
Ukrainian Mathematical Journal, Vol. 54, No. 2, 2002

ELEMENTARY REPRESENTATIONS OF THE GROUP  
 
B0

�

OF UPPER-TRIANGULAR MATRICES INFINITE IN BOTH DIRECTIONS. I

O. V. Kosyak UDC 519.46

We define so-called “elementary representations”  Tp
R, µ

,  p ∈ Z,  of the group    B0
�   of finite up-

per-triangular matrices infinite in both directions by using quasi-invariant measures on certain
homogeneous spaces and give a criterion for the irreducibility and equivalence of the representa-
tions constructed.  We also give a criterion for the irreducibility of the tensor product of finitely
many and infinitely many elementary representations. 

1.  G-action, Quasiinvariant Measures, and Representations

The following construction of unitary representations of a topological group  G  is well known:  Assume

that we have a measurable space  X  with probability measure  µ  on which the group  G  acts, i.e., we have a

group homomorphism  α :  G → Aut ( X )  satisfying the following conditions: 

(i) αe x x( ) =   ∀ ∈x X ,  where  e ∈ G  is the identity element; 

(ii) α α αt t t tx x
1 2 1 2

( ) ( )( ) =   ∀ ∈t t G1 2, ,  x ∈ X.

Let  µα t , t ∈ G,  be images of the measure  µ  with respect to the action  α ,  i.e.,  µ µ αα t
t

( ) ( )∆ ∆= ( )−1 .  If

µα t  ∼ µ   ∀ ∈t G ,  one can define a unitary representation  π  α, µ
 :  G →   U L X d2( , )µ( )  of the group  G  as fol-

lows: 

π µ
µ

αα µ
α

t t
f x

d x

d x
f x

t
, ( )

( )
( )

( )( ) =






( )
/

−

1 2

1 ,      f ∈ L2
 ( X, d µ ). (1)

2.  Analog of Regular Representations of Infinite-Dimensional Groups

A regular representation of a locally compact group  G  is well known (see, e.g., [1]).  It uses the existence
of a  G-invariant measure on the group  G,  the Haar measure, and is defined by formula (1), where  X = G  and

α  is the right or the left action of the group  G  onto itself. 

For a group  G  that is not locally compact, it is impossible to define a regular representation because there
is no  G-invariant measure on the group  G  [2],  nor is there a  G-quasiinvariant measure [3]. 

An analog of regular representations of some infinite-dimensional noncommutative groups (current groups)
was first constructed and studied in [4 – 7]. 
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An analog of a regular representation for any infinite-dimensional group  G,  using  G-quasiinvariant meas-

ures  µ  on some completions  G̃   of the group  G,  was first defined in  [8 – 10].  It uses formula (1), where  X =

G̃   and  α  is the right or the left action of the group  G  on  G̃ .  More precisely, let  H µ = L G d2 ˜ , µ( ).  We define

analogs of the right  T R, µ   and the left  T L, µ   regular representations of the group  G  in the space  H µ 
,  i.e., 

T R, µ , T L, µ
 :  G  →  U ( H µ 

) ,

in a natural way, namely, 

T f x
d xt

d x
f xtt

R, ( )
( )
( )

µ µ
µ( ) = 





( )
/1 2

, (2)

T f x
d s x

d x
f s xs

L, ( )
( )

( )
µ µ

µ( ) =




 ( )

−
−

/1 1 2
1 . (3)

It is obvious that  T Tt
R

s
L, ,,µ µ[ ] = 0  ∀ ∈t s G, .  Hence, the right regular representation  T R, µ   is reducible

if  µLs  ∼ µ  for some  s ∈ G \ e  or the measure  µ  is not  G-right ergodic.  Let  µ  be a  G-right quasiinvariant

measure on  G̃ ,  i.e.,  µRt  ∼ µ  ∀ ∈t G . 

Conjecture 1.  The right regular representation  T R, µ
 :  G → U ( H µ 

)   is irreducible if and only if 

(i) µ µLs ⊥   ∀  s ∈ G \ e,

(ii)  the measure  µ  is  G-right ergodic. 

Remark.  This conjecture was formulated by Ismagilov in 1985 for the group    B0
�   of finite real upper-tri-

angular matrices infinite in one direction and having unities on the principal diagonal and any Gaussian centered

product measure  µ b .

In this case, the conjecture was proved in [8, 9].  For the same group   B0
�   and any product measure  µ =

⊗ <k n knµ ,  it was proved in [11] under certain technical assumption.  In [12], this conjecture was proved for the

group   B0
�   of finite upper-triangular matrices infinite in both directions for some Gaussian centered product

measures.  In [10], a criterion was proved for groups of interval and circle diffeomorphisms and the Wiener
measure. 

