Letters in Mathematical Physics **00:** 1–10, 2003. © 2003 Kluwer Academic Publishers. Printed in the Netherlands.

Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

SERGIO ALBEVERIO¹, MYKOLA DUDKIN², and VOLODYMYR KOSHMANENKO³

¹Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany; SFB 256, Bonn, BiBoS, Bielefeld, Bonn, Germany; IZKS Bonn Germany and CERFIM, Locarno and Acc. Arch. (USI), Switzerland. e-mail: albeverio@uni-bonn.de ²National Technical Uni., Kyiv, Ukraine. e-mail: dudkin@imath.kiev.ua ³Institute of Mathematics, Kyiv, Ukraine. e-mail: kosh@imath.kiev.ua

(Received: 19 December 2002)

Abstract. We discuss the eigen-values problem for rank one singular perturbations $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$ of a self-adjoint unbounded operator A with a gap in its spectrum. We give a the constructive description of operators \tilde{A} which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.

Mathematics Subject Classifications (2000). 47A10, 47A55.

Key words. eigen-value problem, Krein's formula, rank one singular perturbation, self-adjoint extension.

1. Introduction

Many recent publications (see, e.g., [1–21]) have been devoted to the spectral theory of rank-one perturbations of self-adjoint operators,

 $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega, \quad \alpha \in \mathbf{R} \cup \infty, \ \omega \in \mathcal{H}_{-2},$

where \mathcal{H}_k denotes the usual *A*-scale of spaces. In fact, this spectral theory is rather rich and instructive even though rank-one perturbations are, in a sense, the simplest kind of perturbations. In this Letter, we expose a new phenomenon which can be described in this theory: a rank-one singular perturbation with a special relation between the coupling constant and the element ω characterizing the perturbation may produce the appearance of a dual pair of eigenvalues.

We investigate the inverse eigenvalues problem in the setting developed in [18] and [9]. We give an explicit construction of the operator $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$ which solves the eigenvalue problem with a pair of dual eigenvalues,

 $\tilde{A}\varphi = \mu\varphi, \qquad \tilde{A}\psi = \lambda\psi, \quad \mu \in \rho(A), \ \lambda \in \sigma(A), \quad (\lambda - \mu)^{-1} = (\psi, (A - \mu)^{-1}\psi).$

Let $A = A^*$ be a self-adjoint unbounded operator defined on dom $A = \mathcal{D}(A)$ in the separable Hilbert space \mathcal{H} with the inner product (\cdot, \cdot) and the norm $|| \cdot ||$. $\sigma(A)$,

 $\sigma_p(A)$, and $\rho(A)$ denote the spectrum, the point spectrum, and, resp., the regular points set of A.

Another self-adjoint operator A in \mathcal{H} is called a (pure) singular perturbation of A (notation $\tilde{A} \in \mathcal{P}_{s}(A)$) ([3, 17]) if the set

$$\mathcal{D} := \{ f \in \mathcal{D}(A) \cap \mathcal{D}(\tilde{A}) | Af = \tilde{A}f \}$$

is dense in \mathcal{H} . It is clear that for each $\hat{A} \in \mathcal{P}_s(A)$, there exists a densely defined symmetric operator $\hat{A} := A \upharpoonright \mathcal{D}$ with nontrivial deficiency indices $\mathbf{n}^{\pm}(\hat{A}) = \dim \ker(\hat{A} \mp z)^* \neq 0$. In this Letter we discuss only the case of rank-one singular perturbations, $\tilde{A} \in \mathcal{P}_s^1(A)$, i.e., we assume that $\mathbf{n}^{\pm}(\hat{A}) = 1$.

