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Abstract

In the present work an analog of the quasiregular representation which is well known for locally-compact
groups is constructed for the nilpotent infinite-dimensional group BN

0 and a criterion for its irreducibility is
presented. This construction uses the infinite tensor product of arbitrary Gaussian measures in the spaces
Rm with m > 1 extending in a rather subtle way previous work of the second author for the infinite tensor
product of one-dimensional Gaussian measures.
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1. Introduction

1.1. The setting and the main results

Let (X,B) be a measurable space and let Aut(X) denote the group of all measurable
automorphisms of the space X. With any measurable action α :G → Aut(X) of a group
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G on the space X and a G-quasi-invariant measure μ on X one can associate a unitary
representation πα,μ,X :G → U(L2(X,μ)), of the group G by the formula (π

α,μ,X
t f )(x) =

(dμ(αt−1(x))/dμ(x))1/2f (αt−1(x)), f ∈ L2(X,μ). Let us set α(G) = {αt ∈ Aut(X) | t ∈ G}.
Let α(G)′ be the centralizer of the subgroup α(G) in Aut(X): α(G)′ = {g ∈ Aut(X) | {g,αt } =
gαtg

−1α−1
t = e ∀t ∈ G}. The following conjecture has been discussed in [23–25].

Conjecture 1. The representation πα,μ,X :G → U(L2(X,μ)) is irreducible if and only if :

(1) μg ⊥ μ ∀g ∈ α(G)′ \ {e} (where ⊥ stands for singular),
(2) the measure μ is G-ergodic.

We recall that a measure μ is G-ergodic if f (αt (x)) = f (x) ∀t ∈ G implies f (x) = const μ

a.e. for all functions f ∈ L1(X,μ).
In this paper we shall prove Conjecture 1 in the case where G is the infinite-dimensional

nilpotent group G = BN

0 of finite upper-triangular matrices of infinite order with unities on the
diagonal, the space X = Xm being the set of left cosets Gm \ BN, Gm being suitable subgroups
of the group BN of all upper-triangular matrices of infinite order with unities on the diagonal,
and μ an infinite tensor product of Gaussian measures on the spaces R

m with some fixed m > 1.
A more detailed explanation of the concepts used here is given in the following sections.

1.2. Regular and quasiregular representations of locally compact groups

Let G be a locally compact group. The right ρ (respectively left λ) regular representation of
the group G is a particular case of the representation πα,μ,X with the space X = G, the action
α being the right action α = R (respectively the left action α = L), and the measure μ being the
right invariant Haar measure on the group G (see, for example, [8,16,17,37]).

A quasiregular representation of a locally compact group G is also a particular case of the
representation πα,μ,X (see, for example, [37, p. 27]) with the space X = H \ G, where H is a
subgroup of the group G, the action α being the right action of the group G on the space X and
the measure μ being some quasi-invariant measure on the space X (this measure is unique up to
a scalar multiple). We remark that in [16,17] this representation has also been called geometric
representation.

1.3. Analogs of the regular and quasiregular representations of infinite-dimensional groups and
the Ismagilov conjecture

In the present article we will consider the approach which deals with analogs for infinite-
dimensional groups of the regular and quasiregular representations of finite-dimensional groups.
Let G be an infinite-dimensional topological group. To define an analog of the regular repre-
sentation, let us consider some topological group G̃, containing the initial group G as a dense
subgroup, i.e. G = G̃ (G being the closure of G). Suppose we have some quasi-invariant measure
μ on X = G̃ with respect to the right action of the group G, i.e. α = R, Rt(x) = xt−1. In this
case we shall call the representation πα,μ,G̃ an analog of the regular representation. We shall
denote this representation by T R,μ, and the Conjecture 1 is reduced to the following Ismagilov
conjecture.
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Conjecture 2. (Ismagilov, 1985) The right regular representation T R,μ :G → U(L2(G̃,μ)) is
irreducible if and only if :

(1) μLt ⊥ μ ∀t ∈ G \ {e},
(2) the measure μ is G-ergodic.

Remark 3. In the case of the right regular representation, the group α(G)′ = R(G)′ ⊂ Aut(G̃)

obviously contains the group L(G), the image of the group G with respect to the left action.

The work [11] initiated the study of representations of current groups, i.e. groups C(X,U) of
continuous mappings X 	→ U , where X is a finite-dimensional Riemannian manifold and U is a
finite-dimensional Lie group.

The regular representation of infinite-dimensional groups, in the case of current groups, was
studied firstly in [1,4,5,14] (see also the book [6]). An analog of the regular representation for an
arbitrary infinite-dimensional group G, using a G-quasi-invariant measure on some completion
G̃ of such a group, is defined in [18,20].

For X = S1, U a compact or non-compact connected Lie group, Wiener measures on the loop
groups G̃ = C(X,U) were constructed and their quasi-invariance were proved in [1,4–6,28–32].

Conjecture 2 was formulated by R.S. Ismagilov for the group G = BN

0 and the measure μ

being the product of arbitrary one-dimensional centered Gaussian measures on the group G̃ =
BN and was proved for this case in [18,19].

The first result in this direction was proved in [33]. For the complex infinite-dimensional Borel
group Borc,N

0 and the standard Gaussian measure on its completion Borc,N the irreducibility of

the corresponding regular representation was proved there. Here Borc,N
0 (respectively Borc,N) is

the group of matrices of the form x = exp t + s where t is a diagonal matrix with a finite number
of nonzero real elements (respectively arbitrary real elements) and s is a finite (respectively
arbitrary) complex strictly upper-triangular matrix.

For the product of arbitrary one-dimensional measures on the group BN Conjecture 2 was
proved in [21] under some technical assumptions on the measure.

In [20] Conjecture 2 was proved for the groups of the interval and circle diffeomorphisms. For
the group of the interval diffeomorphisms the Shavgulidze measure [35] was used, the image of
the classical Wiener measure with respect to some bijection. For the group of circle diffeomor-
phisms the Malliavin measure [30] was used.

Whether Conjecture 2 holds in the general case is an open problem.
In [25] it was shown that Conjecture 1 holds for the inductive limit G = SL0(2∞,R) =

lim−→n
SL(2n−1,R), of the special linear groups (simple groups) acting on a strip of length m ∈ N

in the space of real matrices which are infinite in both directions, the measure μ being a product
Gaussian measure.

Let us consider the special case of a G-space, namely the homogeneous space X = H \ G̃,
where H is a subgroup of the group G̃ and μ is some quasi-invariant measure on X (if it exists)
with respect to the right action R of the group G on the homogeneous space H \ G̃. In this case
we call the corresponding representation πR,μ,H\G̃ an analog of the quasiregular or geometric
representation of the group G (see [22]).

In [2] Conjecture 1 was proved for the solvable infinite-dimensional real Borel group G =
BorN

0 acting on G-spaces Xm, m ∈ N, where Xm is the set of left cosets Gm \ BorN, and Gm

is some subgroups of the group BorN of all upper-triangular matrices of infinite order with non-
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zero elements on the diagonal. The measure μ on Xm is the product of infinitely many one-
dimensional Gaussian measures on R.

In [23,24] Conjecture 1 was proved for the nilpotent group G = BN

0 and some G-spaces Xm,
m ∈ N, being the set of left cosets Gm \BN, where Gm are some subgroups of the group BN. Here
the measure μ on Xm is the infinite product of arbitrary one-dimensional Gaussian measures
on R. In this case the variables xpq , 1 � p < q � m, can be approximated by linear combinations
of the expressions ApnAqn, q < n, where Akn are generators of one-parameter groups exp(tEkn),
k < n, t ∈ R.

In [3], using results of [21], we extended the results of [22–24] to the case of an infinite tensor
product of one-dimensional non-Gaussian (general) measures.

In the present article we generalize results of [22–24] in another direction. Namely we
prove Conjecture 1 for the same nilpotent infinite-dimensional group G = BN

0 and the same
G-spaces Xm, m ∈ N, but with a measure μ which is the infinite tensor product of arbitrary
centered Gaussian measures on R

m, for any arbitrary fixed m ∈ N. More precisely, the measure
μ on Xm � R

1 × R
2 × · · · × R

m−1 × R
m × R

m × · · · is the infinite tensor product of arbitrary
Gaussian centered measures:

μ = μm
B =

∞⊗
n=2

μB(n) ,

where μB(n) is a Gaussian measure on the space R
n−1 for 2 � n � m and μB(n) is a Gaussian

measure on the space R
m for n > m. In this case for the approximation of the variables xpq ,

1 � p < q � m, we also use the commutative family of the generators Akn, 1 � k � m < n, but
the corresponding expressions are much more complicated. In fact the extensions of [22–24] to
the present case are not at all simple, the above expressions are no longer polynomials in the
generators Akn they rather involve, next to the generators, also the one-parameter groups

T
R,μm

B

exp(tEkn) = exp(tAkn), t ∈ R,

their derivatives and very special suitable chosen combinations that allow to approximate in an
appropriate way the variables involved (see Lemmas 12 and 15).

2. Main objects

Let us consider the group G̃ = BN of all upper-triangular real matrices of infinite order with
unities on the diagonal

G̃ = BN =
{
I + x

∣∣∣ x =
∑

1�k<n

xknEkn

}
,

and its subgroup

G = BN

0 = {I + x ∈ BN | x is finite
}
,

where Ekn is an infinite-dimensional matrix with 1 at the place k,n ∈ N and zeros elsewhere,
x = (xkn)k<n is finite means that xkn = 0 for all (k, n) except for a finite number of indices k,n.
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Obviously, BN

0 = lim−→n
B(n,R) is the inductive limit of the group B(n,R) of real upper-

triangular matrices with units on the principal diagonal

B(n,R) =
{
I +
∑

1�k<r�n

xkrEkr

∣∣∣ xkr ∈ R

}

with respect to the natural imbedding B(n,R) ⊂ B(n + 1,R). For m ∈ N we also define the
subgroups Gm, respectively Gm, of the group BN as follows:

Gm =
{
I + x ∈ BN

∣∣∣ x =
∑

m<k<n

xknEkn

}
,

Gm =
{
I + x ∈ BN

∣∣∣ x =
∑

1�k�m,k<n

xknEkn

}
.

Since BN = Gm ·Gm the space Xm of left cosets Xm = Gm \BN is isomorphic to the group Gm.
We use the notation Xm � Gm. By construction, the right action R of the group G is well defined
on the space Xm. More precisely if we define the decomposition x = xm · xm:

BN � x 	→ xm · xm ∈ Gm · Gm,

the right action R of the group BN

0 on the space Xm is defined as follows:

Rt

(
xm
)= (xmt−1)m, xm ∈ Gm, t ∈ BN

0 .

Define the measure μm := μm
B on the space Xm � Gm

Xm � R
1 × R

2 × · · · × R
m−1 × R

m × R
m × · · ·

by the formula μm
B =⊗∞

n=2 μB(n) , where μB(n) is the Gaussian measure on the space R
m for

n > m (respectively on the space R
n−1 for 2 � n � m) defined by

dμB(n)(x) = 1√
(2π)m detB(n)

exp

(
−1

2

((
B(n)
)−1

x, x
))

dx

=
√

detC(n)

(2π)m
exp

(
−1

2

(
C(n)x, x

))
dx, (1)

where B(n) are positive-definite operators in the space R
m (or R

n−1), x = (x1n, x2n, . . . , xmn),
dx is a Lebesgue measure on R

m and C(n) = (B(n))−1.

Lemma 4. For the measure μm
B we have(

μm
B

)Rt ∼ μm
B ∀t ∈ BN

0

(with ∼ meaning equivalence).
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Proof. The right action Rt for t ∈ BN

0 changes linearly only a finite number of coordinates of
the point x ∈ Xm. �

Now we can define the representation associated with the right action

T R,μm
B :BN

0 → U
(
L2(Xm,μm

B

))
in the natural way, i.e.

(
T

R,μm
B

t f
)
(x) = (dμm

B

(
R−1

t (x)
)/

dμm
B(x)
)1/2

f
(
R−1

t (x)
)
.

Theorem 5. For the measure μm
B the following four statements are equivalent:

(i) the representation T R,μm
B is irreducible;

(ii) (μm
B)Lt ⊥ μm

B ∀t ∈ B(m,R) \ {e};
(iii) (μm

B)
Lexp(tEpq ) ⊥ μm

B ∀t ∈ R \ {0} ∀1 � p < q � m;

(iv) SL
pq(μm

B) =∑∞
n=q+1 c

(n)
pp b

(n)
qq = ∞ ∀1 � p < q � m,

where B(n) = (b
(n)
kr )mk,r=1, C(n) = (c

(n)
kr )mk,r=1 and C(n) = (B(n))−1.

The proof of Theorem 5 is given in Sections 3–5 and Appendices A–C.

Lemma 6. The measure μm
B on the space Xm is ergodic with respect to the right action R of the

group BN

0 on the space Xm.

Proof. It is well known that any measurable function on R
∞ = R × R × · · · with the standard

Gaussian measure μI =⊗∞
n=1 μIn , where In ≡ I (see (1)) which is invariant under any change

of the first coordinates (i.e. with respect to the additive action of the group R
∞
0 ) coincides almost

everywhere with a constant function (see [36, Section 3, Corollary 1]). The proof works also in
the case where we replace R by R

m, m > 1, and the standard Gaussian measure μI on R with
any probability measure μB(n) on R

m equivalent with the Lebesgue measure on R
m. To prove

this it is sufficient to see that any function f ∈ L1((Rm)∞,
⊗∞

n=1 μB(n)) is the limit of μk-a.e.
constant functions f k : f = limk f k , where μk =⊗k

n=1 μB(n) ,

f k =
∫

(Rm)∞
f (x)dμk(x) and μk =

∞⊗
n=k+1

μB(n) .

Therefore the proof follows from the fact that the measure μm
B =⊗∞

n=2 μB(n) on the space Xm =
R

1 ×R
2 ×· · ·×R

m−1 ×R
m ×R

m ×· · · is the infinite tensor product of Gaussian measures μB(n)

on the space R
m (for n > m), from the fact that the right action Rt for t ∈ BN

0 changes only a
finite number of coordinates of the point x ∈ Xm, and that the group Gm

0 = Gm ∩ BN

0 ⊂ Xm acts
transitively on itself. In fact it is shown that the measure is ergodic with respect to the action of
the subgroup Gm

0 ⊂ BN

0 . �
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3. Idea of the proof of irreducibility

Proof of Theorem 5. The proof of Theorem 5 is organized as follows:

(i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒ (i).

The parts (i) ⇒ (ii) ⇒ (iii) are evident. The part (iii) ⇔ (iv) follows from Lemma 8, which is
based on the Kakutani criterion [15].

The idea of the proof of irreducibility, i.e. the part (iv) ⇒ (i). Let us denote by Am the von
Neumann algebra generated by the representation T R,μm

B

Am = (T R,μm
B

t | t ∈ G
)′′

.