3.  Analog of Regular Representations of the Group  B0
�

Let   B0
�   be the group of finite upper-triangular matrices infinite in both directions and having unities on

the principal diagonal and let  B�   be the group of all matrices of this type (not necessarily finite), i.e., 

  B0
�   =  I x I x E x

k n
kn kn+ = +






<

∑ is finite ,
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 B�   =  I x I x E x
k n

kn kn+ = +





<

∑ is arbitrary ,

where  Ekn ,  k, n ∈ �,  are matrix units of infinite order.  Let  R  and  L  denote the right and the left action of the

group    B�   onto itself;  R ts( )  = t s– 1,  L t sts( ) = ,  s, t ∈  B� .  Let  µ  be a probability measure on the group    B� .

If  µRt  ∼ µ  and  µLt  ∼ µ    ∀ ∈t B0
�,  then we can define by formulas (2) and (3) an analog of the right  T R, µ   and

the left  T L, µ   regular representations of the group   B0
�   in the space  H µ = 

  
L B d2 �, µ( ) ,  T R, µ , T L, µ

 :   B0
�  →

U ( H µ 
),  as follows: 

T f x
d xt

d x
f xtt

R, ( )
( )
( )

µ µ
µ( ) = 





( )
/1 2

,

T f x
d t x

d x
f t xt

L, ( )
( )

( )
µ µ

µ( ) =




 ( )

−
−

/1 1 2
1 .

For the generators  A Ak n
R

k n
L, ,µ µ( )   of the one-parameter groups  I + t Ekn ,  t ∈  R 

1,  k < n,  corresponding to the

right  T R, µ   (respectively, the left  T L, µ )  regular representation, we have the following formulas: 

A
d

dt
T x D Dkn

R
I tE
R

t
r

k

rk rn knk n

, , ( ) ( )µ µ µ µ= = ++ =
=− ∞

−

∑0

1

, (4)

A
d

dt
T D x Dkn

L
I tE
L

t kn
m n

nm kmk n

, , ( ) ( )µ µ µ µ= = − +




+ =

= +

∞

∑0
1

, (5)

where 

Dkn( )µ   =  
∂

∂
+ +( )





/

=x

d

dt

d x I tE

d xkn

kn

t

µ
µ

( )
( )

1 2

0
.

For an arbitrary product measure  µ = ⊗ <k n knµ ,  we have 

Dkn( )µ   =  
∂

∂
+

∂ ( )/
x x

x
kn kn

kn kn
∂ µln ( )1 2

 ,

where  d x x d xkn knµ µ( ) ( )= ,  x ∈ R 
1.  Denote 

  

M p x x d xkn
p

kn( ) ( )= ∫
�1

µ ,      
 

˜ ( ) ( ) ,
( , )

M p i Dkn km
p

L d kn

= ( )( )−1
2 1

µ
µ

÷ ÷
R

,      p ∈ N.
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We define a Gaussian measure  µ b  on the group   B�   in the following way: 

d µ b ( x
 
)  =  ⊗ ( ) −( ) = ⊗< </ /

k n kn kn kn kn k n b knb b x d x d x
k n

π µ1 2 2exp ( ),

where  b = ( )bkn k n<   is some set of positive numbers.  In this case, we have (see, e.g., formulas (6) and (7) in
[13]) 

D
x

b xkn b
kn

kn kn( )µ = ∂
∂

− ,

M
bkn

kn
( )2

1
2

= ,      M
b

kn
kn

( )4
3

2
2=

( )
,      M m

m

b
kn

kn
m( )

( )!!
2

2 1

2
= −

( )
, (6)

˜ ( )M
b

kn
kn2
2

= ,      ˜ ( )M
b

kn
kn4 3
2

2

= 



 ,      ˜ ( ) ( )!!M m m

b
kn

kn
m

2 2 1
2

= − 



 . (7)

For an arbitrary Gaussian product measure  µ b = ⊗ <k n bk n
µ ,  one can easily verify the equivalences  µb

Rt  ∼

µ b  and  µb
Lt  ∼ µ b    ∀ ∈t B0

�.  The following three lemmas were proved in [12]: 

Lemma 1.

µb
Rt  ∼ µ b      ∀ ∈t B0

� ⇔ S M M
b

bkn
R

b
r

k

rk rn
r

k
rn

rk
( ) ( ) ˜ ( )µ = = < ∞

=− ∞

−

=− ∞

−

∑ ∑
1 1

2 2
1
4

     ∀k  <  n.

Lemma 2.

µb
Lt  ∼ µ b       ∀ ∈t B0

� ⇔ S M M
b

bkn
L

b
m n

km nm
m n

km

nm
( ) ˜ ( ) ( )µ = = < ∞

= +

∞

= +

∞

∑ ∑
1 1

2 2
1
4

      ∀k  <  n.

Lemma 3.  For  k, n ∈ Z,  k < n,  we have µ µb

L
b

I tEk n+ ⊥   ∀  t ∈ R
1

 \ 0 ⇔ Skn
L

b( )µ  = ∞.