Let $\{\mathcal{H}_k(A)\}_{k \in \mathbb{R}^1}$ denote the associated A-scale of Hilbert spaces where $\mathcal{H}_k \equiv \mathcal{H}_k(A) = \mathcal{D}(|A|^{k/2}), \ k = 1, 2$, in the norm $||\varphi||_k := ||(|A| + I)^{k/2}\varphi||$ (I stands for the identity) and $\mathcal{H}_{-k} \equiv \mathcal{H}_{-k}(A)$ is the dual space $(\mathcal{H}_{-k}$ is the completion of \mathcal{H} in the norm $||f||_{-k} := ||(|A| + I)^{-k/2}f||$). Let $\langle \cdot, \cdot \rangle$ denote the dual inner product between \mathcal{H}_k and \mathcal{H}_{-k} . Obviously, A is bounded as a map from \mathcal{H}_1 to \mathcal{H}_{-1} , and from \mathcal{H} to \mathcal{H}_{-2} and, therefore, the expression $\langle \varphi, \omega \rangle, \ \omega = \mathbf{A}\psi$ has a sense for any $\varphi, \psi \in \mathcal{H}_1$, where **A** denotes the closure of A: $\mathcal{H}_1 \to \mathcal{H}_{-1}$. Moreover, $R_{\lambda} = (\mathbf{A} - \lambda)^{-1}$ is densely defined in \mathcal{H}_{-2} if $\lambda \notin \sigma_p(A)$.

Each $\tilde{A} \in \mathcal{P}_s^1(A)$ admits the representation $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$, where $0 \neq \alpha \in \mathbf{R} \cup \infty$ ($\infty^{-1} := 0$), $\omega \in \mathcal{H}_{-2}$, and + stands for the generalized sum (see [12, 20]). The resolvent of \tilde{A} may be written by Krein's formula (see [5, 6, 10, 14]) as

$$R_{z} = (A - z)^{-1} + b_{z}^{-1}(\cdot, \eta_{\bar{z}})\eta_{z}, \quad \text{Im} \, z \neq 0,$$
(1)

where the scalar function b_z satisfies the equation

$$b_{\xi} = b_z + (z - \xi)(\eta_z, \eta_{\overline{\xi}}), \qquad \overline{b_z} = b_{\overline{z}}, \quad \operatorname{Im} z, \quad \operatorname{Im} \xi \neq 0$$
 (2)

and where the vector function η_z belongs to $\mathcal{H} \setminus \mathcal{D}(A)$ and one has

$$\eta_z = (A - \xi) R_z \eta_{\mathcal{E}}.\tag{3}$$

In the case where $\omega \in \mathcal{H}_{-1}$, we have

$$b_z = -\alpha^{-1} - \langle \omega, \eta_{\bar{z}} \rangle, \quad \eta_z = (\mathbf{A} - z)^{-1} \omega.$$

Vice-versa, the operator function (1) uniquely defines the resolvent of some operator $\tilde{A} \in \mathcal{P}_s^1(A)$ if (2), (3) are fulfilled (see Theorem 2 below).

We are able to formulate our main result.

THEOREM 1. Let A be a self-adjoint unbounded operator with a nonempty connected spectral gap (i.e., the set $\rho(A) \cap \mathbf{R} \neq \emptyset$ is connected). Then for any vector $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$, $||\psi|| = 1$ and any $\mu \in \rho(A)$, there exists a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ uniquely defined by (1) with

$$\eta_z := (A - \lambda) R_z \psi, \qquad b_z := (\lambda - z)(\psi, \eta_{\bar{z}}), \tag{4}$$

which solves the eigenvalue problems with a dual pair of values:

RANK-ONE SINGULAR PERTURBATIONS

$$\tilde{A}\psi = \lambda\psi, \qquad \tilde{A}\varphi = \mu\varphi, \quad \mu \in \rho(A), \ \lambda \in \sigma(A),$$
(5)

where

$$\lambda = \mu + \frac{1}{(\psi, R_{\mu}\psi)}, \qquad \varphi = (A - \lambda)R_{\mu}\psi.$$

If $\psi \in \mathcal{H}_1 \setminus \mathcal{D}(A)$, then \tilde{A} admits the representation, $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$, with

$$\omega = (A - \mu)\psi - \frac{1}{(\psi, R_{\mu}\psi)}\psi, \quad \alpha = -\frac{1}{\langle \psi, \omega \rangle}.$$
(6)

For the proof, see Section 4.

