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Abstract. We discuss the eigen-values problem for rank one singular perturbations
~A ¼ A ~þ ah�;oio of a self-adjoint unbounded operator A with a gap in its spectrum. We give

a the constructive description of operators ~A which possess at least two new eigenvalues, one
in the resolvent set and other in the spectrum of A.

Mathematics Subject Classifications (2000). 47A10, 47A55.

Key words. eigen-value problem, Krein’s formula, rank one singular perturbation, self-adjoint
extension.

1. Introduction

Many recent publications (see, e.g., [1–21]) have been devoted to the spectral theory

of rank-one perturbations of self-adjoint operators,

~A ¼ A ~þ ah�;oio; a 2 R [1; o 2 H	2;

where Hk denotes the usual A-scale of spaces. In fact, this spectral theory is rather

rich and instructive even though rank-one perturbations are, in a sense, the simplest

kind of perturbations. In this Letter, we expose a new phenomenon which can be

described in this theory: a rank-one singular perturbation with a special relation

between the coupling constant and the element o characterizing the perturbation

may produce the appearance of a dual pair of eigenvalues.

We investigate the inverse eigenvalues problem in the setting developed in [18] and

[9]. We give an explicit construction of the operator ~A ¼ A ~þ ah�;oio which solves

the eigenvalue problem with a pair of dual eigenvalues,

~Aj ¼ mj; ~Ac ¼ lc; m 2 rðAÞ; l 2 sðAÞ; ðl	 mÞ	1
¼ ðc; ðA	 mÞ	1cÞ:

Let A ¼ A� be a self-adjoint unbounded operator defined on domA ¼ DðAÞ in the

separable Hilbert space H with the inner product ð�; �Þ and the norm jj � jj. sðAÞ,
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spðAÞ, and rðAÞ denote the spectrum, the point spectrum, and, resp., the regular

points set of A.

Another self-adjoint operator ~A in H is called a (pure) singular perturbation of A

(notation ~A 2 PsðAÞÞ ([3, 17]) if the set

D :¼ f f 2 DðAÞ \Dð ~AÞjAf ¼ ~Af g

is dense in H. It is clear that for each ~A 2 PsðAÞ, there exists a densely defined sym-

metric operator Å :¼ A

(

D with nontrivial deficiency indices n�ðÅÞ ¼

dim kerðÅ � zÞ� 6¼ 0. In this Letter we discuss only the case of rank-one singular per-

turbations, ~A 2 P1
s ðAÞ, i.e., we assume that n�ðÅÞ ¼ 1.

Let fHkðAÞgk2R1 denote the associated A-scale of Hilbert spaces where Hk �

HkðAÞ ¼ DðjAjk=2Þ, k ¼ 1; 2; in the norm jjjjjk :¼ jjðjAj þ IÞk=2jjj (I stands for the

identity) and H	k � H	kðAÞ is the dual space (H	k is the completion of H in the

norm jj f jj	k :¼ jjðjAj þ IÞ	k=2f jjÞ. Let h�; �i denote the dual inner product between

Hk and H	k. Obviously, A is bounded as a map from H1 to H	1, and from H to

H	2 and, therefore, the expression hj;oi; o ¼ Ac has a sense for any j;c 2 H1;

where A denotes the closure of A: H1 ! H	1. Moreover, Rl ¼ ðA	 lÞ	1 is densely

defined in H	2 if l =2 spðAÞ.
Each ~A 2 P1

s ðAÞ admits the representation ~A ¼ A ~þ ah�;oio, where 0 6¼ a 2 R [1

ð1	1 :¼ 0Þ, o 2 H	2, and ~þ stands for the generalized sum (see [12, 20]). The resol-

vent of ~A may be written by Krein’s formula (see [5, 6, 10, 14]) as

~Rz ¼ ðA	 zÞ	1
þ b	1

z ð�; Z �zÞZz; Im z 6¼ 0; ð1Þ

where the scalar function bz satisfies the equation

bx ¼ bz þ ðz	 xÞðZz; Z�xÞ;
�bz ¼ b �z; Im z; Im x 6¼ 0 ð2Þ

and where the vector function Zz belongs to H nDðAÞ and one has

Zz ¼ ðA	 xÞRzZx: ð3Þ

In the case where o 2 H	1, we have

bz ¼ 	a	1 	 ho; Z �zi; Zz ¼ ðA	 zÞ	1o:

Vice-versa, the operator function (1) uniquely defines the resolvent of some operator
~A 2 P1

s ðAÞ if (2), (3) are fulfilled (see Theorem 2 below).

