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Abstract

In the present work an analog of the quasiregular representation which is well known for locally-compact
groups is constructed for the nilpotent infinite-dimensional group B§ and a criterion for its irreducibility is
presented. This construction uses the infinite tensor product of arbitrary Gaussian measures in the spaces
R™ with m > 1 extending in a rather subtle way previous work of the second author for the infinite tensor
product of one-dimensional Gaussian measures.
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1. Introduction
1.1. The setting and the main results

Let (X,*B) be a measurable space and let Aut(X) denote the group of all measurable
automorphisms of the space X. With any measurable action o:G — Aut(X) of a group
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G on the space X and a G-quasi-invariant measure u on X one can associate a unitary
representation 7%*X:G — U(L%(X, p)), of the group G by the formula (n,a’M’Xf)(x) =
(du(a,-1(x))/du())'? f(@,-1(x)), f e L*(X, ). Let us set a(G) = {a; € Aut(X) |t € G}.
Let o(G)’ be the centralizer of the subgroup a(G) in Aut(X): «(G) ={g € Aut(X) | {g, as} =
go gl l=evie G1}. The following conjecture has been discussed in [23-25].

Conjecture 1. The representation 7%"*X : G — U(L*(X, w)) is irreducible if and only if:

(1) w8 L uVgea(G)\{e} (Where L stands for singular),
(2) the measure wu is G-ergodic.

We recall that a measure u is G-ergodic if f(o;(x)) = f(x) Vt € G implies f(x) = const u
a.e. for all functions f € L1(X, n).

In this paper we shall prove Conjecture 1 in the case where G is the infinite-dimensional
nilpotent group G = B(I)\I of finite upper-triangular matrices of infinite order with unities on the
diagonal, the space X = X" being the set of left cosets G,, \ BY, G,, being suitable subgroups
of the group BY of all upper-triangular matrices of infinite order with unities on the diagonal,
and p an infinite tensor product of Gaussian measures on the spaces R™ with some fixed m > 1.
A more detailed explanation of the concepts used here is given in the following sections.

1.2. Regular and quasiregular representations of locally compact groups

Let G be a locally compact group. The right p (respectively left A) regular representation of
the group G is a particular case of the representation 7%*X with the space X = G, the action
o being the right action o = R (respectively the left action &« = L), and the measure u being the
right invariant Haar measure on the group G (see, for example, [8,16,17,37]).

A quasiregular representation of a locally compact group G is also a particular case of the
representation T X (see, for example, [37, p. 27]) with the space X = H \ G, where H is a
subgroup of the group G, the action « being the right action of the group G on the space X and
the measure u being some quasi-invariant measure on the space X (this measure is unique up to
a scalar multiple). We remark that in [16,17] this representation has also been called geometric
representation.

1.3. Analogs of the regular and quasiregular representations of infinite-dimensional groups and
the Ismagilov conjecture

In the present article we will consider the approach which deals with analogs for infinite-
dimensional groups of the regular and quasiregular representations of finite-dimensional groups.
Let G be an infinite-dimensional topological group. To define an analog of the regular repre-
sentation, let us consider some topological group G, containing the initial group G as a dense
subgroup, i.e. G = GG being the closure of G). Suppose we have some quasi-invariant measure
pwon X = G with respect to the right action of the group G, i.e. « = R, R;(x) = xt~!. In this
case we shall call the representation 7%*C an analog of the regular representation. We shall
denote this representation by 7®-# and the Conjecture 1 is reduced to the following Ismagilov
conjecture.
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Conjecture 2. (Ismagilov, 1985) The right regular representation T®"*:G — U (Lz(é, W) is
irreducible if and only if:

(1) ph LpVieG\{e},
(2) the measure w is G-ergodic.

Remark 3. In the case of the right regular representation, the group a(G)' = R(G)’' C Aut(G)
obviously contains the group L(G), the image of the group G with respect to the left action.

The work [11] initiated the study of representations of current groups, i.e. groups C (X, U) of
continuous mappings X +— U, where X is a finite-dimensional Riemannian manifold and U is a
finite-dimensional Lie group.

The regular representation of infinite-dimensional groups, in the case of current groups, was
studied firstly in [1,4,5,14] (see also the book [6]). An analog of the regular representation for an
arbitrary infinite-dimensional group G, using a G-quasi-invariant measure on some completion
G of such a group, is defined in [18,20].

For X = S!, U a compact or non-compact connected Lie group, Wiener measures on the loop
groups G = C(X, U) were constructed and their quasi-invariance were proved in [1,4-6,28-32].

Conjecture 2 was formulated by R.S. Ismagilov for the group G = B(I)\] and the measure p
being the product of arbitrary one-dimensional centered Gaussian measures on the group G =
BY and was proved for this case in [18,19].

The first result in this direction was proved in [33]. For the complex infinite-dimensional Borel
group Bor(c)‘N and the standard Gaussian measure on its completion Bor®-Y the irreducibility of

the corresponding regular representation was proved there. Here Bor(c)’N (respectively Bor®N) is
the group of matrices of the form x = exp¢ + s where ¢ is a diagonal matrix with a finite number
of nonzero real elements (respectively arbitrary real elements) and s is a finite (respectively
arbitrary) complex strictly upper-triangular matrix.

For the product of arbitrary one-dimensional measures on the group BY Conjecture 2 was
proved in [21] under some technical assumptions on the measure.

In [20] Conjecture 2 was proved for the groups of the interval and circle diffeomorphisms. For
the group of the interval diffeomorphisms the Shavgulidze measure [35] was used, the image of
the classical Wiener measure with respect to some bijection. For the group of circle diffeomor-
phisms the Malliavin measure [30] was used.

Whether Conjecture 2 holds in the general case is an open problem.

In [25] it was shown that Conjecture 1 holds for the inductive limit G = SLy(200,R) =
lim SL(2n — 1, R), of the special linear groups (simple groups) acting on a strip of length m € N
in the space of real matrices which are infinite in both directions, the measure u being a product
Gaussian measure.

Let us consider the special case of a G-space, namely the homogeneous space X = H \ G,
where H is a subgroup of the group G and p is some quasi-invariant measure on X (if it exists)
with respect to the right action R of the group G on the homogeneous space H \ G. In this case
we call the corresponding representation 7 K-+ H\G
representation of the group G (see [22]).

In [2] Conjecture 1 was proved for the solvable infinite-dimensional real Borel group G =
BoroN acting on G-spaces X", m € N, where X" is the set of left cosets G, \BorN, and G,,

is some subgroups of the group Bor™ of all upper-triangular matrices of infinite order with non-

an analog of the quasiregular or geometric
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zero elements on the diagonal. The measure © on X is the product of infinitely many one-
dimensional Gaussian measures on R.

In [23,24] Conjecture 1 was proved for the nilpotent group G = B(I)\T and some G-spaces X",
m € N, being the set of left cosets G, \ BY, where G, are some subgroups of the group BY. Here
the measure p on X™ is the infinite product of arbitrary one-dimensional Gaussian measures
on R. In this case the variables x4, 1 < p < g <m, can be approximated by linear combinations
of the expressions A, Agn, g < n, where Ay, are generators of one-parameter groups exp(f Ex,),
k<n,telR.

In [3], using results of [21], we extended the results of [22—24] to the case of an infinite tensor
product of one-dimensional non-Gaussian (general) measures.

In the present article we generalize results of [22-24] in another direction. Namely we
prove Conjecture 1 for the same nilpotent infinite-dimensional group G = B§ and the same
G-spaces X, m € N, but with a measure u which is the infinite tensor product of arbitrary
centered Gaussian measures on R, for any arbitrary fixed m € N. More precisely, the measure
pon X" ~R! x R x --- x R"™ ! x R™ x R™ x --- is the infinite tensor product of arbitrary
Gaussian centered measures:

o0
n=up= ®u3<»z>,
n=2

where (1w is a Gaussian measure on the space R"! for 2 < n < m and Wpwm is a Gaussian
measure on the space R” for n > m. In this case for the approximation of the variables x,,
1 < p < g < m, we also use the commutative family of the generators Ay,, | <k <m < n, but
the corresponding expressions are much more complicated. In fact the extensions of [22-24] to
the present case are not at all simple, the above expressions are no longer polynomials in the
generators Ay, they rather involve, next to the generators, also the one-parameter groups

R.up

Toxpt By = SXP(ARn), 1 ER,

their derivatives and very special suitable chosen combinations that allow to approximate in an
appropriate way the variables involved (see Lemmas 12 and 15).

2. Main objects

Let us consider the group G = BN of all upper-triangular real matrices of infinite order with
unities on the diagonal

G:BNz{I—l—x‘x: Z xknEkn}»
1<k<n
and its subgroup
G =B{) ={I +x € B" | x is finite},

where Ey, is an infinite-dimensional matrix with 1 at the place k,n € N and zeros elsewhere,
X = (Xgn)k<n 18 finite means that xx, = 0 for all (k, n) except for a finite number of indices &, n.
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Obviously, B(I)N =lim B(n,R) is the inductive limit of the group B(n,R) of real upper-
triangular matrices with units on the principal diagonal

B(n,R) = {1+ S B

1<k<r<n

Xkr € R}

with respect to the natural imbedding B(n,R) C B(n + 1,R). For m € N we also define the
subgroups G,,, respectively G™, of the group BY as follows:

Gm={1+xeBN‘x= > xknEkn}v

m<k<n

sz{]—FXEBN‘X: Z -xknEkn}~
1<kim, k<n

Since BN = G,, - G™ the space X™ of left cosets X" = G, \ BY is isomorphic to the group G™.
We use the notation X >~ G™. By construction, the right action R of the group G is well defined
on the space X™. More precisely if we define the decomposition x = x,,, - x:
BNsx x,-x"€G, -G,
the right action R of the group B§ on the space X is defined as follows:
R,(xm) = (xmt_l)m, x"eG", te B§I.
Define the measure " := p'y on the space X" ~ G™
X"oRV K RZx - xRV R xR x - - -

by the formula ,u,'g = ®Ziz Wpm, where ppwm is the Gaussian measure on the space R™ for
n > m (respectively on the space R"~! for 2 < n < m) defined by

1 1 1
dig g (x) = ——exp| —=((B™) ™ 'x,x >dx
Mpm (X) )" dolB® P( 2(( ) )

detC™ 1
=/ (eztﬂ)m exp(—E(C(")x,x)> dx, (1

where B™ are positive-definite operators in the space R (or R"’l), X = (X150, X201, -+ Xmn)»
dx is a Lebesgue measure on R” and C™ = (B™)~1,

Lemma 4. For the measure |’y we have
(W)™ ~uy vieBy

(with ~ meaning equivalence).
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Proof. The right action R; for ¢ € B(I)\T changes linearly only a finite number of coordinates of
the point x € X™. O

Now we can define the representation associated with the right action
TR B — U(L*(X™, iwp))

in the natural way, i.e.

R.ulg 1/2 —
(T, £) o) = (g (R (0) Jdip (0) 2 £ (R ().
Theorem 5. For the measure p'y the following four statements are equivalent:

(i) the representation TRWE jg irreducible;

(i) (up) L uf ¥re Bom,R)\ {e};
(iif) (umfeww Ly Vr eR\{0}VI<p<g<m;
@iv) Spq(y,B) sl —g+1Cpp )bgfl) =ocoVlI<p<gqg<m,

where B® = (b)) _,, € = (e, _, and C™ = (B™)~ L,
The proof of Theorem 5 is given in Sections 3—-5 and Appendices A—C.

Lemma 6. The measure p'y on the space X™ is ergodic with respect to the right action R of the
group B(I)\I on the space X™.

Proof. It is well known that any measurable function on R*® =R x R x .- - with the standard
Gaussian measure Uy = ®;’;1 w1,, where I, = I (see (1)) which is invariant under any change
of the first coordinates (i.e. with respect to the additive action of the group R3°) coincides almost
everywhere with a constant function (see [36, Section 3, Corollary 1]). The proof works also in
the case where we replace R by R™, m > 1, and the standard Gaussian measure (7 on R with
any probability measure gz on R™ equivalent with the Lebesgue measure on R™. To prove
this it is sufficient to see that any function f € L!((R™), Rn2y g is the limit of pi-a.e.
constant functions f*: f =1limg f*, where py = ®I,‘l=1 U

ft= / f@dut ) and 1= @) wpm.

