n!)−1/2(A∗n)ρ0,

∀n > 0. We have

DX(ρn) = (2n)1/2ρn−1, ∀n > 0,DX(ρ0) = 0

and

D∗
X(ρn) = (2(n + 1))1/2ρn+1, ∀n� 0.

The unitary U sends the vector δn to the vector ρn; (ii): Observe that phase(DX) −
phase(DX)ψ(|DX|) maps ρn to (1 − ψ((2n)1/2))ρn−1. For showing (iii), consider
the extension of anti-Wick operators on R. It follows from (ii), that the image of
phase(DX)ψ(|DX|), and of DX|X|−1ψ(|X|) modulo the compact operators are both
equal to the canonical unitary generating C(T). (Indeed, by (i), phase(DX) is an
essentially normal Fredholm operator, of index −1, whose essential spectrum is
the whole unit circle of the complex plane.) �
DEFINITION 4.4.2. Let ψ : R+ → [0, 1] be a continuous function, such that
limr→∞ ψ(r) = 1. Let I : L2(R) ↪→ L2(C) be the anti-Wick isometry, and denote
by P I the projection on the subspace I (L2(R)). We define

D[C;ψ] = D(MX|X|−1ψ(|X|), P I ): εS → K(L2(C) ⊕ L2(C))

and

D[R;ψ] = D(DX|X|−1ψ(|X|), 1): εS → K(L2(R) ⊕ L2(R)).

Remark that the anti-Wick extension DAW[C;φ] is recovered when ψ(r) = rφ(r)

(1+r2φ(r)2)−1/2. Since continuity of φ is necessary to define DAW[C;φ], we shall
assume that our functions ψ are such that r−1ψ(r) is itself continuous. This will
give a simple correspondence with anti-Wick extensions (See Definition 4.4.4 (ii),
below.)

PROPOSITION 4.4.3. Let ψ : R+ → [0, 1] be a continuous function, such that
r → r−1ψ(r) is continuous, and, limr→∞ ψ(r) = 1. Let ρ0 be the unit vec-
tor in L2(R), generating the kernel of phase(DX) (see the proof of 4.4.1). Then
(phase(DX), 1, ρ0) and (DX|X|−1ψ(|X|), 1, ρ0) are consistent triples on L2(R);
D(MX|X|−1ψ(|X|), P I , I (ρ0)) is a consistent triple on L2(C)).

Proof. We need only to show that (DX|X|−1ψ(|X|), 1, ρ0) is a consistent triple on
L2(R). It is clear that (DX|X|−1ψ(|X|), 1) is a Dirac pair. Let us show that
DX|X|−1ψ(|X|)(ρ0) = 0. Let (ρm) be the basis of Hermite functions. The equalities

I ∗MX̄(η) = (t + ∂t)I
∗η and MXI (ξ) = I (t − ∂t)ξ,

hold for any smooth functions of rapid decrease η, on C, and ξ , on R. Set r2 = XX̄.
It follows from [16] that ρ0 is an eigenfunction of DP , for any polynomial P(r2).



138 ALEXANDR KOSYAK AND RICHARD ZEKRI

We can check, for any integer m, the convergence of the power series expansion∑
n I

∗(−1)n(r/2)2n/n!I (ρm) in L2(R), and conclude that Dexp(−(r/2)2) is diagonal
in the basis of Hermite functions, with eigenvalues smaller or equal to 1. Using the
equality Dr2n exp(−(r/2)2) = (t + ∂t)

nDexp(−(r/2)2)(t − ∂t)
n, we can, in the same man-

ner, show that for any integer k, the operator Dexp(−kr2) is diagonal in the basis of
Hermite functions, and extend the result to any anti-Wick operator whose symbol
is a function of r, vanishing at infinity. Since ρ0 generates the kernel of t + ∂t , the
proof is complete (see also the proof of 4.4.1). �
DEFINITION 4.4.4. Let (ψn) be a sequence of continuous functions, from R+ to
[0, 1], such that ∀n ∈ N, r → r−1ψn(r) is continuous and limr→∞ ψn(r) = 1.

