ELEMENTARY REPRESENTATIONS OF THE GROUP $B_0^{\mathbb{Z}}$ OF UPPER-TRIANGULAR MATRICES INFINITE IN BOTH DIRECTIONS. I

O. V. Kosyak

UDC 519.46

We define so-called "elementary representations" $T_p^{R,\mu}$, $p \in \mathbb{Z}$, of the group $B_0^{\mathbb{Z}}$ of finite upper-triangular matrices infinite in both directions by using quasi-invariant measures on certain homogeneous spaces and give a criterion for the irreducibility and equivalence of the representations constructed. We also give a criterion for the irreducibility of the tensor product of finitely many and infinitely many elementary representations.

1. G-action, Quasiinvariant Measures, and Representations

The following construction of unitary representations of a topological group G is well known: Assume that we have a measurable space X with probability measure μ on which the group G acts, i.e., we have a group homomorphism $\alpha: G \rightarrow \operatorname{Aut}(X)$ satisfying the following conditions:

(i) $\alpha_e(x) = x \quad \forall x \in X$, where $e \in G$ is the identity element;

(ii)
$$\alpha_{t_1}(\alpha_{t_2}(x)) = \alpha_{t_1t_2}(x) \quad \forall t_1, t_2 \in G, x \in X.$$

Let $\mu^{\alpha_t}, t \in G$, be images of the measure μ with respect to the action α , i.e., $\mu^{\alpha_t}(\Delta) = \mu(\alpha_{t^{-1}}(\Delta))$. If $\mu^{\alpha_t} \sim \mu \quad \forall t \in G$, one can define a unitary representation $\pi^{\alpha,\mu}: G \to U(L^2(X, d\mu))$ of the group *G* as follows:

$$\left(\pi_{t}^{\alpha,\mu}f\right)(x) = \left(\frac{d\mu^{\alpha_{t}}(x)}{d\mu(x)}\right)^{1/2} f\left(\alpha_{t^{-1}}(x)\right), \quad f \in L^{2}(X, d\mu).$$
(1)

2. Analog of Regular Representations of Infinite-Dimensional Groups

A regular representation of a locally compact group G is well known (see, e.g., [1]). It uses the existence of a G-invariant measure on the group G, the Haar measure, and is defined by formula (1), where X = G and α is the right or the left action of the group G onto itself.

For a group G that is not locally compact, it is impossible to define a regular representation because there is no G-invariant measure on the group G [2], nor is there a G-quasiinvariant measure [3].

An analog of regular representations of some infinite-dimensional noncommutative groups (current groups) was first constructed and studied in [4-7].

Institute of Mathematics, Ukrainian Academy of Sciences, Kiev. Published in Ukrains'kyi Matematychnyi Zhurnal, Vol. 54, No. 2, pp. 205–215, February, 2002. Original article submitted October 25, 2001.

An analog of a regular representation for any infinite-dimensional group G, using G-quasiinvariant measures μ on some *completions* \tilde{G} of the group G, was first defined in [8–10]. It uses formula (1), where $X = \tilde{G}$ and α is the right or the left action of the group G on \tilde{G} . More precisely, let $H_{\mu} = L^2(\tilde{G}, d\mu)$. We define analogs of the right $T^{R,\mu}$ and the left $T^{L,\mu}$ regular representations of the group G in the space H_{μ} , i.e.,

$$T^{R,\mu}, T^{L,\mu}: G \to U(H_{\mu}),$$

in a natural way, namely,

$$\left(T_t^{R,\mu}f\right)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt),$$
(2)

$$\left(T_{s}^{L,\,\mu}f\right)(x) = \left(\frac{d\mu(s^{-1}x)}{d\mu(x)}\right)^{1/2} f\left(s^{-1}x\right).$$
(3)

It is obvious that $[T_t^{R,\mu}, T_s^{L,\mu}] = 0 \quad \forall t, s \in G$. Hence, the right regular representation $T^{R,\mu}$ is reducible if $\mu^{L_s} \sim \mu$ for some $s \in G \setminus e$ or the measure μ is not *G*-right ergodic. Let μ be a *G*-right quasiinvariant measure on \tilde{G} , i.e., $\mu^{R_t} \sim \mu \quad \forall t \in G$.

Conjecture 1. The right regular representation $T^{R,\mu}$: $G \rightarrow U(H_{\mu})$ is irreducible if and only if

- (i) $\mu^{L_s} \perp \mu \quad \forall s \in G \setminus e$,
- (ii) the measure μ is G-right ergodic.

Remark. This conjecture was formulated by Ismagilov in 1985 for the group $B_0^{\mathbb{N}}$ of finite real upper-triangular matrices infinite in one direction and having unities on the principal diagonal and any Gaussian centered product measure μ_b .

In this case, the conjecture was proved in [8, 9]. For the same group $B_0^{\mathbb{N}}$ and any product measure $\mu = \bigotimes_{k < n} \mu_{kn}$, it was proved in [11] under certain technical assumption. In [12], this conjecture was proved for the group $B_0^{\mathbb{Z}}$ of finite upper-triangular matrices infinite in both directions for some Gaussian centered product measures. In [10], a criterion was proved for groups of interval and circle diffeomorphisms and the Wiener measure.