We show that (iv) ⇒ [(Am)′ ⊂ L∞(Xm,μm
B)] ⇒ (i). Let the inclusion (Am)′ ⊂ L∞(Xm,μm

B)

holds. Using the ergodicity of the measure μm
B (Lemma 6) this proves the irreducibility. In-

deed in this case an operator A ∈ (Am)′ should be the operator of multiplication (since (Am)′ ⊂
L∞(Xm,μm

B)) by some essentially bounded function a ∈ L∞(Xm,μm
B). The commutation rela-

tion [A,T
R,μm

B
t ] = 0 ∀t ∈ BN

0 implies a(R−1
t (x)) = a(x) (mod μm

B) ∀t ∈ BN

0 , so by ergodicity of
the measure μm

B with respect to the right action of the group BN

0 on the space Xm we conclude
that A = a = const (mod μm

B). This then proves the irreducibility in Theorem 5, i.e. the part
[(Am)′ ⊂ L∞(Xm,μm

B)] ⇒ (i).
The proof of the remaining part, i.e. the implication (iv) ⇒ [(Am)′ ⊂ L∞(Xm,μm

B)] is based
on the fact that the operators of multiplication by independent variables xpq , 1 � p � m, p < q ,
may be approximated in the strong resolvent sense by some functions of the generators

A
R,m
kn = d

dt
T

R,μm
B

I+tEkn

∣∣∣∣
t=0

, k, n ∈ N, k < n,

i.e. that the operators xpq are affiliated with the von-Neumann algebra Am. See Lemma 15 and
Corollary 17.

Definition. Recall (cf., e.g., [9]) that a non-necessarily bounded self-adjoint operator A in a
Hilbert space H is said to be affiliated with a von Neumann algebra M of operators in this
Hilbert space H , if exp(itA) ∈ M for all t ∈ R. One then writes A η M .

Since the algebra (exp(itxpq) | t ∈ R, 1 � p � m, p < q)′′ is the maximal abelian subalgebra
in the von Neumann algebra B(H) of all bounded operator in the Hilbert space H = L2(Xm,μm

B)

we conclude that (exp(itxpq) | t ∈ R, 1 � p � m, p < q)′′ = L∞(Xm,μm
B). The inclusion

(exp(itxpq), 1 � p � m, p < q) ⊂ Am implies (Am)′ ⊂ L∞(Xm,μm
B).

To finish the proof of Theorem 5 it remains to prove the implication

(iv) ⇒ (
xpq η Am, 1 � p � m, p < q

) ⇔ (
exp(itxpq) ∈ Am, 1 � p � m, p < q

)
(see Section 5). It is sufficient to prove that Σm > CSm, for some C > 0, where

Sm :=
∑

SL
pq

(
μm

B

)
, Σm :=

∑
Σr

pq(m),
1�p<q�m 1�r�p<q�m
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and the series SL
pq(μm) and Σr

pq(m) are defined in Lemmas 8 and 15 (see also (18)). This is done
in Appendices A–C.

In Appendix A we define the generalization of the characteristic polynomial for matrix C and
establish some its properties. These properties are used then in Appendices B and C. For a matrix
C ∈ Mat(k,C) we set

Gk(λ) = detCk(λ), where Ck(λ) = C +
k∑

r=1

λrErr , λ = (λ1, . . . , λk) ∈ C
k.

Lemma A. (See Appendix A, Lemma A.7) For a positive definite matrix C ∈ Mat(k,C), λ ∈ R
k

with λr � 0, r = 1, . . . , k, we have

∂

∂λp

Gk(λ)

Gl(λ)
� 0,

where Gl(λ) = M12...l
12...l (Ck(λ)) and 1 � p � l � k.

The proof of Lemma A is based on the following inequality (see Lemma A.6).

Lemma B. (Hadamard–Ficher’s inequality [12,13], see also [27]) Let C ∈ Mat(m,R) be a posi-
tive definite matrix and ∅ ⊆ α,β ⊆ {1, . . . ,m}. Then

∣∣∣∣ detCα detCα∩β

detCα∪β detCβ

∣∣∣∣= ∣∣∣∣ M(α) M(α ∩ β)

M(α ∪ β) M(β)

∣∣∣∣� 0,

where Cα for α = {α1, . . . , αs} denotes the matrix which entries lie on the intersection of
α1, . . . , αs rows and α1, . . . , αs columns of the matrix C and M(α) = Mα

α (C) = detCα are cor-
responding minors of the matrix C.

The “best” approximation of xpq by the generators A
R,m
kn is based on the exact computation

of the matrix elements

φp(t) = (T R,μm
B

t 1,1
)
, t = I +

p∑
r=1

trErn, (tr )
p

r=1 ∈ R
p,

of the representation T R,μm
B and their generalization (see Appendix B, Lemma B.1), and on

the finding the appropriate combinations of operator functions of the generators A
R,m
kn (see Re-

mark 13) to approximate the operators of multiplication by xpq .
Finally the proof of the inequality Σm > CSm, is based on Lemmas A, B and 16 dealing with

some inequalities involving the generalized characteristic polynomials. Lemma 16 is proved in
Appendix C.
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Remark 7. We shall firstly prove the approximation of xkn in the above sense for the one vec-
tor 1 ∈ L2(Xm,μm

B). Secondly, the approximation also holds for some dense set D of analytic
vectors in the space L2(Xm,μm

B)

D =
〈
Xα =

∏
1�k�m,k<n

x
αkn

kn

∣∣∣ α ∈ Λ

〉
,

for the corresponding operators, where Λ = {α = (αkn)1�k�m,k<n} is the set of finite (i.e. αkn =
0 for a large n) multi-indices α with αkn = 0,1, . . . and 〈fn | n ∈ N〉 means the closure of the
linear space generated by the set of vectors (fn | n ∈ N). So using [34, Theorem VIII.25] we
conclude that the convergence holds in the strong resolvent sense. (We observe that the proof
of approximation in the strong resolvent sense is the same as the one given in [19, Lemma 2.2,
p. 250].) Since the generators A

R,m
kn are affiliated with the von Neumann algebra Am the limit

xkn is also affiliated with Am.

We prove the part (iii) ⇔ (iv). The proof is an immediate consequence of the following:

Lemma 8. For the measure μm
B we have the equivalence of

(iii)
(
μm

B

)Lexp(tEpq ) ⊥ μm
B ∀t ∈ R \ {0} ∀1 � p < q � m and

(iv) SL
pq

(
μm

B

)= ∞∑
n=q+1

c(n)
pp b(n)

qq =
∞∑

n=q+1

c
(n)
pp A

q
q(C(n))

det(C(n))
= ∞ ∀1 � p < q � m,

where B(n) = (b
(n)
kr )mk,r=1, C(n) = (c

(n)
kr )mk,r=1 and C(n) = (B(n))−1.

Proof. The proof is based on the Kakutani criterion [15] and on the exact formula for the
Hellinger integral

H(μ,ν) =
∫
X

√
dμ

dρ

dν

dρ
dρ,

for two Gaussian measure μ = μB1 and ν = μB2 (see [26]):

H(μB1,μB2) =
(

detB1 detB2

det2 B1+B2
2

)−1/4

=
(

detC1 detC2

det2 C1+C2
2

)1/4

, (2)

where Ci = (Bi)
−1, i = 1,2.

Let us consider the one-parameter subgroup exp(tEpq) = I + tEpq ∈ B(m,R), 1 � p <

q � m, t ∈ R. Using (1) we have for the positive definite operator B = B(n) in Rm:

dμ
LI+tEpq

B (x) =
√

detC

(2π)m
exp

(
−1

2

(
C exp(tEpq)x, exp(tEpq)x

))
d exp(tEpq)x
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=
√

detC

(2π)m
exp

(
−1

2

(
exp(tEpq)∗C exp(tEpq)x, x

))
dx = dμBpq(t)(x),

where (Bpq(t))−1 = Cpq(t) = exp(tEpq)∗C exp(tEpq) (we note that detC = detCpq(t)).
Hence, using (2) we get

H
(
μ

LI+tEpq

B ,μB

)= (detCpq(t)detC

det2 Cpq(t)+C

2

)1/4

=
(

detC

det Cpq(t)+C

2

)1/2

. (3)

We shall prove that

det
Cpq(t) + C

2
= detC + t2

4
cppA

q
q(C), (4)

where A
p
q (C), 1 � p,q � m, denote the cofactors of the matrix C corresponding to the row p

and the column q . We have

det Cpq(t)+C

2

detC
= detC + t2

4 cppA
q
q(C)

detC
= 1 + t2

4
cppbqq,

hence

(
detC

det Cpq(t)+C

2

)1/2

=
(

1 + t2

4
cppbqq

)−1/2

and finally, using (3) we get

H
((

μm
B

)LI+tEpq ,μm
B

)= ∞∏
n=q+1

H
(
μ

LI+tEpq

B(n) ,μB(n)

)= ∞∏
n=q+1

(
1 + t2

4
c(n)
pp b(n)

qq

)−1/2

,

where

B(n) =
∑

1�r,s�m

b(n)
rs Ers and C(n) := (B(n)

)−1 =
∑

1�r,s�m

c(n)
rs Ers.

So using the properties of the Hellinger integral for two Gaussian measures we conclude that

(
μm

B

)LI+tEpq ⊥ μm
B ∀t ∈ R \ {0} ⇔

∞∏
n=q+1

(
1 + t2

4
c(n)
pp b(n)

qq

)−1/2

= 0

⇔ SL
pq

(
μm

B

)= ∞.
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To prove (4) we set Cpq(t) = exp(tEpq)∗C exp(tEpq). We have for m ∈ N and 1 � p < q � m

using the identity exp(tEpq) = I + tEpq , t ∈ R,

Cpq(t) =

∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 . . . c1p . . . c1q + tc1p . . . c1m

. . . . . . . . .

c1p . . . cpp . . . cpq + tcpp . . . cpm

. . . . . . . . .

c1q + tc1p . . . cpq + tcpp . . . cqq + 2tcpq + t2cpp . . . cqm + tcpm

. . . . . . . . .

c1m . . . cpm . . . cqm + tcpm . . . cmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
,

hence

det
Cpq(t) + C

2
=

∣∣∣∣∣∣∣∣∣∣∣∣

c11 . . . c1p . . . c1q + t
2c1p . . . c1m

. . . . . . . . .

c1p . . . cpp . . . cpq + t
2cpp . . . cpm

. . . . . . . . .

c1q + tc1p . . . cpq + t
2cpp . . . cqq + tcpq + t2

2 cpp . . . cqm + t
2cpm

. . . . . . . . .

c1m . . . cpm . . . cqm + t
2cpm . . . cmm

∣∣∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣∣

c11 . . . c1p . . . c1q . . . c1m

. . . . . . . . .

c1p . . . cpp . . . cpq . . . cpm

. . . . . . . . .

c1q . . . cpq . . . cqq + t2

4 cpp . . . cqm

. . . . . . . . .

c1m . . . cpm . . . cqm . . . cmm

∣∣∣∣∣∣∣∣∣∣∣∣∣
= detC + t2

4
cppA

q
q(C).

This ends the proof of Lemma 8, and thus also of (iii) ⇔ (iv). �
4. Approximation of the variables xpq

Remark 9. In what follows we shall omit the upper and lower index n ∈ N in all the expressions
c
(n)
kr , b

(n)
kr , B(n), C(n), Ξ

pq
n , gkn, λ

(n)
k , etc.

We first prove Lemmas 12 and 15, which give a suitable approximation of xpq only on the
vector f = 1 ∈ L2(Xm,μm

B) (cf. Remark 7).
We shall also use the well-known result (see, for example, [7, Chapter I, Section 52])

min
x∈Rn

(
n∑

k=1

akx
2
k

∣∣∣∣∣
n∑

k=1

xk = 1

)
=
(

n∑
k=1

1

ak

)−1

, ak > 0, k = 1,2, . . . , n.

We use the same result in a slightly different form with bk �= 0, k = 1,2, . . . , n,

min
x∈Rn

(
n∑

akx
2
k

∣∣∣∣∣
n∑

xkbk = 1

)
=
(

n∑ b2
k

ak

)−1

. (5)

k=1 k=1 k=1
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The minimum is realized for

xk = bk

ak

(
n∑

k=1

b2
k

ak

)−1

.

For any subset I ⊂ N let us denote as before by 〈fn | n ∈ I 〉 the closure of the linear space
generated by the set of vectors (fn | n ∈ I ) in a Hilbert space H .

We note that the distance d(fn+1; 〈f1, . . . , fn〉) of the vector fn+1 in H from the hyperplane
〈f1, . . . , fn〉 may be calculated in terms of the Gram determinants Γ (f1, f2, . . . , fk) correspond-
ing to the set of vectors f1, f2, . . . , fk (see [10]):

d
(
fn+1; 〈f1, . . . , fn〉

)= min
t=(tk)∈Rn

∥∥∥∥∥fn+1 +
n∑

k=1

tkfk

∥∥∥∥∥
2

= Γ (f1, f2, . . . , fn+1)

Γ (f1, f2, . . . , fn)
, (6)

where the Gram determinant is defined by Γ (f1, f2, . . . , fn) = detγ (f1, f2, . . . , fn) and
γ (f1, f2, . . . , fn) =: γn is the Gram matrix

γ (f1, f2, . . . , fn) =

⎛⎜⎜⎝
(f1, f1) (f1, f2) . . . (f1, fn)

(f2, f1) (f2, f2) . . . (f2, fn)
. . .

(fn, f1) (fn, f2) . . . (fn, fn)

⎞⎟⎟⎠ .

Lemma 10. We have

d
(
fn+1; 〈f1, . . . , fn〉

)= detγn+1

detγn

= (fn+1, fn+1) − (γ −1
n dn+1, dn+1

)
,

where dn+1 = ((f1, fn+1), (f2, fn+1), . . . , (fn, fn+1)) ∈ R
n.

Proof. We may write

∥∥∥∥∥
n∑

k=1

tkfk − fn+1

∥∥∥∥∥
2

=
n∑

k,m=1

tktm(fk, fk) − 2
n∑

k=1

tk(fk, fn+1) + (fn+1, fn+1)

= (γnt, t) − 2(t, dn+1) + (fn+1, fn+1),

where t = (t1, t2, . . . , tn) ∈ R
n. Using (58) for An = γn we get

(γnt, t) − 2(t, dn+1) = (γn(t − t0), (t − t0)
)− (γ −1

n dn+1, dn+1
)
,

where t0 = γ −1
n dn. Hence we get (see (6))

min
t=(tk)∈Rn

∥∥∥∥∥fn+1 −
n∑

tkfk

∥∥∥∥∥
2

= min
t=(tk)∈Rn

(
(γnt, t) − 2(t, dn+1) + (fn+1, fn+1)

)

k=1
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= (fn+1, fn+1) − (γ −1
n dn+1, dn+1

)+ min
t=(tk)∈Rn

(
γn(t − t0), (t − t0)

)
= (fn+1, fn+1) − (γ −1

n dn+1, dn+1
)
. �

Remark 11. In fact a more general result holds. Let us denote by An+1 the real non-necessarily
symmetric matrix in R

n+1 and by An its n×n block after crossing the element in the last column
and row, by vn+1 = (a1n+1, a2n+1, . . . , ann+1), hn+1 = (an+11, an+12, . . . , an+1n) vectors vn+1,
hn+1 ∈ Rn. If detAn �= 0 then we have

an+1n+1 − (A−1
n vn+1, hn+1

)= detAn+1

detAn

. (7)

Proof. It is sufficient to use the identity (Schur–Frobenius decomposition)

An+1 =
(

An vt
n+1

hn+1 an+1n+1

)
=
(

An 0
0 1

)(
Id A−1

n vt
n+1

hn+1 an+1n+1

)
. �

The generators

Akn := A
R,m
kn = d

dt
T

R,μm
B

I+tEkn

∣∣∣∣
t=0

of the one-parameter groups I + tEkn have the following form (on smooth functions of compact
support):

Akn =
k−1∑
r=1

xrkDrn + Dkn, 1 � k � m, k < n, Akn =
m∑

r=1

xrkDrn, m < k < n,

where

Dkn = ∂/∂xkn − 1

2

(
x,
(
B(n)
)−1

Ekn

)
, 1 � k < n. (8)

To simplify the further computations let us consider the corresponding Fourier transforms Fm

in the variables xkn, 1 � k � m, m < n,

Fm :L2(Xm,μm
B

)→ L2(Xm,μm
C

)
.

