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Abstract. A singular rank one perturbation Aα = A + α 〈ϕ, ·〉ϕ of a self-
adjoint operator A in a Hilbert space H is considered, where 0 6= α ∈ R∪∞
and ϕ ∈ H−2 but ϕ /∈ H−1, with Hs, s ∈ R, the usual A−scale of Hilbert
spaces. A modified version of the Aronszajn-Krein formula is given. It has the

form Fα(z) = F (z)−α
1+αF (z)

where Fα denotes the regularized Borel transform of

the scalar spectral measure of Aα associated with ϕ. Using this formula we
develop a variant of the well known Aronszajn-Donoghue spectral theory for
a general rank one perturbation of the H−2 class.
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1. Introduction

Let A = A∗ be a self-adjoint unbounded operator in a Hilbert space H with
the inner product (·, ·) and the norm ‖·‖ . Let {Hk(A)}k∈R denote the associated
A−scale of Hilbert spaces and 〈·, ·〉 the dual inner product between Hk and H−k.

The original Donoghue’s paper [8] (see also [5]) treats the spectral theory of
singular rank one perturbations

Aα = A + α 〈ϕ, ·〉ϕ, 0 6= α ∈ R∪∞,

for the case ϕ ∈ H−2\ H−1 in terms of von Neumann’s theory of self-adjoint
extensions of the symmetric operator

Ȧ = A ¹ {f ∈ D(A) : 〈f, ϕ〉 = 0} (1.1)

with deficiency indices (1,1).
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If ϕ ∈ H−1, then the spectral theory has an elegant presentation [12] in terms
of the Borel transform

Φ(z) =
〈
ϕ, (A− z)−1ϕ

〉
=

∫
dµ(λ)
λ− z

of the spectral measure µ uniquely defined by

〈ϕ, f(A)ϕ〉 =
∫

f(λ)dµ(λ),

where f runs a family of bounded compactly supported measurable functions.
The crucial role in the spectral theory of rank one perturbations is played by the
classical Aronszajn-Krein formula

Φα(z) =
Φ(z)

1 + αΦ(z)
, (1.2)

where Φα(z) =
〈
ϕ, (A α − z)−1ϕ

〉
(Φ(z) := Φα=0(z)) is well defined due to ϕ ∈

H−1.
However in the case where ϕ ∈ H−2 \H−1 both expressions

〈
ϕ, (A− z)−1ϕ

〉
and

〈
ϕ, (A α − z)−1ϕ

〉
fail to exist, since (A − z)−1ϕ /∈ H2. So, in order to ex-

tend the formulation of spectral theory to this case, we need at first to make an
appropriate change of the Aronszajn-Krein formula.

In this paper for the case ϕ ∈ H−2 \H−1 we derive a modified version of the
Aronszajn-Krein formula

Fα (z) =
F (z)− α

1 + αF (z)
,

where F (z) denotes a regularization of the Borel transform of the spectral measure
µ = µ ϕ. Then we develop a spectral theory in this case similar to the Aronszajn-
Donoghue spectral theory, which was presented in [12] only for ϕ ∈ H−1.

2. Self-adjoint extensions and Borel transform

Let A = A∗ be a self-adjoint operator in a Hilbert space H.
Here we use only a part of the A−scale of Hilbert spaces:

H−2 ⊃ H−1 ⊃ H0 ≡ H ⊃ H1 ⊃ H2, (2.1)

where Hk ≡ Hk(A) = D(|A|k/2), k = 1, 2, in the norm ‖ϕ‖k := ‖(|A| + I)k/2ϕ‖,
where I stands for identity, and H−k ≡ H−k(A) is the dual space ( H−k is the
completion of H in the norm ‖f‖−k := ‖(|A|+ I)−k/2f‖). Obviously A is bounded
as a map from H1 to H−1 and from H to H−2, and therefore the expression 〈f,Ag〉
has sense for any f, g ∈ H1.

Let ϕ ∈ H−2 \ H−1, ‖ϕ‖−2 = 1, be fixed.
Define a rank one (singular) perturbation Aα of A, formally written as Aα =

A + α 〈ϕ, ·〉ϕ, 0 6= α ∈ R ∪∞ (∞−1 := 0) by Krein’s resolvent formula (see
[1, 2, 3, 4, 9, 10, 11]).
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(Aα − z)−1 = (A− z)−1 − b−1
α (z)(ηz, ·)ηz, Imz 6= 0, (2.2)

where
ηz = (A− z)−1ϕ

and the scalar function bα(z) satisfies:

bα(z)− bα(ζ) = (ζ − z)(ηz, η ζ), bα(z) = bα(z), Imz, Imζ 6= 0. (2.3)

In particular one can put

bα(z) =
1
α

+ F (z) (2.4)

with
F (z) =

〈
ϕ, ((A− z)−1 − 1

2 ((A− i)−1 + (A + i)−1))ϕ
〉

=
〈

ϕ,
1 + zA

A− z
(A2 + 1)−1ϕ

〉
. (2.5)