3. Analog of Regular Representations of the Group $B_0^{\mathbb{Z}}$

Let $B_0^{\mathbb{Z}}$ be the group of finite upper-triangular matrices infinite in both directions and having unities on the principal diagonal and let $B^{\mathbb{Z}}$ be the group of all matrices of this type (not necessarily finite), i.e.,

$$B_0^{\mathbb{Z}} = \bigg\{ I + x = I + \sum_{k < n} x_{kn} E_{kn} | x \text{ is finite} \bigg\},\$$

Elementary Representations of the Group $B_0^{\mathbb{Z}}$ of Upper-Triangular Matrices. I

$$B^{\mathbb{Z}} = \left\{ I + x = I + \sum_{k < n} x_{kn} E_{kn} | x \text{ is arbitrary} \right\},\$$

where E_{kn} , $k, n \in \mathbb{Z}$, are matrix units of infinite order. Let R and L denote the right and the left action of the group $B^{\mathbb{Z}}$ onto itself; $R_s(t) = ts^{-1}$, $L_s(t) = st$, $s, t \in B^{\mathbb{Z}}$. Let μ be a probability measure on the group $B^{\mathbb{Z}}$. If $\mu^{R_t} \sim \mu$ and $\mu^{L_t} \sim \mu \quad \forall t \in B_0^{\mathbb{Z}}$, then we can define by formulas (2) and (3) an analog of the right $T^{R,\mu}$ and the left $T^{L,\mu}$ regular representations of the group $B_0^{\mathbb{Z}}$ in the space $H_{\mu} = L^2(B^{\mathbb{Z}}, d\mu)$, $T^{R,\mu}$, $T^{L,\mu} : B_0^{\mathbb{Z}} \rightarrow U(H_{\mu})$, as follows:

$$(T_t^{R,\mu}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt),$$
$$(T_t^{L,\mu}f)(x) = \left(\frac{d\mu(t^{-1}x)}{d\mu(x)}\right)^{1/2} f(t^{-1}x).$$

For the generators $A_{kn}^{R,\mu}(A_{kn}^{L,\mu})$ of the one-parameter groups $I + tE_{kn}$, $t \in \mathbb{R}^1$, k < n, corresponding to the right $T^{R,\mu}$ (respectively, the left $T^{L,\mu}$) regular representation, we have the following formulas:

$$A_{kn}^{R,\mu} = \frac{d}{dt} T_{I+tE_{kn}}^{R,\mu} \Big|_{t=0} = \sum_{r=-\infty}^{k-1} x_{rk} D_{rn}(\mu) + D_{kn}(\mu), \qquad (4)$$

$$A_{kn}^{L,\,\mu} = \frac{d}{dt} T_{I+tE_{kn}}^{L,\,\mu} \Big|_{t=0} = - \bigg(D_{kn}(\mu) + \sum_{m=n+1}^{\infty} x_{nm} D_{km}(\mu) \bigg), \tag{5}$$

1 10

where

$$D_{kn}(\mu) = \frac{\partial}{\partial x_{kn}} + \frac{d}{dt} \left(\frac{d\mu (x(I+tE_{kn}))}{d\mu(x)} \right)^{1/2} \Big|_{t=0}$$

For an arbitrary product measure $\mu = \bigotimes_{k < n} \mu_{kn}$, we have

$$D_{kn}(\mu) = \frac{\partial}{\partial x_{kn}} + \frac{\partial}{\partial x_{kn}} \left(\ln \mu_{kn}^{1/2}(x_{kn}) \right),$$

where $d\mu_{kn}(x) = \mu_{kn}(x) dx$, $x \in \mathbb{R}^{1}$. Denote

$$M_{kn}(p) = \int_{\mathbb{R}^1} x^p \mu_{kn}(x) dx, \qquad \tilde{M}_{kn}(p) = \left(\left(i^{-1} D_{km}(\mu) \right)^p \mathbb{1}, \mathbb{1} \right)_{L^2(\mathbb{R}^1, d\mu_{kn})}, \qquad p \in \mathbb{N}.$$

We define a Gaussian measure μ_b on the group $B^{\mathbb{Z}}$ in the following way:

$$d\mu_b(x) = \bigotimes_{k < n} (b_{kn} / \pi)^{1/2} \exp(-b_{kn} x_{kn}^2) dx_{kn} = \bigotimes_{k < n} d\mu_{b_{kn}}(x_{kn}),$$

where $b = (b_{kn})_{k < n}$ is some set of positive numbers. In this case, we have (see, e.g., formulas (6) and (7) in [13])

$$D_{kn}(\mu_b) = \frac{\partial}{\partial x_{kn}} - b_{kn} x_{kn},$$

$$M_{kn}(2) = \frac{1}{2b_{kn}}, \qquad M_{kn}(4) = \frac{3}{(2b_{kn})^2}, \qquad M_{kn}(2m) = \frac{(2m-1)!!}{(2b_{kn})^m},$$
(6)

$$\tilde{M}_{kn}(2) = \frac{b_{kn}}{2}, \quad \tilde{M}_{kn}(4) = 3\left(\frac{b_{kn}}{2}\right)^2, \quad \tilde{M}_{kn}(2m) = (2m-1)!!\left(\frac{b_{kn}}{2}\right)^m.$$
 (7)

For an arbitrary Gaussian product measure $\mu_b = \bigotimes_{k < n} \mu_{b_{kn}}$, one can easily verify the equivalences $\mu_b^{R_t} \sim \mu_b$ and $\mu_b^{L_t} \sim \mu_b \quad \forall t \in B_0^{\mathbb{Z}}$. The following three lemmas were proved in [12]:

Lemma 1.

$$\mu_b^{R_t} \sim \mu_b \quad \forall t \in B_0^{\mathbb{Z}} \iff S_{kn}^R(\mu_b) \; = \; \sum_{r=-\infty}^{k-1} M_{rk}(2) \tilde{M}_{rn}(2) \; = \; \frac{1}{4} \sum_{r=-\infty}^{k-1} \frac{b_{rn}}{b_{rk}} < \infty \qquad \forall k < n.$$

Lemma 2.

$$\mu_b^{L_t} \sim \mu_b \quad \forall t \in B_0^{\mathbb{Z}} \Leftrightarrow S_{kn}^L(\mu_b) = \sum_{m=n+1}^{\infty} \tilde{M}_{km}(2)M_{nm}(2) = \frac{1}{4} \sum_{m=n+1}^{\infty} \frac{b_{km}}{b_{nm}} < \infty \quad \forall k < n$$

Lemma 3. For $k, n \in \mathbb{Z}$, k < n, we have $\mu_b^{L_{l+tE_{kn}}} \perp \mu_b \quad \forall t \in \mathbb{R}^1 \setminus 0 \Leftrightarrow S_{kn}^L(\mu_b) = \infty$.