(Rm)oo n=k+1

Therefore the proof follows from the fact that the measure u'f = @), i on the space X =
R!xR2x .- x R" 1 x R™ x R™ x ... is the infinite tensor product of Gaussian measures ()
on the space R™ (for n > m), from the fact that the right action R, for ¢ € B§ changes only a
finite number of coordinates of the point x € X", and that the group G! = G™ N B(I)\I C X™ acts
transitively on itself. In fact it is shown that the measure is ergodic with respect to the action of
the subgroup G’ C B(I)N. O
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3. Idea of the proof of irreducibility
Proof of Theorem 5. The proof of Theorem 5 is organized as follows:
H = G = 3G = ) = (@.

The parts (i) = (ii) = (iii) are evident. The part (iii) < (iv) follows from Lemma 8, which is
based on the Kakutani criterion [15].

The idea of the proof of irreducibility, i.e. the part (iv) = (i). Let us denote by A" the von
Neumann algebra generated by the representation T X W

o = (1" |1 e G)".

We show that (iv) = [(A") C L®(X™, u§)]1 = (i). Let the inclusion (2A™)" C L*(X™, u'})
holds. Using the ergodicity of the measure u'z (Lemma 6) this proves the irreducibility. In-
deed in this case an operator A € (™) should be the operator of multiplication (since (™)’ C
L>®(X™, u's)) by some essentially bounded function a € L*°(X™, u'g). The commutation rela-
tion [A, T,R’MB] =0Vre B(I)\T implies a(Rl_l (x)) =a(x) (mod pu'y) vVt € B(l)\], so by ergodicity of
the measure u'y with respect to the right action of the group B(I)\T on the space X" we conclude
that A = a = const (mod ). This then proves the irreducibility in Theorem 5, i.e. the part
(™) C L(X™, W)l = ().

The proof of the remaining part, i.e. the implication (iv) = [(A™)" C L*(X™, u3)] is based
on the fact that the operators of multiplication by independent variables x,,, 1 <p <m, p <gq,
may be approximated in the strong resolvent sense by some functions of the generators

AR,m _ iTR,M’Z;
kn _dt 1+t Ey, ’

k,neN, k<n,

i.e. that the operators x,, are affiliated with the von-Neumann algebra ™. See Lemma 15 and
Corollary 17.

Definition. Recall (cf., e.g., [9]) that a non-necessarily bounded self-adjoint operator A in a
Hilbert space H is said to be affiliated with a von Neumann algebra M of operators in this
Hilbert space H, if exp(itA) € M for all t € R. One then writes A n M.

Since the algebra (exp(itxpg) [t €R, 1< p<m, p < q)" is the maximal abelian subalgebra
in the von Neumann algebra B(H) of all bounded operator in the Hilbert space H = L2(x™, wy)
we conclude that (exp(itxpg) |t € R, 1 < p <m, p <q)’" = L>®X", ). The inclusion
(exp(itxpg), 1 < p<m, p <q) CA™ implies (A™)" C L®(X", u}).

To finish the proof of Theorem 5 it remains to prove the implication

iv) = (quanm, 1<p<m,p<q) & (exp(itqu)tem, 1<p<m,p<q)

(see Section 5). It is sufficient to prove that X, > CS,,, for some C > 0, where

Swe= D Sp(WE). Ew= Y0 Ep,0m),

I<p<g<m ISr<p<gq<m
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and the series Slfq (u™) and Elr,q (m) are defined in Lemmas 8 and 15 (see also (18)). This is done

in Appendices A—C.

In Appendix A we define the generalization of the characteristic polynomial for matrix C and
establish some its properties. These properties are used then in Appendices B and C. For a matrix
C € Mat(k, C) we set

k
Gir(A) =detCr (1), where Cr(A) =C + Z)L,Err, A= (,...., ) eCk.

r=1

Lemma A. (See Appendix A, Lemma A.7) For a positive definite matrix C € Mat(k, C), A € Rk
withi, 20, r=1,...,k, we have

0 G
Iy, Gi(L)

’

where G;(\) = M3/ (Cr(0)) and 1 < p <1< k.
The proof of Lemma A is based on the following inequality (see Lemma A.6).

Lemma B. (Hadamard-Ficher’s inequality [12,13], see also [27]) Let C € Mat(m, R) be a posi-

tive definite matrix and ) C o, B C {1, ..., m}. Then
detCy  detCynpg| | M(a) M(aNp) >0
detCoup  detCg | |M(xUPB) M@B) |7
where Cy for a = {a1,..., 05} denotes the matrix which entries lie on the intersection of
o, ..., o5 rows and oy, . .., g columns of the matrix C and M (a) = Mg (C) = det C,, are cor-

responding minors of the matrix C.

The “best” approximation of x,, by the generators A ,f,;m is based on the exact computation
of the matrix elements

p
R, m
¢p(0)=(1,""1.1), 1=1+ t,Em. ()] eRP,
r=1

of the representation TR M5 and their generalization (see Appendix B, Lemma B.1), and on
the finding the appropriate combinations of operator functions of the generators A,ﬁ’m (see Re-
mark 13) to approximate the operators of multiplication by x .

Finally the proof of the inequality X,, > CS,,, is based on Lemmas A, B and 16 dealing with
some inequalities involving the generalized characteristic polynomials. Lemma 16 is proved in
Appendix C.
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Remark 7. We shall firstly prove the approximation of xj, in the above sense for the one vec-
tor 1€ L2(X™, wg). Secondly, the approximation also holds for some dense set D of analytic
vectors in the space L(X™, wy)

D=<X“= [T e

1<ksm, k<n

ozeA>,

for the corresponding operators, where A = {o = (0tkn) 1<k <m, k<n} 18 the set of finite (i.e. ax, =
0 for a large n) multi-indices o with o, =0, 1,... and (f;, | » € N) means the closure of the
linear space generated by the set of vectors (f,, | n € N). So using [34, Theorem VIII.25] we
conclude that the convergence holds in the strong resolvent sense. (We observe that the proof
of approximation in the strong resolvent sense is the same as the one given in [19, Lemma 2.2,
p- 250].) Since the generators Af,;m are affiliated with the von Neumann algebra 2™ the limit
Xk 18 also affiliated with A™.

We prove the part (iii) <> (iv). The proof is an immediate consequence of the following:

Lemma 8. For the measure |’y we have the equivalence of

(iii) (wWi)EertEr | Vi e R\{0})VI<p<q<m and
L SN N CopAGC™)
: my __ n n) __ J—
(iv) Spq (W) = Z Cppbeq = Z W_oo ViSp<gsm,
n=q+1 n=q+1

where B™ = (b2 _, €™ = (c{)_, and C™ = (B™)~1.

Proof. The proof is based on the Kakutani criterion [15] and on the exact formula for the

Hellinger integral
Hwv) / du dv d
JV) = — —dp,
I3 dp dp P
X

for two Gaussian measure ;= up, and v = up, (see [26]):
det By det32>‘1/4_ (detC1 detC2)1/4 )

H (i, iBy) = < det? BIEE:

det? 1€ ercz

where C; = (B;)~ !, i=1,2.
Let us consider the one-parameter subgroup exp(tEpy) =1 +tEp; € B(m,R), 1 < p <
g <m,t € R. Using (1) we have for the positive definite operator B = B in R™:

1
eXp<_§ (C exp(tEpg)x, CXP(tqu)x)) dexp(tEpg)x
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detC
(27-[)"1

1
p(—i(exp(tqu)*C exp(tE pg)x, x)) dx =dpup,,H(x),

where (B,,q(t))_l = Cpy(t) = exp(tEpy)*Cexp(tE,y) (we note that detC = detC,,(1)).
Hence, using (2) we get

(b detCpq(detC\"* ¢ detc \'? ;
(1g 1B) = der2 Cra®O+C ot Cra(0+C : 3)

We shall prove that

Cpg)+C t?

det 5 —detC + " c,,,,Aq(C) 4)

where Ap (C), 1 < p,q < m, denote the cofactors of the matrix C corresponding to the row p
and the column q. We have

Cpy()+C
det —2L2"=

2
detC + SeppAT(O) t?
= =1+ cppbeg.
detC detC 4

hence

detC 172 12 -1/2
() ()

and finally, using (3) we get
L i Livie = -1z
I+E _ d _ (n) g, (n)
H((wg)" "o i) =TT Hpg ™ mpo) = T <1+ 2 ,,’;,bq’;) :
n=q+1 n=q+1

where

BMW= > pWE, and C:=(B")"'= Y WE,.
1<r,s<m 1<r,s<m

So using the properties of the Hellinger integral for two Gaussian measures we conclude that

00 —1/2
L,
(Mrg) e | oply VieR\{0} & l_[ <1+Zc§,’2bgy) =0
n=q+1

& Sk (uf)=o0.
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To prove (4) we set Cpqy (1) = exp(tEpy)*Cexp(tEp ). Wehave formeNand 1 <p<g <m
using the identity exp(tEpg) =1 +1tEp,, t €R,

C11 Clp Clg +1tc1p Clm
Clp Cpp Cpg t+1tCpp Cpm
Cpq(t) = :
2
Clg +tclp ... Cpgtitcpp ... Cqq+2cCpg+tCpp ... Cgm+itCpm
Clm Cpm Cqm + tCpm Cmm
hence
13
Cc11 Clp Clq+jclp Clm
Ccl c Cpo + 5 c
Cpq(l)+C P rp pq T 2¢pp pm
detfz 2
1 1
Clg+tclp ... Cpg+3zCpp ... CqqtiCpg+ 2c,,,, coo Cqgm + 5Cpm
t
Clm Cpm Cqm + 5Cpm Cimm
C11 ... Clp ... Clg .e. Clm
Clp -+ Cpp .- Cpgq .ev Cpm 2
= 2 —detC+4cppA C).
Clg -+ Cpg - Cqqg+ FTCpp .o Cgm
Clm -+ Cpm -~ Cqm eer Cmm

This ends the proof of Lemma 8, and thus also of (iii) < (iv). O
4. Approximation of the variables x ,

Remark 9. In what follows we shall omit the upper and lower index n € N in all the expressions
ckr) b(ﬂ) B(n) C(n) Erfq, Sins )L](cn)’ etc.

We first prove Lemmas 12 and 15, which give a suitable approximation of x,, only on the
vector f =1¢€ L>(X™, u'g) (cf. Remark 7).
We shall also use the well-known result (see, for example, [7, Chapter I, Section 52])

—1
Zxk_l> (Zal) . 4 >0,k=1,2,....n
k

k=1

min Z akxk
xeRn

k=1

We use the same result in a slightly different form with by 20, k=1,2,...,n

Zxkbk_l) (ZZ) ) )

k=1

min Zakxk
xeR®

k=1
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The minimum is realized for

-1
bi [~ b}
Xk =— — .
For any subset / C N let us denote as before by (f,, | n € I) the closure of the linear space
generated by the set of vectors (f,, | n € I) in a Hilbert space H.
We note that the distance d( f,,+1; (f1,--., fu)) of the vector f,4+1 in H from the hyperplane

(f1, .., fu) may be calculated in terms of the Gram determinants I' (f1, f2, ..., fix) correspond-
ing to the set of vectors f1, f2, ..., fr (see [10]):

I'(fi, f2, ..., fut1)
I'(fi, fa i fu)

d(fat1s (f1,---, fa)) = min (6)

t=(ty)eR"

2
n

for+ ) tfi| =
k=1

where the Gram determinant is defined by I'(f1, f2,..., fu) = dety(fi1, f2,..., fn) and
v(f1, f2, .-, fn) =: ¥u is the Gram matrix

(fi. f (. .. (1. fo)
(fo, f) (s ) -0 (fan f)
V(flvawnafn): .