We have

FmDknF
−1
m = iykn for (k, n), 1 � k � m, m < n, and Fm1 = 1.

Let us set μC =⊗∞
n=2 μC(n) with C(n) = B(n) for 2 � n � m and C(n) = (B(n))−1 for n > m.

We define the Fourier transform Fm as the infinite tensor product Fm =⊗∞
n=m+1 Fmn where

Fmn :L2(
R

m,μB(n)

)→ L2(
R

m,μC(n)

)
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is the image of the standard Fourier transform Fm in the space L2(Rm,dx), i.e. Fmn =
U(C(n))−1FmU(B(n)), where

U
(
B(n)
)= (dμB(n)(x)

dx

)1/2
L2(Rm,μB(n) )

Fmn

L2(Rm,μC(n) )

L2(Rm,dx)
Fm

L2(Rm,dx).

U
(
C(n)
)= (dμC(n)(x)

dx

)1/2

Since the standard Fourier transform Fm is defined as follows:(
Fmf
)
(y) = 1√

(2π)m

∫
Rm

exp i(y, x)f (x) dx,

and, for D = B(n) respectively D = C(n)

U(D) =
(

dμD(x)

dx

)1/2

= 1

((2π)m detD)1/4
exp

(
−1

4

(
D−1x, x

))
,

we have finally for Fmn:

(Fmnf )(y) = (U(C(n)
)−1

FmU
(
B(n)
)
f
)
(y)

= 1

((2π)m detC(n))1/4
exp

(
1

4

((
C(n)
)−1

y, y
)) 1√

(2π)m

×
∫

Rm

exp i(y, x)f (x)
(
(2π)m detB(n)

)1/4 exp

(
−1

4

((
B(n)
)−1

x, x
))

dx

= exp( 1
4 ((C(n))−1y, y))√
(2π)m detC(n)

∫
Rm

exp

(
i(y, x) − 1

4

((
B(n)
)−1

x, x
))

f (x)dx.

Using Fourier transform Fm we obtain for Ãkn = FmAkn(Fm)−1:

Ãkn = i

(
k−1∑
r=1

xrkyrn + ykn

)
, 1 � k � m < n, Ãkn =

m∑
r=1

Drk(y)yrn, m < k < n, (9)

where

Dkn(y) = ∂

∂ykn

− 1

2

(
x,
(
C(n)
)−1

Ekn

)
, 1 � k < n.

Let us set for s = (s1, . . . , sr ) ∈ R
r and 1 � r � p < q � m

ξ
rp
n (s) = Fm

(
Dpn exp

(
r∑

slAln

))
1 = iypn exp

(
r∑

slÃln

)
1. (10)
l=1 l=1
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For a function f :Xm → C we set

Mf =
∫

Xm

f (x)dμm
B(x).

To approximate the variables xpq , 1 � p < q � m, we use

Lemma 12. Let 1 � r � p < q � m. For any s(n) = (s
(n)
1 , . . . , s

(n)
r ) ∈ Rr , and for any α(n) =

(α
(n)
1 , . . . , α

(n)
m ) ∈ R

m, n ∈ N, we have

xpq ∈
〈

exp

(
r∑

l=1

s
(n)
l Aln

)(
m∑

k=1

α
(n)
k Akn

)
1
∣∣∣ n ∈ N, m < n

〉
⇔ Σr

pq(s,α,m) = ∞,

where s = (s(n))∞n=m+1, α = (α(n))∞n=m+1, α
(n)
q = 1 and

Σr
pq(s,α,m) =

∞∑
n=m+1

|Mξ
rp
n (s(n))|2

c
(n)
pp − |Mξ

rp
n (s(n))|2 + ‖(Aqn − xpqDpn +∑m

k=1,k �=p α
(n)
k Akn)1‖2

.

(11)

Before proving Lemma 12 let us make some comments about the procedure for arriving at
the expressions used for the approximation of the variables xpq on the left-hand side of the
equivalence in Lemma 12.

Remark 13. 1. The operator Aqn =∑q−1
r=1 xrqDrn + Dqn contains xpq for r = p.

2. Since MDpn1 = 0 and MDpn exp(sApn)1 �= 0 we may first think of considering
exp(sApn)Aqn1, 1 � p < q � m (similarly as in [23,24] where the linear combinations of
ApnAqn were used). But this is not sufficient for the approximation. We might then try to con-
sider the expression

exp(sApn)

(
m∑

k=1

αkAkn

)
, 1 � p < m < n,

with αq = 1. The calculations show again that these combinations are still not sufficient to ap-
proximate xpq . We arrive then at the suggestion to take

exp

(
r∑

l=1

slAln

)(
m∑

k=1

αkAkn

)
, 1 � r � p < q � m < n,

which is the choice made in Lemma 12.
3. For approximation of the variable xpq we use p different combinations, corresponding to

Σr
pq(s,α,m), 1 � r � p. All these combinations are essential, i.e. none of them can be omit-

ted. This can be seen by constructing corresponding counterexamples and is in a contrast to
the previous cases considered in [23,24] where only one combination of ApnAqn were used to
approximate xpq .
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4. To make the expression Σr
pq(s,α,m) in (11) larger (to apply then the criterium in

Lemma 12) we chose s(n) ∈ R
r such that∣∣Mξ

rp
n

(
s(n)
)∣∣2 = max

s∈Rr

∣∣Mξ
rp
n (s)
∣∣2

(which is possible, |Mξ
rp
n (s)|2 being continuous and bounded).

5. With the same aim we chose α
(n)
k in such a way that

∥∥∥∥∥
(

Aqn − xpqDpn +
m∑

k=1, k �=q

α
(n)
k Akn

)
1

∥∥∥∥∥
2

= min
(tk)∈Rm−1

∥∥∥∥∥
(

Aqn − xpqDpn +
m∑

k=1, k �=q

tkAkn

)
1

∥∥∥∥∥
2

.

6. The right-hand side of the previous expression is equal (see (6)) to

Γ (g1, g2, . . . , g
p
q , . . . , gm)

Γ (g1, g2, . . . , gq−1, gq−1, . . . , gm)
,

where

gk := gkn := Akn1, 1 � k � m, k �= q, g
p
q := g

p
qn := (Aqn − xpqDpn)1. (12)

Proof of Lemma 12. If we put
∑

n tnMξ
rp
n (s(n)) = 1 we get

∥∥∥∥∥
[∑

n

tn exp

(
r∑

l=1

s
(n)
l Aln

)(
m∑

k=1

α
(n)
k Akn

)
− xpq

]
1

∥∥∥∥∥
2

=
∥∥∥∥∥
[∑

n

tn exp

(
r∑

l=1

s
(n)
l Aln

)(
Aqn − xpqDpn + xpqDpn +

m∑
k=1, k �=q

α
(n)
k Akn

)
− xpq

]
1

∥∥∥∥∥
2

=
∥∥∥∥∥∑

n

tn

[
xpq

(
Dpn exp

(
r∑

l=1

s
(n)
l Aln

)
− Mξ

rp
n

(
s(n)
))

+ exp

(
r∑

l=1

s
(n)
l Aln

)(
Aqn − xpqDpn +

m∑
k=1, k �=q

α
(n)
k Akn

)]
1

∥∥∥∥∥
2

=
∑
n

t2
n

[
‖xpq‖2

∥∥∥∥∥
(

Dpn exp

(
r∑

l=1

s
(n)
l Aln

)
− Mξ

rp
n

(
s(n)
))

1

∥∥∥∥∥
2

+
∥∥∥∥∥exp

(
r∑

l=1

s
(n)
l Aln

)(
Aqn − xpqDpn +

m∑
k=1, k �=q

α
(n)
k Akn

)
1

∥∥∥∥∥
2]

=
∑

t2
n

[
‖xpq‖2(c(n)

pp − ∣∣Mξ
rp
n

(
s(n)
)∣∣2)
n
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+
∥∥∥∥∥exp

(
r∑

l=1

s
(n)
l Aln

)(
Aqn − xpqDpn +

m∑
k=1, k �=q

α
(n)
k Akn

)
1

∥∥∥∥∥
2]

,

where we have used the equality ‖ξ − Mξ‖2 = ‖ξ‖2 − |Mξ |2:

∥∥∥∥∥
[
Dpn exp

(
r∑

l=1

s
(n)
l Aln

)
− Mξ

rp
n

(
s(n)
)]

1

∥∥∥∥∥
2

= ‖Dpn1‖2 − ∣∣Mξ
rp
n

(
s(n)
)∣∣2 = c(n)

pp − ∣∣Mξ
rp
n

(
s(n)
)∣∣2.

Definition. We shall say that two series
∑

n an and
∑

n bn with positive members are equivalent
and shall denote this by

∑
n an ∼∑n bn if they are convergent or divergent simultaneously. We

note that if an > 0, bn > 0, n ∈ N, then we have∑
n∈N

an

an + bn

∼
∑
n∈N

an

bn

. (13)

Using (5) we get, setting b = (Mξ
rp
n (s(n)))m+1+N

n=m+1 ∈ R
N , N ∈ N,

min
t∈RN

(∥∥∥∥∥
[

m+1+N∑
n=m+1

tn exp

(
r∑

l=1

s
(n)
l Aln

)(
m∑

k=1

α
(n)
k Akn

)
− xpq

]
1

∥∥∥∥∥
2 ∣∣∣ (t, b) = −1

)

∼
(

m+1+N∑
n=m+1

|Mξ
rp
n (s(n))|2

c
(n)
pp − |Mξ

rp
n (s(n))|2 + ‖(Aqn − xpqDpn +∑m

k=1,k �=p α
(n)
k Akn)1‖2

)−1

. �

Due to Remark 9 we shall write C (respectively Ĉ) instead of C(n) (respectively Ĉ(n)), where

C(n) =

⎛⎜⎜⎜⎝
c
(n)
11 c

(n)
12 . . . c

(n)
1m

c
(n)
12 c

(n)
22 . . . c

(n)
2m

. . .

c
(n)
1m c

(n)
2m . . . c

(n)
mm

⎞⎟⎟⎟⎠ ,

Ĉ(n) =

⎛⎜⎜⎜⎝
c
(n)
11 c

(n)
12 . . . c

(n)
1m

c
(n)
12 c

(n)
11 + c

(n)
22 . . . c

(n)
2m

. . .

c
(n)
1m c

(n)
2m . . . c

(n)
11 + c

(n)
22 + · · · + c

(n)
mm

⎞⎟⎟⎟⎠ .

Remark 14. To simplify the further computations we assume that the measures μB(n) for 2 �
n � m are standard: B(n) = I . Since μm

B =⊗∞
n=2 μB(n) this assumption, which only concerns

finitely many of the μB(n) ’s, does not change the equivalence class of the initial measure μm
B and

the equivalence class of the corresponding representation T R,μm
B .
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Using this remark, notation (12) and Fourier transforms we conclude that

Γ (g1, g2, . . . , gm) = det Ĉ, i.e. Γ (g1n, g2n, . . . , gmn) = det Ĉ(n), (14)

since (gq, gp) = (Ĉ)pq , 1 � p,q � m. Indeed for p �= q we have

(gqn, gpn) = (gpn, gqn) =
(

p−1∑
r=1

xrpyrn + ypn,

q−1∑
s=1

xsqysn + yqn

)
= (ypn, yqn) = c(n)

pq ,

(gpn, gpn) =
∥∥∥∥∥

p−1∑
r=1

xrpyrn + ypn

∥∥∥∥∥
2

=
p−1∑
r=1

‖xrp‖2‖yrn‖2 + ‖ypn‖2 =
p∑

r=1

c(n)
rr = (Ĉ(n)

)
pp

(we reinserted here the upper index n in c
(n)
pq for clarity).

In the following we shall need a variant of Lemma 12 using Remark 13 replacing the
|Mξ

rp
n (s)| by its maximum Ξ

rp
n . Let us set (see (10) for definition of ξ

rp
n (s))

Ξ
rp
n = max

s∈Rr

∣∣Mξ
rp
n (s)
∣∣2. (15)

Now we see that using s and α as in parts 4 and 5 of Remark 13 we have

Σr
pq(s,α,m)

=
∑
n

maxs(n)∈Rr |Mξ
rp
n (s(n))|2

c
(n)
pp − maxs(n)∈Rr |Mξ

rp
n (s(n))|2 + ‖(Aqn − xpqDpn +∑m

k=1,k �=p α
(n)
k Akn)1‖2

(13)∼
∑
n

maxs(n)∈Rr |Mξ
rp
n (s(n))|2

c
(n)
pp + ‖(Aqn − xpqDpn +∑m

k=1,k �=p α
(n)
k Akn)1‖2

(15)=
∑
n

Ξ
rp
n

c
(n)
pp + Γ (g1n,g2n,...,g

p
qn,...,gmn)

Γ (g1n,g2n,...,gq−1n,gq+1n,...,gmn)

Remark 9=
∑
n

ΞrpΓ (g1, g2, . . . , gq−1, gq+1, . . . , gm)

cppΓ (g1, g2, . . . , gq−1, gq+1, . . . , gm) + Γ (g1, g2, . . . , g
p
q , . . . , gm)

= Σr
pq(m) :=

∑
n

ΞrpΓ (g1, g2, . . . , gq−1, gq+1, . . . , gm)

Γ (g1, g2, . . . , gm)

(14)=
∑
n

Ξ
rp
n A

q
q(Ĉ(n))

det Ĉ(n)
.

For the latter equality we have used the fact that

cppΓ (g1, g2, . . . , gq−1, gq+1, . . . , gm) + Γ
(
g1, g2, . . . , g

p
q , . . . , gm

)= Γ (g1, g2, . . . , gm),

which follows from (26). Indeed it is sufficient to take in (26) C = Ĉ − cppEqq and λq = cpp .
Then we have
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Γ (g1, g2, . . . , gm) = det Ĉ = det(Ĉ − cppEqq + cppEqq)

= det(Ĉ − cppEqq) + cppA
q
q(Ĉ − cppEqq)

= Γ
(
g1, g2, . . . , g

p
q , . . . , gm

)+ cppΓ (g1, g2, . . . , gq−1, gq+1, . . . , gm).

So we have proved the following lemma.