4.  Elementary Representations of the Group    B0
�

Consider the subgroups  X p ,  p ∈ Z,  and  X p{ }  in the group   B� ,  where  { p }  is a finite or infinite subset

of  Z.  For  { p }  infinite in both directions, we have  { p } = 
 
( )pk k ∈� ,  pk  < pk+1   ∀  k ∈ Z,

X p   =  

 

I x B I x I x E
n p

pn pn+ ∈ + = +





= +

∞

∑�

1

,
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X p{ }  =  

  
p p p

p p n p
p n p n

k k

k k

k k
X I x B I x I x E∈{ }

∈{ } = +

∞

∏ ∑ ∑= + ∈ + = +








�

1

.

Obviously, the right action of the group    B0
�   is well defined on the groups  X p   and  X p{ }. 

For a    B0
�-right quasiinvariant measure  µ  on  X p   (respectively  X p{ }),  we define a representation  Tp

R, µ

(respectively,  T R p, ,µ { } ) as follows: 

T f x
d xt

d x
f xtt

R, ( )
( )
( )

µ µ
µ( ) = 





( )
/1 2

,      f ∈ H p ( µ
 
)  : =  L X dp

2 , µ( ),

T f x
d xt

d x
f xtt

R p, , ( )
( )
( )

µ µ
µ

{ }( ) = 





( )
/1 2

,      f ∈ H p{ }( µ
 
)  : =  L X dp2 { }( ), µ .

In the particular case  p q{ } = …( , , , )1 2 ,  we denote 

X Xq q= …( , , , )1 2 ,      T TR q R q, , , , ( , , , )µ µ= …1 2 ,      H 
q

 ( µ
 
)  =  L X dq2 1 2( , , , ),…( )µ .

Definition 1.  The representations  Tp
R, µ ,  p ∈ Z,  are called elementary (see also [14]). 

5.  Irreducibility and Equivalence of Elementary Representations

For the Gaussian measure  µ = µ b  and its projections  µ b, p = ⊗ = +
∞
n p bpn1µ ,  we have the following theorem:

Theorem 1.

1. The representation  Tp
R, µ   is irreducible if and only if the measure  µ   on the space  X  p   i s   B0

�-
right-ergodic.

2. Two irreducible representations  Tp
R
1

1, µ   and  Tp
R
2

2, µ   are equivalent if and only if  p  1 = p 2  and

µ 1 ∼ µ 2 . 

Since  Tp
R, µ   ( respectively,  T R p, ,µ { })  is the restriction of the representation  T R, µ   to the subspace

H p ( µ
 
) = L X dp p

2 , µ( )   (respectively,  H p{ }( )µ  = L X dp p2 ( ){ } { }, µ )  of the space  H µ = L B d2 �, µ( ) ,  we have 

Ap kn
R

,
,µ   =  

0 if

if

if

k p

D p k n

x D p k n

pn

pk pn

<

= <

< <










,

( ) ,

( ) ,

µ

µ

(8)
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A A Akn
R q

kn
R q

p

q

p kn
R, , , , ( , , , )
,
,:µ µ µ= =…

=
∑1 2

1

  =  

0 1

1
1

1

1

if

if

if

k

x D D k q k n

x D q k n

rk rn knr

k

rkr

q
rn

<

+ ≤ ≤ <

< <











=
−

=

∑
∑

,

( ) ( ) , ,

( ) ,

µ µ

µ

(9)

A Akn
R p

p p p k
p kn
R

m m

m

, ,

,
,

,:µ µ{ }

∈{ } ≤
= ∑

=  

0 if

if

if

k p

x D D k p k n

x D k p p k n

p k p n knp p p k

p k p np p p k

m mm m

m mm m

<

+ ∈{ } <

∉{ } < <













∈{ } <

∈{ } <

∑
∑

min

,

, min

,

( ) ( ) , ,

( ) , ,

µ µ

µ

(10)

where  p p p pm mmin min= ∈{ }{ } ∈ R 
1  U  − ∞{ } . 

Proof.  See the proof of Theorem 5 in [14]. 

1.  Assume that a bounded operator  A  on the Hilbert space  H p ( µ
 
)  commutes with the representation

Tp
R, µ ,  i.e.,  A Tp t

R, ,
, µ[ ] = 0    ∀ ∈t B0

�.  We prove that  A  is trivial,  A = λ  I,  λ ∈  C 
1.  To prove this, we consider

the commutative set of generators  i Ap pn
R

n p
−

= +
∞{ }1

1,
, µ .  By formulas (8), we have  i Ap pn

R−1
,
, µ  = i Dpn

−1 ( )µ .  Since

the family of operators  
  
i p
−1� ( )µ  = i Dpn n p

−
= +

∞{ }1
1

( )µ   has a common simple spectrum in the space  H p ( µ
 
) =

L X dp
2 , µ( ),  any bounded operator  A  on the space  H p ( µ

 
)  that commutes with this family is an essentially

bounded function of this family: 

A  =  a i a i D i D i Dp pp pp pn
− −

+
−

+
−( ) = … …( )1 1

1
1

2
1� ( ) ( ), ( ), , ( ),µ µ µ µ  .