(fus SO (fns ) oo (s f)

Lemma 10. We have

_ detyn+1

d(fn+l§ (f1seees fn)) = dety, = (fa+1, fu+1) — (V,;ldn+ls dn+l),

where dy11 = ((f1, fur1), (f25 fus1)s -0 (fas fur1)) €R™

Proof. We may write

2

D tfi— funr

k=1

= Y ttw(fir fi) =2 (e fur) + (fatts fug)
k=1

k,m=1
= (yut, 1) = 2(t, dp+1) + (fut1, fur1)s

where t = (t1, 12, ..., 1,) € R". Using (58) for A, = y,, we get
Yt 1) = 2(t.dni1) = (vat = 10), (t = 10)) = (v 'dny1. dnt1),
where 19 = yn’ldn. Hence we get (see (6))

2
(Ynt, 1) = 2(t, dpy1) + (fat1, fn+1))

= min (
t=(ty)eR"

for1 =Y i fi

k=1

min
t=(ty)eR"
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= (fatts for1) = (¥ dug1odur) + min_ (ya(t —10), (t — 10))
t=(ty)eR"

= (fat1, fnt1) — (Vnildn+lvdn+l)~ a

Remark 11. In fact a more general result holds. Let us denote by A, 4 the real non-necessarily
symmetric matrix in R”*! and by A,, its n x n block after crossing the element in the last column

and row, by v, 11 = (@1a+1, @Qnt 15 - -5 Qunt 1), Bnp1 = (@ug11, Gug12, - -+, Apg1n) VECHOTS Uy,
hy41 € R". If det A, # 0 then we have

det An—H

Ap+1n+1 — (A;10n+l, hn—H) = W @)
n

Proof. It is sufficient to use the identity (Schur—Frobenius decomposition)
-1
A=A Ve Yo (A O (M ALY
hnt1  Gniinsl 0 1 hont1  Gngin+i
The generators

. ARm _ d R,u’}g’
Apn i= Ay, = dt 1T Em

t=0

of the one-parameter groups I + ¢ Ey, have the following form (on smooth functions of compact
support):

k—1 m
AknzzxrkDrn+Dknv 1<k<m, k<n, AknzzxrkDrn’ m<k<n,

r=1 r=1

where
Din = 9/0xn — %(x, (B(”))_lEkn), 1<k <n. (8)

To simplify the further computations let us consider the corresponding Fourier transforms F,,
in the variables x,, 1 <k <m,m <n,

Fo t LX(X™, i) — L2(X™, ui2).
We have
FmD;mF,;1 =iy, for(k,n), 1<k<m, m<n, and F,1=1.

Letus set uc = ®Z°:2 Ko With C™ =BW for2<n<mand C™ = (B™)~! forn > m.

We define the Fourier transform F}, as the infinite tensor product F,, = ®§im +1 Fiun where

Fon: Lz(Rm, ,bLB(u)) — Lz(Rm, LLC(n))
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is the image of the standard Fourier transform F” in the space L*(R™, dx), i.e. Fp, =
U(C™)y~'Fmy(B™), where

an
L2(R™, pgm) — LER™, pew)
e A
X X

L2(R™, dx)

L2(R™, dx).

Since the standard Fourier transform F™ is defined as follows:

1
(F"f)0) = —=—= / expi(y, x) f (x)dx,
Ve )

and, for D = B™ respectively D = C™

_ (dup@\? _ ! LI
U(D)_< dx ) _((2n)mdetD)1/4eXp(_Z(D x’x))’

we have finally for F,,:

Fun )Y = (U(C™) T F"U(B®) £) ()
1 1 O
_ Liew
~ (@) detC)I/A eXp<4 (). y)> Nag
x /expi(y,x)f(x)((Zn)’" det BM)'/* exp(—%((B("))_lx,xD dx
Rm

_exp((C™) "y, y))

. 1 .
_ _ (n)
Q)™ det C™ o eXp<l(y’x) 4((3 ) x’x))f(X)dx.

Using Fourier transform F;;, we obtain for A\k;, = FpArn(Fp)~ "

k—1 m
Akn:i<zxrkyrn+ykn>a 1<k<m<n, Akn:ZDrk(y)yrna m<k<n, (9)

r=1 r=1
where
Din() = —— — L (e (™) Ea). 1<k <n.
WVin 2
Letus setfors = (sq,...,s5,) eR and I <r<p<g<m

Enrp(s) =Fpn (Dpn CXP(ZSIAM))I =1iYpn €XP<ZS1:4\1;:)1- (10

=1 =1
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For a function f: X" — C we set

Mf = / FO)duy).
Xm

To approximate the variables x,,4, 1 < p < g <m, we use

Lemma 12. Let 1 <r < p < g < m. For any s = (sf"),...,sr(")) e R, and for any a® =
(ain), .. .,a,(,'f)) eR"™ n e N, we have
r m
Xpg € <exp<2sl(")Aln> (Za,ﬁ")Akn>1 neN, m< n> & E;q(s,a,m) = 00,
=1 k=1

(098]
n=m

oo

where s = (s™) 1

o= (™) a[(;l) =1and

o]

ST (siom) = Z IMELL (s™)|?
pq 9 b - .
n=m+1 Cg,ln) - |M€;P(S(n))|2 + "(Aqn - quDpn + kazl,k;ﬁp a/in)Akn)IHZ

(11)

Before proving Lemma 12 let us make some comments about the procedure for arriving at
the expressions used for the approximation of the variables x,, on the left-hand side of the
equivalence in Lemma 12.

Remark 13. 1. The operator A,, = Zf;ll Xrq Drn + Dyp contains xp, forr = p.

2. Since MDp,1 =0 and MD,,exp(sA,,)1 # 0 we may first think of considering
exp(sApn)Agnl, 1 < p < g < m (similarly as in [23,24] where the linear combinations of
ApnAgn were used). But this is not sufficient for the approximation. We might then try to con-
sider the expression

m
exp(sAp,,)<ZozkAkn>, I<p<m<n,

k=1

with oy = 1. The calculations show again that these combinations are still not sufficient to ap-
proximate x,. We arrive then at the suggestion to take

r m
exp(ZSlAln) <ZakAkn), 1
k=1

=1

N

r<p<q<m<n,

which is the choice made in Lemma 12.

3. For approximation of the variable x,, we use p different combinations, corresponding to
Ezq (s,a,m), 1 <r < p. All these combinations are essential, i.e. none of them can be omit-
ted. This can be seen by constructing corresponding counterexamples and is in a contrast to
the previous cases considered in [23,24] where only one combination of A ,,A,, were used to
approximate X .
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4. To make the expression erﬂq (s,o,m) in (11) larger (to apply then the criterium in
Lemma 12) we chose s € R” such that

ME () = max|mer? o)
seR”

(which is possible, |M&," (s)|> being continuous and bounded).

5. With the same aim we chose a,ﬁ") in such a way that
m 2 m 2
‘ (Aq,, —XpgDpp + Z a,ﬁ")Akn>1 =( )rnﬂikn 1 <Aqn — XpgDpn + Z tkAkrz)l
t)eRm=

k=1, kq k=1, kq

6. The right-hand side of the previous expression is equal (see (6)) to

F(glag2a"'ag55"'9gln)
I—V(glsgzs-"1gq—17g(]—11"'sgi’l’L)7

where
gk =gkn = Awml, 1<k<m, k#q,  gb =gk =g —xpsDpn)l.  (12)
Proof of Lemma 12. If we put 3, t, M&,” (s/™) = 1 we get

2

r m
“ [Ztn exp<2s;">A,,,) (Za;ﬂmkﬂ) _ qu} .
n =1 k=1

2

r m
= || |:Z ty eXp(ZSl(”)Aln> (Aqn —XpgDpn +xpgDpn + Z Ollin)Akn> _ qu:|1
" =1 k=1, ksq
.
5, {x,,q <D,,n exp<zs;n>Al,,> ey (s<n>))
n

=1

2

r m
+exp(2sl(")Azn> (Aqn — XpgDpn + Z a,ﬁ")Akn>:|1

I=1 k=1, ksq

2

2 2
=Y 1 [nqun ’
n

r
(Dp,, exp(Zs[(")Aln) - Mé,fp(s(”))>1

=1

+

T

r m
exp(Zsl(")A1n> (Aqn — XpgDpn + Z a,ﬁ")Akn) 1

I=1 k=1, k#q

_ zr,%[uxmn%cgy ()P

n
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1

+

r m
exp(Zsl(")Aln> (Aqn —xpgDpn+ > a,§”>Akn)1

where we have used the equality ||§ — M&||> = ||E]|> — |ME|?:

Definition. We shall say that two series Y, a,, and ) b, with positive members are equivalent
and shall denote this by > a, ~ Y, by if they are convergent or divergent simultaneously. We
note that if a,, > 0, b,, > 0, n € N, then we have

3 a”b ~ Z—”. (13)
neNan+ n neN "

2

.
[Dpn exp(z sl(")Al,,> — MEP (s<”>)] 1
=1

= | Dpu? — | MEF (s™) [} = ) — |M&? (s™) .

Using (5) we get, setting b = (M&,” (s™))" 1V e R¥, N e N,
m+1+N r m 2
. (n) (n)
min t, ex s, Ap op Ain | —xp4 |1 ‘(t,b):—l

~1
N ("’+1+N MET () )

Z (n)

el Cpp — IME&,P (sM)]2 + 1(Agn — XpgDpn + kazl,k¢p azin)A"”)l”z

Due to Remark 9 we shall write C (respectively C) instead of C™ (respectively C™), where

(n)  (n) (n)

1y €l oo Cim
(n) (n) (n)
cm — Clp Gy oon Gy
i S e i
(n) (n) o)
‘1 ‘12 e
(n) (n) (n) )
cm ) ¢ oy e g
c}nnz Cg;g . ci’i) + cgé) 4+t Cr(r’:r)n

Remark 14. To simplify the further computations we assume that the measures (gm) for 2 <
n < m are standard: B™ = I. Since ,u'g = ®Z°:2 W pe this assumption, which only concerns
finitely many of the w g ’s, does not change the equivalence clrar}ss of the initial measure 1’y and
the equivalence class of the corresponding representation 7%#5
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Using this remark, notation (12) and Fourier transforms we conclude that

(g1, 82 ..., 8m) =detC,

ie. T'(gins 82ns---» gmn) = det €™, (14)
since (g4, &p) = (é)pq, 1 < p, g <m.Indeed for p # g we have

p—1

qg—1
(gqnv 8pn) = (&pn» &qn) = (Zxrpyrn + Ypns szq)’sn + yqn) = ()’pnv )’qn) =c
r=1

rq°
s=1
p—1 2

Z XrpYrn + Ypn

r=1

(&pn»&pn) =

r=1

p—1 p
=D Pyl + lypul®> =Y e = (™),
r=1

(we reinserted here the upper index n in cﬁ,"q) for clarity).

In the following we shall need a variant of Lemma 12 using Remark 13 replacing the
|ME&,” (s)| by its maximum Z,”. Let us set (see (10) for definition of &,” (s))

257 = max|M& ()] (15)
seR"

Now we see that using s and « as in parts 4 and 5 of Remark 13 we have

.
(s 0,m)

-y max o cr |M&," (s™)[?
el = maxgo e IMEL (52 + 1| (Agn — Xpg Dpn + S gz 0t A 1112
(a3 3 - maxw cpr |ME," (s™)]? -
- Cop 1 (Agn = Xpg Dpn + X4 4t p @ Akn) 112
(15) g’
(n)

F(glngnnuagc]])n
" Cpp + I (g1n,82n

----- 8q—1n>8q+1ns-+>&mn)

Rem=aer ErpF(glagQ,s"'sgq—lvgt]+11"'1gm)
n Cpp[‘(g13g21'--3gq—lvgq+19~-‘9gm)+[‘(glsg21"'1g57"°7gm)
— 5 (m) .:Z E'PI(81,82,---+8¢—1:8g+1--->8m) (1=4)Z E,:pAg(é(n))
ra - (g1, 82, 8m) det Cm

For the latter equality we have used the fact that

Cppr(glvg2v--~7gq*1’gl]+17"~7gm)+r(g1’g27-~~vgcl;’~~-’gm):F(glsg21"'sgm)v

which follows from (26). Indeed it is sufficient to take in (26) C = C — ¢ opEqq and Ay = cpp.
Then we have
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(g1, 82, ..., gm) =detC =det(C — CcopEgq +cppEqq)
= det(C — cppEqq) + ppAG(C = cppEqq)
ZF(gl$g29"'9g57"'vgl‘n)+CppF(g11g21"'1gq—17gq+ls"'sgm)'

So we have proved the following lemma.