(i) We define

D⊗∞[C; (ψn)] =
∞⊗
n=1

(D[C;ψn], I (ρ0))

and

D⊗∞[R; (ψn)] =
∞⊗
n=1

(D[R;ψn], ρ0).

(ii) Given a sequence of continuous functions (φn), such that ψn(r) = rφn(r)

(1 + r2φn(r)
2)−1/2, ∀n ∈ N, we shall denote the infinite tensor power representa-

tion D⊗∞[C; (ψn)] by D⊗∞
AW [C; (φn)] (see the remark following 4.4.2).

(iii) We shall denote the morphism
⊗∞

n=1(D(phase(DX), 1), ρ0) by D⊗∞
τ .

Remark 4.4.5. In the above definition, the morphism
⊗∞

n=1(D(phase(DX), 1);
ρ0)πε is identified to the infinite tensor power of the Toeplitz extension. This is
justified by [4.4.1 (i)].

THEOREM 4.4.6. Let (ψn) be a sequence of continuous functions, from R+ to
[0, 1], such that, ∀n ∈ N, r → r−1ψn(r) is continuous and limr→∞ ψn(r) =
1. The morphisms D⊗∞[C; (ψn)]πε and D⊗∞

τ πε (see 4.4.4) are homotopic, in
r.asympt(εB,Kloc(N∞)).

Proof. Corollary 4.2.9 shows that D⊗∞[C; (ψn)]πε is homotopic, in
r.asympt(εB,Kloc(N∞)), to D⊗∞[R; (ψn)]πε , composed with the embedding of
Kloc(H∞) into Kloc(N∞). It follows from proposition (4.4.1 (ii), (iii)) that, for
each integer n, (DX|X|−1ψ(|X|), 1) is a compact perturbation of (phase(DX), 1). The
result follows from (4.4.1 (i)), and from Proposition 4.2.8. �
5. Anti-Wick Extension on R∞ Versus Infinite Tensor Power

of the Toeplitz Extension

In this section, we study the relations between the constructions of Sections 3 and
4. We remark that a homomorphism from a C∗-algebra A to Kloc(H∞) defines an
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asymptotic representation of A into the compact operators on H∞. We use a notion
of local homotopy for such C∗-morphisms based on homotopy of the associated
asymptotic representation. This one is weaker than the usual homotopy for which
equicontinuity of the family of completely positive maps obtained by compressions
to the subspaces of the filtration is required. However, the �-ind map remains
invariant under local homotopy. This will provide a link between the extension of
anti-Wick operators on R∞ and the infinite tensor power of the Toeplitz extension.
Then we are enabled to compute the K-theory connecting map of these extensions,
and to show that any elliptic anti-Wick operator on R∞ is homotopic in Floc(H∞)

to an ordinary Fredholm operator on H∞. This refines previous results obtained in
[13].

Note: Simplified notations will be used in the proofs of this section: we shall de-
note by DAW the morphism DAW[Cn+1]. Similar notation will be used for
DI

AW[Cn+1], σAW[n+1], etc. The Hilbert space H will be identified to the subspace
I (H), of N . Similar notations hold for Hn,H∞. Consequently, the anti-Wick op-
erator Df will be considered as the compression to H of the operator of pointwise
multiplication Mf .

5.1. HOMOTOPIES IN FINITE-DIMENSIONAL SPACE

In order to describe our homotopies, it will be convenient to introduce the following
partial symbols:

DEFINITION 5.1.1. Let (X1, X2, . . . Xn) denote the coordinates in Cn, with Xj ∈
C, ∀1 � j � n. Let

{1, 2, . . . , n} = {k1, k2, . . . , kj } ∪ {l1, l1, . . . , ln−j }
be a partition of the set of indices, and Cn = Cj × Cn−j be the corresponding
decomposition of Cn. We shall denote by 8(k1,k2,...,kj ) the algebra of continuous
functions of the variables Xl1, Xl2, . . . , Xln−j

, with values in 8(Cj ).

The extension of pseudodifferential operators DAW[Cn+1] corresponds to the al-
gebra of full symbols 8(Cn+1). The extension

⊗n+1
k=1 DAW[C] is associated to tensor

products of elements of 8(C). These partial symbols will arise as intermediate
steps between these two.