To complete the proof, we use the Fourier – Wiener transform defined in [13].  Let  Fkn
b   denote the one-di-

mensional Fourier transform corresponding to the measure  d x b b x d xb kn kn kn kn knkn
µ π( ) exp= ( ) −( )/1 2 2 ,

Fkn
b

 :  L d L db bkn kn

2 1 2 1
1� �, ,µ µ( ) → ( )− ,

and given by the formula 

  

F f y
y

b

b
f x iy x

b x
d xkn

b
kn

kn

kn

kn
kn kn kn

kn kn
kn( ) = 



 −





∫( ) exp ( )exp( )exp

2 2

2 2 21π
�

.

It is obvious that  Fkn
b

÷ = ÷,  where  ÷( x ) ≡ 1. 
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For any  p ∈  Z,  we define the Fourier – Wiener transform  F Fp
b

n p pn
b= ⊗ = +

∞
1 .  The operator  Fp

b   is an

isometry between two spaces, namely,  Fp
b : H Hp b p b

( ) ( )µ µ→ −1 ,  where  H L X dp b p b p( ) , ,µ µ= ( )2   and

Hp b
( )µ −1  = L X dp b p

2
1,
,

µ −( ).  We have (see [13]) 

F i D F yp
b

pn b p
b

pn
− −( )( ) =1 1

( )µ ,      p  <  n, (11)

F x i D F i D yp
b

pn pm b p
b

pn b pm
− − −( )( ) = −

1 1 1
1( ) ( )µ µ ,      p  <  n  <  m,

F A F F a i D i D Fp
b

p
b

p
b

pp pn p
b( ) = … …( )( )− −

+
− −1 1

1
1 1

( ), , ( ),µ µ   =  a y ypp pn+ … …( )1, , , .

The one-parameter group  ˜ ,TI tE
R

nm
b

+
µ  = F T Fp

b
I tE
R

p
b

nm
b

+
−( ), µ 1

  corresponds to the generator  i D ypn b pm
−

−
1

1( )µ   in the

space  Hp b
( )µ −1   and, therefore, it acts according to the formula 

˜ , , , ,,T f y yI tE
R

pn pmnm
b

+( ) … … …( )µ   =  
d y ty y

d y y
f y ty yb p pn pm pm

b p pn pm
pn pm pm

µ

µ
−

−

… + … …( )
… … …( )









 … + … …( )

/
1

1

1 2

,

,

, , , ,

, , , ,
, , , , .

Hence, the commutation  ˜ , ˜ ,A TI tE
R

nm
b

+[ ]µ  = 0  ∀  t ∈ R
1,  where  Ã F A Fp

b
p
b= ( )−1

,  yields 

a y y ty y a y y ypp pn pm pm pp pn pm+ +… + … …( ) = … … …( )1 1, , , , , , , , , ,       ∀  t ∈ R
1.

Indeed, it is sufficient to compare two equations, namely, 

˜ ˜ , , , , , , , ,,AT f y y a y yI tE
R

pn pm pn pmnm
b

+( ) … … …( ) = … … …( )µ

× 
d y ty y

d y y
f y ty yb p pn pm pm

b p pn pm
pn pm pm

µ

µ
−

−

… + … …( )
… … …( )









 … + … …( )

/
1

1

1 2

,

,

, , , ,

, , , ,
, , , , ,

˜ ˜ , , , ,,T A f y yI tE
R

pn pmnm
b

+( ) … … …( )µ   =  
d y ty y

d y y
b p pn pm pm

b p pn pm

µ

µ
−

−

… + … …( )
… … …( )











/
1

1

1 2

,

,

, , , ,

, , , ,

× a y ty y f y ty ypn pm pm pn pm pm… + … …( ) … + … …( ), , , , , , , , .

By virtue of the ergodicity of the measure  µ
b p−1,

,  the function 

a  =  a y ypp pn+ … …( )1, , ,

is constant and the operator  A  is trivial,  A = λ  I. 
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2.  The sufficiency is obvious.  Let  T Tp
R

p
R, ,µ µ∼ ′

′ .  We prove that  p = p ′  and  µ ∼ µ ′.  We assume that  p ≠

p ′,  say,  p > p ′,  and consider the restrictions  T G   of the representations  T = Tp
R, µ   and  Tp

R
′

′, µ   to the sub-

group  G = X p, 0 = 
  

I x B I x Xp+ ∈ + ∈{ }0
� .  The spectral measure  

 
�p

µ   of the restriction  Tp
R

Xp

,
,

µ
0

  is the

spectral measure of the commutative family of self-adjoint operators  
  
i i Dp pn p n

− −
= +

∞
= { }1 1

1
� ( ) ( )µ µ ,  and the

spectral measure  
  
�p

′µ   of  Tp
R

Xp′
′,

,

µ
0

  is trivial [see (8)], whence  p = p ′.  In this case, the spectral measures  
  
�p

µ

and  
  
�p

′µ   are equivalent and, therefore,  µ ∼ µ ′. 