Lemma 15. Let 1 <r < p < g < m. Then for some s; = (sl(”))flozm_irl, o = (“/Sn))?,imﬂ’ where
sl("), a,ﬁ") eR, 1<I<r, 1 <k<m, we have
r m
Xpq € <exp< sl(")Al,,) (Za,ﬁ")Akn>l ‘ neN, m< n>
=1 k=1
g7 AL(C™)
& X m=Yy 1T~ —c. (16)
rq Z detc(n)

n

5. The proof of (iv) = (x4 n 2A™, 1< p<m, p <gq) in Theorem 5

Idea. We prove firstly that x,, n 4™ for some (p, q): 1 < p < g < m if conditions (iv) are valid.
Further we prove that this also holds for all such (p, ¢). For this it is sufficient to prove that

X, >CS, forsomeC >0, (17)

where

Swi= > Sh(u"). and Z,:= Y X (m) (18)
I<p<g<m ISr<p<g<m

(see (16) for the definition of Elr,q (m)). Indeed, in this case S,, = oo since Slfq (W™ =oc0Vp,q:

r

1 < p <qg <mbyLemma 8 hence X,, = oo by (17) and finally we conclude that qu (m) =00
for some r, p,q: 1 <r < p < g <m.ByLemma 15 we get that x,, n ™.

The proof of (17) is based on Appendices A—C. In Appendix A we define the generalization of
the characteristic polynomial for matrix C € Mat(m, C) and establish some its properties. These
properties are used then in Appendices B and C.

In Appendix B we estimate 57 = max,crr |[MEL? (1) |2. This estimation is based on

Lemma B.1 which gives us the exact formula for

R,
M%}f)q(l‘)=(anTeXpl:§:f=ltrEm)1’ 1), t=(,t,...,1p) eRP, 1<p<m

(see (44)), where Dy, is defined in (8). The latter formula is based of the exact formulas for the
matrix elements

m

$p(1) = ¢ (1) = (T8

eXp(er:I lrErn)l’ 1)’ r= (tr)p < R[,7 ! < P g "

r=1
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(see (40)) and theirs generalizations (see (42)). We cannot calculate explicitly

Pq

— 2
E77 = max| MM (1),
teRP

but we are able by Lemmas B.1 and B.2 to obtain the estimation 5/ > ¢,/4,

12...p—1
(Mlz‘..ﬁ_lf(cé'f?;))z exp(—1)

12...p—1 12...p

P ._
T T M () Y A2
12..p—1\&p 12.p\%p k=2 Mk p

(see (47) and (48)). The crucial for proving (17) is Lemma 16 dealing with some inequalities
involving the generalized characteristic polynomials. This lemma is proved in Appendix C.
We use the notations of Lemma 8 (see Remark 9):

> © M) pq o) 0 q
st(up)= Y cmpm = 3 ehaCn) _ sn cpaCn)
P A detC™ detC,,

n=q+1 n=q+1 et m P m

Let

k—1
A=00fs R, A=0wis, =0, k=) ¢, 2<k<m, (19)
r=1

fo=e Z P 2<qg<m, fH=ew!l=¢y,

I1<r<p<q
11 12 22
fi=e(W' +¥F+u), (20)
C11 C12 Clm
Cl2 €2 ... OCmnm
Cm == )
Clm Cm .- Cmm
C11 C12 Clm
A cl2 ci1+en ... Com
Cn= ) . (21)
Clm Com oo Cl1t o Cum

Obviously, we have é‘m =Cp ():), where A € C™, is defined in (19) and we use the notation
Cn(A) :=Cp 4+ D 4= MEk-
We have the following expressions for S, and X,,;:

00 m k—1 k 00 m 7 k
Sem Y shm~ 3 Z= et NG Do A Cn)

- detC, detC
1<r<k<m n=m+1 mn n=m+1 n




654 S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634—681

We have replaced the series

o0
B)= 2. chbiy

n=q+1
with the equivalent one
o
Lo, my. (n) g,(n)
Spa(1g)~ D ey
n=m+1

If we use the equality Cn = Cp(h), we get

’-'rpAq C(”))

Ty = Z X m) = Z Z Zpg(m) = Z Z Zun

A(n)
1<r<p<qg<m 2<q<m 1<r<p<q rgemi<iay<q n detCy
_y S icrcpeq EPVAL(CH()) an 3 a2 i<r<peq ¥ AGCH ()
det Cn(3) - det C(3)
—] m q >
JqAqg(Cm(R))
(28)2 Zq =2Jq (22)

detC,, —i—Zq 2)‘ Al (o™ (A ))
The implications S, = co = X, = oo is based on the equality (see (26))

AL (Cn (W) A’,E(Cm)+2 S Ak kARG (23)

r=1 k<iyj<ip<--<i,<m

and on the following lemma.
Lemma 16. For i = (A, L, eR™, A =0, A= er:i Crr, 2 < k < m, we have
If i= AR (Cn (D) — e AR (Cu (M) >0, 2<k<m. (24)
Let us suppose that Lemma 16 holds. Using (13), (22)—(24) we have

@ e Y0y fyAR(Cn (D) e e YN [y AG(Cr (W)
N A detC + Y Ay AN(Cu(la))) T S ety + Y1 £ AL(C (V)

(a3 3 Y g2 4 AG(Cn(R)) @9 3 g2 hq AG(Cr (A1)

- detC,, - det C,,
m. 5 A4
23 —2AqAq(Cry)
(>)Z Zq_Z qig\~m =5,
- det C,,

Finally we have X, > S,,.
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Corollary 17. If S,fn(,u’g) = 00 for some 1 <k <n < m then one of the series X}, (m), 1 <
r < p <q < m, is divergent and hence by Lemma 15 we can approximate the corresponding
variable x pg.

Remark 18. The approximation of other variables x,;, 1 < p < g < m, follows the schema used
in [23]. For the particular case 1 < m < 4 see also the schema used in [22].

Further we can approximate the remaining variables xi,, | < k < m < n, as in [23]. This
implies the inclusion (A™)" C L*(X™, u'p) and so the irreducibility of the representation (see
“The idea of the proof of irreducibility” at the beginning of Section 3). O
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Appendix A. The generalized characteristic polynomial and its properties
We define G, (1) the generalization of the characteristic polynomial pc(t) = det(t1 — C),

t € C, of the matrix C € Mat(m, C):

m
Gpn(A) =detCp (1), AreC™, whereC,(1)=C+ ZkkEkk. (25)
k=1

We denote by

M2 (C)  (respectively A'}2" (C)), 1<ii <« <ir<m, 1<ji<-<j <m,

the minors (respectively the cofactors) of the matrix C with iy, i2, ..., i, rows and ji, jo, ..., jr
columns. By definition

AB™(C)=M)(C)=1 and M3"(C)=Alj(C) = detC.

Lemma A.1. For the generalized characteristic polynomial G, (A) of C € Mat(m, C) and A =
(A1, A2, ..o, Am) € C™ we have:

m m
Gpu(A) = det(C + ZAkEkk> =detC+ ) > Kiyhiy - iy A2 (C).(26)

k=1

r=11<i1<iz<--<i,<m

Remark A.2. If we set Ay = Ai, Aiy ... A, Where @ = (i1, 2, ....iy) and A%(C) = A}'Z" (C),
Ag=1, Ag(C) = det C we may write (26) as follows:

Gn(A)=detCp, (1) = Z Ao AS(C). 27

PCac{l,2,...,m}
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Proof. Probably Lemma A.1 is known in the literature, but since we do not know any precise
reference, we provide here a direct proof. Obviously G,,(A) is a polynomial in the variables

A= (A1, A2,...,Ap) € C" of order m. A direct calculation gives us
1 0 0 0 0
0 1 0 0 0
r .
C1C 0 0
0r10h2 ... 0 Clr+l  C2r41 -+ Crrdl  Cralr+l T Ar4r ... Cr+1m
Clm C2m ce. Crm Cr+1m coo Cmm A
hence
"G,

= A}377(C).
=0

Or10A ... 0N,
Similarly we have for | <ij <ip <---<i, <m

L — Aliuiz...t:, (©) -
8)\.1'1 8)\.[2 . e 8)\,ir 2=0 i102...0p .

Lemma A.3. For C € Mat(m, C) and > € C™ we have

Gm(M) = Afj(Cn(L)) = det Cp (1) = det Cp + Y A AL (Cu (M),

r=1

m
AL(Cn)) = ALC) + Y A ATE(Cu (217)),
r=1,r#k

Gm(A) = AY(Cn(3)) =det C,y (1) = det Cpp + Z)VA;(Cm )

r=1

m
AL(Cn) = AC + Y 2 ATE(Cu (A1),
r=1,r#k

where for .. € C"™ and 1 < k < m we have set

)"[k]:(05507)"k+155)"m)7 )‘-{k}z()\'la)‘Qaa)\'k’O”o)

Proof. We have for m =2 using (26)

G2 (1) =detCy + A AL(C2) + 12A3(Ca) + AraAL3(Ca)
=detCs + A1[A](C2) + A2A13(C2) ] + 22A3(C2)
=det C; + A1 A (C2(AN)) + 1243 (C2 (A1),

(28)

(29)

(30)

3D

(32)
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G2(3) = detCr + A1 A} (C2) + A2[AF(C2) + 1AL (Co)]
=detC; + 21 A} (C2 (A1) + 2243(C2 (11%)).

For m = 3 we have

G3(A) =det C3 + A1 AL(C3) + 1243(C3) + A3A3(C3) + MA2A3(C3) + 1Az AL (C3)
+ 12A3A3(C3) + A1A2A3A153(C3)
=det C2 + A1 [A](C3) + 22413(C3) + A3A[3(C3) + A223A133(C3) ]
+ 12[A3(C3) + A3A433(C3) ] + A343(C3)
=detC3 + 11 A7 (C3(AM)) + 2243 (C3 (A1) + 1343 (G5 (AP)),
G3(h) =detC3 + A1 A[(C3) + A2[A3(C3) + L1 A3 (C3)]
+ A3[A1(C3) + M A(C3) + AR (C3) + LA A[33(C3)]
=detC3 + 11 A (C3 (A1) + 2243(C3 (W) + 1343 (G5 (A 1)).

For m > 3 the proof of (28) and (30) is the same. The identity (29) follows from (28) and (31)
follows from (30). O

The proof of Lemma 16 is based on Lemmas A.4, A.6 and A.7 concerning the properties of a
positive matrices.

Lemma A.4. (Sylvester [10, Chapter II, Section 3]) Let C € Mat(n,R) and 1 < p < n. We

consider a matrix B = (blk)};)_;'_] defined by bi, = 12 pl (C). Then the following Sylvester de-

terminant identity holds:
12...p n—p—1
detB=[M,; 7 (C)] detC.
Corollary A.5. If p = n — 2 we have in particular

Ap(C) AT (C) n—1n p
=A C)A,(C).
AZ_I(C) AZ:%(C) n-in(©OA(C)

For arbitrary 1 < p < g < n we have

AL(C) ARG (O)

= AYC)ALL(C)
R AlC)  AL©)

)4 p
‘A,,(C) Aq(C) = AJ(O)AL(C).  (33)

AL(C)  AG(O)

Lemma A.6. (Hadamard-Ficher’s inequality [12,13], see also [27]) For any positive definite
matrix C € Mat(m,R), m € N, and any two subsets o and B with § C o, 8 C {1,...,m} the
following inequality holds:

M@ — M@nB)|_ ‘ A@  A@UP| 34
M@UB)  M(PB) A@np) AP |77
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where M (o) = M5 (C), A(x) = AS(C) and & ={1,...,m}\ a.
More precisely, see [12, p. 573]; [13, Chapter 2.5, Problem 36]. See also [27, Corollary 3.2,

p. 34].
Let us set as before (see (25)) for A = (A1, ..., \x) € CF and C € Mat(k, C)

k
Gr(0) =detCr(r), where Cy(A) =C+ Y A Epr.
r=1
In the following lemma we use the notation for A = (A, ..., Ax) € Ck:
MWl= o, e, 00 ), 1<K,

and G;(A) = M|31(Cr(1)), 1 <I<k.Fora and Bsuchthat  Ca € {1,2,...,/}and ¥ C B C
{I+1,...,k},with] <k, C € Mat(k, C) we set

(A%C) = ALA©), and GWh= Y aALK©.
PCacfl,2,...,l}

By definition we have

Gi() = AL (C(h) = (AD(Ce0)), T 7k = GrlE 4. (35)

Lemma A.7. We have for 1 < p <1 <k and C € Mat(k, C)

Gi(h) Gr(JP) + 2, G (AIPh ] 36)
- I+1..k°
It GrOI T+ 2 GrOID T
For the positive definite matrix C and A = (A1, ..., Ag) € R¥ with A =20,r=1,...,k wehave
2 0 Gy | GG} Gr(Wh)
(Gix )) G h) | GeodphyPiLk oo el Lk > 0. (37)
! kP e GG