Lemma 15. Let 1 � r � p < q � m. Then for some sl = (s
(n)
l )∞n=m+1, αk = (α

(n)
k )∞n=m+1, where

s
(n)
l , α

(n)
k ∈ R, 1 � l � r , 1 � k � m, we have

xpq ∈
〈

exp

(
r∑

l=1

s
(n)
l Aln

)(
m∑

k=1

α
(n)
k Akn

)
1
∣∣∣ n ∈ N, m < n

〉

⇔ Σr
pq(m) =

∑
n

Ξ
rp
n A

q
q(Ĉ(n))

det Ĉ(n)
= ∞. (16)

5. The proof of (iv) ⇒ (xpq η Am, 1 ��� p ��� m, p < q) in Theorem 5

Idea. We prove firstly that xpq η Am for some (p, q): 1 � p < q � m if conditions (iv) are valid.
Further we prove that this also holds for all such (p, q). For this it is sufficient to prove that

Σm > CSm for some C > 0, (17)

where

Sm :=
∑

1�p<q�m

SL
pq

(
μm
)
, and Σm :=

∑
1�r�p<q�m

Σr
pq(m) (18)

(see (16) for the definition of Σr
pq(m)). Indeed, in this case Sm = ∞ since SL

pq(μm) = ∞ ∀p,q:
1 � p < q � m by Lemma 8 hence Σm = ∞ by (17) and finally we conclude that Σr

pq(m) = ∞
for some r,p, q: 1 � r � p < q � m. By Lemma 15 we get that xpq η Am.

The proof of (17) is based on Appendices A–C. In Appendix A we define the generalization of
the characteristic polynomial for matrix C ∈ Mat(m,C) and establish some its properties. These
properties are used then in Appendices B and C.

In Appendix B we estimate Ξ
pq
n = maxt∈Rp |Mξ

pq
n (t)|2. This estimation is based on

Lemma B.1 which gives us the exact formula for

Mξ
pq
n (t) = (DqnT

R,μm
B

exp(
∑p

r=1 trErn)
1,1
)
, t = (t1, t2, . . . , tp) ∈ R

p, 1 � p � m

(see (44)), where Dkn is defined in (8). The latter formula is based of the exact formulas for the
matrix elements

φp(t) := φ(n)
p (t) = (T R,μm

B∑p 1,1
)
, t = (tr )

p

r=1 ∈ R
p, 1 � p � m
exp( r=1 trErn)
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(see (40)) and theirs generalizations (see (42)). We cannot calculate explicitly

Ξ
pq
n = max

t∈Rp

∣∣Mξ
pq
n (t)
∣∣2,

but we are able by Lemmas B.1 and B.2 to obtain the estimation Ξ
pq
n > Ψ

pq
n ,

Ψ
pq
n := (M

12...p−1p

12...p−1q (C
(n)
p,q))2 exp(−1)

M
12...p−1
12...p−1 (C

(n)
p )M

12...p

12...p (C
(n)
p ) +∑p

k=2 λ̂k(A
p
k (C

(n)
p ))2

(see (47) and (48)). The crucial for proving (17) is Lemma 16 dealing with some inequalities
involving the generalized characteristic polynomials. This lemma is proved in Appendix C.

We use the notations of Lemma 8 (see Remark 9):

SL
pq

(
μm

B

)= ∞∑
n=q+1

c(n)
pp b(n)

qq =
∞∑

n=q+1

c
(n)
pp A

q
q(C

(n)
m )

detC(n)
m

=
∞∑

n=q+1

cppA
q
q(Cm)

detCm

.

Let

λ = (λk)
m
k=1 ∈ R

m, λ̂ = (λ̂k)
m
k=1, λ̂1 = 0, λ̂k =

k−1∑
r=1

crr , 2 � k � m, (19)

fq = e
∑

1�r�p<q

Ψ rp, 2 � q � m, f2 = eΨ 11 = c11,

f3 = e
(
Ψ 11 + Ψ 12 + Ψ 22), . . . , (20)

Cm =

⎛⎜⎜⎝
c11 c12 . . . c1m

c12 c22 . . . c2m

. . .

c1m c2m . . . cmm

⎞⎟⎟⎠ ,

Ĉm =

⎛⎜⎜⎝
c11 c12 . . . c1m

c12 c11 + c22 . . . c2m

. . .

c1m c2m . . . c11 + · · · + cmm

⎞⎟⎟⎠ . (21)

Obviously, we have Ĉm = Cm(λ̂), where λ̂ ∈ C
m, is defined in (19) and we use the notation

Cm(λ) := Cm +∑m
k=1 λkEkk .

We have the following expressions for Sm and Σm:

Sm :=
∑

SL
rk

(
μm
)∼ ∞∑ ∑m

k=2(
∑k−1

r=1 crr )A
k
k(Cm)

detCm

=
∞∑ ∑m

k=2 λ̂kA
k
k(Cm)

detCm

.

1�r<k�m n=m+1 n=m+1
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We have replaced the series

SL
pq

(
μm

B

)= ∞∑
n=q+1

c(n)
pp b(n)

qq

with the equivalent one

SL
pq

(
μm

B

)∼ ∞∑
n=m+1

c(n)
pp b(n)

qq .

If we use the equality Ĉm = Cm(λ̂), we get

Σm :=
∑

1�r�p<q�m

Σr
pq(m) =

∑
2�q�m

∑
1�r�p<q

Σr
pq(m) =

∑
2�q�m

∑
1�r�p<q

∑
n

Ξ
rp
n A

q
q(Ĉ

(n)
m )

det Ĉ(n)
m

=
∑
n

∑m
q=2(
∑

1�r�p<q Ξrp)A
q
q(Cm(λ̂))

detCm(λ̂)

(47)
>
∑
n

∑m
q=2(
∑

1�r�p<q Ψ rp)A
q
q(Cm(λ̂))

detCm(λ̂)

(28)=
∑
n

e−1∑m
q=2 fqA

q
q(Cm(λ̂))

detCm +∑m
q=2 λ̂qA

q
q(Cm(λ̂[q]))

. (22)

The implications Sm = ∞ ⇒ Σm = ∞ is based on the equality (see (26))

Ak
k

(
Cm

(
λ[k]))= Ak

k(Cm) +
m−k∑
r=1

∑
k<i1<i2<···<ir�m

λi1λi2 . . . λir A
ki1i2...ir
ki1i2...ir

(Cm) (23)

and on the following lemma.

Lemma 16. For λ̂ = (λ̂r )
m
r=1 ∈ Rm, λ̂1 = 0, λ̂k =∑k−1

r=1 crr , 2 � k � m, we have

I k
m := fkA

k
k

(
Cm(λ̂)
)− λ̂kA

k
k

(
Cm

(
λ̂[k]))� 0, 2 � k � m. (24)

Let us suppose that Lemma 16 holds. Using (13), (22)–(24) we have

Σm

(22)
>
∑
n

e−1∑m
q=2 fqA

q
q(Cm(λ̂))

detCm +∑m
q=2 λ̂qA

q
q(Cm(λ̂[q]))

(24)
�
∑
n

e−1∑m
q=2 fqA

q
q(Cm(λ̂))

detCm +∑m
q=2 fqA

q
q(Cm(λ̂))

(13)∼
∑
n

∑m
q=2 fqA

q
q(Cm(λ̂))

detCm

(24)
>
∑
n

∑m
q=2 λ̂qA

q
q(Cm(λ̂[q]))

detCm

(23)
>
∑
n

∑m
q=2 λ̂qA

q
q(Cm)

detCm

= Sm.

Finally we have Σm > Sm.
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Corollary 17. If SL
kn(μ

m
B) = ∞ for some 1 � k < n � m then one of the series Σr

pq(m), 1 �
r � p < q � m, is divergent and hence by Lemma 15 we can approximate the corresponding
variable xpq .

Remark 18. The approximation of other variables xpq , 1 � p < q � m, follows the schema used
in [23]. For the particular case 1 � m � 4 see also the schema used in [22].

Further we can approximate the remaining variables xkn, 1 � k � m < n, as in [23]. This
implies the inclusion (Am)′ ⊂ L∞(Xm,μm

B) and so the irreducibility of the representation (see
“The idea of the proof of irreducibility” at the beginning of Section 3). �
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Appendix A. The generalized characteristic polynomial and its properties

We define Gm(λ) the generalization of the characteristic polynomial pC(t) = det(tI − C),
t ∈ C, of the matrix C ∈ Mat(m,C):

Gm(λ) = detCm(λ), λ ∈ C
m, where Cm(λ) = C +

m∑
k=1

λkEkk. (25)

We denote by

M
i1i2...ir
j1j2...jr

(C)
(
respectively A

i1i2...ir
j1j2...jr

(C)
)
, 1 � i1 < · · · < ir � m, 1 � j1 < · · · < jr � m,

the minors (respectively the cofactors) of the matrix C with i1, i2, . . . , ir rows and j1, j2, . . . , jr

columns. By definition

A12...m
12...m(C) = M∅

∅ (C) = 1 and M12...m
12...m (C) = A∅

∅(C) = detC.

Lemma A.1. For the generalized characteristic polynomial Gm(λ) of C ∈ Mat(m,C) and λ =
(λ1, λ2, . . . , λm) ∈ C

m we have:

Gm(λ) = det

(
C +

m∑
k=1

λkEkk

)
= detC +

m∑
r=1

∑
1�i1<i2<···<ir�m

λi1λi2 . . . λir A
i1i2...ir
i1i2...ir

(C). (26)

Remark A.2. If we set λα = λi1λi2 . . . λir where α = (i1, i2, . . . , ir ) and Aα
α(C) = A

i1i2...ir
i1i2...ir

(C),

λ∅ = 1, A∅
∅(C) = detC we may write (26) as follows:

Gm(λ) = detCm(λ) =
∑

∅⊆α⊆{1,2,...,m}
λαAα

α(C). (27)
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Proof. Probably Lemma A.1 is known in the literature, but since we do not know any precise
reference, we provide here a direct proof. Obviously Gm(λ) is a polynomial in the variables
λ = (λ1, λ2, . . . , λm) ∈ C

m of order m. A direct calculation gives us

∂rGm(λ)

∂λ1∂λ2 . . . ∂λr

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 0 . . . 0 0 . . . 0
0 1 . . . 0 0 . . . 0

. . .
. . .

0 0 . . . 1 0 . . . 0
c1r+1 c2r+1 . . . crr+1 cr+1r+1 + λr+1 . . . cr+1m

. . .
. . .

c1m c2m . . . crm cr+1m . . . cmm + λm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
,

hence

∂rGm

∂λ1∂λ2 . . . ∂λr

∣∣∣∣
λ=0

= A12...r
12...r (C).

Similarly we have for 1 � i1 < i2 < · · · < ir � m

∂rGm

∂λi1∂λi2 . . . ∂λir

∣∣∣∣
λ=0

= A
i1i2...ir
i1i2...ir

(C). �
Lemma A.3. For C ∈ Mat(m,C) and λ ∈ C

m we have

Gm(λ) = A∅
∅
(
Cm(λ)
)= detCm(λ) = detCm +

m∑
r=1

λrA
r
r

(
Cm

(
λ[r])), (28)

Ak
k

(
Cm(λ)
)= Ak

k(Cm) +
m∑

r=1, r �=k

λrA
rk
rk

(
Cm

(
λ[r])), (29)

Gm(λ) = A∅
∅
(
Cm(λ)
)= detCm(λ) = detCm +

m∑
r=1

λrA
r
r

(
Cm

(
λ{r})), (30)

Ak
k

(
Cm(λ)
)= Ak

k(Cm) +
m∑

r=1, r �=k

λrA
rk
rk

(
Cm

(
λ{r})), (31)

where for λ ∈ C
m and 1 � k � m we have set

λ[k] = (0, . . . ,0, λk+1, . . . , λm), λ{k} = (λ1, λ2, . . . , λk,0, . . . ,0). (32)

Proof. We have for m = 2 using (26)

G2(λ) = detC2 + λ1A
1
1(C2) + λ2A

2
2(C2) + λ1λ2A

12
12(C2)

= detC2 + λ1
[
A1

1(C2) + λ2A
12
12(C2)
]+ λ2A

2
2(C2)

= detC2 + λ1A
1
1

(
C2
(
λ[1]))+ λ2A

2
2

(
C2
(
λ[2])),
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G2(λ) = detC2 + λ1A
1
1(C2) + λ2

[
A2

2(C2) + λ1A
12
12(C2)
]

= detC2 + λ1A
1
1

(
C2
(
λ{1}))+ λ2A

2
2

(
C2
(
λ{2})).

For m = 3 we have

G3(λ) = detC3 + λ1A
1
1(C3) + λ2A

2
2(C3) + λ3A

3
3(C3) + λ1λ2A

12
12(C3) + λ1λ3A

13
13(C3)

+ λ2λ3A
23
23(C3) + λ1λ2λ3A

123
123(C3)

= detC2 + λ1
[
A1

1(C3) + λ2A
12
12(C3) + λ3A

13
13(C3) + λ2λ3A

123
123(C3)

]
+ λ2
[
A2

2(C3) + λ3A
23
23(C3)
]+ λ3A

3
3(C3)

= detC3 + λ1A
1
1

(
C3
(
λ[1]))+ λ2A

2
2

(
C3
(
λ[2]))+ λ3A

3
3

(
C3
(
λ[3])),

G3(λ) = detC3 + λ1A
1
1(C3) + λ2

[
A2

2(C3) + λ1A
12
12(C3)
]

+ λ3
[
A1

1(C3) + λ1A
12
13(C3) + λ2A

23
23(C3) + λ1λ2A

123
123(C3)

]
= detC3 + λ1A

1
1

(
C3
(
λ{1}))+ λ2A

2
2

(
C3
(
λ{2}))+ λ3A

3
3

(
C3
(
λ{3})).

For m > 3 the proof of (28) and (30) is the same. The identity (29) follows from (28) and (31)
follows from (30). �

The proof of Lemma 16 is based on Lemmas A.4, A.6 and A.7 concerning the properties of a
positive matrices.

Lemma A.4. (Sylvester [10, Chapter II, Section 3]) Let C ∈ Mat(n,R) and 1 � p < n. We
consider a matrix B = (bik)

n
p+1 defined by bik = M

12...pi

12...pk(C). Then the following Sylvester de-
terminant identity holds:

detB = [M12...p

12...p (C)
]n−p−1 detC.

Corollary A.5. If p = n − 2 we have in particular∣∣∣∣ An
n(C) An

n−1(C)

An−1
n (C) An−1

n−1(C)

∣∣∣∣= An−1n
n−1n(C)A∅

∅(C).

For arbitrary 1 � p < q � n we have∣∣∣∣Ap
p(C) A

p
q (C)

A
q
p(C) A

q
q(C)

∣∣∣∣= A∅
∅(C)A

pq
pq(C) or

∣∣∣∣Ap
p(C) A

pq
pq(C)

A∅
∅(C) A

q
q(C)

∣∣∣∣= A
p
q (C)A

q
p(C). (33)

Lemma A.6. (Hadamard–Ficher’s inequality [12,13], see also [27]) For any positive definite
matrix C ∈ Mat(m,R), m ∈ N, and any two subsets α and β with ∅ ⊆ α,β ⊆ {1, . . . ,m} the
following inequality holds:∣∣∣∣ M(α) M(α ∩ β)

M(α ∪ β) M(β)

∣∣∣∣= ∣∣∣∣ A(α̂) A(α̂ ∪ β̂)

A(α̂ ∩ β̂) A(β̂)

∣∣∣∣� 0, (34)
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where M(α) = Mα
α (C), A(α) = Aα

α(C) and α̂ = {1, . . . ,m} \ α.