4. Elementary Representations of the Group $B_0^{\mathbb{Z}}$

Consider the subgroups X_p , $p \in \mathbb{Z}$, and $X^{\{p\}}$ in the group $B^{\mathbb{Z}}$, where $\{p\}$ is a finite or infinite subset of \mathbb{Z} . For $\{p\}$ infinite in both directions, we have $\{p\} = (p_k)_{k \in \mathbb{Z}}, p_k < p_{k+1} \quad \forall k \in \mathbb{Z},$

$$X_p = \left\{ I + x \in B^{\mathbb{Z}} | I + x = I + \sum_{n=p+1}^{\infty} x_{pn} E_{pn} \right\},\$$

Elementary Representations of the Group $B_0^{\mathbb{Z}}$ of Upper-Triangular Matrices. I

$$X^{\{p\}} = \prod_{p_k \in \{p\}} X_{p_k} = \left\{ I + x \in B^{\mathbb{Z}} | I + x = I + \sum_{p_k \in \{p\}} \sum_{n=p_k+1}^{\infty} x_{p_k n} E_{p_k n} \right\}.$$

Obviously, the right action of the group $B_0^{\mathbb{Z}}$ is well defined on the groups X_p and $X^{\{p\}}$.

For a $B_0^{\mathbb{Z}}$ -right quasiinvariant measure μ on X_p (respectively $X^{\{p\}}$), we define a representation $T_p^{R,\mu}$ (respectively, $T^{R,\mu,\{p\}}$) as follows:

$$(T_t^{R,\mu}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt), \quad f \in H_p(\mu) := L^2(X_p, d\mu),$$
$$(T_t^{R,\mu,\{p\}}f)(x) = \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} f(xt), \quad f \in H^{\{p\}}(\mu) := L^2(X^{\{p\}}, d\mu).$$

In the particular case $\{p\} = (1, 2, ..., q)$, we denote

$$X^{q} = X^{(1,2,\ldots,q)}, \qquad T^{R,\mu,q} = T^{R,\mu,(1,2,\ldots,q)}, \qquad H^{q}(\mu) = L^{2}(X^{(1,2,\ldots,q)}, d\mu).$$

Definition 1. The representations $T_p^{R,\mu}$, $p \in \mathbb{Z}$, are called elementary (see also [14]).

5. Irreducibility and Equivalence of Elementary Representations

For the Gaussian measure $\mu = \mu_b$ and its projections $\mu_{b,p} = \bigotimes_{n=p+1}^{\infty} \mu_{b_{nn}}$, we have the following theorem:

Theorem 1.

- 1. The representation $T_p^{R,\mu}$ is irreducible if and only if the measure μ on the space X_p is $B_0^{\mathbb{Z}}$ -right-ergodic.
- 2. Two irreducible representations $T_{p_1}^{R,\mu_1}$ and $T_{p_2}^{R,\mu_2}$ are equivalent if and only if $p_1 = p_2$ and $\mu_1 \sim \mu_2$.

Since $T_p^{R,\mu}$ (respectively, $T^{R,\mu,\{p\}}$) is the restriction of the representation $T^{R,\mu}$ to the subspace $H_p(\mu) = L^2(X_p, d\mu_p)$ (respectively, $H^{\{p\}}(\mu) = L^2(X^{\{p\}}, d\mu^{\{p\}})$) of the space $H_\mu = L^2(B^{\mathbb{Z}}, d\mu)$, we have

$$A_{p,kn}^{R,\mu} = \begin{cases} 0 & \text{if } k < p, \\ D_{pn}(\mu) & \text{if } p = k < n, \\ x_{pk}D_{pn}(\mu) & \text{if } p < k < n, \end{cases}$$
(8)

$$A_{kn}^{R,\mu,q} := A_{kn}^{R,\mu,(1,2,...,q)} = \sum_{p=1}^{q} A_{p,kn}^{R,\mu} = \begin{cases} 0 & \text{if } k < 1, \\ \sum_{r=1}^{k-1} x_{rk} D_{rn}(\mu) + D_{kn}(\mu) & \text{if } 1 \le k \le q, \ k < n, \\ \sum_{r=1}^{q} x_{rk} D_{rn}(\mu) & \text{if } q < k < n, \end{cases}$$
(9)

$$A_{kn}^{R,\mu,\{p\}} := \sum_{p_m \in \{p\}, p_m \le k} A_{p_m,kn}^{R,\mu}$$

$$= \begin{cases} 0 & \text{if } k < p_{\min}, \\ \sum_{p_m \in \{p\}, p_m < k} x_{p_m k} D_{p_m n}(\mu) + D_{kn}(\mu) & \text{if } k \in \{p\}, k < n, \\ \sum_{p_m \in \{p\}, p_m < k} x_{p_m k} D_{p_m n}(\mu) & \text{if } k \notin \{p\}, p_{\min} < k < n, \end{cases}$$
(10)

where $p_{\min} = \min\{p_m | p_m \in \{p\}\} \in \mathbb{R}^1 \cup \{-\infty\}.$

Proof. See the proof of Theorem 5 in [14].