Indeed, let us use the Fourier – Wiener transform  Fp
b .  Denote by  �p

b y
µ −1 ( )  the spectral measure of the

family of operators of multiplication by independent variables  ( )ypn n p= +
∞

1  in the Hilbert space  Hp b
( )µ −1 .

Since the spectral measures  �p
µ   and  �p

′µ   are equivalent, by using (11) we establish that the spectral measures

�p
b y

µ −1 ( )  and  
  
�p

b y
µ

( ) ( )′ −1
  are equivalent.  Moreover, we have 

� p
H b p

b

p b

y
µ

µ
µ−

−
−( ) =1

1

1( )( ) , ( )
( ) ,

∆ ∆÷ ÷ .

Finally, 

  
�p

µ  ∼ 
  
�p

′µ  ⇔ 
  
�p

b y
µ −1 ( ) ∼ 

 
�p

b y
µ

( ) ( )′ −1
 ⇔ µ

b p−1,
 ∼ µ

( ) ,′ −b p1

⇔ 
n p

pn pn

pn pn

b b

b b= +

∞ − −

− −∏
′

+ ′( )
>

1

1 1

1 1 2

4
0

( ) ( )

( ) ( )
 ⇔ 

n p

pn pn

pn pn

b b

b b= +

∞

∏
′

+ ′( )
>

1
2

4
0 ⇔ µb p,  ∼ µ ′b p, .

6.  Tensor Product of Finitely Many Elementary Representations and Irreducibility

Let  p p pm{ } = …( , , )1   be a finite subset of  Z. 

Theorem 2.

1. The representation  T R p, ,µ { }   is the tensor product of the representations  Tp
R

k

pk
, µ

,  1 ≤ k ≤ m: 

T R p, ,µ { }   =  ⊗ =k
m

p
R

T
k

pk
1

, µ
. (12)

2. The representation  T R p, ,µ { }   is irreducible if and only if 

(i) Sp p
L

k n
( )µ = ∞ ,  1 ≤ k < n ≤ m,  and 

(ii) the measure  µ  on the space  X p{ }  is    B0
�-right-ergodic. 
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Proof.  We prove the theorem for  p q{ } = …( , , , )1 2 .  For other finite  p{ },  the proof is the same.  We

show that, by using the generators  A Akn
R q

kn
R q, , , , ( , , , ):µ µ= …1 2 ,  k < n,  one can approximate the operators of multi-

plication by independent variables  x k n 
,  1 ≤ k < n ≤ q,  and the set of operators  Dkn( )µ ,  k < n,  k ≤ q.  Indeed,

according to (9), we have 

A Dn
R q

n1 1
, , ( )µ µ= ,      1  <  n,      A x D Dn

R q
n n2 12 1 2

, , ( ) ( )µ µ µ= + ,      2  <  n,

A x D x D Dn
R q

n n n3 13 1 23 2 3
, , ( ) ( ) ( )µ µ µ µ= + + ,      3  <  n,

A x D Dkn
R q

r

k

rk rn kn
, , ( ) ( )µ µ µ= +

=

−

∑
1

1

,      k  ≤  q,      k  <  n,

A x Dkn
R q

r

q

rk rn
, , ( )µ µ=

=
∑

1

,   if   q  <  k  <  n.

The proof of approximation is the same as in [9].  It is based on Lemma 6 in [14]. 

Denote by  
  
�R q B, ,µ

0
�( )  the von-Neumann algebra generated by the representation  T R q, ,µ ,  i.e.,

    
�R q B, ,µ

0
�( )  =  

 
T t Bt

R q, ,µ ∈( )′′0
� .  Also let  f nn = …1 2, ,   be the closure of the linear space generated by the

set of vectors  fn n{ } =
∞

1  in a Hilbert space  H. 

Definition 2.  Recall [15] that a (not necessarily bounded) self-adjoint operator  A   on a Hilbert space

H  is affiliated with the von-Neumann algebra  M  of operators on  H   (which is denoted by  A  η  M  )  if

exp( )itA M∈   ∀  t ∈ R
1.

Lemma 4 [14].  xkn k n q{ } ≤ < ≤1  η  �R q B, ,µ
0
�( )  i f  Skn

L ( )µ  = ∞,  k < n ≤ q.  In this case, we also have

Dkn( )µ  η �R q B, ,µ
0
�( ),  k < n,  k ≤ q. 