More precisely, see [12, p. 573]; [13, Chapter 2.5, Problem 36]. See also [27, Corollary 3.2,
p. 34].

Let us set as before (see (25)) for λ = (λ1, . . . , λk) ∈ C
k and C ∈ Mat(k,C)

Gk(λ) = detCk(λ), where Ck(λ) = C +
k∑

r=1

λrErr .

In the following lemma we use the notation for λ = (λ1, . . . , λk) ∈ C
k :

λ]l[ = (λ1, . . . , λl−1,0, λl+1, . . . , λk), 1 � l � k,

and Gl(λ) = M12...l
12...l (Ck(λ)), 1 � l � k. For α and β such that ∅ ⊆ α ⊆ {1,2, . . . , l} and ∅ ⊆ β ⊆

{l + 1, . . . , k}, with l < k, C ∈ Mat(k,C) we set

(
Aα

α(C)
)β
β

:= A
α∪β
α∪β(C), and Gl(λ)

β
β :=

∑
∅⊆α⊆{1,2,...,l}

λαA
α∪β
α∪β(C).

By definition we have

Gl(λ) = Al+1...k
l+1...k

(
Ck(λ)
)= (A∅

∅
(
Ck(λ)
))l+1...k

l+1...k
= Gk(λ)l+1...k

l+1...k. (35)

Lemma A.7. We have for 1 � p � l � k and C ∈ Mat(k,C)

Gk(λ)

Gl(λ)
= Gk(λ

]p[) + λpGk(λ
]p[)pp

Gk(λ]p[)l+1...k
l+1...k + λpGk(λ]p[)pl+1...k

pl+1...k

. (36)

For the positive definite matrix C and λ = (λ1, . . . , λk) ∈ R
k with λr � 0, r = 1, . . . , k, we have

(
Gl(λ)
)2 ∂

∂λp

Gk(λ)

Gl(λ)
=
∣∣∣∣ Gk(λ

]p[)pp Gk(λ
]p[)

Gk(λ
]p[)pl+1...k

pl+1...k Gk(λ
]p[)l+1...k

l+1...k

∣∣∣∣� 0. (37)

Proof. We have for 1 � p � l � k

∂Gk(λ)

∂λp

= ∂

∂λp

det

(
C +

k∑
r=1

λrErr

)
= A

p
p

(
C
(
λ]p[))= Gk

(
λ]p[)p

p
, so (38)

Gk(λ) − λpGk

(
λ]p[)p

p
= Gk(λ)

∣∣
λp=0 = Gk

(
λ]p[),

hence

Gk(λ) = Gk

(
λ]p[)+ λpGk

(
λ]p[)p, 1 � p � k.
p
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Similarly, we have

Gl(λ) = Gl

(
λ]p[)+ λpGl

(
λ]p[)p

p

(35)= Gk

(
λ]p[)l+1...k

l+1...k
+ λpGk

(
λ]p[)pl+1...k

pl+1...k
, 1 � p � l.

Finally we get (36). Using the following formula:(
a + bx

c + dx

)′
= bc − ad

(c + dx)2

we conclude that (36) implies the identity in (37).
To prove the inequality in (36) we get∣∣∣∣ Gk(λ

]p[)pp Gk(λ
]p[)

Gk(λ
]p[)pl+1...k

pl+1...k Gk(λ
]p[)l+1...k

l+1...k

∣∣∣∣= ∣∣∣∣ A
p
p(Ck(λ

]p[)) A∅
∅(Ck(λ

]p[))
A

pl+1...k

pl+1...k(Ck(λ
]p[)) Al+1...k

l+1...k(Ck(λ
]p[))

∣∣∣∣
=
∣∣∣∣ Aα

α(C) A
α∩β
α∩β(C)

A
α∪β
α∪β(C) A

β
β(C)

∣∣∣∣ (34)
� 0,

where C = Ck(λ
]p[), α = {p} and β = {l + 1, l + 2, . . . , k}. �

Appendix B. Calculation of the matrix elements φp(t) for t ∈ RRR
p , their generalizations

and Ξ
pq
n

Let us recall (see (10) and (19)) that λ̂k =∑k−1
r=1 crr , 2 � r � m, λ̂1 = 0 and

Ξ
pq
n = max

t∈Rp

∣∣Mξ
pq
n (t)
∣∣2, 1 � p � q � m. (39)

To estimate

max
t∈Rp

∣∣Mξ
pq
n (t)
∣∣2 = max

t∈Rp

∣∣(ξpq
n (t)1,1

)∣∣2,
where ξ

pq
n (t) = iyqn exp(

∑p

r=1 tr Ãrn) we shall find the exact formulas for the matrix elements

φp(t) = φ(n)
p (t) = (T R,μm

B

exp(
∑p

r=1 trErn)
1,1
)
, t = (tr )

p

r=1 ∈ R
p, 1 � p � m, (40)

of the restriction of the representation T R,μm
B on the commutative subgroup (exp(

∑p

r=1 trErn) |
t ∈ Rp) � Rp of the group BN

0 and theirs generalization defined below. We note that
exp(
∑p

r=1 trErn) = I +∑p

r=1 trErn.
For 1 � p � q , p,q ∈ N we get

ξ
pq
n (t) = iyqn exp

(
p∑

r=1

tr Ãrn

)
= iyqn exp i

[
p∑

r=1

tr

(
r−1∑
k=1

xkrykn + yrn

)]
; (41)

we have used the expression Ãrn =∑r−1
k=1 xkrykn + yrn =∑r

k=1 xkrykn (see (9)). We have
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T̃
R,μm

B

exp(
∑p

r=1 trErn)
= exp

(
p∑

r=1

tr Ãrn

)
= exp i

[
p∑

r=1

tr

(
r∑

k=1

xkrykn

)]

= exp i

[
p∑

k=1

(
p∑

r=k

xkr tr

)
ykn

]
.

To obtain ξpp(t) we generalize the function

T̃
R,μm

B

exp(
∑p

r=1 trErn)

in the following way. We replace in the latter identity the vectors (tr , . . . , tr ) ∈ R
p−k+1 by

(trk)
p
r=k ∈ R

p−k+1 and denote the result by ξpp(t):

ξpp(t) = ξpp

⎛⎜⎝
t11
t21 t22
t31 t32 . . .

tp1 tp2 . . . tpp

⎞⎟⎠ := exp i

[
p∑

k=1

(
p∑

r=k+1

xkr trk + tkk

)
ykn

]
. (42)

To obtain ξpq(t) we consider the function ξpq(t; tqq) = ξpp(t) exp(itqqyqn). We have

ξpq(t; tqq) = ξpq

⎛⎜⎝
t11
t21 t22
t31 t32 . . .

tp1 tp2 . . . tpp; tqq

⎞⎟⎠
:= exp i

[
p∑

k=1

(
p∑

r=k+1

xkr trk + tkk

)
ykn + tqqyqn

]
.

Finally we have

ξpp(t) = ∂ξpp(t)

∂tpp

∣∣∣∣
tkr=tk,1�r�k�p

and ξpq(t) = ∂ξpq(t; tqq)

∂tqq

∣∣∣∣
tqq=0, tkr=tk,1�r�k�p

.

Let us define φp(t) = ∫ ξpp(t) dμ(x, y), φpq(t) = ∫ ξpq(t) dμ(x, y), where μ(x, y) = μI (x) ⊗
(
⊗∞

n=m+1 μC(n)(y)) and μI (x) is the standard Gaussian measure in R × R
2 × · · · × R

m.
Using definition (39) and the previous equalities we have finally

Ξpp = max
t∈Rp

∣∣∣∣∂φp(t)

∂tpp

∣∣∣∣2
tkr=tk,1�r�k�p

,

Ξpq = max
t∈Rp

∣∣∣∣∂φpq(t)

∂tqq

∣∣∣∣2
tqq=0, tkr=tk,1�r�k�p

. (43)

Our aim is to estimate Ξpq . We shall use the notation Ck := C{1,2,...,k} for Mat(m,C) and 1 �
k � m (see notation Cα for ∅ ⊆ α ⊆ {1, . . . ,m} in Lemma B of Section 3).
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Lemma B.1. For 1 � p � q � m and φpq(t) = ∫ ξpq(t) dμ(x, y) we have

φpq

⎛⎜⎜⎜⎝
t11
t21 t22
t31 t32 t33

. . .

tp1 tp2 tp3 . . . tpp; tqq

⎞⎟⎟⎟⎠
=

∫
R

(p−1)(p−2)
2 +p

exp i

[
p∑

k=1

(
p∑

r=k

xkr trk

)
ykn + tqqyqn

]
dμ(x, y)

= 1√
detC1(t)

exp

(
−1

2

[
(CT ,T ) − (C1(t)

−1d, d
)])

, (44)

where we set T = (t11, t22, t33, . . . , tpp; tqq) ∈ R
p+1, C ∈ Mat(p + 1,C) is defined by

C := Cp,q := C{1,2,...,p,q} :=

⎛⎜⎜⎜⎜⎜⎜⎝

c11 c12 c13 . . . c1p c1q

c12 c22 c23 . . . c2p c2q

c13 c23 c33 . . . c3p c3q

. . .

c1p c2p c3p . . . cpp cpq

c1q c2q c3q . . . cpq cqq

⎞⎟⎟⎟⎟⎟⎟⎠ ,

d = (d21(t), d31(t), . . . , dp1(t);d32(t), d42(t), . . . , dp2(t); . . . ;dpp−1(t)
) ∈ R

(p−1)(p−2)
2 ,

drs(t) = trses(t), 1 � s < r < p, es(t) = (CT )s =
p∑

k=1

csktkk + csq tqq, 1 � s � p,

the operator

C1(t) = 1 + C(t) ∈ Mat

(
(p − 1)(p − 2)

2
,C

)
being defined by

D(t)−1C1(t)D(t)−1

=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

c11 + t−2
21 . . . c11 c12 . . . c12 . . . c1p−1

. . . . . . . . . . . . . . . . . . . . . . . .

c11 . . . c11 + t−2
p1 c12 . . . c12 . . . c1p−1

c12 . . . c12 c22 + t−2
32 . . . c22 . . . c2p−1

. . . . . . . . . . . . . . . . . . . . . . . .

c12 . . . c12 c22 . . . c22 + t−2
p2 . . . c2p−1

. . . . . . . . . . . . . . . . . . . . . . . .

c . . . c c . . . c . . . c + t−2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (45)
1p−1 1p−1 2p−1 2p−1 p−1p−1 pp−1
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where D(t) = diag(t21, . . . , tp1; t32, . . . , tp2; t43, . . . , tp3; . . . ; tpp−1). We have

detC1(t) = 1 +
p∑

r=1

∑
1�i1<i2<···<ir�p

α2
i1
α2

i2
. . . α2

ir
M

i1i2...ir
i1i2...ir

(Cp), α2
k :=

p∑
s=k+1

t2
sk. (46)

Lemma B.2. For 1 � p � q � m we have

Ξpq � Ψ pq, (47)

where

Ψ pq = (M
12...p−1p

12...p−1q (Cp,q))2 exp(−1)

M
12...p−1
12...p−1 (Cp)M

12...p

12...p (Cp) +∑p

k=2 λ̂k(A
p
k (Cp))2

. (48)

List of formulas for Ψ pq for small p and p < q .

Ψ 11 = c11 exp(−1), Ψ 1q = c2
1q exp(−1)

c11
, 1 � q, (49)

Ψ 22 = (M12
12 )2 exp(−1)

c11(M
12
12 + c2

11)
, Ψ 2q = (M12

1q )2 exp(−1)

c11(M
12
12 + c2

11)
, 2 � q, (50)

Ψ 3q = (M123
12q )2 exp(−1)

M12
12M123

123 + c11(M
12
13 )2 + (c11 + c22)(M

12
12 )2

, 3 � q, (51)

Ψ 4q = (M1234
123q )2 exp(−1)

M123
123M1234

1234 + c11(M
123
134 )2 + (c11 + c22)(M

123
124 )2 + (c11 + c22 + c33)(M

123
123 )2

. (52)

Remark B.3. We have Ψ pp > Ψ
pp

0 where

Ψ
pp

0 := (M
12...p−1p

12...p−1p (Cp))2e−1

A
p
p(Cp)Gp(λ̂)

= (A∅
∅(Cp))2e−1

A
p
p(Cp)Gp(λ̂)

= (Gp(0))2e−1

A
p
p(Cp)Gp(λ̂)

, (53)

and

Ψ pq > Ψ
pq

0 := (M
12...p−1p

12...p−1q (Cp,q))2e−1

A
p
p(Cp)Gp(λ̂)

. (54)

Proof. For positive definite matrix Cp we conclude by Sylvester lemma (see Lemma A.4 and
(33) of Corollary A.5) that∣∣∣∣∣Ak

k(Cp) A
kp
kp(Cp)

A∅(C ) A
p
(C )

∣∣∣∣∣= Ak
k(Cp)A

p
p(Cp) − A

kp
kp(Cp)A∅

∅(Cp) = (Ap
k (Cp)
)2

,

∅ p p p
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hence (
A

p
k (Cp)
)2

< Ak
k(Cp)A

p
p(Cp), 1 � k � p.

Using the latter inequality we get (see (48))

M
12...p−1
12...p−1 (Cp)M

12...p

12...p (Cp) +
p∑

k=2

λ̂k

(
A

p
k (Cp)
)2

= A
p
p(Cp)A∅

∅(Cp) +
p∑

k=2

λ̂k

(
A

p
k (Cp)
)2

< A
p
p(Cp)

[
A∅

∅(Cp) +
p∑

k=2

λ̂kA
k
k(Cp)

]
(26)
< A

p
p(Cp)Gp(λ̂). �

Proof of Lemmas B.1 and B.2. For a positive definite operator C in the space R
m we have the

well-known formulas:

1√
(2π)m

∫
Rm

exp

(
−1

2
(Cx, x)

)
dx = 1√

detC
. (55)

Using formula (55) we obtain the following formula for d ∈ R
m:

1√
(2π)m

∫
Rm

exp

(
−1

2
(Cx, x) + (d, x)

)
dx = 1√

detC
exp

(
(C−1d, d)

2

)
, (56)

and as a particular case for m = 1 we have

1√
2π

∫
R

exp

(
−1

2
cx2 + dx

)
dx = 1√

c
exp

(
d2

2c

)
. (57)

To obtain (56) from (55) we use the following formula:

(Cx, x) − 2(d, x) = (C(x − x0), (x − x0)
)− (C−1d, d

)
, where x0 = C−1d. (58)

Indeed we find x0 ∈ R
m and d0 ∈ R such that

(Cx, x) − 2(d, x) = (C(x − x0), (x − x0)
)+ d0.

We have

(Cx, x) − 2(d, x) = (C(x − x0), (x − x0)
)+ d0 = (Cx, x) − 2(Cx0, x) + (Cx0, x0) + d0,

so Cx0 = d hence x0 = C−1d and since (Cx0, x0)+d0 = 0 we conclude that d0 = −(Cx0, x0) =
−(CC−1d,C−1d) = −(C−1d, d).
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Fourier transform for the Gaussian measure μC in the space R
m is:

1√
(2π)m

∫
Rm

exp i(y, x) dμC(x) = exp

(
−1

2
(Cy, y)

)
, y ∈ R

m.