Proof. We have for 1 < p<I<k

k
0G() _ 3 R
5, <C+ZArE> p(C(IM) =G (PP, s (38)

r

Gr(h) = hpGi (WIP1)! = G|, o= Gy (A1),
hence

Ge) = Gk (WP) +3, G (W), 1< p<k.
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Similarly, we have

I+1..k
I+1..k

pl+1..k

+4pGi ()"]p[)pl+l...k’

(35
GI() = Gy (PY) + 5, G, (W) 1= Gy (3171)
Finally we get (36). Using the following formula:
a+bx\ _ bc—ad
c+dx)  (c+dx)?

we conclude that (36) implies the identity in (37).
To prove the inequality in (36) we get

Gy Gr (W7

pl+1..k I+1..k
Gk()\]p[)pl—l-l..‘k Gk()‘]p[)l—t-l..‘k

Ap(Cr(aIrhy) AD(CrIPhy)
Aifi}::ﬁ(ck(xf[» ARG P
‘ AL(C)  AGHRC)| o

ALOR©)  AR(C)

where C = C; (AP, a ={pand B={I+1,1+2,....k}. O

Appendix B. Calculation of the matrix elements ¢, (¢) for ¢t € R?, their generalizations
and £/7

Let us recall (see (10) and (19)) that &g = Y *Z1 ¢,,, 2 <r <m, Ay =0 and

— 2
a,fq=trr€1%)p<|Mé,fq(t) . 1<p<g<m. 39)

To estimate

max| MEPT (1| = max|(£77 ()1, 1),
teRP teRP

where £79(1) =i Ygn exp(Zle t,;l:,) we shall find the exact formulas for the matrix elements

r=1

p() =9 (1) = (15,

— p P
exp( r:ItrErn)l’ 1)7 = (tr) € R ’ 1 g p < m5 (40)

of the restriction of the representation T & ‘W5 on the commutative subgroup (exp(Zf:1 tEm) |
t € RP) ~ RP of the group B(I)\I and theirs generalization defined below. We note that

exp(X)_y trErn) =1+ 30 trEpn.
For1<p<gq, p,qeNweget

p p r—1
rf)q(t) = qun eXP(erArn> = i))qn eXpi|:er<Zxkr)’kn + yrn>:|; 41

r=1 r=1 k=1

we have used the expression A\:n = er{;} Xier Vin + Yrn = Zzzl Xir Vin (see (9)). We have
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p
~R,u'p
Texp(g: (- Ern) exp( E Iy rn> —eXpl|: E tr( E xkrYkn):|
r=1

= expi [é(zxkrtr)}’kn}

To obtain £PP (t) we generalize the function

~R Mm
exp(X_ tr Ern)

in the following way. We replace in the latter identity the vectors (z,...,1,) € RP~*+1 by
(t,k)f:k € R?~%*1 and denote the result by Epp(0):

48

ty ¢
Epp(t) =&pp éi éi —CXP1|:Z<ZXkrtrk+tkk>ykn:| (42)

k=1 \r=k+1
Ipr tp2 ... Ipp

To obtain £79(t) we consider the function &, (; t;4) = &pp (t) exp(ityq ygn). We have

581

. Iy 2
Epq (15 1qq) = &pg

131 13

Ip1 Ip2 ... Ipp; lyq
—expz|:2< Z xkrtrk+tkk>Ykn+tqqunj|

k=1 \r=k+1

Finally we have

3&pp (1)

0Epq (25t
1 £PI(r) pa (L3 1g9)
0tpp

=t 1<r <k<p dtgq

EPP(1) =

tqq:()v Ter =T, 1<"<k<[7

Let us define ¢, (t) = [ &, (1) din(x, y), ¢pg(t) = [£pq (1) din(x, y), where u(x, y) = ur(x) ®
(®Zim+l tew (¥)) and py(x) is the standard Gaussian measure in R x R2x ... x R™,
Using definition (39) and the previous equalities we have finally

2
oo _ | 3900 |
t€RP] Otpp |y, = 1<r<ks<p
Apq (1) |?
£79 = max| 2Pra®) (43)
(e 9q  11,0=0. 11 =11. l<r<k<p
Our aim is to estimate 579. We shall use the notation Cy := C{12,... &y for Mat(m, C) and 1 <

k < m (see notation Cy, for  Ca C {1,...,m}in Lemma B of Sectlon 3).
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Lemma B.1. For 1 < p <q <m and ¢,4(t) = fépq(t) du(x,y) we have

I
1 2
Opg | 31 132 133

Ipt Ip2 Ip3 ... Ipp;

lqq

))’kn + tqq)’qn:| du(x,y)

(P=D(p-2) k=1 \r=k
R 2 +p
- ;exp<—l[(CT, T) - (Ci (t)ld,d)]), (44)
JdetCr () 2
where we set T = (t11, 122,133, ..., tpp; lgq) € RrPHL C e Mat(p + 1, C) is defined by
i1 c12 €3 clp Clg
Ccl2 €2 €23 C2p  C2q
€13 €23 €33 C3p  C3q
C:=Cpq:=Cup,. . pg:= ,
Clp C2p C3p Cpp  Cpq
Clg C2q C3q Cpq  Cqq
(r=D(p-2)
d=(do1(t),d31(0), ..., dp1(1); d32(t),daa (1), ..., dp2(0); ... dpp—1 (1)) ER™ 2,
p
dps(t) = trses(t), 1<s<r<p, ex(t)z(CT)schsktkk'i'qutqqa I<s<p,
k=1
the operator
-1 -2
Ci(t)=1+C@) eMat(%,C)
being defined by
p@~'CiyD@)™!
C11 +t2_12 C11 c12 c12 Clp—1
c11 ..o 11 -H;IZ c12 c12 Clp—1
_ c12 c12 2 +I3_22 €22 C2p—1 . (45)
c12 c12 (&%) &) +t;22 C2p—1
Clp—1 .o Clp—l C2p—1 C2p—1 Cp—1p—1 +t1:p2,1
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where D(t) =diag(t21,...,1p1: 132, .-, 1p25 143, ..., 13} .. .5 tpp—1). We have

p p
detCi(n =1+ > alod el M]'PI(C). afi= )tk

r=11<i1<ir<-<iy<p s=k+1
Lemma B.2. For 1 < p < g < m we have
= P4 2 l]/Pq’

where

2.p-1
(Mllz..ﬁ—hf(cp,q))z exp(—1)

12..p—1 12...p

WP — _ .
12 =1 (Cp)M 57 (Cp) + Yy M (AL (Cp))?

M

List of formulas for ¥ ¢ for small p and p < q.

c , SXp(=1)

gl = exp(—1), plo= 24—~ 1<gq,
C11
b (MIHZexp(~1) by (MID7exp(=1)
V=" V= m o 254
Cll(M12+Cll) Cll(M12+C11)

(M) exp(=1)

3q —
MBMZ + cii(MI32 + (c11 + cn)(M[3)?

s (M35 exp(—=1)

Remark B.3. We have ¥ 77 > W/” where

12...p—1 _ _
prr . Malpm1, €D (ARG (GO
0o = z = == N
AR(CHG () AD(CHG,(0)  AD(CHG ()
and
12..p—1p 2 —1
(MIZ...p—lq (Cpg))e
yrd > llfopq = .

AD(CHG ()

COMIBMIZE i (MIZ)2 4 (crt ) (MIZ)2 + (e11 + e+ c33) (M[33)2

(46)

(47)

(43)

(49)

(50)

(S

(52)

(53)

(54)

Proof. For positive definite matrix C,, we conclude by Sylvester lemma (see Lemma A.4 and

(33) of Corollary A.5) that

AK(Cy)  AP(Cy)

= AK(C)AB(C,y) — A (Cp)AUC,) = (AP (C),
Ag(cp) AII;(Cp) K (Cp)Ap(Cp) kp( ») @( ») ( k( p))
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hence
2
(AZ(Cp))” < ALCHAN(C), 1<k<p.

Using the latter inequality we get (see (48))

p
12..p—1 12... - 2
M12...1[:—1 (CP)MIZ.A.[I:(CP) + Z M (A7 (Cp))
k=2

_AP(C,,)A“(C,,)+Z,\k (AP(Cp)’ < AP(CI,)|:A3(C,,)+ZA1<A (C,,)]
k=2 k=2

(26) ~
< AD(C,)HG,0). O

Proof of Lemmas B.1 and B.2. For a positive definite operator C in the space R” we have the
well-known formulas:

1 1 1
ex ——(Cx,x)) dx = . (55)
venr ) p( 2 JderC
Using formula (55) we obtain the following formula for d € R™:
1 1 1 (C7'd,d)
——— | ex ——(Cx,x)—i—(d,x))dx: ex ( ), (56)
S R/ p( 2 Jaec P\ 2

and as a particular case for m = 1 we have

1 d?
F/exp(——cx +dx> dx—%exp<zc> 57

To obtain (56) from (55) we use the following formula:
(Cx,x) —2(d,x) = (C(x — x0), (x —x0)) — (C™'d,d), wherexo=C"'d.  (58)
Indeed we find x¢p € R™ and dy € R such that
(Cx,x)—2d,x) = (C(x —xp), (x — xo)) + dp.
We have
(Cx,x)—2d,x) = (C(x —xp), (x — xo)) +dy=(Cx,x) —2(Cxp, x) + (Cxg, x9) + dop,

so Cxg = d hence xo = C~'d and since (Cxo, x0) +dy = 0 we conclude that dy = —(Cxq, xg) =
—cc Y, ctay=—(C"d,d).
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Fourier transform for the Gaussian measure ¢ in the space R™ is:
— [ ey vduce ( Le >) R
——— [ expi(y,x x)=exp|l —=(Cy, , e R™.
T | epithRduc Pl —5(Cy.y y
Rm

Let p = 1. Using (55)—(57) we have

1
o1(t11) = / exp(it11yin) du(y) = exp<_5011t121);

R

. 1
11115 1qq) = / expi(t11Yin + tgqYqn) A (y) = exp(—i(cutfl + 2c1gtityq + qulgq));

R2

ad’lq(tll;tqq)

MEYM (1)) = f iYgn exp(it11y1n) du(y) =
dgq

14q=0

Mg n)|* = iy exp(—eutfy):

c%q exp(—1)

C11

~1 1 2 1
= q:maﬁM& q(t11)| = =y,

nie

we have used the obvious result
1 1
max f(x)=f| — ) =—, where f(x)=xexp(—ax), a > 0.
xeR a ea

This proves (47) for (p,q) = (1, q).
To prove (44) in the general case we note that

p
Z( Z Xkrtrk + [kk>ykn + 19 Yqn = (a(x) +7, y)RpH s
k=1 \r=k+1

where

. . 1
y = (yll‘la y2na L ] )’pn, )’qn), T = (tlla t227 M) t])pa tqq) ERP+ 1)

p
a(x) = (a1(x), ax(x),...,ap(x); 0) € RPYap(x) = D xurtrt = (X
r=k+1

X = Z Xkr Egr, 1= Z tir Ekr, 1<k < p.

l<k<r<m l<r<k<m

Using the definition of the Fourier transform we have

1
2 .2
= —Ciql11 eXp(—EC“t“),

(59)
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d’pq(t tqq)—/ / expl|:2<2xkrtrk>ykn+tqqun:| du(x, Y)

Rp+1 k=1

. 1
:/expz(a(x)—i—T, y)d,u(x,y):/exp[—i(C(a(x)+T),a(x)+T):| dug(x).

Since
(Cla(x)+T),a(x)+T) = (Ca(x),ax)) +2(a(x),CT) + (CT,T),

we have
1 1
¢pq(t;tqq)=exp|:—§(CT, T):|/exp<—§[(Ca(x),a(x))—I—2(a(x),CT)]> dur(x). (60)

To calculate the latter integral we use (56). Let us introduce the notation

(p=D(p=2)
= (X123 X13, X235 .. .3 X1p,...3 Xp_1p) € 2.