DEFINITION 5.1.2. Define DI
AW[Cn+1] : ε(S ⊗ (εS)⊗n) → M2n+1(K(L2(Cn+1)))

by

DI
AW[Cn+1] : ε(S ⊗ (εS)⊗n) → M2n+1(K(L2(Cn+1))),

∀1 � j � n + 1, ζj → (IdM2)
⊗j−1 ⊗ U(Xj(1 + |X1|2)−1/2) ⊗

⊗ (IdM2)
⊗n+1−j ,
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∀1 < j � n + 1, Pj → (IdM2)
⊗j−1 ⊗

(
P I

j 0
0 0

)
⊗ (IdM2)

⊗n+1−j ,

P1 →
(

P I
1 0

0 0

)
⊗


 n+1⊗

j=2

(
P I

j 0
0 P I

j

)
 = Q.

As in the proof of Proposition 3.1.7, the unitaries U(Xj(1+|X1|2)−1/2) are extend-
ed by U(Xj |Xj |−1) outside the domain |Xj |� (1 + |X1|2)1/2

PROPOSITION 5.1.3. Let us denote by σAW[n + 1]: S ⊗ (εS)⊗n → L(Hn+1) the
completely positive map associated to the morphism DAW[Cn+1] (see Proposition
3.1.7). Let σ I

AW[n + 1] be the completely positive map associated to DI
AW[Cn+1].

Then, for any x element of S⊗(εS)⊗n, σAW[n+1](x)−σ I
AW[n+1](x) is a compact

operator.
Proof. (See also 3.1.7.)

(a) Set DAW(Pj ) = DI
AW(Pj ) + DI⊥

AW(Pj ), and denote by DI⊥
AW the morphism

corresponding to the projections DI⊥
AW(Pj ). Recall that Q = DAW(P1) = DI

AW(P1),
and, for any x ∈ S ⊗ (εS)⊗n : σAW(x) = QDAW(x)Q. We have to check that
σAW(x) − σ I

AW(x) ∈ K(Hn+1). The difference σAW(x) − σ I
AW(x) is a sum of terms

of the following type: T = QT1T2T3T4Q, where

T1 = DAW(x1 · · · ⊗ xk), x1, x2, . . . xk ∈ S,
T2 is a monomial in DAW(ζk+1),DAW(ζk+2), . . .DAW(ζk+j ),
T3 = DI⊥

AW(Pk+1)DI⊥
AW(Pk+2) . . .DI⊥

AW(Pk+j ), and
T4 is a monomial in DAW(ζk+j+1) . . .DAW(ζn+1).

(b) Let ψ ∈ 8(Cn+1) be any anti-Wick symbol vanishing on a neighborhood of
the hyperplane X1 = 0. Terms of type ψT2, and ψT4 are elements of 8(1,k+1,...,k+j)

and of 8(1,k+j+1,...,n+1), respectively.
(c) Let a(X1, Xl) be a continuous function of the complex variables X1 and Xl .

Assume that a ∈ 8(l). Set f (X1) = P I
l a(X1, Xl)P

I⊥
l ; f is a continuous function

of X1, with values in K(L2(R2
l )). On each X1-compact, f is the norm limit of

functions fn(X1) = P I
l an(X1, Xl)P

I⊥
l , with an(X1, Xl), continuous with compact

X1 × Xl support. (Since f (X1) is compact, and is the strong limit of the compact
operators fn(X1).)

(d) Write T2 = T
(1)

2 + T
(2)

2 , where T
(1)

2 (resp T
(2)

2 ) is a continuous function
with X1-compact support (resp. vanishing on an open set containing the hyper-
plane X1 = 0). It follows from (c), that T1T

(1)
2 can be approximated by functions

with compact support. It follows from (b) that T1T
(2)

2 is an element of 8(1,2,...,k+j).
(e) One can check that QT1T2T3T4Q = [Q,T1T2]T3[T4,Q] It follows from (d),

that

[Q,T1T2] ∈ K(H1 ⊗ H2 · · · ⊗ Hk+j )sL(Hk+j+1 ⊗
⊗ Hk+j+2 · · · ⊗ Hn+1).
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It follows from (b) that

[T4,Q] ∈ L(H1 ⊗ H2 · · · ⊗ Hk+j ) ⊗ K(Hk+j+1 ⊗ Hk+j+2 · · · ⊗ Hn+1),

hence the result. �
PROPOSITION 5.1.4. Let

Q′ =
(

P I 0
0 0

)
⊗ IdM2 ⊗ IdM2 · · · ⊗ IdM2 .