1. Assume that a bounded operator A on the Hilbert space $H_p(\mu)$ commutes with the representation $T_p^{R,\mu}$, i.e., $[A, T_{p,t}^{R,\mu}] = 0 \quad \forall t \in B_0^{\mathbb{Z}}$. We prove that A is trivial, $A = \lambda I$, $\lambda \in \mathbb{C}^1$. To prove this, we consider the commutative set of generators $\{i^{-1}A_{p,pn}^{R,\mu}\}_{n=p+1}^{\infty}$. By formulas (8), we have $i^{-1}A_{p,pn}^{R,\mu} = i^{-1}D_{pn}(\mu)$. Since the family of operators $i^{-1}\mathbb{D}_p(\mu) = \{i^{-1}D_{pn}(\mu)\}_{n=p+1}^{\infty}$ has a common simple spectrum in the space $H_p(\mu) = L^2(X_p, d\mu)$, any bounded operator A on the space $H_p(\mu)$ that commutes with this family is an essentially bounded function of this family:

$$A = a(i^{-1}\mathbb{D}_p(\mu)) = a(i^{-1}D_{pp+1}(\mu), i^{-1}D_{pp+2}(\mu), \dots, i^{-1}D_{pn}(\mu), \dots).$$

To complete the proof, we use the Fourier–Wiener transform defined in [13]. Let F_{kn}^b denote the one-dimensional Fourier transform corresponding to the measure $d\mu_{b_{kn}}(x_{kn}) = (b_{kn} / \pi)^{1/2} \exp(-b_{kn} x_{kn}^2) dx_{kn}$,

$$F_{kn}^b: L^2(\mathbb{R}^1, d\mu_{b_{kn}}) \rightarrow L^2(\mathbb{R}^1, d\mu_{b_{kn}^{-1}}),$$

and given by the formula

$$\left(F_{kn}^{b}f\right)(y_{kn}) = \exp\left(\frac{y_{kn}^{2}}{2b_{kn}}\right)\sqrt{\frac{b_{kn}}{2\pi}} \int_{\mathbb{R}^{1}} f(x_{kn})\exp(iy_{kn}x_{kn})\exp\left(-\frac{b_{kn}x_{kn}^{2}}{2}\right) dx_{kn}$$

It is obvious that $F_{kn}^b \mathbb{1} = \mathbb{1}$, where $\mathbb{1}(x) \equiv 1$.

For any $p \in \mathbb{Z}$, we define the Fourier–Wiener transform $F_p^b = \bigotimes_{n=p+1}^{\infty} F_{pn}^b$. The operator F_p^b is an isometry between two spaces, namely, $F_p^b \colon H_p(\mu_b) \to H_p(\mu_{b^{-1}})$, where $H_p(\mu_b) = L^2(X_p, d\mu_{b, p})$ and $H_p(\mu_{b^{-1}}) = L^2(X_p, d\mu_{b^{-1}, p})$. We have (see [13])

$$F_p^b (i^{-1} D_{pn}(\mu_b)) (F_p^b)^{-1} = y_{pn}, \quad p < n,$$
(11)

$$F_p^b (x_{pn} i^{-1} D_{pm}(\mu_b)) (F_p^b)^{-1} = i^{-1} D_{pn}(\mu_{b^{-1}}) y_{pm}, \quad p < n < m,$$

$$F_{p}^{b}A(F_{p}^{b})^{-1} = F_{p}^{b}a(i^{-1}D_{pp+1}(\mu),...,i^{-1}D_{pn}(\mu),...)(F_{p}^{b})^{-1} = a(y_{pp+1},...,y_{pn},...)$$

The one-parameter group $\tilde{T}_{I+tE_{nm}}^{R,\mu_b} = F_p^b T_{I+tE_{nm}}^{R,\mu_b} (F_p^b)^{-1}$ corresponds to the generator $i^{-1}D_{pn}(\mu_{b^{-1}})y_{pm}$ in the space $H_p(\mu_{b^{-1}})$ and, therefore, it acts according to the formula

$$\left(\tilde{T}_{I+tE_{nm}}^{R,\,\mu_b}f\right)\left(\dots,\,y_{pn},\dots,\,y_{pm},\dots\right) = \left(\frac{d\mu_{b^{-1},\,p}\left(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots\right)}{d\mu_{b^{-1},\,p}\left(\dots,\,y_{pn},\dots,\,y_{pm},\dots\right)}\right)^{1/2}f\left(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots\right).$$

Hence, the commutation $\left[\tilde{A}, \tilde{T}_{I+tE_{nm}}^{R, \mu_b}\right] = 0 \quad \forall t \in \mathbb{R}^1$, where $\tilde{A} = F_p^b A \left(F_p^b\right)^{-1}$, yields

$$a(y_{pp+1},...,y_{pn} + ty_{pm},...,y_{pm},...) = a(y_{pp+1},...,y_{pn},...,y_{pm},...) \quad \forall t \in \mathbb{R}^{1}.$$