‘We show that

(Ca(x),a(x)) +2(a(x),CT) = (C(H)X,X) +2(d(1), X)

for some
- —D(p-2
dn) eRT"  and C(t)eMat((p)z#,R)
We have
(a(x).CT) Zak(xxcm—z Z Xerteer() =Y Xartrrex(t)
k=1r=k+1 1<k<r<p
= Y Xda() = (X.d@)).
1<k<r<p
where
(p=D(p=2)

d(0)=(dn(®) o, €R 2,

P
dpic(1) = trcex (1) and ex (1) = (CTIk = ) Chrlyr + Chglyq, 1 <k<p—1.
r=1

Further
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14 p
(Ca).a®)= > cwa®a, )= Y cn I Xk Y Xnslon

1<k,n<p 1<k,n<p r=k+1 s=n+1

= Z Z CknlrklsnXkrXns = (C(I)X» X)»

ISk<r<p I<n<s<p
where the operator C () is defined by its entries:
(C(t))krm = Cintrktsn forl <k <r<pandl<n<s<p. (61)
This prove the representation (45) for the operator Cy(¢). Finally we have
(Ca(x),a(x))=(C(1)X,X) and (a(x),CT)=(X,d@)).

Putting the latter equalities in (60) we get using (56)
1 1
Bpq (L5 1gq) = exp[—E(CT, T)} /exp(—i [((CHX, X)+2(X, d(t))]) dpr(x)

= : : CcT, T C _1d d
- Jmew er(alern - @oao.ao)),

where Cy(t) = I + C(¢). This proves (44) of Lemma B.1.
We estimate now = P4. For (p, g) = (2,2) we get

1 1
)= ————exp| —=[(CT, T) - (C1 () "'d(t),d(t
P2 (1) ETeN0) p( 51¢ )= (C1@)~'d () ())])
1 1 (c11t11 + c1atn)?t?
= 7@(13(—5[611%21 + 2ciatitn + ety — 3 ).
1+C11t221 1+C11t21
where
T =(t11, h2), d(t) =dr1(t) =t1e1(t) =t (critin + c12t22),
e1(t) =ciiti1 +ciatn, ex(t) = ca1t11 + c2t22,
c11 €12 (1Y) 2 2
C=0C= , C(t) = c11t5,, Cit)=1+cq1t5y,
2 (CIZ sz) (3] 1155 1(1) 1155
(1) (c11t11 + crat)cit?
= | —(cutin +c2t2) + —
0t ]+C11t21
L oxP —3[(CT, T) — (C1(1)~d(1), d(1)])
JdetC1() ’
0¢2(2) (cr1t11 + catn)eint?
= | —(cattin +c22122) + 2
017 1 +ci1t3;

5 exp(—3[(CT, T) — (C; ()~ 1d (1), d(1))])
J/detCi (1) '
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Let e;(t) = c11t11 + c12t22 =050 111 = —c12t22/c11. In this case

2 2 C%z 022 2 M1122 2
1
(CT,T)=cnty) +2ci2ti1t + coty = (C— — 26— + C22>f22 = c—tzz,
1 1

2 12

c12€12 c1i¢cn —¢ M

clatil + et = (— + 022>t22 == "2 _ 12
€11 c11 C11
Finally
2|2 , S 2 |aga) [P
|ME® ()| = [Miyamexp(iti + it (x12y10 + y2n))|” =

122 e1(1)=0, r1=t2

12 12
(/‘:uz t22)2exp(_ My ) M2 M2
_ 11 cil 12 .2 _ 12 2
= 3 > tzzexp|: ( + c“>t22:|.
I +c1t3, C11 C11
We have used the inequality
1+x<expx, xeR. (62)

Hence if we denote t = (t11, 12) € R2 we have using (43)
- 2 (M{3)* exp(—1)
E? =max|MEP ()] > 0P =
teR? cri(M5 +c1y)

This proves (47) for (p, q) = (2,2). For (2, q), 2 < g, we have

t .

b2 <t; try: 1 ) = / expi[tiiyin + (21X12Y10 + 122Y20) + tqq Vgn | dpe(x, y)
;o lgq

RI+3

1 1
2 2 2
= eXp(—E |:C11t11 + catyy + Cqqlyy + 2c12t11122

,/l—i-cntzzl

+ 2c14t11tqq + 202420144 —

(criti1 + ciatn + Ciqlgg) 13, i|>
1+611t221

1 1
- exp<—§[(CT, T)—(C (t)]d(t),d(t))]>,

JdetCr ()
where
) 3 )
T =(t11,12; tgq) €R?, d(t) =t (c11t11 + ci2tn + Cigtyq) =: re1(t) € R,
e1(t) =ciiti1 + ciaton + cigtyq, ex(t) = ca1ti1 + et + Caqlyqs
ci1 c2 Clg )
C=Cy=|c2 ¢ <), Ci1(t) =detCi(t) =1+ 1115,
Clg C2q Cqq
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8¢2q (t; tqq)

(criti1 + c1at22 + Ciglgq)Cigty }

= |:_(C1qt11 + c2qt22 +qutqq) +

dgq  liyy=0 L+t
1 1
xexp| —=|(CT,T)— (Ci(t _ld,d _,
p( Sler. D= (o )]> detC1()
Aoy (231, t t 12
9924 (13 4q) = [—(c1qt11 +cogt) + (eun +crz 2;)01(1 21]
Mgq  l1y0=0 1+enty,
( 1(CT T)) !
x exp| —= , _ .
2 JaetCi() |, o

Let t,4 = 0. We chose d(¢) =0 so we have c11#1 + ci12t22 =0and ] = %21'22 In this case

2 2 C%z 022 2 M1122 2
1
(CT,T)=cnty) +2ciatiitn + coty = (C— — 2C— + 622>t22 = C—tzz,
1 1 1

cl1cg — C12€1 M

q — q q

+ Czq>t22 = I = 1.
11 11

C12€1q
Cl11

Clgtil + g2 = (—

Finally, if we denote t = (t11, t22) € R2, we have

2q 2 . . . 2 8(1)2(1 (t; tqq) 2
|ME*1(1)|” = |Miygnexp(itis + it (xi2y1n + yon))|” = | ———L
dgq  li,y=0,¢1(=0
Mg \2 M5 o 12
(Tllqm) eXP(_TIftzz) 6 (Mi; \? M2 5
= 5 > o) exp| —| — +cu |t )
1 +ciits, ‘1 cl
By (59) we conclude using (43) that
324 (13 14q) | _ M?epD

— 2
azq:max|M$2q(t)| > max
teR? mp€eR

= 12, 2y
dqq 144=0, €1 (1)=0 cu(My; +cty)

This proves (47) for (p,q) =(2,9),2 <q.
For n =3 we have

m 1 1 »
¢3<t21 2 t33)ZWCXP(_E[(CT’T)_(CI(t) d’d)]>’

131 132

where

T = (t11, 122, 133), d(1) = (da1 (1), d31 (1), d32(1)),
d1(t) = t1e1(1), d31(t) = t31€1(1), d3(t) = t3ex(t),

e1(t) =ci1t11 + ¢t + 13133, ex(t) = ca1t11 + o2t + €23133,
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2
C=C3=|cnn e 3 cubatyn ety ceiing |,

C11 €12 €13 ( Cllf221 Ccl121131  C12121132
) c@ =
€13 €23 €33 C12h1132  C12831132 C22t322

hence

1+ 011t22] C11121131 C12021132
Ciy=I1+CH)=| cuttzi l4cnty; cnBixn
cobitn  cptitn 1+ ont,

-2
c11 1y 11 C12
. ) .
= diag(n1, 131, t32) cn c11 + 13 c12 diag(t1, 131, 132).
-2
12 12 €22+ 13,

We prove the following inequality for an operator C of order n such that I 4+ C > 0:
det(I 4+ C) <exptrC. (63)

Indeed by Hadamard inequality (see [7] or [13, Section 2.5.4]) we have for positive operator C
of order n

n
detC < 1_[ Cii.
i=1
Using the Hadamard inequality and (62) we have for an operator C such that / + C > 0
n (62) n n
det(I 4+ C) < 1_[(1 +cii) < Hexpc,-,- =exp Zc,-,- =exp(trC),

i=1 i=1 i=1

where we denote by tr C the trace of an operator C in the space C". Using (63) and (61) we
conclude that

p—1 14 p—1
det(/ + C(1)) <rC(t) = exp|: Z Ckk ( Z trzk>:| = exp( Z ckka,%) , (64)
k=1 r=k+1 k=1
where a,% = Zf:kﬂ tfk since by (61) we have
p—1 P
trC(t) = Z COkrpr = Z Ckktl = Z Ckk( Z t,zk)' (65)
1<k<r<p 1<k<r<p k=1 r=k+1
Using (26) we get

detCy (1) = 13,1313, (det B + A1 A} + A1 A3 + A3A3 + A1 22A]3
+ )»1)»3A}§ + )»2)\314%% + )\1)»2)\314%%%)
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2.2.2 i 1 L \leni ex
2 12 )|ciz
Cl2 €12 22 21 3l

1 1 1 1
! %022 " <’221t322 " ’321’322>C11 " ’221’321t322:|
= L cnn (i3 +137) + enatdy + M3 (13 + 15))13,.
Finally we have
detC1 (1) = 1+ cr10} 4 cnnas + M{3ata3, where af =13, + t321, o) = t322.
For general n we have by analogy (it proves thus (46))
detCi (1) =1+ X_: > wral . el M{'Z(C,),  where o = Z 1.
r=11<i<ip<-<i, <n—1 s=k+1

For n =3 we have

Ig3(1) _ [_EB(CT, D) 8(C1(t)_ld(t),d(t))}CXP(—%[(CT, T) — (Ci(1)~'d (), d(1))])

0133 2 33 0t33 VdetCy(r) ’
p3(r) [_e 0+ 3(C1(l)_1d(t),d(t))]eXP(—%[(CT, T) — (C1()~'d (1), d(1)])
sz : dt33 JdetCy(t) '

We calculate |0¢3(t) /8t33|2 under the conditions ej(t) = ex(t) = 0 on the variables ¢t =
(t11,t2,133) € R3. 1t gives us

c11t11 + ciatn + 13133 =0,
c21t11 + ¢t + 23133 = 0.

The solutions are

Mpy(C3)  AJ(C3) CM3(Cy) ANGy)
ni=— 133 =— 133 tn = > 133=—5 133 (66)
M5(C3) A3(C3) Mi5(C3) A3(C3)
In general, for the matrix C,, conditions e (t) = ex(t) =--- =e,_1(¢t) =0 gives us the system

critin +ciata + -+ Cintun =0,

c21t11 + cotop + - -+ Conltun =0,
. (67)

Ch—11t11 + Cp—12t22 + -+ Co—tntyn =0

and the following solutions:

12 k—1kk+1..n—1 n
My st (G AR(Ca)
nn

= tan s
M2, A ™

tike = (—1DFH" 1<k<n—1. (68)
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If we denote e (1) = Y ' Ckrlyr We get

(CT.Ty= Y cirtrrtic =) ex()tik,

1<k,r<n

Under conditions (67) we have

n

A (Cy)
e"(t):Z A”(Cn)t - M12 n—1

r=I1

and

(CT,T) ©y

k=1

For n = 3 using (70) and (71) we can calculate

M3 (C3)

t
e3(t) = ME2(Cy)

If, in addition, e () = e(t) = 0, we have (see (66))

trC(t) =cqq (t222 + l323) + 6221323 = |:C11 ((

e (Dt = en (Dt =

133, (CT,T) =

19(CT,T)
EW —€n(t). (69)

AC1(1)~1d@),d(@)

™ =0 (70)
12 n
M55 (Cr) 5
B L 71
MGy ™ 7
A(Cr () 1d(r),d(1)) _0

0133

M2(C3)\?
13 2
—=———— ) +1)+cml|ti.
M2132(C3)> ) 22} 3

For n = 3 we have if e (f) = e(¢) = 0, using the values for t2,, e3(¢) and (CT, T)

9930 |* _ 30 exp(=(CT. T)) &H
0133 detC1 (1)
M123(C) 2
<Ml1223(C3)) 13 exp[—f323(
We get by (59)

M123 C 2
max(%”) 2 exp[_@(
r3eR\ M5(C3) ‘

(M112233(C3) )2 exp(— D

M3Z(C3)

T MBI
MBE(C3)

M

Ml2
+ (11 + c22) + e (

(C3))? exp(—1)

3 exp(—(CT,T) —tr C(1))

+(611+022)+011< (C3))2>}
M3(C3)

MIZ(C3) 2
+ (cnn +C22)+C”<m> >]

33

MIZ(C%)Mf2233(C3) + et (MI3(C3)2 + (c11 + ) (MI2(C3))?