Finally, we have  xkn k n q{ } < ≤  η 
  
�R q B, ,µ

0
�( )  and  Dkn k n k q( ) ,µ{ } < ≤  η 

  
�R q B, ,µ

0
�( ),  and, therefore, the

commutant  
    
�R q B, ,µ

0
�( )( )′   of the von-Neumann algebra  

    
�R q B, ,µ

0
�( )  coincides with essentially bounded

functions from the family of operators  
  
i i Dq

kn k q n
− −

≤ <
= { }1 1� ( ) ( )µ µ . 

Now assume that a bounded operator  A ∈ L Hq ( )µ( )   commutes with  Tt
R q, ,µ ,   t B∈ 0

� .  Then this operator

A  is an operator of multiplication in the space  Hq ( )µ   by some essentially bounded function, i.e.,  A  =

a i Dkn k n k q
−

< ≤{ }( )1 ( )
,

µ .

As in the proof of Theorem 1, we use an appropriate Fourier – Wiener transform to prove the irreducibility.

Denote  F Fb q
p
q

p
b, = ⊗ =1 .  This operator is an isometry between  Hq

b( )µ   and  Hq
b

( )µ −1 .  It is obvious that

˜ ( ), ,AF A Fb q b q −1 = a ykn k q n{ }( )≤ <   and the operator  ˜ , ,TI tE
R q

k n+
µ  = F T Fb q

I tE
R q b q

k n

, , , ,˜ ( )+
−µ 1  acts as follows: 
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˜ , ,T f

y y y

y y y
I tE
R q

q k n

qq qk qn

k n+

+

+

( )
… … …
… … …
… … …















µ
1 1 1 1

1

=  
d R y

d y
f R yb

q
I tE

b
q I tE

k n

k n

µ

µ
−

−

+
+

( )







 ( )

/
1

1

1 2˜ ( )

( )
˜ ( )

: =  
d R y

d y
f

y y ty y

y y ty y

b
q

I tE

b
q

q k n n

qq qk qn qn

k n
µ

µ
−

−

+
+

+

( )









… + … …
… … …
… + … …















/
1

1

1 2 1 1 1 1 1

1

˜ ( )

( )
.

Hence, as in the proof of Theorem 1, the commutation  ˜ , ˜ , ,A TI tE
R q

nm+[ ]µ  = 0  ∀  t ∈ R
1  yields 

a

y y y

y y y

q k n

qq qk qn

1 1 1 1

1

+

+

… … …
… … …
… … …















=  a

y y ty y

y y ty y

q k n n

qq qk qn qn

1 1 1 1 1

1

+

+

… + … …
… … …
… + … …















   ∀  t ∈ R
1,      ∀q  <  k  <  n.

By virtue of the ergodicity of the measure  µ
b
q

−1 ,  this means that the function  a ykn k q n{ }( )≤ <   is constant, i.e.,

a ( y ) = const. 

7.  Regular Representations as Infinite Tensor Product of Elementary Representations.

Theorem 3.

1. The representation  T R, µ   is the infinite tensor product of the representations  Tp
R p, µ

,  p ∈ Z : 

T R, µ   =  ⊗ ∈p p
R

T p
�

, µ
. (13)

2. The representation  T R, µ   is irreducible if 

(i) Skn
L ( )µ   =  ∞  ∀ <k n,

(ii) the measure  µ  on the group  B�   is   B0
�-right-ergodic. 
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3. sup
( )

,n n k

kn
R

kn
k

S

b
C

>
=µ

  <  ∞   ∀  k ∈ Z.

Proof.  The irreducibility was proved in [12].  Representation (13) follows from (4) and (10). 

8.  Tensor Product of Infinitely Many Elementary Representations and Irreducibility

Let  p{ }  be an infinite subset of  Z  with finitely many negative integers. 

Theorem 4.

1. The representation  ⊗ ∈{ }p p p
R

k k

pkT
, µ

  is irreducible if and only if 

(i) Sp p
L

k n
( )µ   =  ∞  ∀ p pk n< ,  p p pk n, ∈{ }, 

(ii) the measure  ⊗ ∈{ }p p pk k
µ   is  B0

�-right-ergodic. 

2. In this case,  ⊗ ∈{ }p p p
R

k k

pkT
, µ

 = T R p, ,µ { } ,  where  µ = ⊗ ∈{ }p p pk k
µ . 

3. T R p, ,µ { }  ∼ T R p, ,′ ′{ }µ   if and only if  p p{ } = ′{ }  and  µ ∼ µ ′. 

4. The tensor product of two irreducible representations  T R p, ,µ { }  ⊗  T R p, ,′ ′{ }µ   is irreducible if

and only if    p p{ } ′{ } = ∅{ }I   and  Sp p
L

k n′ ⊗ ′ = ∞( )µ µ   ∀ ∈{ }p pk ,  ′ ∈ ′{ }p pn . 