Indeed, it is sufficient to compare two equations, namely,

$$\begin{split} \left(\tilde{A}\tilde{T}_{I+tE_{nm}}^{R,\,\mu_{b}}f\right)(\dots,\,y_{pn},\dots,\,y_{pm},\dots) &= a(\dots,\,y_{pn},\dots,\,y_{pm},\dots) \\ & \times \left(\frac{d\mu_{b^{-1},\,p}(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots)}{d\mu_{b^{-1},\,p}(\dots,\,y_{pn},\dots,\,y_{pm},\dots)}\right)^{1/2}f(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots), \\ \left(\tilde{T}_{I+tE_{nm}}^{R,\,\mu_{b}}\tilde{A}f\right)(\dots,\,y_{pn},\dots,\,y_{pm},\dots) &= \left(\frac{d\mu_{b^{-1},\,p}(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots)}{d\mu_{b^{-1},\,p}(\dots,\,y_{pn},\dots,\,y_{pm},\dots)}\right)^{1/2} \\ & \times a(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots)f(\dots,\,y_{pn}+ty_{pm},\dots,\,y_{pm},\dots). \end{split}$$

By virtue of the ergodicity of the measure $\mu_{b^{-1}, p}$, the function

$$a = a(y_{pp+1}, \dots, y_{pn}, \dots)$$

is constant and the operator A is trivial, $A = \lambda I$.

2. The sufficiency is obvious. Let $T_p^{R,\mu} \sim T_{p'}^{R,\mu'}$. We prove that p = p' and $\mu \sim \mu'$. We assume that $p \neq p'$, say, p > p', and consider the restrictions $T|_G$ of the representations $T = T_p^{R,\mu}$ and $T_{p'}^{R,\mu'}$ to the subgroup $G = X_{P,0} = \left\{ I + x \in B_0^{\mathbb{Z}} \mid I + x \in X_p \right\}$. The spectral measure \mathbb{E}_p^{μ} of the restriction $T_p^{R,\mu}|_{X_{p,0}}$ is the spectral measure of the commutative family of self-adjoint operators $i^{-1}\mathbb{D}_p(\mu) = \left\{ i^{-1}D_{pn}(\mu) \right\}_{p=n+1}^{\infty}$, and the spectral measure $\mathbb{E}_p^{\mu'}$ of $T_{p'}^{R,\mu'}|_{X_{p,0}}$ is trivial [see (8)], whence p = p'. In this case, the spectral measures \mathbb{E}_p^{μ} are equivalent and, therefore, $\mu \sim \mu'$.

Indeed, let us use the Fourier–Wiener transform F_p^b . Denote by $\mathbb{E}_p^{\mu_{b}-1}(y)$ the spectral measure of the family of operators of multiplication by independent variables $(y_{pn})_{n=p+1}^{\infty}$ in the Hilbert space $H_p(\mu_{b}^{-1})$. Since the spectral measures \mathbb{E}_p^{μ} and $\mathbb{E}_p^{\mu'}$ are equivalent, by using (11) we establish that the spectral measures $\mathbb{E}_p^{\mu_{b}-1}(y)$ and $\mathbb{E}_p^{\mu'_{(b')}-1}(y)$ are equivalent. Moreover, we have

$$\left(\mathbb{E}_p^{\mu_{b^{-1}}}(y)(\Delta)\mathbb{1},\mathbb{1}\right)_{H_p(\mu_{b^{-1}})} = \mu_{b^{-1},p}(\Delta).$$

Finally,

$$\begin{split} \mathbb{E}_p^{\mu} \sim \mathbb{E}_p^{\mu'} \Leftrightarrow \mathbb{E}_p^{\mu_{b^{-1}}}(y) \sim \mathbb{E}_p^{\mu_{(b')}^{-1}}(y) \Leftrightarrow \mu_{b^{-1}, p} \sim \mu_{(b')^{-1}, p} \\ \Leftrightarrow \prod_{n=p+1}^{\infty} \frac{4(b_{pn})^{-1}(b'_{pn})^{-1}}{\left((b_{pn})^{-1} + (b'_{pn})^{-1}\right)^2} > 0 \Leftrightarrow \prod_{n=p+1}^{\infty} \frac{4b_{pn}b'_{pn}}{\left(b_{pn} + b'_{pn}\right)^2} > 0 \Leftrightarrow \mu_{b, p} \sim \mu_{b', p}. \end{split}$$

6. Tensor Product of Finitely Many Elementary Representations and Irreducibility

Let $\{p\} = (p_1, ..., p_m)$ be a finite subset of \mathbb{Z} .

Theorem 2.

1. The representation $T^{R,\mu,\{p\}}$ is the tensor product of the representations $T^{R,\mu_{p_k}}_{p_k}$, $1 \le k \le m$:

$$T^{R,\mu,\{p\}} = \bigotimes_{k=1}^{m} T_{p_k}^{R,\mu_{p_k}}.$$
(12)

2. The representation $T^{R,\mu,\{p\}}$ is irreducible if and only if

(*i*)
$$S_{p_k p_n}^L(\mu) = \infty, \ 1 \le k < n \le m, \ and$$

(ii) the measure μ on the space $X^{\{p\}}$ is $B_0^{\mathbb{Z}}$ -right-ergodic.