Then (2.3) is obviously fulfilled. So we can write

(Aα−z)−1 = (A−z)−1− α

1 + αF (z)
((A−z)−1ϕ, ·)(A−z)−1ϕ, Imz 6= 0. (2.6)

(A∞ − z)−1 = (A− z)−1 − 1
F (z)

((A− z)−1ϕ, ·)(A− z)−1ϕ, Imz 6= 0. (2.7)

Note that one can consider (2.6) as the generalization of the corresponding
formula for the resolvent in the regular case ϕ ∈ H (see [8], [12]). In this situation
Aα is a bounded rank one perturbation of A and (2.6) is valid if one replaces F (z)
by Φ(z). Moreover, this regular variant of (2.6) remains true for ϕ ∈ H−1 ([12]),
in particular for the case Aα ≥ A ≥ 0, since ϕ ∈ H−1 with necessity ([10]).

Let A(Ȧ) denote the family of all self-adjoint extensions of the symmetric
operator Ȧ.

Proposition 2.1. Let ϕ ∈ H−2\H−1 and Ȧ is given by (1.1). Then each Ã ∈ A(Ȧ),
Ã 6= A, is uniquely defined by Krein’s formula (2.2) with bα(z) given by (2.4) and
(2.5), i.e., each Ã coincides with some Aα, 0 6= α ∈ R ∪∞, where the resolvent
of Aα has a form (2.6) or (2.7).

Proof. Let Ã ∈ A(Ȧ). Then its resolvent has the form

(Ã− z)−1 = (A− z)−1 − b̃−1(z)(ηz, ·)ηz, Imz 6= 0,

with a scalar function b̃(z) which satisfies (2.3). Therefore

Imb̃(z) = − Imz‖ηz‖2

and we have
b̃(z) = c− Imz‖ηz‖2 ,
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with some c = c(z) ∈ R. We observe now that

b̃(z) = bα(z), if c =
1
α

+ ReF (z).

¤
Let E(·) be the operator spectral measure (the resolution of the identity)

of A, and µ(∆) ≡ µϕ(∆) = (ϕ,E(∆)ϕ) denote the scalar spectral measure of
A associated with ϕ. This measure is not finite as ϕ /∈ H. One can introduce a
regularization of this measure by

dµreg(x) :=
dµ(x)
1 + x2

,

so that µreg(R) =
∫

dµreg(x) = 1. Clearly the measures µ and µreg are equivalent.
It is convenient to introduce the regularized version of the Borel transform of µ as
follows (cf. (2.5))

F (z) =
∫ (

1
x− z

− x

1 + x2

)
dµ(x) =

∫
1 + zx

x− z
dµreg(x). (2.8)

Consider the operator spectral measure E α(·) for Aα . Similarly to above
constructions one can introduce

µreg
α (∆) := ((A + i)−1ϕ,E α(∆)(A + i)−1ϕ).

Define

dµα (x) := (1 + x2)dµreg
α (x). (2.9)

Henceforth, we assume that ϕ is a cyclic vector for A, i.e.
{
(A− z)−1ϕ : Imz 6= 0

}
is a total set of H. In general, if Hϕ denotes the closed subspace in H generated by
vectors from this set, then Hϕ is an invariant subspace for each Aα and Aα = A on
the orthogonal complement to Hϕ. Thus the extension from the cyclic to general
case is trivial. It is easy to see that (A + i)−1ϕ is a cyclic vector for Aα (cf. [8])
and µα is equivalent to the spectral measure Eα(·). In the following we shall say
that µα is a scalar spectral measure of Aα associated with ϕ.

Let Fα be the regularized Borel transform of µα (cf. (2.8))

Fα(z) :=
∫ (

1
x− z

− x

1 + x2

)
dµα(x) =

∫
1 + zx

x− z
dµreg

α (x). (2.10)

Clearly F0(z) = F (z). Note that one can rewrite (2.10) as

Fα(z) = ((A + i)−1ϕ, (Aα − z)−1(1 + zAα)(A + i)−1ϕ) (2.11)
= (1 + z2)((A + i)−1ϕ, (Aα − z)−1(A + i)−1ϕ) + z.

We recall that the classical Aronszajn-Krein formula has the form (1.2) where
Φα is the Borel transform of the measure µα. In the considered situation where
ϕ ∈ H−2 \ H−1, the Borel transform of µα is not well defined and we have the
following modification of (1.2).
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Lemma 2.2. For ϕ ∈ H−2 \ H−1 the function Fα (z) admits the representation

Fα(z) =
F (z)− α

1 + αF (z)
, Im z 6= 0, 0 6= α ∈ R∪∞. (2.12)

Remark 2.3. For α = ∞ (2.12) means that

F∞(z) = − 1
F (z)

Proof. By (2.11), (2.6)

Fα(z) = F (z)− α(1 + z2)
1 + αF (z)

((A− z)−1ϕ, (A + i)−1ϕ)((A + i)−1ϕ, (A− z)−1ϕ)

= F (z)− α(F (z)− F (−i))(F (z)− F (i))
1 + αF (z)

=
F (z)− α

1 + αF (z)
.