We are able to formulate our main result.

THEOREM 1. Let A be a self-adjoint unbounded operator with a nonempty connected

spectral gap ði.e., the set rðAÞ \ R 6¼ ; is connected Þ. Then for any vector

c 2 H nDðAÞ, jjcjj ¼ 1 and any m 2 rðAÞ, there exists a rank-one singular perturba-

tion ~A 2 P1
s ðAÞ uniquely defined by ð1Þ with

Zz :¼ ðA	 lÞRzc; bz :¼ ðl	 zÞðc; Z �zÞ; ð4Þ

which solves the eigenvalue problems with a dual pair of values:

2 SERGIO ALBEVERIO ET AL.



~Ac ¼ lc; ~Aj ¼ mj; m 2 rðAÞ; l 2 sðAÞ; ð5Þ

where

l ¼ mþ
1

ðc;RmcÞ
; j ¼ ðA	 lÞRmc:

If c 2 H1 nDðAÞ, then ~A admits the representation, ~A ¼ A ~þ ah�;oio, with

o ¼ ðA	 mÞc	
1

ðc;RmcÞ
c; a ¼ 	

1

hc;oi
: ð6Þ

For the proof, see Section 4.

2. Preliminaries

Let c 2 DðAÞ and l 2 rðAÞ be fixed. Consider a rank-one (regular) perturbation
~A ¼ Aþ að�;oÞo with o ¼ ðA	 lÞc and a ¼ 	ð1=ðc;oÞÞ. Then obviously ~A solves

the eigenvalue problem ~Ac ¼ lc.

One can repeat this construction for ~A ¼ A ~þ ah�;oio in the case where

c 2 H1 nDðAÞ. Then ~A 2 P1
s ðAÞ and ~Ac ¼ lc is fulfilled if a ¼ 	ð1=hc;oiÞ with

o ¼ ðA	 lÞc. The resolvent of ~A has the form

~Rz :¼ Rz 	
1

1

a
þ ho; Z �zi

ð�; Z �zÞZz;

where Zz :¼ ðA	 lÞRzc � Rzo.

Moreover, we assert that one can take any c 2 H nDðAÞ and any l 2 R.

THEOREM 2. Let A be a self-adjoint unbounded operator. Given l 2 R and a vector

c 2 H nDðAÞ; jjcjj ¼ 1, there exists a rank-one singular perturbation ~A 2 P1
s ðAÞ

uniquely defined by ð1Þ with Zz and bz given by ð4Þ. ~A solves the eigenvalue problem
~Ac ¼ lc. If c 2 H1 nDðAÞ, the operator ~A admits the representation in a form,
~A ¼ A ~þ ah�;oio, with o ¼ ðA	 lÞc; a	1 ¼ 	hc;oi:

For the proof see Appendix and ([9]).

3. Rank-One Singular Perturbations with Two New Eigenvalues

Let A be as in Theorem 1. Let the vector c 2 H1 nDðAÞ, jjcjj ¼ 1, and the number

m 2 rðAÞ be fixed. Consider the operator ~A0 ¼ A ~þ a0h�;o0io0 2 P1
s ðAÞ with

o0 ¼ ðA	 mÞc 2 H	1 and a0 ¼ 	
1

hc;o0i
:

From the above considerations, this operator solves the eigenvalue problem
~A0c ¼ mc:
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Now we will construct another operator ~A 2 P1
s ðAÞ which solves the eigenvalue

problems with a pair of values: the same m 2 rðAÞ and an additional one, l 2 sðAÞ.
We define ~A by Krein’s formula (1) with bz ¼ ðl	 zÞðc; Z �zÞ:

~Rz :¼ Rz 	
1

ðl	 zÞðc; Z �zÞ
ð�; Z �zÞZz;

where

Zz :¼ ðA	 lÞRzc and l :¼ mþ ðc;RmcÞ
	1:

~A solves the eigenvalue problem ~AZl ¼ lZl with Zl ¼ c, since obviously bl ¼ 0

(see Theorem 2 above and Proposition 3 in [3]). The operator ~A also solves the

eigenvalue problem ~AZm ¼ mZm with Zm ¼ ðA	 lÞRmc, since bm ¼ 0. Indeed,

bm ¼ ðl	 mÞðc; ZmÞ ¼ 0 because

ðc; ZmÞ ¼ ðc; ðA	 lÞRmcÞ ¼ 1 þ ðm	 lÞðc;RmcÞ ¼ 0;

due to the above connection between l and m. We note that l 2 sðAÞ since a rank-

one perturbation may produce only one new eigenvalue in each spectral gap of

the starting operator. Thus, we described the construction of a rank-one singular

perturbation ~A 2 P1
s ðAÞ which solves the eigenvalues problems with two new values,

one lying in the gap of the spectrum sðAÞ of the original operator A. Since

o0 ¼ ðA	 mÞc 2 H	1, one can present ~A in the form ~A ¼ A ~þ ah�;oio with

a ¼ 	hc;oi	1 and o ¼ ðA	 lÞc ¼ o0 þ ðc;RmcÞ
	1c:

We remark that the same operator appears in another (dual) way. Namely, using

l ¼ mþ ðc;RmcÞ
	1 and putting j :¼ ðA	 lÞRmc, we can define the resolvent of ~A

in the form

~Rz ¼ Rz 	
1

ðm	 zÞðj; Z �zÞ
ð�; Z �zÞZz;

where

Zz ¼ ðA	 mÞRzj ¼ ðA	 lÞRzc ¼ Rzo

with o ¼ ðA	 lÞc ¼ ðA	 mÞj, and where bz ¼ ðm	 zÞðj; Z �zÞ coincides with bz ¼

ðl	 zÞðc; Z �zÞ. The latter is true due to (11) (see below) and since, by the Hilbert iden-

tity, one has

ðl	 zÞðc; ZzÞ ¼ hRlo;oi 	 hRzo;oi; ðm	 zÞðj; ZzÞ ¼ hRmo;oi 	 hRzo;oi:

Thus, one can to calculate the coupling constant a in the representation ~A ¼

A ~þ ah�;oio by two formulas.

a ¼ 	hc;oi	1 and a ¼ 	hj;oi	1:

Obviously, a is negative for positive A, since hj;oi ¼ hj; ðA	 mÞji > 0 for all

m < 0.
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EXAMPLE. Let

H ¼ L2ðR; dxÞ and A ¼ 	D ¼ 	
d2

dx2
:

First consider the perturbed operator 	 ~Da0;y ¼ 	D ~þ a0h�; dyidy, where the cou-

pling constant is real and dy is the Dirac distribution concentrated at the point

y 2 R. For each a0 < 0, the operator 	 ~Da0;y has a single eigenvalue m ¼ 	a2
0=4 < 0

with the corresponding eigenfunction cðxÞ ¼ ea0jx	yj=2 (for more details, see ([1])).

Now we will construct the new rank-one singular perturbation of the Laplace

operator which has a pair of dual eigenvalues.

Fix m ¼ 	1 and c ¼ e	jxj and define

x ¼ ðð	Dþ 1Þ	1c;cÞ ¼ jjcjj2	1 < 1

and

l � mþ x	1
¼ 	1 þ x	1 > 0:

Put

j � c	 x	1
ð	Dþ 1Þ	1c

and

o � ð	D	 lÞc ¼ ð	Dþ 1Þj ¼ 2d	 x	1c;

where we used ð	Dþ 1Þc ¼ 2d; (with d ¼ d0Þ. Introduce the operator

	 ~D ¼ 	D ~þ ah�;oio

where

a ¼ 	1=hc;oi � 	1=hj;oi ¼ 	ð2 	 x	1
Þ
	1:

If we put a ¼ 	1=hj;oi, then by direct calculation, we find that

ð	 ~Dþ 1Þj ¼ ð	Dþ 1Þjþ ahj;oio ¼ ð	Dþ 1Þc	 x	1cþ ahj;oio

¼ 2d	 x	1c	 o ¼ 2d	 x	1c	 2dþ x	1c ¼ 0;

i.e., 	 ~Dj ¼ 	j: Moreover, if we put a ¼ 	1=hc;oi, then

	 ~Dc¼	Dcþahc;oio¼ 2d	c	o¼ 2d	c	2dþx	1c¼ ð	1þx	1
Þc¼ lc:

Of course, we can verify that

ðc;jÞ ¼ ðc;c	 x	1
ð	Dþ 1Þ	1cÞ ¼ 1 	 x	1

ðð	Dþ 1Þ	1c;cÞ ¼ 1 	 x	1x ¼ 0:

Simple calculations show that the above terms and expressions have the following

explicit values: x ¼ 3=4; l ¼ 1=3; a ¼ 	3=2;

jðxÞ ¼ e	jxj 	
2

3
ð1 þ jxjÞe	jxj; oðxÞ ¼ 2dðxÞ 	 4

3
e	jxj:
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Thus, 	 ~D possesses the two eigenvalues, m ¼ 	1 < 0 and l ¼ 1
3 > 0:

4. Dual Eigenvalues Pairs

For a fixed vector c 2 H nDðAÞ; jjcjj ¼ 1, a point l 2 sðAÞ will be said to be dual

with respect to a given m 2 rðAÞ if ðl	 mÞ	1
¼ ðc;RmcÞ.

Let us consider a positive operator, A5 0. If sðAÞ ¼ ½0;1Þ, then for any

c 2 H nDðAÞ and any point m < 0, there exists a dual point l which is uniquely

defined by

l ¼ mþ
1

ðc;RmcÞ
: ð7Þ

We note that l > 0, since for A5 0

0 < ðc;RmcÞ < 	
1

m
; m < 0:

Our main result in this case reads as follows:

THEOREM 3. Let A ¼ A� 5 0 and sðAÞ ¼ ½0;1Þ. Then for any vector c 2 H nDðAÞ,

jcj ¼ 1, and any m < 0, there exists a uniquely defined rank-one singular perturbation
~A 2 P1

s ðAÞ which solves the eigenvalue problems with a dual pair of values

~Ac ¼ lc; ~Aj ¼ mj; ð8Þ

where j ¼ ðA	 lÞRmc and l > 0 is given by ð7Þ. If c 2 H1 nDðAÞ, then the operator
~A, which solves ð8Þ, admits the representation

~A ¼ A ~þ ah�;oio; a ¼ 	
1

hc;oi
; o ¼ ðA	 lÞc:

Proof. Given c 2 H nDðAÞ and m < 0, let us consider l to be connected with m
by (7). Define the operator ~A by Krein’s resolvent formula

~Rz ¼ Rz þ b	1
z ð�; Z �zÞZz ¼ Rz þ

1

ðl	 zÞðc; Z �zÞ
ð�; Z �zÞZz;

where Zz :¼ ðA	 lÞRzc. By Theorem 2, the operator ~A solves the problem ~Ac ¼ lc.

Let us directly show that ~A also solves the second problem in (8). To this aim, we will

show that

~Rzj ¼
1

m	 z
j;

i.e., that

Rzjþ b	1
z ðj; Z �zÞZz ¼

1

m	 z
j:
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So in the notation j ¼ ðA	 lÞRmc � Zm, we have to prove that

RzZm þ
1

ðl	 zÞðc; Z �zÞ
ðZm; Z �zÞZz ¼

1

m	 z
Zm; ð9Þ

which is equivalent to ~Aj ¼ mj. We observe that

Zz ¼ ðA	 mÞRzZm ¼ Zm þ ðz	 mÞRzZm:

Therefore, (9) will be true only if

ðZm; ZzÞ
ðl	 zÞðc; Z �zÞ

¼
1

m	 z
: ð10Þ

Let us prove (10). By the resolvent identity, we have with o ¼ ðA	 lÞc ¼

ðA	 mÞj; j � Zm,

ðZm; Z �zÞ ¼ ðRmo;R �zoÞ ¼
1

m	 z
½hRmo;oi 	 hRzo;oi�:

Besides

ðl	 zÞðc; ZzÞ ¼ ðl	 zÞðRlo;R �zoÞ ¼ hRlo;oi 	 hRzo;oi:

So we have only to prove that

hRmo;oi ¼ hRlo;oi: ð11Þ

It follows from c � Zl ? lm � j; which is true since

ðc; ZmÞ ¼ ðc; ðA	 lÞRmcÞ ¼ 1 þ ðm	 lÞðc;RmcÞ ¼ 0;

by virtue of (7). Now we have

0 ¼ ðZl; ZmÞ ¼ ðRlo;RmoÞ ¼
1

l	 m
½hRlo;oi 	 hRmo;oi�:

That proves (11) and therefore (10) too. The uniqueness of ~A was proved in

Theorem 2. &

Proof of Theorem 1. In the general case where the nonempty set rðAÞ is con-

nected, the proof is the same as for a positive operator. We only have to be sure that

l 2 sðAÞ. This follows from the fact that any singular rank-one perturbation (as a

self-adjoint extension of the symmetric operator Å) may produce only a single new

eigenvalue in each spectral gap. Since m 2 rðAÞ, this implies that l, which is an

eigenvalue by construction, belongs to sðAÞ by necessity. &

Appendix

Proof of Theorem 2. Consider the operator function defined by (1)

~Rz :¼ Rz þ b	1
z ð�; Z �zÞZz;
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where the vector function Zz and the scalar function bz have the form

Zz :¼ ðA	 lÞRzc; bz :¼ ðl	 zÞðc; Z �zÞ; l 2 R; c 2 H nDðAÞ:

First, we will prove that ~Rz is the resolvent of a some self-adjoint operator
~A 2 P1

s ðAÞ. With this aim, we check by direct calculations, using the Hilbert identity

for the resolvent Rz ¼ ðA	 zÞ	1, that Zz and bz satisfiy (2). Then again by direct

calculations, we check that the operator function ~Rz is a pseudo-resolvent (see

[13]), i.e., that ~Rz satisfies the Hilbert identity. To be sure that ~Rz is the resolvent

of a some closed operator, we have to show that Ker ~Rz ¼ f0g:

This is a consequence of the condition c 2 H nDðAÞ. Indeed

~Rzh ¼ Rzhþ b	1
z ðh; Z �zÞZz ¼ 0

implies that h ¼ 0 because

Rzh 2 DðAÞ and Zz ¼ cþ ðz	 lÞRzc =2DðAÞ

due to c =2DðAÞ. In fact, ~Rz is the resolvent a self-adjoint operator. Denote it by ~A,

since

ð ~RzÞ
�
¼ R �z þ

�b
	1

z ð�; ZzÞZ �z ¼
~R �z;

where we used, �b
	1

z ¼ b	1
�z . Further, Zz =2DðAÞ; Im z > 0 implies that the set

D ¼ f f 2 H : f ¼ ~Rzh ¼ Rzhg � f f 2 DðAÞ : h f;oi ¼ 0; o ¼ ðA	 lÞcg

does not depend on z and is dense in H. Thus, ~A is a self-adjoint extension of the

symmetric operator Å ¼ A

(

D. The deficiency indices of Å are (1,1) because the defi-

ciency subspaces Nz :¼ KerðÅ 	 zÞ� are one-dimensional (they are spanned by Zz).
Therefore, ~A 2 P1

s ðAÞÞ.

The operator ~A solves the problem ~Ac ¼ lc, since due to Zz ¼ cþ ðz	 lÞRzc, we

have

~Rzc ¼ Rzcþ
1

ðl	 zÞðc; Z �zÞ
ðc; Z �zÞZz ¼

1

l	 z
c:

Finally, let us prove the uniqueness. Suppose that there exists another operator

Â 2 P1
s ðAÞ, which also solves the problem Âc ¼ lc. From the above considerations,

its resolvent admits the representation

R̂z :¼ Rz þ b̂
	1

z ð�; Ẑ �zÞẐz; Im z 6¼ 0;

and, moreover, for the above l and c we have

R̂zc ¼ ~Rzc ¼
1

l	 z
c ¼ Rzcþ b̂

	1

z ð�; Ẑ �zÞẐz ¼ Rzcþ b	1
z ð�; Z �zÞZz:

Now it is clear that b̂
	1

z ¼ b	1
z , and Ẑz ¼ Zz up to a constant of modulus one.

Therefore Â ¼ ~A. &
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