Proof.  The irreducibility and equivalence for  p p pn n{ } = ′{ } = =
∞( ) 1,  p nn =   follows from Theorem 1.1

and Theorem 3.1 in [9].  For other infinite  p{ }  with finitely many negative integers, the proof of assertions 1
and 2 is the same.

Let us prove assertion 3 for a general  p{ }.  The sufficiency is obvious.  The proof of necessity is based on

Theorem 1 (assertion 2) and Theorem 3.1 in [9].  Let  T R p, ,µ { }  ∼  T R p, ,′ ′{ }µ ,  where  p p p{ } = …( , , )1 2   and

′{ } = ′ ′ …p p p( , , )1 2 .  We prove that  p p{ } = ′{ }  and  µ  ∼  µ  ′.  We assume that  p 1 ≠ ′p1,  say,  p 1 > ′p1,  and

consider the spectral measures  
 
�p1

µ   and  
  
�p1

′µ   of the restrictions of the representations  T R p, ,µ { }   and

T R p, ,′ ′{ }µ   to the subgroup  Xp1 0, .  The spectral measure  
 
�p1

µ   is the spectral measure of the commutative fam-

ily of self-adjoint operators  i i Dp p n n p
− −

= +
∞

= { }1 1
11 1 1

� ( ) ( )µ µ  ;  it is not trivial, but the spectral measure  
 
�p1

′µ   is

trivial [see (9), (10)].  This contradicts the assumption that  T R p, ,µ { }  ∼ T R p, ,′ ′{ }µ   and, therefore,  p  1 = ′p1.  In

this case, the spectral measures  
 
�p1

µ   and  
 
�p1

′µ   are equivalent, whence  µ p1
 ∼  ′µ p1

  and  Tp
R p

1
1

, µ
 ∼  Tp

R p

1
1

, ′µ
.

Since, by virtue of (13), we have 
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T R p, ,µ { }   =  T Tp
R R pp

p

1
21

2, , ,µ µ⊗
{ } { },      T R p, ,′ ′{ }µ   =  T Tp

R R pp
p

1
1 2

2, , ,′ ′ ′{ }⊗
′{ }µ µ ,

and  T R p, ,µ { }  ∼ T R p, ,′ ′{ }µ ,  we conclude that  T R pp, ,µ 2
2

{ } { }  ∼  T R pp, ,′ ′{ }′{ }µ 2
2 ,  where  p p p2 2 3{ } = …( , , ) ,

′{ } = ′ ′ …p p p2 2 3( , , ) ,  and 

T TR p
p p p

R

k k

pk, , ,µ µ
2

2

{ }
∈{ }= ⊗ ,      T TR p

p p p
R

k k

pk, , ,′ ′{ }
∈ ′{ }

′= ⊗µ µ
2

2
.

By analogy, we establish that  p p2 2= ′   and  µ µp p2 2
∼ ′ .  Finally,  { } { }p p= ′   and  µ µp pk k

∼ ′   ∀pk ∈  { }p  =

{ }′p .  For finite  { }p   and  { }′p ,  the proof is completed because, in this case, we have  µ µ= ⊗ ∈{ }p p pk k
 ∼

′µ  = ⊗ ′∈ ′{ }p p pk k
µ .  In the general case (for infinite  p{ }  and  ′{ }p ),  the equivalence  µ µp pk k

∼ ′   ∀pk ∈

p p{ } = ′{ }  does not yield  µ µ= ⊗ ∈{ }p p pk k
 ∼  ′µ  = ⊗ ′∈ ′{ }p p pk k

µ .  In the particular case  p pk k{ } = =
∞( ) 1,

pk = k,  k ∈ N,  the equivalence of the measures  µ  ∼  µ  ′   follows from Theorem 3.1 in [9].  For general  p{ },

the proof is the same. 

4.  The sufficiency follows from assertions 1 and 2 because, in this case, we have 

T T TR p R p R p p, , , , , ,µ µ µ µ{ } ′ ′{ } ⊗ ′ { } ′{ }⊗ = U ,

where   p p p p p p p pk n k n{ } ′{ } = ′ ∈{ } ′ ∈ ′{ }{ }|U , , .  Now let    p p p{ } ′{ } = ′′{ }I   be finite,  ′′{ }p  :=
( , , )p pk1 … .  For infinite  ′′{ }p ,  the proof is the same.  In this case, we have    p q p{ } = { } ′′{ }U   and  ′{ }p  =

  ′{ } ′′{ }q pU ,  whence    p p{ } ′{ }U  =   q q p{ } ′{ } ′′{ }U U   and 

  
T T T TR p R p R R pq p q q p q p, , , , , , ,,µ µ µ µ µ µ{ } ′ ′{ } ⊗ ⊗ ′ ′ ′′{ }⊗ = ⊗

{ } ′′{ } ′{ } { } ′ ′{ } ′{ } ′ ′{ }U U

.