Here we have used the following simple identies

((A− z)−1ϕ, (A + i)−1ϕ) =
F (z)− F (−i)

z + i
,

((A + i)−1ϕ, (A− z)−1ϕ) =
F (z)− F (i)

z − i
,

F (i) = i(ϕ, (A2 + 1)−1ϕ) = ‖ϕ‖−2 = i, F (−i) = −i.

¤

3. Spectral theory

Although the classical Aronszajn-Krein formula (1.2) in the considered case with
ϕ ∈ H−2 \ H−1 is changed into its modified version (2.12), the main features of
Donoghue’s spectral theory are preserved in the same form as for the case ϕ ∈ H−1.

Recall that a holomorphic function G : C+ → C+ (C+ denotes the open
upper halfplane) is said to be an R-function (or Herglotz, or Nevanlinna function).
Each R-function admits the following representation (see, e.g., [5, 6]):

G(z) = a + bz +
∫ (

1
x− z

− x

1 + x2

)
dσ(x), z ∈ C+.

Here a ∈ R, b ≥ 0, and σ is a Borel measure on R such that∫
dσ(x)
1 + x2

< ∞.

First of all recall that limε↓0 G(x + iε) exists and is finite for (Lebesgue) a.e.
x. Moreover one can derive the properties of the measure σ from the boundary
behavior of the corresponding Herglotz function on the real axis. According to
the Lebesgue-Jordan decomposition σ = σac + σsing, σsing = σsc + σp, where
σac, σsing, σsc, σp are the absolutely continuous, singular, singular continuous, and
pure point parts of σ, respectively. We need the following well known result (see,
e.g., [5, 6, 8, 7, 12]).
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Lemma 3.1. Introduce the sets

S(σ) =
{

x ∈ R : ImG(x + i0) = ∞, lim
ε↓0

εImG(x + iε) = 0
}

,

P (σ) =
{

x ∈ R : ImG(x + i0) = ∞, lim
ε↓0

εImG(x + iε) > 0
}

,

L(σ) = {x ∈ R : 0 < ImG(x + i0) < ∞} .

Then
(i) σac is supported on L(σ),
(ii) σsc is supported on S(σ),
(iii) σp is supported on P (σ) and for each x ∈ R one has

σ({x}) = lim
ε↓0

εImG(x + iε).

Let µ(·) = (ϕ,E(·)ϕ) be the scalar spectral measure of A associated with ϕ,
F (·) be a regularized transform of µ (see (2.8)). Introduce the function

H(x) =
∫

dµ(y)
(x− y)2

, x ∈ R.

We remark that

ImF (x + iε) =
∫

ε

(x− y)2 + ε2
dµ(y).

By the monotone convergence theorem we have

lim
ε↓0

ε−1ImF (x + iε) = H(x). (3.1)

It is easy to see that if H(x) < ∞ then (cf. [12]) limε↓0 F (x+ iε) exists and is real.
Moreover,

lim
ε↓0

(iε)−1[F (x + iε)− F (x + i0)] = H(x). (3.2)

Our main result is as follows:

Theorem 3.2. Suppose that ϕ ∈ H−2\H−1 and µα (see (2.9)) be the scalar spectral
measure of Aα associated with ϕ . For α 6= 0, define the sets

Sα =
{
x ∈ R : F (x + i0) = −α−1,H(x) = ∞}

,

Pα =
{
x ∈ R : F (x + i0) = −α−1,H(x) < ∞}

,

L = {x ∈ R : 0 < ImF (x + i0) < ∞} .

Then
(i) Pα is the set of eigenvalues of Aα , (µα)ac is supported on L , (µα)sc is

supported on Sα .
(ii){Sα}α 6=0 , {Pα}α 6=0 and L are mutually disjoint.
(iii) For α 6= β, (µα)sing and (µβ)sing are mutually singular.
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Proof. (ii) is obvious and (iii) follows from (i) and (ii). By the modified Aronszain-
Krein formula (2.12) (cf. [12])

ImFα (z) = (1 + α2)
ImF (z)

|1 + αF (z)|2 , Im z 6= 0, α 6= ∞, (3.3)

ImF∞ (z) =
ImF (z)
|F (z)|2 , Im z 6= 0. (3.4)

Then,

L = {x ∈ R : ImF (x + i0) 6= 0} = {x ∈ R : ImFα (x + i0) 6= 0} = L(µα ).

This proves that (µα)ac is supported on L. By Lemma 3.1 (µα)sing is supported
by

{x ∈ R : ImFα(x + i0) = ∞} .

If we suppose that F (x + i0) = −α−1 (0 6= α ∈ R ∪∞), then by (3.1) – (3.4)

µα({x}) = lim
ε↓0

εImFα (x + iε) =
1 + α2

α2H(x)
(0 < |α| < ∞),

and for α = ∞,

µ∞({x}) = lim
ε↓0

εImF∞ (x + iε) =
1

H(x)
.

Now the proof follows from the Lemma 3.1. ¤
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