Proof. We prove the theorem for $\{p\} = (1, 2, ..., q)$. For other finite $\{p\}$, the proof is the same. We show that, by using the generators $A_{kn}^{R,\mu,q} := A_{kn}^{R,\mu,(1,2,...,q)}$, k < n, one can approximate the operators of multiplication by independent variables x_{kn} , $1 \le k < n \le q$, and the set of operators $D_{kn}(\mu)$, k < n, $k \le q$. Indeed, according to (9), we have

$$\begin{aligned} A_{1n}^{R,\mu,q} &= D_{1n}(\mu), \quad 1 < n, \quad A_{2n}^{R,\mu,q} = x_{12}D_{1n}(\mu) + D_{2n}(\mu), \quad 2 < n, \\ A_{3n}^{R,\mu,q} &= x_{13}D_{1n}(\mu) + x_{23}D_{2n}(\mu) + D_{3n}(\mu), \quad 3 < n, \\ A_{kn}^{R,\mu,q} &= \sum_{r=1}^{k-1} x_{rk}D_{rn}(\mu) + D_{kn}(\mu), \quad k \le q, \quad k < n, \end{aligned}$$

$$A_{kn}^{(1)} = \sum_{r=1}^{\infty} x_{rk} D_{rn}(\mu), \text{ if } q < \kappa < n.$$

The proof of approximation is the same as in [9]. It is based on Lemma 6 in [14].

Denote by $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$ the von-Neumann algebra generated by the representation $T^{R,\mu,q}$, i.e., $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}}) = (T_t^{R,\mu,q} | t \in B_0^{\mathbb{Z}})''$. Also let $\langle f_n | n = 1, 2, ... \rangle$ be the closure of the linear space generated by the set of vectors $\{f_n\}_{n=1}^{\infty}$ in a Hilbert space H.

Definition 2. Recall [15] that a (not necessarily bounded) self-adjoint operator A on a Hilbert space H is affiliated with the von-Neumann algebra M of operators on H (which is denoted by A η M) if $\exp(itA) \in M \quad \forall t \in \mathbb{R}^{1}$.

Lemma 4 [14]. $\{x_{kn}\}_{1 \le k < n \le q} \eta \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$ if $S_{kn}^L(\mu) = \infty$, $k < n \le q$. In this case, we also have $D_{kn}(\mu) \eta \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$, $k < n, k \le q$.

Finally, we have $\{x_{kn}\}_{k < n \le q} \eta \ \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$ and $\{D_{kn}(\mu)\}_{k < n, k \le q} \eta \ \mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$, and, therefore, the commutant $(\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}}))'$ of the von-Neumann algebra $\mathfrak{A}^{R,\mu,q}(B_0^{\mathbb{Z}})$ coincides with essentially bounded functions from the family of operators $i^{-1}\mathbb{D}^q(\mu) = \{i^{-1}D_{kn}(\mu)\}_{k \le q < n}$.

Now assume that a bounded operator $A \in L(H^q(\mu))$ commutes with $T_t^{R,\mu,q}$, $t \in B_0^{\mathbb{Z}}$. Then this operator A is an operator of multiplication in the space $H^q(\mu)$ by some essentially bounded function, i.e., $A = a\left\{\left\{i^{-1}D_{kn}(\mu)\right\}_{k < n, k \leq q}\right\}$.

As in the proof of Theorem 1, we use an appropriate Fourier–Wiener transform to prove the irreducibility. Denote $F^{b,q} = \bigotimes_{p=1}^{q} F_p^b$. This operator is an isometry between $H^q(\mu_b)$ and $H^q(\mu_{b^{-1}})$. It is obvious that $\tilde{A}F^{b,q}A(F^{b,q})^{-1} = a(\{y_{kn}\}_{k \le q < n})$ and the operator $\tilde{T}_{I+tE_{kn}}^{R,\mu,q} = F^{b,q}\tilde{T}_{I+tE_{kn}}^{R,\mu,q}(F^{b,q})^{-1}$ acts as follows:

Hence, as in the proof of Theorem 1, the commutation $\left[\tilde{A}, \tilde{T}_{I+tE_{nm}}^{R,\mu,q}\right] = 0 \quad \forall t \in \mathbb{R}^1$ yields

$$\begin{aligned} a \begin{pmatrix} y_{1q+1} & \cdots & y_{1k} & \cdots & y_{1n} & \cdots \\ & \cdots & & \cdots & & \cdots \\ y_{qq+1} & \cdots & y_{qk} & \cdots & y_{qn} & \cdots \end{pmatrix} \\ & = a \begin{pmatrix} y_{1q+1} & \cdots & y_{1k} + ty_{1n} & \cdots & y_{1n} & \cdots \\ & \cdots & & \cdots & & \cdots \\ y_{qq+1} & \cdots & y_{qk} + ty_{qn} & \cdots & y_{qn} & \cdots \end{pmatrix} \quad \forall t \in \mathbb{R}^1, \quad \forall q < k < n. \end{aligned}$$

By virtue of the ergodicity of the measure $\mu_{b^{-1}}^q$, this means that the function $a(\{y_{kn}\}_{k \le q < n})$ is constant, i.e., a(y) = const.

7. Regular Representations as Infinite Tensor Product of Elementary Representations.

Theorem 3.

1. The representation $T^{R,\mu}$ is the infinite tensor product of the representations T_p^{R,μ_p} , $p \in \mathbb{Z}$:

$$T^{R,\mu} = \bigotimes_{p \in \mathbb{Z}} T_p^{R,\mu_p}.$$
⁽¹³⁾

2. The representation $T^{R,\mu}$ is irreducible if

(i)
$$S_{kn}^L(\mu) = \infty \quad \forall \ k < n$$
,

(ii) the measure μ on the group $B^{\mathbb{Z}}$ is $B_0^{\mathbb{Z}}$ -right-ergodic.

3.
$$\sup_{n,n>k} \frac{S_{kn}^{R}(\mu)}{b_{kn}} = C_{k} < \infty \quad \forall k \in \mathbb{Z}.$$

Proof. The irreducibility was proved in [12]. Representation (13) follows from (4) and (10).

8. Tensor Product of Infinitely Many Elementary Representations and Irreducibility

Let $\{p\}$ be an infinite subset of \mathbb{Z} with finitely many negative integers.