Finally we have (see (43))
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33 (1) [*

9133 oy (1y=er(1)=0

53 = max|M§33(t)| >yl

133 ER

This proves (47) for (p, q) = (3, 3).
By analogy we have for general n:

In(®) _ [_la(CT, (D) 3(C1(t)_1d(t),d(t))]exp —3[(CT, T) — (Ci(1)"d®), d(t))])

Otun 2 Oty 0tyn JdetCi(t)
9P (t) [_e ) + B(Cl(t)‘d(t),d(t))}eXp(——[(CT T) — (Ci(t)~1d (@), d(1))])
M | " dtun JdetCi () '

When t, = t,r, n 21 >k > 2, we have by (65)

n—1 n
trC(t) = Z Ckktrzk=26kk< Z t,,2k> chk( Z rr)
k=1

1<k<r<n r=k+1 r=k+1
When, in addition, e;(t) = --- =¢e,_1(t) = 0 we get (see (68) and definition (19) of )A»k)

n

n—1 n ) n k—1 R AZ(Cn) 22
trcg):Zcr,< 3 tkk> ch,ﬁkk_zxktkk_z (m) 2,
=2 nan

r=1 k=r+1 k=2r=1

Finally for general n we have if e1(¢) =--- =¢,-1(t) =0

e2(t)exp(—(CT, T)) (64)
detCy (1)
_< My (Co >)>2t3n exp<_t2 ( M€ Zzzzikmzwn»z))

M5 (G, "\ M2l (AZ(Cn))?

‘am(t) 2
8l‘nn

> e2(t)exp(—(CT,T) —tr C(1))

Using (59) we get

12.n(c,) 1
N 3 (1) |? (Mfzz,:‘ ‘(cn)) exp(=1)

tn oy (y=me, (=0 MBAC) | Ty k(A{(Co)2
MZn-Ic,) (AR (Cn))?

o @

g >

thn€R

(M3 (Cy))* exp(—1) B
T M COMB G+ Y (A (C)?

nn

Finally for general (n,q),n < g, wehaveifei(t) =---=¢,_1(t) =0, 1,4, =0,

2(:) exp(—(CT, T)) (64)
det C1 (1)

2
‘ Ipng (1) e2(t)exp(—(CT.T) —tr C(1)),

Otyq




S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634—681 673

where C = C,, , and T are defined in Lemma B.1. Moreover, the above conditions gives us the
same solutions (68) as before, hence using the decomposition of the minor M 12...n—1n (Chn,q) We

12..n—1q
have
n n 12..n—1n
AL(Cp) M50 —1g (Cnig)tnn
eq()=(CngT)yg=) cCorlrr=) Cqr— tan =
q n,q q ; qrtrr ; qrAz(Cn) nn Aﬁ,’(Cn)
Finally we getife1(t) =---=¢,-1(t) =0and 1,4 =0

a¢nq (; tqq) 2

E™ > max

> maﬁ({e(g(r)exp(—(CT, T)—tC(1))

tan€R 0tyq fgq=0  mn€
12..n—1 a
3 My 01 Cra)\? 5 > M3(CY) b M (AL(C))?
_lrngﬁ M12I1—1(C ) tnn eXp _tn” Mlzﬂ—l(c ) (Ai‘l(C ))2
”" 12..n—1\n 12..n—1\n ni=n
(M3 71" (Cg))? exp(—1) o o

M5 n = (C)M{Z1(Co) + Yfop i (A (C))?
Appendix C. Proof of Lemma 16

Proof. Firstly, we prove by induction the inequalities / ,f > 0 for k > 2. Secondly, we show that
inequality / ,f > 0 and Lemma A.6 imply the inequality I,’,‘, > 0 for m > k where (see (24)):

I} = frAf (Cu (M) — M AR (Cu () >0, 2<k <m.
We shall show also that 2 = 0. In the case m = 2 we have
I3 = LA3(C2()) — 42 A3(C2 (A7) =0
since f» = ia = c11 by (19), (20) and (49), and
A3(C2() = A3(C2 (M) = A3(Cp) =,

where

Cz():)=<c“ 12 )’ Cz(i[z])=C2:<C“ (:12)'

€12 C11+c22 12 €22
In the case m = 3 we prove the following inequalities:

5= HA3(C3() — A A3 (C3 (A1) > 0, (72)

5= fA3(C3(V) — A3A3 (G5 (APY) =0 (73)

Since (see (21))
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) c11 c12 13 - il c12 13
CGM)=|cr2 cnt+exn €23 , C3 ()»[ ]) =|c2 c» €23 ,
€13 €23 €11 +c22 + ¢33 €13 €23 €11+ €22 +c33

and C3 (A1) = C3 we have by (26)
AH(C3(D) = AH(C(AD) = AJCy) +AaAB(Cy. AYC () = Ad(Cy).
The latter equalities give us 132 = 0. This proves (72). Indeed we have
I3 =2(A3(C3) + A3 AT(C3)) — A2 (A3(C3) + A3A33(C3)) = 0.
Since f» = A2 = c11 and A1 = 0 we have A3(C,,(R)) = AZ(C, (A?1)) hence
I3 = LAY (Cu (W) — 2A3(Cu(AP)) =0, 2<m. (74)

Remark C.1. In what follows we take A = ()L,)]lC € R* with A; =0.

To prove (73) for k = 3 we use the identity for A = (0, 1,) € R2, A= ©, c11),

A3(C3(M) = M3(C3(R) = M{5(C3) + ¢}y = M{5(C3) + hacii,
IM{F(C3(1))
— . =C11

A3(C3(0) = M{3(C3(1) = M{F(C3) + hac, o

We have

I3 = A3(C3(M) — A3 A3(C5 (A1)

2 12 2
‘1z (M5(C3)) ) 12 2 12
=|lecn+—=+ Mi5(C3) +ci) — (c11 + )M 5(C3)
( e en(M3(C3) +ci)) (M:2 h) 2

2 12 2
¢ M2(Cy
(cu+—‘2+ (M, (C3))

— 7 \MI2(c3(h)) — MI2(C).
i 611M1122(C3(A))> 12 (C3(D) = (e11 + e22)M5(C3)

we use here the definition of f; =e 21<r<p<q w'P and ¥ P9 (see (20), (48)—(50)),

2 12 2
¢ (M5(C3))
f=e(W + w2 ) =¢ + 12 4 1122 5
C11 C11(M12(C3)+C11)

We define the function 133 (&) for A = (0, 12) by

2 MI2(Ca))2
133()»)1=<611+CL2+ (M5 ()

— M3 _ 12
C11 C11M1]22(C3()L)))M12 (C?’()‘)) (c11 +c22)M5(C3)

M12 C 2
+( 12( 3))
11

2
C
= (Cll + ﬁ)(Mllzz(CB) + Aacii) — (11 + cn)M3(C3).
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Since 133 = 133(50 it is sufficient to prove that 133 (A) > 0 for A, > 0. We show that

RYELOS
0)=0 and ;) > 0.
%)
Indeed we have M|2(C3(0)) = M|2(C3) hence
2 12
c M 5(C3)
;0)= (cn + ﬁ +— )M{%(cs) — (c11 + ) M{3(C3)

2 12

2+ MI2(C

_ Mllzz(@(lzilz“) _ m) —0 and
C11

aﬂ(x) . 2, 0
— > V.
oA C11 e

Finally 133(A) > ( for A > 0 so 133 = 133 ()AL) = I33 (0, c11) > 0 and (73) is proved. To prove that
IF >0 letus denote f4 =e Y 9_| w4~ Using (20) we have

g—1
fa=e Y WT=e Y WPhe) wiTl=f 4+ (1 fi:=0, (75)

1<r<p<q 1<r<p<q—1 r=1
for 2 < g < m. We prove by induction that
I = fiAf (Cr(h) — MAL(C) 20, 2<k. (76)

For k =2 and k =3 it is proved. Let us suppose that it holds for k. To find the general formula
for I,f(k) with I,f > I,f(k) we consider the cases m = 4.

I} = fANCR) = A€y = (5 + AL (Ca) — MaAT (], s
(73) <X3A (C4)
> P . D
A3}(C4(V)
(49)-(51) ((011 + c2)M{3(Cs) 613 (M]3(C4))?
Mf%(&(k)) e enMI2(Ca(h))
(M3 (C4))?
+ 12 123 12 2 12 2
M 5(Ca)M 55 (Ca) + c11(M3(Ca))~ + (c11 + c22) (M 5(Cy))
x M35 (Ca(0) = (en1 + e+ e33)M 3 (Ca), s

+ f“) A$(Ca)) — IaAG(Cy)|
A=A

& ((611+622)M <c4>+c13 (M3(C4))? (M]3 (Cy))? >
MI2(Cs(1)) e enMB3(Cs)  MZ(CHMIBE(Ca(1))

x M{3; (C4(0)) — (c11 + ez + C33)M1]2233(C4)|x=i'

So we have If > If(k) [, _; where [ f (1) is defined by the formula



676 S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634—681

(M{F(C)?

140y = <(611 +c)M|3(Cy) N i (M]3(C))?

x M133(Ca(1)) — (c11 + ¢ + c33) M35 (Ca)

M2(C4(0)) e enM3(Cs)  MIZ(CoM

= (m + L)M}%ﬁ(a‘(x)) +b1=a1M{35(Ca() +a

M3(Cs(1))

where

2

_ 13 _ 12
a) = o >0, az = (c11 +c)M5(Cq) +

_(M{3(Cy))?
- M12(C )

(M]3(Cp))?

C11

—(c11+cn+ C33)M1122§(C4)-

123
123

(Ca(M)

123
M123

M}%(Cm»

>0,

1,

We prove that If(k) > 0 for A = (0, A2, A3), when X> > 0, A3 > 0. It then gives us If >

If()i) > 0. We have (see below the proof of I,f 0)=0,k>=3)

1;‘«)):(613 (M5(Ca))* | M55(Ca)
c11 chg(a) M{3(Cs)

Moreover, by inequality (37) of Lemma A.7 we have for A;

A}y . IM 33 (Ca(V) o MB

20,2320

(C4)

= an T S —
3y 32 B M“(c4(x))

+
913 M 3(C4(3))
Let us consider the function

if(t) = I} (th) = I}0, Ao, th3),

We have

AN (a ay ) IM |33 (Ca(2))
B A3

= 0.

teR.

— c33) M{33(Cs) =0.

it(0)=1}(0)=0 and d’f‘;t(t) = aﬁ(j) Ao+ 8;{\(3’\)?\3 >0
hence i (t) 0 by the previous inequalities for # > 0. So
I} > 130,32, d3) = ij(0)|,_, >0
To prove that [ k(k) > 0 we show that
If(0)=0, 2<k and GHED) 0, 2<p<k

(77)
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To define the function 7] (1) with I > I/ (0) we have

Ilf+1 = fk+1A’1§ﬂ(Ck+1(i)) —)A»k+1A];§ﬂ(Ck+1)

D (f +f"“)A’gi}(ck+1(A)) A AT Coan s

@6 [ A AGE (Cry) ) ok Sk
S W P ORI RN
kk-+1\~k+ r=1

A=k
&4 (M AGT1 (Crr1) .
> _ RRAC O er Ak+l Ck ()\')) _ Ak+1(C )
- i1 (Cern k1 Ap 11 (Crp
(Ai’zikcm(x)) X; + ¥ -
= I .
where the function I,fj_’ll (1) is defined by (see definition (54) of ¥J'?):
116 = M35 (Cran) N 2 Zk: (M2 (1))
k1 (M) = —< :
' M3 T Con ) e 5 M (Co )M (Cegn (1)
X M1122k (Ck'H ()‘)) )"k-H M12 * (Ck_H)
)A»kM1122 ]l: 1(Ck+1) " i kii (M1122:711]:(Ck+1))2
M G0 T an T S M ChMB L (Con ()

(MZK(Cr))? &
X M5 §(CeriV) + — st = M M3 f (Ciqn).
M12...k—1 (Ck+1)

Finally we have the following expression for [ ,f:ll (1) with corresponding positive constants a,,

2 <r <k —1 (depending on k) and b; € R:

k—1
FHw=a+Y —t | M2 (Crp1 () + by
k+1 Z M1122 T (Cr1 (1) 12.‘.k( )

k—1
ar
=\|a + —— |G (X)) + by.
(X 5%)
r=2
By (37) of Lemma A.7 we conclude that for A, > 0, 2 < r < k, holds

a75+1 05, k—1 9GO
k+1() “1+Z ar A}O,
Ik —=G ) o

AL () 3G,y s G
k1 k( )+Zdr— 10NN
r=2

=ai =
o, ar, G (M)

0, 2<p<k. (78)
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Remark C.2. In fact 375 (1) /04, > 0,2< p <k, for A = () e R A >0, 1<r <

k + 1, since by (38) we have 3G (1)/dA, = AL (C(MPL) > 0.