Define

D′I
AW[Cn+1](ζj ) = DI

AW[Cn+1](ζj ), ∀j � 1, D′I
AW[Cn+1](Pj )

= DI
AW[Cn+1](Pj ), ∀j > 1, D′I

AW[Cn+1](P1) = Q′.

Denote by σ ′
AW[n+1] the completely positive map associated to D′I

AW[Cn+1]. Then,
σAW[n + 1](x) is homotopic to σ ′

AW[n + 1](x) in Ext(S ⊗ (εS)⊗n,K(Hn+1)) (see
Section 3).

Proof. Remark that, for any x ∈ S ⊗ (εS)⊗n, there is a direct sum decompos-
ition Q′DI

AWQ′(x) = ∑⊕
i � 0 P(i)DI

AW(x)P (i), modulo compact operators. Here
P(0) = Q, and each projection P(i), i � 1 contains exactly one tensorial factor
(P I )⊥. Explicitly,

P(i) =
(

P I 0
0 0

)
⊗

(
1 0
0 1

)⊗(i−1)

⊗

⊗
(

(P I )⊥ 0
0 (P I )⊥

)
⊗

(
P I 0
0 P I

)⊗(n−i)

.

This implies that the corresponding direct summand extends to a map from S ⊗
(εS)⊗i−1 ⊗E1S ⊗ (εS)⊗n+1−i to L(Hn+1). The extended map remains completely
positive and multiplicative modulo the compact operators. Since E1S is a contract-
ible C∗-algebra, we can conclude that every direct summand corresponding to a
block with index i � 1 is homotopic to 0. �
PROPOSITION 5.1.5. The morphisms D′I

AW[Cn+1] (see 5.1.4) and
⊗n

k=1 D(Xk(1+
|Xk|2)−1/2, P I

k ) are homotopic in Hom(εBn,K(N n)).
Proof. The morphism D′I

AW is determined by the couple (β ′I
AW,Q′), with

β ′I
AW : S ⊗ (εS)⊗n → S ⊗ M2n(K(L2(Cn))),

y → y ,∀y ∈ S,

ζj → D′I
AW(ζj ) ,∀2 � j � n + 1,

Pj → D′I
AW(Pj ) ,∀2 � j � n + 1.

(See also 3.2.3, and the description of the identification M2(S) ∼ εC.) In the tensor
product decomposition

(L2(C) ⊕ L2(C))⊗(n+1) = (L2(C) ⊕ L2(C)) ⊗ (L2(C) ⊕ L2(C))⊗n,
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the algebra S acts by pointwise multiplication on (L2(C)⊕L2(C)), and β ′I
AW factors

through C0(R,L((L2(C) ⊕ L2(C))⊗n)). Hence, for any x ∈ S ⊗ εS⊗n, we shall
equally consider β ′I

AW(x) as a continuous function of the variable X1, with values
in K((L2(C) ⊕ L2(C))⊗n). We define a homotopy in a way similar to 4.2.8, by

Cs = IdS

n⊗
k=2

[D(T
(s)
k , P I

k )]πε,where T
(s)
k = s Xk(1 + |X1|2)−1/2 +

+ (1 − s)Xk(1 + |Xk|2)−1/2,

on the domain |Xk|(1 + |X1|2)−1/2 � 1, and

T
(s)
k = s Xk|Xk|−1 + (1 − s)Xk(1 + |Xk|2)−1/2,

on the complement.