Theorem 4.

1. The representation $\bigotimes_{p_k \in \{p\}} T_{p_k}^{R,\mu_{p_k}}$ is irreducible if and only if

(*i*)
$$S_{p_k p_n}^L(\mu) = \infty \quad \forall p_k < p_n, \ p_k, p_n \in \{p\},$$

- (ii) the measure $\otimes_{p_k \in \{p\}} \mu_{p_k}$ is $B_0^{\mathbb{Z}}$ -right-ergodic.
- 2. In this case, $\bigotimes_{p_k \in \{p\}} T_{p_k}^{R, \mu_{p_k}} = T^{R, \mu, \{p\}}, \text{ where } \mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k}.$

3.
$$T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$$
 if and only if $\{p\} = \{p'\}$ and $\mu \sim \mu'$.

4. The tensor product of two irreducible representations $T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}}$ is irreducible if and only if $\{p\} \cap \{p'\} = \{\emptyset\}$ and $S^L_{p_k p'_n}(\mu \otimes \mu') = \infty \quad \forall p_k \in \{p\}, p'_n \in \{p'\}.$

Proof. The irreducibility and equivalence for $\{p\} = \{p'\} = (p_n)_{n=1}^{\infty}$, $p_n = n$ follows from Theorem 1.1 and Theorem 3.1 in [9]. For other infinite $\{p\}$ with finitely many negative integers, the proof of assertions 1 and 2 is the same.

Let us prove assertion 3 for a general $\{p\}$. The sufficiency is obvious. The proof of necessity is based on Theorem 1 (assertion 2) and Theorem 3.1 in [9]. Let $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$, where $\{p\} = (p_1, p_2,...)$ and $\{p'\} = (p'_1, p'_2,...)$. We prove that $\{p\} = \{p'\}$ and $\mu \sim \mu'$. We assume that $p_1 \neq p'_1$, say, $p_1 > p'_1$, and consider the spectral measures $\mathbb{E}_{p_1}^{\mu}$ and $\mathbb{E}_{p_1}^{\mu'}$ of the restrictions of the representations $T^{R,\mu,\{p\}}$ and $T^{R,\mu',\{p'\}}$ to the subgroup $X_{p_1,0}$. The spectral measure $\mathbb{E}_{p_1}^{\mu}$ is the spectral measure of the commutative family of self-adjoint operators $i^{-1}\mathbb{D}_{p_1}(\mu) = \{i^{-1}D_{p_1n}(\mu)\}_{n=p_1+1}^{\infty}$; it is not trivial, but the spectral measure $\mathbb{E}_{p_1}^{\mu'}$ is trivial [see (9), (10)]. This contradicts the assumption that $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$ and, therefore, $p_1 = p'_1$. In this case, the spectral measures $\mathbb{E}_{p_1}^{\mu}$ and $\mathbb{E}_{p_1}^{\mu'}$ are equivalent, whence $\mu_{p_1} \sim \mu'_{p_1}$ and $T^{R,\mu_{p_1}}_{p_1} \sim T^{R,\mu'_{p_1}}_{p_1}$. Since, by virtue of (13), we have

$$T^{R,\mu,\{p\}} = T^{R,\mu_{p_1}}_{p_1} \otimes T^{R,\mu^{\{p_2\}},\{p_2\}}, \quad T^{R,\mu',\{p'\}} = T^{R,\mu'_{p_1}}_{p_1} \otimes T^{R,\mu'^{\{p'_2\}},\{p'_2\}},$$

and $T^{R,\mu,\{p\}} \sim T^{R,\mu',\{p'\}}$, we conclude that $T^{R,\mu^{\{p_2\}},\{p_2\}} \sim T^{R,\mu'^{\{p_2\}},\{p_2'\}}$, where $\{p_2\} = (p_2, p_3,...), \{p_2'\} = (p_2', p_3',...)$, and

$$T^{R,\mu,\{p_2\}} = \bigotimes_{p_k \in \{p_2\}} T^{R,\mu_{p_k}}_{p_k}, \quad T^{R,\mu',\{p'_2\}} = \bigotimes_{p_k \in \{p'_2\}} T^{R,\mu'_{p_k}}_{p_k}$$

By analogy, we establish that $p_2 = p'_2$ and $\mu_{p_2} \sim \mu'_{p_2}$. Finally, $\{p\} = \{p'\}$ and $\mu_{p_k} \sim \mu'_{p_k} \quad \forall p_k \in \{p\} = \{p'\}$. For finite $\{p\}$ and $\{p'\}$, the proof is completed because, in this case, we have $\mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k} \sim \mu' = \bigotimes_{p_k \in \{p'\}} \mu'_{p_k}$. In the general case (for infinite $\{p\}$ and $\{p'\}$), the equivalence $\mu_{p_k} \sim \mu'_{p_k} \quad \forall p_k \in \{p\} = \{p'\}$ does not yield $\mu = \bigotimes_{p_k \in \{p\}} \mu_{p_k} \sim \mu' = \bigotimes_{p_k \in \{p'\}} \mu'_{p_k}$. In the particular case $\{p\} = (p_k)_{k=1}^{\infty}$, $p_k = k, k \in \mathbb{N}$, the equivalence of the measures $\mu \sim \mu'$ follows from Theorem 3.1 in [9]. For general $\{p\}$, the proof is the same.