Thus, the proof of the fact that the last tensor product is reducible is analogous to the proof of the fact that the
tensor product 

T TR q R q k, , , ,µ µ⊗ ′ +

is reducible. 

Consider an essentially bounded function  a :  X 

q
 ' x  a  a ( x ) ∈  �

1  and let  A 0  be the operator of multipli-
cation in the space

H H L X d L X d L X X dq q k q q k q q k( ) ( ) ( , ) ( , ) ( , )µ µ µ µ µ µ⊗ ′ = ⊗ ′ = ⊗ ⊗ ′+ + +2 2 2

by a function  a 0 :  X 

q
 ×  Xq k+  '  ( x, y, z )  a  a  0 ( x, y, z ) = a yx( )−1  ∈    �

1.  We show that the representation

T TR q R q k, , , ,µ µ⊗ ′ +   commutes with  A 0 
.  Indeed, for any function  f ( x, y, z ) ∈ L X X dq q k2( , )⊗ ⊗ ′+ µ µ ,  by

using the property that  ( y, z ) = z y  for any  ( y, z ) ∈ X 

q
 × X 

k
 = Xq k+   in  B 

Z,  we get 
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T T A f x zy T T a f x zyt
R q

t
R q k

t
R q

t
R q k, , , , , , , ,( , ) ( , )µ µ µ µ⊗( ) = ⊗( )′ + ′ +

0 0

=  
d xt

d x

d z yt

d z y
a yt xt f xt z yt

µ
µ

µ
µ

( )





′( )
′





 ( )

/ /
−

( ) ( )
( )( ) ( , )

1 2 1 2
1

=  a yx
d xt

d x

d z yt

d z y
f xt z yt( )

( ) ( )
( , )− ( )





′( )
′







/ /
1

1 2 1 2µ
µ

µ
µ

=  A T T f x zyt
R q

t
R q k

0
, , , , ( , )µ µ⊗( )( )′ + .

REFERENCES

1. J. Dixmier,  Les  C*-Algèbres et leur Representations, Gautirs-Villars, Paris (1969). 

2. A. Weyl,  L’intégration Dans les Groups Topologique et Ses Application, Hermann, Paris (1951). 

3. Xia-Dao-Xing,  Measures and Integration in Infinite-Dimensional Spaces, Academic Press, New York–London (1978). 

4. S. Albeverio and R. Høegh-Krohn,  The Energy Representation of Sobolev–Lie Group, Univ. Bielefeld (1976). 

5. R. S. Ismagilov,  “Representations of the group of smooth mappings of a segment in a compact Lie group,”  Funkts. Anal. Prilo-

zhen., 15, No. 2, 73–74 (1981). 

6. S. Albeverio, R. Høegh-Krohn, and D. Testard,  “Irreducibility and reducibility for the energy representation of a group of map-
pings of a Riemannian manifold into a compact Lie group,”  J. Funct. Anal., 41, 378–396 (1981). 

7. S. Albeverio,  R. Høegh-Krohn, D. Testard, and A. Vershik,  “Factorial representations of path groups,”  J. Funct. Anal., 51,

115–131 (1983). 
8. A. V. Kosyak,  “Irreducibility criterion for regular Gaussian representations of group of finite upper-triangular matrices,”

Funkts. Anal. Prilozhen., 24, No. 3, 82–83 (1990). 

9. A. V. Kosyak,  “Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper-triangular
matrices of infinite order,”  Selecta. Math. Soviet., 11, 241–291 (1992). 

10. A. V. Kosyak,  “Irreducible regular Gaussian representations of the group of the interval and circle diffeomorphisms,”  J. Funct.

Anal., 125, 493–547 (1994). 

11. A. V. Kosyak,  “Criteria for irreducibility of regular representations corresponding to product measures of group of finite upper-
triangular matrices,”  Methods Funct. Anal. Topology, 6, No. 4, 43–56 (2000). 

12. A. V. Kosyak,  “Irreducibility of the regular Gaussian representations of the group    B0
� ,”  Methods Funct. Anal. Topology, 7,

No. 2, 42–51 (2001). 
13. A. V. Kosyak and R. Zekri,  “Regular representations of infinite-dimensional groups and factors. I,”  Methods Funct. Anal. To-

pology, 6, No. 2, 50–59 (2000). 

14. A. V. Kosyak,  “Elementary representations of the group  B0
� . I,”  Methods Funct. Anal. Topology, 7, No. 1, 33–44 (2001). 

15. J. Dixmier,  Les Algèbres d’Operateurs Dans L’espace Hilbertien, Gautirs-Villars, Paris (1969). 