5.2. K-THEORY MAPS

DEFINITION 5.2.1. Let A be a C∗-algebra, let H be a Hilbert space. An asymp-
totic representation of A into K(H) is a sequence of linear, completely positive
maps of norm less or equal to one, (λn: A → K(H)), such that, for any pair (a, b),
of elements of A, limn→∞ ‖λn(ab) − λn(a)λn(b)‖ = 0. We shall denote by [λn]
such an asymptotic representation.

PROPOSITION 5.2.2. Let H∞ = lim−→(Hn, vn) be a filtered Hilbert space, and,

for each integer n, denote by Pn the projection on the subspace Hn ⊂ H. Set,
for any k ∈ Kloc(H∞), κn(k) = PnkP n. The sequence [κn] is an asymptotic
representation of Kloc(H∞), into K(H∞). Any C∗-algebra morphism ψ : A →
Kloc(H∞) yields an asymptotic representation of A into K(H∞), that we shall
denote by [ψn].

Proof. This is a consequence of the density of Ldiag(H∞) in Lloc(H∞). �
DEFINITION 5.2.3. (i) Let [ψ(0)

n ], [ψ(1)
n ] be two asymptotic representations of

a C∗-algebra A into K(H). Then [ψ(0)
n ], and [ψ(1)

n ] are locally homotopic, if there
exists a family [ψ(t)

n ]t∈[0,1] of asymptotic representations of A into K(H), such that,
for every integer n and for each a ∈ A, the map t → ψ(t)

n (a) is norm continuous.
(ii) Let ψ(0) and ψ(1) be two C∗-algebra morphisms from A to Kloc(H∞). Then

ψ(0) and ψ(1) are locally homotopic if there exists a family of homomorphisms
ψ(t): A → Kloc(H∞), t ∈ [0, 1], such that the corresponding family of asymptotic
representations is a local homotopy with endpoints [ψ(0)

n ] and [ψ(1)
n ].

Note that if ψ(0) and ψ(1) are homotopic in r.asympt(Kloc(H∞)), then, ψ(0) and
ψ(1) are locally homotopic (see 4.1.3 and 5.2.2).

PROPOSITION 5.2.4. Let ψ(0) and ψ(1) be locally homotopic. Then: ψ(0)∗ = ψ(1)∗ :
K∗(A) → K∗(Kloc(H∞)).
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Proof. It is shown, in [13], that the isomorphism from K∗(Kloc(H∞)) to
EZ/

⊕
Z is provided by the dimension map �- dim. Let p be a projection in

Kloc(H∞). There exists an integer N , such that the spectrum of PnpP n is contained
in [0, 1/4] ∪ [3/4, 1], for any n�N . Denote by X the characteristic function of
[3/4, 1], and by dim the usual dimension map on K(H∞). Then, �- dim(p) is the
class of the sequence (dim(X (P npP n)))n�N . This map is invariant under local
homotopies. �

Note. In what follows, H denotes the Hilbert space L2(R), and H∞ is the
infinite tensor power of the corresponding space H1 = (H⊕H)⊗ C4, with stabil-
isation

⊗∞
n=1 π

−1/4 exp(−t2/2). In consequence, N∞ is the infinite tensor power
of N 1, with stabilisation

⊗∞
n=1 I (π

−1/4 exp(−t2/2)) (The definition of H1, N 1,
and the construction of the infinite tensor power spaces are described in
Subsection 3.2).

PROPOSITION 5.2.5. The morphism DAW[C∞; (φn)]: εB → Kloc(N∞) is loc-
ally homotopic to D⊗∞

AW [C]πε .
Proof. Recall that D⊗∞

AW [C] = ⊗∞
k=1 D(Xk(1 + |Xk|2)−1/2, P I

k ) (see also 4.4.2,
and 4.4.4). It follows from Proposition 5.1.3, and from proposition 5.1.5, that,
for each integer n, the anti-Wick extension on Rn is homotopic to the nth tensor
power of the anti-Wick extension on R. The anti-Wick extension on R∞, is de-
scribed in Subsection 3.2. For each integer n, DAW[Cn; (φk)k �n] does not de-
pend, up to homotopy, on the choice of the functions (φ1, φ2, . . . , φn), provided
that limr→∞ φk(r) = 1, ∀1 � k � n. The homotopy described in 5.1.3, through
5.1.5, extends to a path of maps from DAW[C∞; (φn)] to D⊗∞