Let us suppose that I,f 0)=0,1.e.
2 12 2 123 2
0= 1%(0) = p12-k-1 Clk—1 , My (My5_1)
=L;O) =M 52, 2 12,123
‘i cuMi; My M55
12 k—3k—212 12..k—1
M5 3 1) My )

— Ck—1k—1
12..k=3 3 712...k=2 12...k=2
M12..‘k73 M12...k72 M12...k72

For k =3, k=4 and k = 5 we have

2 12
A M

13(0) = M1122<—‘2 + =12 _ cz2> =0,
C11 C11

2 1242 123
a3 €3 (Mi3) M5
14(0)_M123<;+611M1]22+ M1122 _C33 ’

2 1242 12312 1234
<C14 (M3) (M53) M55y _C44)

5 1234
15(0) = M3,

2 121,123 123
cienMy; MipMpys o My

We prove that [ ,fill (0) =0. Indeed, we get

2 1212 12312
110y = M2+ e, M) (My5;)
k1 D) = M5 12 12 1,123
i enMpyy MM

12, k—2k—112 12..k
My o ) My _Ckk)
12 k=2 3 712, k—1 12 k—1 :
My oMy o Mgl

Since by Corollary A.5 we have

AN AN
k—1 k — A% CcHAR(C)  or
‘A§_1<ck) Akcp) A

AT AR
Ajco AL

= (Ak_ (cv)’,

we conclude that
12..k—1 12..k—2
My 21 (Gl My 75 5 (Cr) _(Mlz...k72k71(ck))2
_ = WMo k—2k .
M3 (Co M35 (Co)
Hence
(M35 ()’ MBACY M35 (Co

12...k—2k
M5 3 (COMZ (€ M (Co M 3(Co
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and
2 1242 1232
[k+1(0)_M122..‘]l(<<CLk + (M) M50)
k1 W) =My
’ cn o enMy - MMz

12...k=3k 12..k=2k

12..k=3 3 712..k=2 12...k=2
M12...k—3 M12..‘k—2 M12...k—2

(M12...k—3k—2)2 M12...k—2k )
— Ckk

If we change k with £ — 1 in the last expression we obtain the right-hand part (up to a positive
factor) of the expression for / ,f (0).

Finally we have proved (77) for I /:Ll (A). Let us consider the function

il =151 @h), reR
We have
k41 k41 k+1 Z k+1 ~
lk+1(0)=1k+1 (0):0 and T: v)‘p>0

by (78) and Remark C.2. So
If > If) =i ,_, >0.
We recall (see (32)) that for A = (Aq, ..., Ay) € C™ and 1 < k < m we denote
A =0, ...,0, Akt -y Am), A =g, a0, 0).

Using (27)

GuW)=AY(Ca)) = > 1ANO),
AC8C{1,2,...,m}

we get

AL (Cu(M)) = > As AR (C). (79)
PC8cf1,2,....k—1,k+1,...m}

If we put C,, ANy = C,,, + Y oreir1 ArErr in (79) we get

AK(C (A1) = > As AR (C). (80)
PCSC{k+1,k+2,...,m}

Similarly, if we put C,, () = C,, W) + 37, A E,, we get

AK(Cn(2) = Z As AR (C (A1), (81)
PCSClk+1,k+2,....m}
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Using (76) we have

fi 2 h AR @O (AF (L)) ™ = A AR (O (AL (C(B)) ™

hence I = fi AK(C(R)) — Ak AK(C K1) > 1K (1), Where the function 7% (3) is defined by

A

NG = A(ART(Cn ()T AT G AR (Cn () = Aa AL (Ca (1)
Ay m(©Cm)  AL(Cu (G

R m Ay =1
= (AL (Cn (D)) ARELm (0 Gy) AK(C(i)

L (ag ()

- A’;’;ii mCm) AL (Cw)
x Z s AR (o (301 4RUB (o (51K
pCsClhit k2, om) | Akkt 1 m s (Cm

Using (26) or (27) we conclude for A = (0, A3, ..., A,) € C™

kk+1... _ yUlkk+1,..m}
A m (Cn() = Z Ay AL Gtk 1y (Cm).
PCyc{2,3,....k—1}
AkUB k A7 VlUs
kua(cm( ! })) = Z yU{k ua(cm)

Py C(2,3,...k—1}

Finally we obtain

A~ A~ A~ _1 A~
1) = (AT (Cn (D)) >
PSS kA1 kA2, o)
Kk+1.. Ptk )
y ) 5 At m Cm) ALK e my (Cm)
4 AkUB yU{k}US
ISy CI2.3,. k1) AL (Cm) A Otkyus (Cm)

due to the Hadamard-Fisher’s inequality (Lemma A.6), for« = {k,k+ 1,...,m}and B =y U
{k} U 4. This completes the proof of Lemma 16. O

References

[1] S. Albeverio, R. Hoegh-Krohn, The energy representation of Sobolev—Lie group, Compos. Math. 36 (1978) 37-52.

[2] S. Albeverio, A. Kosyak, Quasiregular representations of the infinite-dimensional Borel group, J. Funct.
Anal. 218 (2) (2005) 445-474.

[3] S. Albeverio, A. Kosyak, Group action, quasi-invariant measures and quasiregular representations of the infinite-
dimensional nilpotent group, Contemp. Math. 385 (2005) 259-280.

[4] S. Albeverio, R. Hoegh-Krohn, D. Testard, Irreducibility and reducibility for the energy representation of a group
of mapping of a Riemannian manifold into a compact Lie group, J. Funct. Anal. 41 (1981) 378-396.

[5] S. Albeverio, R. Hoegh-Krohn, D. Testard, A. Vershik, Factorial representations of path groups, J. Funct. Anal. 51
(1983) 115-131.

[6] S. Albeverio, R. Hoegh-Krohn, J. Marion, D. Testard, B. Torrésani, Noncommutative Distributions, Unitary Rep-
resentation of Gauge Groups and Algebras, Monogr. Textbooks Pure Appl. Math., vol. 175, Dekker, New York,
1993.



S. Albeverio, A. Kosyak / Journal of Functional Analysis 236 (2006) 634—681 681

[7] E.F. Beckenbach, R. Bellmann, Inequalities, Springer, Berlin, 1961.
[8] J. Dixmier, Les C*-algebres et leur représentation, Gautier—Villars, Paris, 1969.
[9] J. Dixmier, Les algeébres d’opérateurs dans 1’espace hilbertien, second ed., Gauthier—Villars, Paris, 1969.

[10] R.F. Gantmacher, Matrizenrechnung, Teil 1, VEB, Berlin, 1958.

[11] IM. Gel’fand, A.M. Vershik, M.I. Graev, Representations of SL, (R), where R is a ring of functions, Uspekhi Mat.
Nauk 28 (1973) 83-128.

[12] R.A. Horn, C.R. Jonson, Matrix Analysis, Cambridge Univ. Press, Cambridge, 1989.

[13] R.A. Horn, C.R. Jonson, Topics in Matrix Analysis, Cambridge Univ. Press, Cambridge, 1991.

[14] R.S. Ismagilov, Representations of the group of smooth mappings in a compact Lie group, Funkts. Anal. i
PriloZzhen. 15 (2) (1981) 73-74 (in Russian).

[15] S. Kakutani, On equivalence of infinite product measures, Ann. of Math. 4 (1948) 214-224.

[16] A.A. Kirillov, Elements of the Theory of Representations, Grundlehren Math. Wiss., vol. 220, Springer, Berlin,
1976 (translated from the Russian).

[17] A.A. Kirillov, Introduction to the theory of representations and noncommutative harmonic analysis, in: Represen-
tation Theory and Noncommutative Harmonic Analysis, I, in: Encyclopaedia Math. Sci., vol. 22, Springer, Berlin,
1994, pp. 1-156.

[18] A.V. Kosyak, Irreducibility criterion for regular Gaussian representations of group of finite upper triangular ma-
trices, Funkts. Anal. i Prilozhen. 24 (3) (1990) 82-83 (in Russian); transl. in: Funct. Anal. Appl. 24 (3) (1990)
243-245.

[19] A.V. Kosyak, Criteria for irreducibility and equivalence of regular Gaussian representations of group of finite upper
triangular matrices of infinite order, Selecta Math. Soviet. 11 (1992) 241-291.

[20] A.V. Kosyak, Irreducible regular Gaussian representations of the group of the interval and the circle diffeomor-
phisms, J. Funct. Anal. 125 (1994) 493-547.

[21] A.V. Kosyak, Regular representations of the group of finite upper-triangular matrices, corresponding to product
measures, and criteria for their irreducibility, Methods Funct. Anal. Topology 6 (2000) 43-65.

[22] A.V. Kosyak, The generalized Ismagilov conjecture for the group Bé\]. I, Methods Funct. Anal. Topology 8 (2)
(2002) 33-49.

[23] A.V. Kosyak, The generalized Ismagilov conjecture for the group B(I)\T. II, Methods Funct. Anal. Topology 8 (3)
(2002) 27-45.

[24] A.V. Kosyak, A criterion for irreducibility of quasiregular representations of the group of finite upper-triangular
matrices, Funkts. Anal. i PriloZhen. 37 (1) (2003) 78-81 (in Russian); transl. in: Funct. Anal. Appl. 37 (1) (2003)
65-68.

[25] A.V. Kosyak, Quasi-invariant measures and irreducible representations of the inductive limit of the special linear
groups, Funkts. Anal. i Prilozhen. 38 (1) (2004) 82-84 (in Russian); transl. in: Funct. Anal. Appl. 38 (1) (2004)
67-68.

[26] H.H. Kuo, Gaussian Measures in Banach Spaces, Lecture Notes in Math., vol. 463, Springer, Berlin, 1975.

[27] S.M. Malamud, A converse to the Jensen inequality, its matrix extensions and inequalities for minors and eigenval-
ues, Linear Algebra Appl. 322 (1-3) (2001) 19-41.

[28] M.P. Malliavin, Naturality of quasi-invariance of some measures, in: A.B. Cruzeiro, J.-C. Zambrini (Eds.), Stochas-
tic Analysis and Applications, Lisbon, 1989, in: Progress in Probability, vol. 26, Birkhduser Boston, Boston, MA,
1991, pp. 144-154.

[29] M.P. Malliavin, Probability and geometry, in: Taniguchi Conference on Mathematics, Nara’98, in: Adv. Stud. Pure
Math., vol. 31, Math. Soc. Japan, Tokyo, 2001, pp. 179-209.

[30] M.P. Malliavin, P. Malliavin, Measures quasi invariantes sur certain groupes de dimension infinie, C. R. Acad. Sci.
Paris Sér. I Math. 311 (1990) 765-768.

[31] M.P. Malliavin, P. Malliavin, Integration on loop groups, I, J. Funct. Anal. 93 (1990) 207-237.

[32] M.P. Malliavin, P. Malliavin, Integration on loop groups, III: Asymptotic Peter—Weyl orthogonality, J. Funct.
Anal. 108 (1992) 13-46.

[33] N.I. Nessonov, Examples of factor-representations of the group GL(co), in: Mathematical Physics, Functional
Analysis, Naukova Dumka, Kiev, 1986, pp. 48-52 (in Russian).

[34] M. Reed, B. Simon, Methods of Modern Mathematical Physics, vol. I, Academic Press, New York, 1972.

[35] E.T. Shavgulidze, Distributions on infinite-dimensional spaces and second quantization in string theories, II, in:
V International Vilnius Conference on Probability Theory and Math. Statistics, Abstracts of Comm., Vilnius,
June 26-July 1, 1989, pp. 359-360.

[36] G.E. Shilov, Fan Dik Tun’, Integral, Measure, and Derivative on Linear Spaces, Nauka, Moscow, 1967 (in Russian).

[37] D.P. Zhelobenko, A.I. Shtern, Representations of Lie Groups, Nauka, Moscow, 1983.