Let p = 1. Using (55)–(57) we have

φ1(t11) =
∫
R

exp(it11y1n) dμ(y) = exp

(
−1

2
c11t

2
11

)
;

φ1q(t11; tqq) =
∫
R2

exp i(t11y1n + tqqyqn) dμ(y) = exp

(
−1

2

(
c11t

2
11 + 2c1q t11tqq + cqq t2

qq

));
Mξ1q(t11) =

∫
R

iyqn exp(it11y1n) dμ(y) = ∂φ1q(t11; tqq)

∂tqq

∣∣∣∣
tqq=0

= −c1q t11 exp

(
−1

2
c2

11t
2
11

)
,

∣∣Mξ1,q (t11)
∣∣2 = c2

1q t2
11 exp
(−c11t

2
11

);
Ξ1q = max

t11∈R

∣∣Mξ1q(t11)
∣∣2 = c2

1q exp(−1)

c11
= Ψ 1q,

we have used the obvious result

max
x∈R

f (x) = f

(
1

a

)
= 1

ea
, where f (x) = x exp(−ax), a > 0. (59)

This proves (47) for (p, q) = (1, q).
To prove (44) in the general case we note that

p∑
k=1

(
p∑

r=k+1

xkr trk + tkk

)
ykn + tqqyqn = (a(x) + T ,y

)
Rp+1,

where

y = (y1n, y2n, . . . , ypn;yqn), T = (t11, t22, . . . , tpp; tqq) ∈ R
p+1,

a(x) = (a1(x), a2(x), . . . , ap(x);0
) ∈ R

p+1, ak(x) =
p∑

r=k+1

xkr trk = (xt)kk,

x =
∑

1<k<r�m

xkrEkr , t =
∑

1<r<k�m

tkrEkr , 1 � k � p.

Using the definition of the Fourier transform we have
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φpq(t; tqq) =
∫ ∫

Rp+1

exp i

[
p∑

k=1

(
p∑

r=k

xkr trk

)
ykn + tqqyqn

]
dμ(x, y)

=
∫

exp i
(
a(x) + T ,y

)
dμ(x, y) =

∫
exp

[
−1

2

(
C
(
a(x) + T

)
, a(x) + T

)]
dμI (x).

Since (
C
(
a(x) + T

)
, a(x) + T

)= (Ca(x), a(x)
)+ 2
(
a(x),CT

)+ (CT ,T ),

we have

φpq(t; tqq) = exp

[
−1

2
(CT ,T )

]∫
exp

(
−1

2

[(
Ca(x), a(x)

)+ 2
(
a(x),CT

)])
dμI (x). (60)

To calculate the latter integral we use (56). Let us introduce the notation

X = (x12;x13, x23; . . . ;x1p, . . . ;xp−1p) ∈ R
(p−1)(p−2)

2 .

We show that (
Ca(x), a(x)

)+ 2
(
a(x),CT

)= (C(t)X,X
)+ 2
(
d(t),X

)
for some

d(t) ∈ R
(p−1)(p−2)

2 and C(t) ∈ Mat

(
(p − 1)(p − 2)

2
,R

)
.

We have

(
a(x),CT

)= p∑
k=1

ak(x)(CT )k =
p∑

k=1

p∑
r=k+1

xkr trkek(t) =
∑

1�k<r�p

xkr trkek(t)

=
∑

1�k<r�p

xkrdrk(t) = (X,d(t)
)
,

where

d(t) = (drk(t)
)

1�k<r�p
∈ R

(p−1)(p−2)
2 ,

drk(t) = trkek(t) and ek(t) = (CT )k =
p∑

r=1

ckr trr + ckq tqq, 1 � k � p − 1.

Further
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(
Ca(x), a(x)

)= ∑
1�k,n�p

cknak(x)an(x) =
∑

1�k,n�p

ckn

p∑
r=k+1

xkr trk

p∑
s=n+1

xnstsn

=
∑

1�k<r�p

∑
1�n<s�p

ckntrktsnxkrxns = (C(t)X,X
)
,

where the operator C(t) is defined by its entries:(
C(t)
)
kr,ns

= ckntrktsn for 1 � k < r � p and 1 � n < s � p. (61)

This prove the representation (45) for the operator C1(t). Finally we have(
Ca(x), a(x)

)= (C(t)X,X
)

and
(
a(x),CT

)= (X,d(t)
)
.

Putting the latter equalities in (60) we get using (56)

φpq(t; tqq) = exp

[
−1

2
(CT ,T )

]∫
exp

(
−1

2

[(
C(t)X,X

)+ 2
(
X,d(t)

)])
dμI (x)

= 1√
detC1(t)

exp

(
−1

2

[(
CT,T
)− (C1(t)

−1d(t), d(t)
)])

,

where C1(t) = I + C(t). This proves (44) of Lemma B.1.
We estimate now Ξpq . For (p, q) = (2,2) we get

φ2(t) = 1√
detC1(t)

exp

(
−1

2

[
(CT ,T ) − (C1(t)

−1d(t), d(t)
)])

= 1√
1 + c11t

2
21

exp

(
−1

2

[
c11t

2
11 + 2c12t11t22 + c22t

2
22 − (c11t11 + c12t22)

2t2
21

1 + c11t
2
21

])
,

where

T = (t11, t22), d(t) = d21(t) = t21e1(t) = t21(c11t11 + c12t22),

e1(t) = c11t11 + c12t22, e2(t) = c21t11 + c22t22,

C = C2 =
(

c11 c12
c12 c22

)
, C(t)

(61)= c11t
2
21, C1(t) = 1 + c11t

2
21,

∂φ2(t)

∂t11
=
[
−(c11t11 + c12t22) + (c11t11 + c12t22)c11t

2
21

1 + c11t
2
21

]

× exp(− 1
2 [(CT ,T ) − (C1(t)

−1d(t), d(t))])√
detC1(t)

,

∂φ2(t)

∂t22
=
[
−(c21t11 + c22t22) + (c11t11 + c12t22)c12t

2
21

1 + c11t
2
21

]

× exp(− 1
2 [(CT ,T ) − (C1(t)

−1d(t), d(t))])√ .

detC1(t)
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Let e1(t) = c11t11 + c12t22 = 0 so t11 = −c12t22/c11. In this case

(CT ,T ) = c11t
2
11 + 2c12t11t22 + c22t

2
22 =
(

c2
12

c11
− 2

c2
12

c11
+ c22

)
t2
22 = M12

12

c11
t2
22,

c12t11 + c22t22 =
(

−c12c12

c11
+ c22

)
t22 = c11c22 − c2

12

c11
= M12

12

c11
.

Finally

∣∣Mξ22(t)
∣∣2 = ∣∣Miy2n exp

(
it11 + it22(x12y1n + y2n)

)∣∣2 =
∣∣∣∣∂φ2(t)

∂t22

∣∣∣∣2
e1(t)=0, t21=t22

=
(M12

12
c11

t22
)2 exp
(−M12

12
c11

t2
22

)
1 + c11t

2
22

�
M12

12

c11
t2
22 exp

[
−
(

M12
12

c11
+ c11

)
t2
22

]
.

We have used the inequality

1 + x � expx, x ∈ R. (62)

Hence if we denote t = (t11, t22) ∈ R
2 we have using (43)

Ξ22 = max
t∈R2

∣∣Mξ22(t)
∣∣2 > Ψ 22 := (M12

12 )2 exp(−1)

c11(M
12
12 + c2

11)
.

This proves (47) for (p, q) = (2,2). For (2, q), 2 < q , we have

φ2q

(
t11
t21 t22; tqq

)
=
∫

R1+3

exp i
[
t11y1n + (t21x12y1n + t22y2n) + tqqyqn

]
dμ(x, y)

= 1√
1 + c11t

2
21

exp

(
−1

2

[
c11t

2
11 + c22t

2
22 + cqq t2

qq + 2c12t11t22

+ 2c1q t11tqq + 2c2q t22tqq − (c11t11 + c12t22 + c1q tqq)2t2
21

1 + c11t
2
21

])
= 1√

detC1(t)
exp

(
−1

2

[
(CT ,T ) − (C1(t)

−1d(t), d(t)
)])

,

where

T = (t11, t22; tqq) ∈ R
3, d(t) = t21(c11t11 + c12t22 + c1q tqq) =: t21e1(t) ∈ R,

e1(t) = c11t11 + c12t22 + c1q tqq, e2(t) = c21t11 + c22t22 + c2q tqq,

C = C2,q =
(

c11 c12 c1q

c12 c22 c2q

)
, C1(t) = detC1(t) = 1 + c11t

2
21,
c1q c2q cqq
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∂φ2q(t; tqq)

∂tqq

∣∣∣∣
tqq=0

=
[
−(c1q t11 + c2q t22 + cqq tqq) + (c11t11 + c12t22 + c1q tqq)c1q t2

21

1 + c11t
2
21

]

× exp

(
−1

2

[
(CT ,T ) − (C1(t)

−1d, d
)]) 1√

detC1(t)
,

∂φ2q(t; tqq)

∂tqq

∣∣∣∣
tqq=0

=
[
−(c1q t11 + c2q t22) + (c11t11 + c12t22)c1q t2

21

1 + c11t
2
21

]

× exp

(
−1

2
(CT ,T )

)
1√

detC1(t)

∣∣∣∣
tqq=0

.

Let tqq = 0. We chose d(t) = 0 so we have c11t11 + c12t22 = 0 and t11 = −c12t22
c11

. In this case

(CT ,T ) = c11t
2
11 + 2c12t11t22 + c22t

2
22 =
(

c2
12

c11
− 2

c2
12

c11
+ c22

)
t2
22 = M12

12

c11
t2
22,

c1q t11 + c2q t22 =
(

−c12c1q

c11
+ c2q

)
t22 = c11c2q − c12c1q

c11
t22 = M12

1q

c11
t22.

Finally, if we denote t = (t11, t22) ∈ R
2, we have

∣∣Mξ2q(t)
∣∣2 = ∣∣Miyqn exp

(
it11 + it22(x12y1n + y2n)

)∣∣2 =
∣∣∣∣∂φ2q(t; tqq)

∂tqq

∣∣∣∣2
tqq=0, e1(t)=0

=
(M12

1q

c11
t22
)2 exp
(−M12

12
c11

t2
22

)
1 + c11t

2
22

(62)
>

(
M12

1q

c11
t22

)2

exp

(
−
(

M12
12

c11
+ c11

)
t2
22

)
.

By (59) we conclude using (43) that

Ξ2q = max
t∈R2

∣∣Mξ2q(t)
∣∣2 � max

t22∈R

∣∣∣∣∂φ2q(t; tqq)

∂tqq

∣∣∣∣2
tqq=0, e1(t)=0

�
(M12

1q )2 exp(−1)

c11(M
12
12 + c2

11)
= Ψ 2q .

This proves (47) for (p, q) = (2, q), 2 < q .
For n = 3 we have

φ3

(
t11
t21 t22
t31 t32 t33

)
= 1√

detC1(t)
exp

(
−1

2

[
(CT ,T ) − (C1(t)

−1d, d
)])

,

where

T = (t11, t22, t33), d(t) = (d21(t), d31(t), d32(t)
)
,

d21(t) = t21e1(t), d31(t) = t31e1(t), d32(t) = t32e2(t),

e1(t) = c11t11 + c12t22 + c13t33, e2(t) = c21t11 + c22t22 + c23t33,
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C = C3 =
(

c11 c12 c13
c12 c22 c23
c13 c23 c33

)
, C(t)

(61)=
⎛⎝ c11t

2
21 c11t21t31 c12t21t32

c11t21t31 c11t
2
31 c12t31t32

c12t21t32 c12t31t32 c22t
2
32

⎞⎠ ,

hence

C1(t) = I + C(t) =
⎛⎝1 + c11t

2
21 c11t21t31 c12t21t32

c11t21t31 1 + c11t
2
31 c12t31t32

c12t21t32 c12t31t32 1 + c22t
2
32

⎞⎠
= diag(t21, t31, t32)

⎛⎝ c11 + t−2
21 c11 c12

c11 c11 + t−2
31 c12

c12 c12 c22 + t−2
32

⎞⎠diag(t21, t31, t32).

We prove the following inequality for an operator C of order n such that I + C > 0:

det(I + C) � exp trC. (63)

Indeed by Hadamard inequality (see [7] or [13, Section 2.5.4]) we have for positive operator C

of order n

detC �
n∏

i=1

cii .

Using the Hadamard inequality and (62) we have for an operator C such that I + C > 0

det(I + C) �
n∏

i=1

(1 + cii)
(62)
�

n∏
i=1

exp cii = exp

(
n∑

i=1

cii

)
= exp(trC),

where we denote by trC the trace of an operator C in the space Cn. Using (63) and (61) we
conclude that

det
(
I + C(t)

)
� trC(t) = exp

[
p−1∑
k=1

ckk

(
p∑

r=k+1

t2
rk

)]
= exp

(
p−1∑
k=1

ckkα
2
k

)
, (64)

where α2
k =∑p

r=k+1 t2
rk since by (61) we have

trC(t) =
∑

1�k<r�p

C(t)kr,kr =
∑

1�k<r�p

ckkt
2
rk =

p−1∑
k=1

ckk

(
p∑

r=k+1

t2
rk

)
. (65)

Using (26) we get

detC1(t) = t2
21t

2
31t

2
32

(
detB + λ1A

1
1 + λ1A

2
2 + λ3A

3
3 + λ1λ2A

12
12

+ λ1λ3A
13
13 + λ2λ3A

23
23 + λ1λ2λ3A

123
123

)
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= t2
21t

2
31t

2
32

[∣∣∣∣∣ c11 c11 c12
c11 c11 c22
c12 c12 c22

∣∣∣∣∣+
(

1

t2
21

+ 1

t2
31

)∣∣∣∣ c11 c22
c12 c22

∣∣∣∣
+ 1

t2
21t

2
31

c22 +
(

1

t2
21t

2
32

+ 1

t2
31t

2
32

)
c11 + 1

t2
21t

2
31t

2
32

]
= 1 + c11

(
t2
21 + t2

31

)+ c22t
2
32 + M12

12

(
t2
21 + t2

31

)
t2
32.

Finally we have

detC1(t) = 1 + c11α
2
1 + c22α

2
2 + M12

12 α2
1α2

2, where α2
1 = t2

21 + t2
31, α2

2 = t2
32.

For general n we have by analogy (it proves thus (46))

detC1(t) = 1 +
n−1∑
r=1

∑
1�i1<i2<···<ir�n−1

α2
i1
α2

i2
. . . α2

ir
M

i1i2...ir
i1i2...ir

(Cn), where α2
k =

n∑
s=k+1

t2
sk.

For n = 3 we have

∂φ3(t)

∂t33
=
[
−1

2

∂(CT ,T )

∂t33
+ ∂(C1(t)

−1d(t), d(t))

∂t33

]
exp(− 1

2 [(CT ,T ) − (C1(t)
−1d(t), d(t))])√

detC1(t)
,

∂φ3(t)

∂t33
=
[
−e3(t) + ∂(C1(t)

−1d(t), d(t))

∂t33

]
exp(− 1

2 [(CT ,T ) − (C1(t)
−1d(t), d(t))])√

detC1(t)
.