AW [C; (φn)]πε; this
path is not continuous, but is a local homotopy. We conclude from Theorem 4.4.6
that, up to local homotopy, D⊗∞

AW [C; (φn)]πε does not depend on the choice of the
functions (φn), provided that limr→∞ φn(r) = 1, for any n ∈ N. The family of
functions φn(r) = 1, ∀r � 0, ∀n ∈ N, corresponds to the infinite tensor power
representation in the statement of the proposition. �

We have seen, in Subsection 3.1, that an invertible extension of a C∗-algebra
A by a C∗-algebra B is a completely positive map, σ , from A to the multipliers
algebra of B, which fulfills suitable conditions. The map σ corresponds to a pair
(φ, P ), that is, to a C∗-algebra morphism, from εA to M2(B), in such a way that,
for any a element of A, σ (a) = Pφ(a)P . Let D be the C∗-algebra generated by
the set {σ (a)/a ∈ A}∪B. We have an exact sequence A = D/B, and a connecting
map, ∂ : K∗+1(A) → K∗(B). This map coincides with the map induced by the pair
(φ, P ) in K-theory, composed with the isomorphism K∗(εA) � K∗+1(A). In the
following we shall consider ∂ as a map from K∗(εA) to K∗(B). In our case, A will
be the inductive limit C∗-algebra B and B will be the C∗-algebra Kloc(H∞). The
map φ sends B to Lloc(N∞) and P corresponds to the projection on the subspace
H∞ of N∞.
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THEOREM 5.2.6. (i) The connecting map, ∂AW, from K∗(εB) to K∗(Kloc(H∞)) of
the extension of anti-Wick operators on R∞ is the composition of the map sending
the generator of K∗(εB) = Z to the generator of K∗(K(H∞)) = Z, with the
canonical embedding K∗(K(H∞)) ↪→ K∗(Kloc(H∞)).

(ii) Denote by D the anti-Wick extension C∗-algebra on R∞ (that is, D =
σAW(B) + Kloc(H∞)). Let x ∈ D̃ whose image in B̃ is invertible. Then, x, is
homotopic, in Floc(H∞), to a Fredholm operator on the Hilbert space H∞.

Proof. (i) The morphism DAW[C∞; (φn)] is locally homotopic to
⊗∞

k=1 D(Xk

(1 + |Xk|2)−1/2, P I
k ). Let ∂τ be the K-theory connecting map of the extension

D⊗∞
τ ◦ πε . Theorem 4.4.6 and Proposition 4.1.2 then show that ∂AW is the com-

position of ∂τ , and of the embedding of Z in EZ/
⊕

Z, as the subgroup of classes
of constant sequences. Since Dτ is the usual Toeplitz extension, it maps the gener-
ators of K∗(εS) to the generator of K∗(C) = Z. An analogous assertion holds for
finite tensor powers of Dτ . Since K-theory is compatible with inductive limits, we
conclude that ∂τ sends the generator of K∗(εB) to the generator of Z, and the proof
of (i) is complete (see also the proof of 4.4.6).

(ii) It follows from (i), that for any x, as in (ii), �-ind(x), is an element of the
image of Z in EZ/ ⊕ Z. Since Ldiag(H∞) is dense in Lloc(H∞) (and the linear
group of Oloc(H∞) is open), x is homotopic, in Floc(H∞), to a diagonal operator⊕

n� 0 Tn. Here T0 ∈ L(Hm0), Tn ∈ L(Hm0+n � Hm0+n−1),∀n > 0, and m0 is a
fixed integer. By homotopy invariance of the map �-ind, there exists an integer
N , such that ind(Tn) = 0, ∀n�N . This implies that

⊕
n�N Tn is homotopic

to an invertible element of Lloc(
⊕

n�N(Hn � Hn−1)) (see [13], proposition 8,
p. 34). �

Remark 5.2.7. Let D0 ⊂ D be the smallest C∗-algebra containing σAW(B). The
previous result makes it reasonable to define an elliptic anti-Wick operator on R∞
as an element of D̃0 whose image in B̃ is invertible.
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