4. The sufficiency follows from assertions 1 and 2 because, in this case, we have

$$T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}} = T^{R,\mu\otimes\mu',\{p\}\cup\{p'\}}$$

where $\{p\} \cup \{p'\} = \{p_k, p'_n | p_k \in \{p\}, p'_n \in \{p'\}\}$. Now let $\{p\} \cap \{p'\} = \{p''\}$ be finite, $\{p''\} := (p_1, ..., p_k)$. For infinite $\{p''\}$, the proof is the same. In this case, we have $\{p\} = \{q\} \cup \{p''\}$ and $\{p'\} = \{q\} \cup \{p''\}$, whence $\{p\} \cup \{p'\} = \{q\} \cup \{q'\} \cup \{p''\}$ and

$$T^{R,\mu,\{p\}} \otimes T^{R,\mu',\{p'\}} = T^{R,\mu^{\{q\}} \otimes \mu^{\{p''\}} \otimes \mu'^{\{q'\},\{q\} \cup \{p''\} \cup \{q'\}}} \otimes T^{R,\mu'^{\{p''\}},\{p''\}}.$$

Thus, the proof of the fact that the last tensor product is reducible is analogous to the proof of the fact that the tensor product

$$T^{R,\mu,q} \otimes T^{R,\mu',q+k}$$

is reducible.

Consider an essentially bounded function $a: X^q \ni x \mapsto a(x) \in \mathbb{C}^1$ and let A_0 be the operator of multiplication in the space

$$H^q(\mu)\otimes H^{q+k}(\mu') \ = \ L^2(X^q,d\mu)\otimes L^2(X^{q+k},d\mu') \ = \ L^2(X^q\otimes X^{q+k},d\mu\otimes\mu')$$

by a function $a_0: X^q \times X^{q+k} \ni (x, y, z) \mapsto a_0(x, y, z) = a(yx^{-1}) \in \mathbb{C}^1$. We show that the representation $T^{R, \mu, q} \otimes T^{R, \mu', q+k}$ commutes with A_0 . Indeed, for any function $f(x, y, z) \in L^2(X^q \otimes X^{q+k}, d\mu \otimes \mu')$, by using the property that (y, z) = zy for any $(y, z) \in X^q \times X^k = X^{q+k}$ in $B^{\mathbb{Z}}$, we get

ELEMENTARY REPRESENTATIONS OF THE GROUP $B_0^{\mathbb{Z}}$ of Upper-Triangular Matrices. I

$$\begin{aligned} \left(T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k} A_0 f\right)(x,zy) &= \left(T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k} a_0 f\right)(x,zy) \\ &= \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} \left(\frac{d\mu'(z\,yt)}{d'\mu(z\,y)}\right)^{1/2} a\left((yt)(xt)^{-1}\right) f(xt,z\,yt) \\ &= a(yx^{-1}) \left(\frac{d\mu(xt)}{d\mu(x)}\right)^{1/2} \left(\frac{d\mu'(z\,yt)}{d\mu'(z\,y)}\right)^{1/2} f(xt,z\,yt) \\ &= \left(A_0 \left(T_t^{R,\mu,q} \otimes T_t^{R,\mu',q+k}\right) f\right)(x,zy). \end{aligned}$$

REFERENCES

- 1. J. Dixmier, Les C^* -Algèbres et leur Representations, Gautirs-Villars, Paris (1969).
- 2. A. Weyl, L'intégration Dans les Groups Topologique et Ses Application, Hermann, Paris (1951).
- 3. Xia-Dao-Xing, Measures and Integration in Infinite-Dimensional Spaces, Academic Press, New York–London (1978).
- 4. S. Albeverio and R. Høegh-Krohn, The Energy Representation of Sobolev-Lie Group, Univ. Bielefeld (1976).
- R. S. Ismagilov, "Representations of the group of smooth mappings of a segment in a compact Lie group," *Funkts. Anal. Prilozhen.*, 15, No. 2, 73–74 (1981).
- 6. S. Albeverio, R. Høegh-Krohn, and D. Testard, "Irreducibility and reducibility for the energy representation of a group of mappings of a Riemannian manifold into a compact Lie group," *J. Funct. Anal.*, **41**, 378–396 (1981).
- S. Albeverio, R. Høegh-Krohn, D. Testard, and A. Vershik, "Factorial representations of path groups," J. Funct. Anal., 51, 115–131 (1983).
- 8. A. V. Kosyak, "Irreducibility criterion for regular Gaussian representations of group of finite upper-triangular matrices," *Funkts. Anal. Prilozhen.*, 24, No. 3, 82–83 (1990).
- 9. A. V. Kosyak, "Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper-triangular matrices of infinite order," *Selecta. Math. Soviet.*, **11**, 241–291 (1992).
- 10. A. V. Kosyak, "Irreducible regular Gaussian representations of the group of the interval and circle diffeomorphisms," *J. Funct. Anal.*, **125**, 493–547 (1994).
- 11. A. V. Kosyak, "Criteria for irreducibility of regular representations corresponding to product measures of group of finite uppertriangular matrices," *Methods Funct. Anal. Topology*, **6**, No. 4, 43–56 (2000).
- 12. A. V. Kosyak, "Irreducibility of the regular Gaussian representations of the group $B_0^{\mathbb{Z}}$," *Methods Funct. Anal. Topology*, **7**, No. 2, 42–51 (2001).
- A. V. Kosyak and R. Zekri, "Regular representations of infinite-dimensional groups and factors. I," *Methods Funct. Anal. Topology*, 6, No. 2, 50–59 (2000).
- 14. A. V. Kosyak, "Elementary representations of the group $B_0^{\mathbb{N}}$. I," *Methods Funct. Anal. Topology*, **7**, No. 1, 33–44 (2001).
- 15. J. Dixmier, Les Algèbres d'Operateurs Dans L'espace Hilbertien, Gautirs-Villars, Paris (1969).