We calculate |∂φ3(t)/∂t33|2 under the conditions e1(t) = e2(t) = 0 on the variables t =
(t11, t22, t33) ∈ R

3. It gives us {
c11t11 + c12t22 + c13t33 = 0,

c21t11 + c22t22 + c23t33 = 0.

The solutions are

t11 = M12
23 (C3)

M12
12 (C3)

t33 = A3
1(C3)

A3
3(C3)

t33, t22 = −M12
13 (C3)

M12
12 (C3)

t33 = A3
2(C3)

A3
3(C3)

t33. (66)

In general, for the matrix Cn conditions e1(t) = e2(t) = · · · = en−1(t) = 0 gives us the system⎧⎪⎪⎨⎪⎪⎩
c11t11 + c12t22 + · · · + c1ntnn = 0,

c21t11 + c22t22 + · · · + c2ntnn = 0,
...

cn−11t11 + cn−12t22 + · · · + cn−1ntnn = 0

(67)

and the following solutions:

tkk = (−1)k+n
M12...k−1kk+1...n−1

12...k−1k+1...n (Cn)

M12...n−1(C )
tnn = An

k(Cn)

An(Cn)
tnn, 1 � k � n − 1. (68)
12...n−1 n n
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If we denote ek(t) =∑n
r=1 ckr trr we get

(CT ,T ) =
∑

1�k,r�n

ckr trr tkk =
n∑

k=1

ek(t)tkk,
1

2

∂(CT ,T )

∂tnn

= en(t). (69)

Under conditions (67) we have

en(t) =
n∑

r=1

cnr

An
r (Cn)

An
n(Cn)

tnn = M12...n
12...n (Cn)

M12...n−1
12...n−1 (Cn)

tnn,
∂(C1(t)

−1d(t), d(t))

∂tnn

= 0 (70)

and

(CT ,T )
(69)=

n∑
k=1

ek(t)tkk = en(t)tnn = M12...n
12...n (Cn)

M12...n−1
12...n−1 (Cn)

t2
nn. (71)

For n = 3 using (70) and (71) we can calculate

e3(t) = M123
123 (C3)

M12
12 (C3)

t33, (CT ,T ) = M123
123 (C3)

M12
12 (C3)

t2
33,

∂(C1(t)
−1d(t), d(t))

∂t33
= 0.

If, in addition, e1(t) = e2(t) = 0, we have (see (66))

trC(t) = c11
(
t2
22 + t2

33

)+ c22t
2
33 =
[
c11

((
M12

13 (C3)

M12
23 (C3)

)2

+ 1

)
+ c22

]
t2
33.

For n = 3 we have if e1(t) = e2(t) = 0, using the values for t22, e3(t) and (CT ,T )∣∣∣∣∂φ3(t)

∂t33

∣∣∣∣2 = e2
3(t) exp(−(CT ,T ))

detC1(t)

(64)
� e2

3(t) exp
(−(CT ,T ) − trC(t)

)
=
(

M123
123 (C3)

M12
12 (C3)

)2

t2
33 exp

[
−t2

33

(
M123

123 (C3)

M12
12 (C3)

+ (c11 + c22) + c11

(
M12

13 (C3)

M12
12 (C3)

)2)]
.

We get by (59)

max
t33∈R

(
M123

123 (C3)

M12
12 (C3)

)2

t2
33 exp

[
−t2

33

(
M123

123 (C3)

M12
12 (C3)

+ (c11 + c22) + c11

(
M12

13 (C3)

M12
12 (C3)

)2)]

=
(M123

123 (C3)

M12
12 (C3)

)2 exp(−1)

M123
123 (C3)

M12
12 (C3)

+ (c11 + c22) + c11
(M12

13 (C3)

M12
12 (C3)

)2
= (M123

123 (C3))
2 exp(−1)

M12
12 (C3)M

123
123 (C3) + c11(M

12
13 (C3))2 + (c11 + c22)(M

12
12 (C3))2

= Ψ 33.

Finally we have (see (43))
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Ξ33 = max
t∈R2

∣∣Mξ33(t)
∣∣2 � max

t33∈R

∣∣∣∣∂φ3(t)

∂t33

∣∣∣∣2
e1(t)=e2(t)=0

� Ψ 33.

This proves (47) for (p, q) = (3,3).
By analogy we have for general n:

∂φn(t)

∂tnn

=
[
−1

2

∂(CT ,T )

∂tnn

+ ∂(C1(t)
−1d(t), d(t))

∂tnn

]
exp(− 1

2 [(CT ,T ) − (C1(t)
−1d(t), d(t))])√

detC1(t)
,

∂φn(t)

∂tnn

=
[
−en(t) + ∂(C1(t)

−1d(t), d(t))

∂tnn

]
exp(− 1

2 [(CT ,T ) − (C1(t)
−1d(t), d(t))])√

detC1(t)
.

When trk = trr , n � r � k � 2, we have by (65)

trC(t) =
∑

1�k<r�n

ckkt
2
rk =

n−1∑
k=1

ckk

(
n∑

r=k+1

t2
rk

)
=

n−1∑
k=1

ckk

(
n∑

r=k+1

t2
rr

)
.

When, in addition, e1(t) = · · · = en−1(t) = 0 we get (see (68) and definition (19) of λ̂k)

trC(t) =
n−1∑
r=1

crr

(
n∑

k=r+1

t2
kk

)
=

n∑
k=2

k−1∑
r=1

crr t
2
kk =

n∑
k=2

λ̂kt
2
kk =

n∑
k=2

λ̂k

(
An

k(Cn)

An
n(Cn)

)2

t2
nn.

Finally for general n we have if e1(t) = · · · = en−1(t) = 0

∣∣∣∣∂φn(t)

∂tnn

∣∣∣∣2 = e2
n(t) exp(−(CT ,T ))

detC1(t)

(64)
� e2

n(t) exp
(−(CT ,T ) − trC(t)

)
=
(

M12...n
12...n (Cn)

M12...n−1
12...n−1 (Cn)

)2

t2
nn exp

(
−t2

nn

(
M12...n

12...n (Cn)

M12...n−1
12...n−1 (Cn)

+
∑n

k=2 λ̂k(A
n
k(Cn))

2

(An
n(Cn))2

))
.

Using (59) we get

Ξnn
(43)
� max

tnn∈R

∣∣∣∣∂φn(t)

∂tnn

∣∣∣∣2
e1(t)=···=en−1(t)=0

�

( M12...n
12...n (Cn)

M12...n−1
12...n−1 (Cn)

)2 exp(−1)

M12...n
12...n (Cn)

M12...n−1
12...n−1 (Cn)

+
∑n

k=2 λ̂k(A
n
k (Cn))2

(An
n(Cn))2

= (M12...n
12...n (Cn))

2 exp(−1)

M12...n−1
12...n−1 (Cn)M

12...n
12...n (Cn) +∑n

k=2 λ̂k(A
n
k(Cn))2

= Ψ nn.

Finally for general (n, q), n � q , we have if e1(t) = · · · = en−1(t) = 0, tqq = 0,

∣∣∣∣∂φnq(t)

∂t

∣∣∣∣2 = e2
q(t) exp(−(CT ,T ))

detC (t)

(64)
� e2

q(t) exp
(−(CT ,T ) − trC(t)

)
,

qq 1
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where C = Cn,q and T are defined in Lemma B.1. Moreover, the above conditions gives us the
same solutions (68) as before, hence using the decomposition of the minor M12...n−1n

12...n−1q (Cn,q) we
have

eq(t) = (Cn,qT )q =
n∑

r=1

cqr trr =
n∑

r=1

cqr

An
r (Cn)

An
n(Cn)

tnn = M12...n−1n
12...n−1q (Cn,q)tnn

An
n(Cn)

.

Finally we get if e1(t) = · · · = en−1(t) = 0 and tqq = 0

Ξnq � max
tnn∈R

∣∣∣∣∂φnq(t; tqq)

∂tqq

∣∣∣∣2
tqq=0

� max
tnn∈R

e2
q(t) exp

(−(CT ,T ) − trC(t)
)

= max
tnn∈R

(
M12...n−1n

12...n−1q (Cn,q)

M12...n−1
12...n−1 (Cn)

)2

t2
nn exp

(
−t2

nn

(
M12...n

12...n (Cn)

M12...n−1
12...n−1 (Cn)

+
∑n

k=2 λ̂k(A
n
k(Cn))

2

(An
n(Cn))2

))

= (M12...n−1n
12...n−1q (Cn,q))2 exp(−1)

M12...n−1
12...n−1 (Cn)M

12...n
12...n (Cn) +∑n

k=2 λ̂k(A
n
k(Cn))2

= Ψ nq. �

Appendix C. Proof of Lemma 16

Proof. Firstly, we prove by induction the inequalities I k
k � 0 for k � 2. Secondly, we show that

inequality I k
k � 0 and Lemma A.6 imply the inequality I k

m � 0 for m � k where (see (24)):

I k
m := fkA

k
k

(
Cm(λ̂)
)− λ̂kA

k
k

(
Cm

(
λ̂[k]))� 0, 2 � k � m.

We shall show also that I 2
m = 0. In the case m = 2 we have

I 2
2 = f2A

2
2

(
C2(λ̂)
)− λ̂2A

2
2

(
C2
(
λ̂[2]))= 0

since f2 = λ̂2 = c11 by (19), (20) and (49), and

A2
2

(
C2(λ̂)
)= A2

2

(
C2
(
λ̂[2]))= A2

2(C2) = c11,

where

C2(λ̂) =
(

c11 c12
c12 c11 + c22

)
, C2

(
λ̂[2])= C2 =

(
c11 c12
c12 c22

)
.

In the case m = 3 we prove the following inequalities:

I 2
3 := f2A

2
2

(
C3(λ̂)
)− λ̂2A

2
2

(
C3
(
λ̂[2]))� 0, (72)

I 3
3 := f3A

3
3

(
C3(λ̂)
)− λ̂3A

3
3

(
C3
(
λ̂[3]))� 0. (73)

Since (see (21))
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C3(λ̂) =
(

c11 c12 c13
c12 c11 + c22 c23
c13 c23 c11 + c22 + c33

)
, C3

(
λ̂[2])= ( c11 c12 c13

c12 c22 c23
c13 c23 c11 + c22 + c33

)
,

and C3(λ̂
[3]) = C3 we have by (26)

A2
2

(
C3(λ̂)
)= A2

2

(
C3
(
λ̂[2]))= A2

2(C3) + λ̂3A
23
23(C3), A3

3

(
C3
(
λ̂[3]))= A3

3(C3).

The latter equalities give us I 2
3 = 0. This proves (72). Indeed we have

I 2
3 = λ̂2
(
A2

2(C3) + λ̂3A
23
23(C3)
)− λ̂2
(
A2

2(C3) + λ̂3A
23
23(C3)
)≡ 0.

Since f2 = λ̂2 = c11 and λ̂1 = 0 we have A2
2(Cm(λ̂)) = A2

2(Cm(λ̂[2])) hence

I 2
m := f2A

2
2

(
Cm(λ̂)
)− λ̂2A

2
2

(
Cm

(
λ̂[2]))≡ 0, 2 � m. (74)

Remark C.1. In what follows we take λ = (λr)
k
1 ∈ R

k with λ1 = 0.

To prove (73) for k = 3 we use the identity for λ = (0, λ2) ∈ R2, λ̂ = (0, c11),

A3
3

(
C3(λ̂)
)= M12

12

(
C3(λ̂)
)= M12

12 (C3) + c2
11 = M12

12 (C3) + λ̂2c11,

A3
3

(
C3(λ)
)= M12

12

(
C3(λ)
)= M12

12 (C3) + λ2c11,
∂M12

12 (C3(λ))

∂λ2
= c11.

We have

I 3
3 := f3A

3
3

(
C3(λ̂)
)− λ̂3A

3
3

(
C3
(
λ̂[3]))

=
(

c11 + c2
12

c11
+ (M12

12 (C3))
2

c11(M
12
12 (C3) + c2

11)

)(
M12

12 (C3) + c2
11

)− (c11 + c22)M
12
12 (C3)

=
(

c11 + c2
12

c11
+ (M12

12 (C3))
2

c11M
12
12 (C3(λ̂))

)
M12

12

(
C3(λ̂)
)− (c11 + c22)M

12
12 (C3),

we use here the definition of fq = e
∑

1�r�p<q Ψ rp and Ψ pq (see (20), (48)–(50)),

f3 = e
(
Ψ 11 + Ψ 12 + Ψ 22)= c11 + c2

12

c11
+ (M12

12 (C3))
2

c11(M
12
12 (C3) + c2

11)
.

We define the function I 3
3 (λ) for λ = (0, λ2) by

I 3
3 (λ) :=

(
c11 + c2

12

c11
+ (M12

12 (C3))
2

c11M
12
12 (C3(λ))

)
M12

12

(
C3(λ)
)− (c11 + c22)M

12
12 (C3)

=
(

c11 + c2
12
)(

M12
12 (C3) + λ2c11

)+ (M12
12 (C3))

2

− (c11 + c22)M
12
12 (C3).
c11 c11
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Since I 3
3 = I 3

3 (λ̂) it is sufficient to prove that I 3
3 (λ) > 0 for λ2 > 0. We show that

I 3
3 (0) = 0 and

∂I 3
3 (λ)

∂λ2
> 0.

Indeed we have M12
12 (C3(0)) = M12

12 (C3) hence

I 3
3 (0) =

(
c11 + c2

12

c11
+ M12

12 (C3)

c11

)
M12

12 (C3) − (c11 + c22)M
12
12 (C3)

= M12
12 (C3)

(
c2

12 + M12
12 (C3)

c11
− c22

)
= 0 and

∂I 3
3 (λ)

∂λ2
=
(

c11 + c2
12

c11

)
c11 > 0.

Finally I 3
3 (λ) > 0 for λ2 > 0 so I 3

3 = I 3
3 (λ̂) = I 3

3 (0, c11) > 0 and (73) is proved. To prove that

I k
k � 0 let us denote f q = e

∑q−1
r=1 Ψ rq−1. Using (20) we have

fq = e
∑

1�r�p<q

Ψ rp = e
∑

1�r�p<q−1

Ψ rp + e

q−1∑
r=1

Ψ rq−1 = fq−1 + f q, f1 := 0, (75)

for 2 � q � m. We prove by induction that

I k
k = fkA

k
k

(
Ck(λ̂)
)− λ̂kA

k
k(Ck) � 0, 2 � k. (76)

For k = 2 and k = 3 it is proved. Let us suppose that it holds for k. To find the general formula
for I k

k (λ) with I k
k � I k

k (λ̂) we consider the cases m = 4.

I 4
4 = f4A

4
4

(
C4(λ̂)
)− λ̂4A

4
4(C4) = (f3 + f 4)A4

4

(
C4(λ)
)− λ̂4A

4
4(C4)
∣∣
λ=λ̂

(73)
�
(

λ̂3A
34
34(C4)

A34
34(C4(λ))

+ f 4
)

A4
4

(
C4(λ)
)− λ̂4A

4
4(C4)

∣∣∣∣
λ=λ̂

(49)–(51)=
(

(c11 + c22)M
12
12 (C4)

M12
12 (C4(λ))

+ c2
13

c11
+ (M12

13 (C4))
2

c11M
12
12 (C4(λ))

+ (M123
123 (C4))

2

M12
12 (C4)M

123
123 (C4) + c11(M

12
13 (C4))2 + (c11 + c22)(M

12
12 (C4))2

)
× M123

123

(
C4(λ)
)− (c11 + c22 + c33)M

123
123 (C4)

∣∣
λ=λ̂

(54)
>

(
(c11 + c22)M

12
12 (C4)

M12
12 (C4(λ))

+ c2
13

c11
+ (M12

13 (C4))
2

c11M
12
12 (C4(λ))

+ (M123
123 (C4))

2

M12
12 (C4)M

123
123 (C4(λ))

)
× M123

123

(
C4(λ)
)− (c11 + c22 + c33)M

123
123 (C4)

∣∣
λ=λ̂

.

So we have I 4 > I 4(λ)| ˆ where I 4(λ) is defined by the formula
4 4 λ=λ 4
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I 4
4 (λ) :=

(
(c11 + c22)M

12
12 (C4)

M12
12 (C4(λ))

+ c2
13

c11
+ (M12

13 (C4))
2

c11M
12
12 (C4(λ))

+ (M123
123 (C4))

2

M12
12 (C4)M

123
123 (C4(λ))

)
× M123

123

(
C4(λ)
)− (c11 + c22 + c33)M

123
123 (C4)

=
(

a1 + a2

M12
12 (C4(λ))

)
M123

123

(
C4(λ)
)+ b1 = a1M

123
123

(
C4(λ)
)+ a2

M123
123 (C4(λ))

M12
12 (C4(λ))

+ b1,

where

a1 = c2
13

c11
> 0, a2 = (c11 + c22)M

12
12 (C4) + (M12

13 (C4))
2

c11
> 0,

b1 = (M123
123 (C4))

2

M12
12 (C4)

− (c11 + c22 + c33)M
123
123 (C4).

We prove that I 4
4 (λ) � 0 for λ = (0, λ2, λ3), when λ2 � 0, λ3 � 0. It then gives us I 4

4 �
I 4

4 (λ̂) � 0. We have (see below the proof of I k
k (0) = 0, k � 3)

I 4
4 (0) =

(
c2

13

c11
+ (M12

13 (C4))
2

c11M
12
12 (C4)

+ M123
123 (C4)

M12
12 (C4)

− c33

)
M123

123 (C4) = 0.

Moreover, by inequality (37) of Lemma A.7 we have for λ2 � 0, λ3 � 0

∂I 4
4 (λ)

∂λ2
= a1

∂M123
123 (C4(λ))

∂λ2
+ a2

∂

∂λ2

M123
123 (C4(λ))

M12
12 (C4(λ))

� 0,

∂I 4
4 (λ)

∂λ3
=
(

a1 + a2

M12
12 (C4(λ))

)
∂M123

123 (C4(λ))

∂λ3
� 0.

Let us consider the function

i4
4(t) = I 4

4 (t λ̂) = I 4
4 (0, t λ̂2, t λ̂3), t ∈ R.

We have

i4
4(0) = I 4

4 (0) = 0 and
di4

4(t)

dt
= ∂I 4

4 (λ)

∂λ2
λ̂2 + ∂I 4

4 (λ)

∂λ3
λ̂3 � 0

hence i4
4(t) � 0 by the previous inequalities for t > 0. So

I 4
4 > I 4

4 (0, λ̂2, λ̂3) = i4
4(t)
∣∣
t=1 � 0.

To prove that I k
k (λ̂) � 0 we show that

I k
k (0) = 0, 2 � k and

∂I k
k (λ)

∂λ
� 0, 2 � p < k. (77)
p
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To define the function I k+1
k+1 (λ) with I k+1

k+1 � I k+1
k+1 (λ̂) we have

I k+1
k+1 = fk+1A

k+1
k+1

(
Ck+1(λ̂)

)− λ̂k+1A
k+1
k+1(Ck+1)

(75)= (fk + f k+1)Ak+1
k+1

(
Ck+1(λ)

)− λ̂k+1A
k+1
k+1(Ck+1)

∣∣
λ=λ̂

(76)
�
(

λ̂kA
kk+1
kk+1(Ck+1)

Akk+1
kk+1(Ck+1(λ))

+ e

k∑
r=1

Ψ rk

)
Ak+1

k+1

(
Ck+1(λ)

)− λ̂k+1A
k+1
k+1(Ck+1)

∣∣∣∣∣
λ=λ̂

(54)
�
(

λ̂kA
kk+1
kk+1(Ck+1)

Akk+1
kk+1(Ck+1(λ))

+ e

k∑
r=1

Ψ rk
0

)
Ak+1

k+1

(
Ck+1(λ)

)− λ̂k+1A
k+1
k+1(Ck+1)

∣∣∣∣∣
λ=λ̂

:= I k+1
k+1 (λ̂),

where the function I k+1
k+1 (λ) is defined by (see definition (54) of Ψ

pq

0 ):

I k+1
k+1 (λ) =

(
λ̂kM

12...k−1
12...k−1 (Ck+1)

M12...k−1
12...k−1 (Ck+1(λ))

+ c2
1k

c11
+

k∑
r=2

(M12...r−1r
12...r−1k (Ck+1))

2

M12...r−1
12...r−1 (Ck+1)M

12...r
12...r (Ck+1(λ))

)

× M12...k
12...k

(
Ck+1(λ)

)− λ̂k+1M
12...k
12...k (Ck+1)

=
(

λ̂kM
12...k−1
12...k−1 (Ck+1)

M12...k−1
12...k−1 (Ck+1(λ))

+ c2
1k

c11
+

k−1∑
r=2

(M12...r−1r
12...r−1k (Ck+1))

2

M12...r−1
12...r−1 (Ck+1)M

12...r
12...r (Ck+1(λ))

)

× M12...k
12...k

(
Ck+1(λ)

)+ (M12...k
12...k (Ck+1))

2

M12...k−1
12...k−1 (Ck+1)

− λ̂k+1M
12...k
12...k (Ck+1).

Finally we have the following expression for I k+1
k+1 (λ) with corresponding positive constants ar ,

2 � r � k − 1 (depending on k) and b1 ∈ R:

I k+1
k+1 (λ) =

(
a1 +

k−1∑
r=2

ar

M12...r
12...r (Ck+1(λ))

)
M12...k

12...k

(
Ck+1(λ)

)+ b1

=
(

a1 +
k−1∑
r=2

ar

Gr(λ)

)
Gk(λ) + b1.

By (37) of Lemma A.7 we conclude that for λr � 0, 2 � r � k, holds

∂I k+1
k+1 (λ)

∂λk

=
(

a1 +
k−1∑
r=2

ar

Gr(λ)

)
∂Gk(λ)

∂λk

� 0,

∂I k+1
k+1 (λ)

∂λp

= a1
∂Gk(λ)

∂λp

+
k−1∑
r=2

ar

∂

∂λp

Gk(λ)

Gr(λ)
� 0, 2 � p � k. (78)
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Remark C.2. In fact ∂I k+1
k+1 (λ)/∂λp > 0, 2 � p � k, for λ = (λr )

k+1
r=1 ∈ R

k+1, λr � 0, 1 � r �
k + 1, since by (38) we have ∂Gk(λ)/∂λp = A

p
p(C(λ]p[)) > 0.

Let us suppose that I k
k (0) = 0, i.e.

0 = I k
k (0) = M12...k−1

12...k−1

(
c2

1k−1

c11
+ (M12

1k−1)
2

c11M
12
12

+ (M123
12k−1)

2

M12
12 M123

123

+ · · ·

+ (M12...k−3k−2
12...k−3k−1 )2

M12...k−3
12...k−3M12...k−2

12...k−2

+ M12...k−1
12...k−1

M12...k−2
12...k−2

− ck−1k−1

)
.

For k = 3, k = 4 and k = 5 we have

I 3
3 (0) = M12

12

(
c2

12

c11
+ M12

12

c11
− c22

)
= 0,

I 4
4 (0) = M123

123

(
c2

13

c11
+ (M12

13 )2

c11M
12
12

+ M123
123

M12
12

− c33

)
,

I 5
5 (0) = M1234

1234

(
c2

14

c11
+ (M12

14 )2

c11M
12
12

+ (M123
124 )2

M12
12M123

123

+ M1234
1234

M123
123

− c44

)
.

We prove that I k+1
k+1 (0) = 0. Indeed, we get

I k+1
k+1 (0) = M12...k

12...k

(
c2

1k

c11
+ (M12

1k )2

c11M
12
12

+ (M123
12k )2

M12
12M123

123

+ · · ·

+ (M12...k−2k−1
12...k−2k )2

M12...k−2
12...k−2 M12...k−1

12...k−1

+ M12...k
12...k

M12...k−1
12...k−1

− ckk

)
.

Since by Corollary A.5 we have∣∣∣∣Ak−1
k−1(Ck) Ak−1

k (Ck)

Ak
k−1(Ck) Ak

k(Ck)

∣∣∣∣= A∅
∅(Ck)A

k−1k
k−1k(Ck) or∣∣∣∣Ak−1

k−1(Ck) Ak−1k
k−1k(Ck)

A∅
∅(Ck) Ak

k(Ck)

∣∣∣∣= (Ak
k−1(Ck)

)2
,

we conclude that ∣∣∣∣M12...k−1
12...k−1 (Ck) M12...k−2

12...k−2 (Ck)

M12...k
12...k (Ck) M12...k−2k

12...k−2k (Ck)

∣∣∣∣= (M12...k−2k−1
12...k−2k (Ck)

)2
.

Hence

(M12...k−2k−1
12...k−2k (Ck))

2

M12...k−2(C )M12...k−1(C )
+ M12...k

12...k (Ck)

M12...k−1(C )
= M12...k−2k

12...k−2k (Ck)

M12...k−2(C )
,

12...k−2 k 12...k−1 k 12...k−1 k 12...k−2 k



S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634–681 679
and

I k+1
k+1 (0) = M12...k

12...k

(
c2

1k

c11
+ (M12

1k )2

c11M
12
12

+ (M123
12k )2

M12
12M123

123

+ · · ·

+ (M12...k−3k−2
12...k−3k )2

M12...k−3
12...k−3 M12...k−2

12...k−2

+ M12...k−2k
12...k−2k

M12...k−2
12...k−2

− ckk

)
.

If we change k with k − 1 in the last expression we obtain the right-hand part (up to a positive
factor) of the expression for I k

k (0).
Finally we have proved (77) for I k+1

k+1 (λ). Let us consider the function

ik+1
k+1(t) = I k+1

k+1 (t λ̂), t ∈ R.

We have

ik+1
k+1(0) = I k+1

k+1 (0) = 0 and
dik+1

k+1(t)

dt
=

k∑
p=2

∂I k+1
k+1 (λ)

∂λp

λ̂p > 0

by (78) and Remark C.2. So

I k
k > Ik

k (λ̂) = ikk (t)
∣∣
t=1 � 0.

We recall (see (32)) that for λ = (λ1, . . . , λm) ∈ C
m and 1 � k � m we denote

λ[k] = (0, . . . ,0, λk+1, . . . , λm), λ{k} = (λ1, . . . , λk,0, . . . ,0).

Using (27)

Gm(λ) = A∅
∅
(
Cm(λ)
)= ∑

∅⊆δ⊆{1,2,...,m}
λδA

δ
δ(C),

we get

Ak
k

(
Cm(λ)
)= ∑

∅⊆δ⊆{1,2,...,k−1,k+1,...m}
λδA

k∪δ
k∪δ(Cm). (79)

If we put Cm(λ[k]) = Cm +∑m
r=k+1 λrErr in (79) we get

Ak
k

(
Cm

(
λ[k]))= ∑

∅⊆δ⊆{k+1,k+2,...,m}
λδA

k∪δ
k∪δ(Cm). (80)

Similarly, if we put Cm(λ) = Cm(λ{k}) +∑m
r=k+1 λrErr we get

Ak
k

(
Cm(λ)
)= ∑

λδA
k∪δ
k∪δ

(
Cm

(
λ{k})). (81)
∅⊆δ⊆{k+1,k+2,...,m}
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Using (76) we have

fk � λ̂kA
k
k(Ck)
(
Ak

k

(
Ck(λ̂)
))−1 = λ̂kA

kk+1...m
kk+1...m(Cm)

(
Akk+1...m

kk+1...m

(
Cm(λ̂)
))−1

hence I k
m = fkA

k
k(Cm(λ̂)) − λ̂kA

k
k(Cm(λ[k])) � I k

m(λ̂), where the function I k
m(λ̂) is defined by

I k
m(λ̂) := λ̂k

(
Akk+1...m

kk+1...m

(
Cm(λ̂)
))−1

Akk+1...m
kk+1...m(Cm)Ak

k

(
Cm(λ̂)
)− λ̂kA

k
k

(
Cm

(
λ̂[k]))

= λ̂k

(
Akk+1...m

kk+1...m

(
Cm(λ̂)
))−1
∣∣∣∣ Akk+1...m

kk+1...m(Cm) Ak
k(Cm(λ̂[k]))

Akk+1...m
kk+1...m(Cm(λ̂)) Ak

k(Cm(λ̂))

∣∣∣∣
(80), (81)= λ̂k

(
Akk+1...m

kk+1...m

(
Cm(λ̂)
))−1

×
∑

∅⊆δ⊆{k+1,k+2,...,m}
λ̂δ

∣∣∣∣ Akk+1...m
kk+1...m(Cm) Ak∪δ

k∪δ(Cm)

Akk+1...m
kk+1...m(Cm(λ̂)) Ak∪δ

k∪δ(Cm(λ̂{k}))

∣∣∣∣ .
Using (26) or (27) we conclude for λ = (0, λ2, . . . , λm) ∈ C

m

Akk+1...m
kk+1...m

(
Cm(λ)
)= ∑

∅⊆γ⊆{2,3,...,k−1}
λγ A

γ∪{k,k+1,...m}
γ∪{k,k+1,...m}(Cm),

Ak∪δ
k∪δ

(
Cm

(
λ{k}))= ∑

∅⊆γ⊆{2,3,...,k−1}
λγ A

γ∪{k}∪δ

γ∪{k}∪δ(Cm).

Finally we obtain

I k
m(λ̂) = λ̂k

(
Akk+1...m

kk+1...m

(
Cm(λ̂)
))−1 ∑

∅⊆δ⊆{k+1,k+2,...,m}
λ̂δ

×
∑

∅⊆γ⊆{2,3,...,k−1}
λ̂γ

∣∣∣∣∣A
kk+1...m
kk+1...m(Cm) A

γ∪{k,k+1,...m}
γ∪{k,k+1,...m}(Cm)

Ak∪δ
k∪δ(Cm) A

γ∪{k}∪δ

γ∪{k}∪δ(Cm)

∣∣∣∣∣� 0

due to the Hadamard–Fisher’s inequality (Lemma A.6), for α = {k, k + 1, . . . ,m} and β = γ ∪
{k} ∪ δ. This completes the proof of Lemma 16. �
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