2. Preliminaries

Let $\psi \in \mathcal{D}(A)$ and $\lambda \in \rho(A)$ be fixed. Consider a rank-one (regular) perturbation $\tilde{A} = A + \alpha(\cdot, \omega)\omega$ with $\omega = (A - \lambda)\psi$ and $\alpha = -(1/(\psi, \omega))$. Then obviously \tilde{A} solves the eigenvalue problem $\tilde{A}\psi = \lambda\psi$.

One can repeat this construction for $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$ in the case where $\psi \in \mathcal{H}_1 \setminus \mathcal{D}(A)$. Then $\tilde{A} \in \mathcal{P}_s^1(A)$ and $\tilde{A}\psi = \lambda \psi$ is fulfilled if $\alpha = -(1/\langle \psi, \omega \rangle)$ with $\omega = (\mathbf{A} - \lambda)\psi$. The resolvent of \tilde{A} has the form

$$ilde{R}_z := R_z - rac{1}{rac{1}{lpha} + \langle \omega, \eta_{ar{z}}
angle} (\cdot, \eta_{ar{z}}) \eta_z,$$

where $\eta_z := (A - \lambda)R_z \psi \equiv R_z \omega$.

Moreover, we assert that one can take any $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$ and any $\lambda \in \mathbf{R}$.

THEOREM 2. Let A be a self-adjoint unbounded operator. Given $\lambda \in \mathbf{R}$ and a vector $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$, $||\psi|| = 1$, there exists a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_s^1(A)$ uniquely defined by (1) with η_z and b_z given by (4). \tilde{A} solves the eigenvalue problem $\tilde{A}\psi = \lambda\psi$. If $\psi \in \mathcal{H}_1 \setminus \mathcal{D}(A)$, the operator \tilde{A} admits the representation in a form, $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$, with $\omega = (A - \lambda)\psi$, $\alpha^{-1} = -\langle \psi, \omega \rangle$.

For the proof see Appendix and ([9]).

3. Rank-One Singular Perturbations with Two New Eigenvalues

Let *A* be as in Theorem 1. Let the vector $\psi \in \mathcal{H}_1 \setminus \mathcal{D}(A)$, $||\psi|| = 1$, and the number $\mu \in \rho(A)$ be fixed. Consider the operator $\tilde{A}_0 = A + \alpha_0 \langle \cdot, \omega_0 \rangle \omega_0 \in \mathcal{P}_s^1(A)$ with

$$\omega_0 = (\mathbf{A} - \mu)\psi \in \mathcal{H}_{-1}$$
 and $\alpha_0 = -\frac{1}{\langle \psi, \omega_0 \rangle}$.

From the above considerations, this operator solves the eigenvalue problem $\tilde{A}_0\psi = \mu\psi$.

Now we will construct another operator $\tilde{A} \in \mathcal{P}_s^1(A)$ which solves the eigenvalue problems with a pair of values: the same $\mu \in \rho(A)$ and an additional one, $\lambda \in \sigma(A)$. We define \tilde{A} by Krein's formula (1) with $b_z = (\lambda - z)(\psi, \eta_{\bar{z}})$:

$$\tilde{R}_z := R_z - \frac{1}{(\lambda - z)(\psi, \eta_{\bar{z}})} (\cdot, \eta_{\bar{z}}) \eta_z,$$

where

$$\eta_z := (A - \lambda)R_z\psi$$
 and $\lambda := \mu + (\psi, R_\mu\psi)^{-1}$.

 \tilde{A} solves the eigenvalue problem $\tilde{A}\eta_{\lambda} = \lambda\eta_{\lambda}$ with $\eta_{\lambda} = \psi$, since obviously $b_{\lambda} = 0$ (see Theorem 2 above and Proposition 3 in [3]). The operator \tilde{A} also solves the eigenvalue problem $\tilde{A}\eta_{\mu} = \mu\eta_{\mu}$ with $\eta_{\mu} = (A - \lambda)R_{\mu}\psi$, since $b_{\mu} = 0$. Indeed, $b_{\mu} = (\lambda - \mu)(\psi, \eta_{\mu}) = 0$ because

$$(\psi, \eta_{\mu}) = (\psi, (A - \lambda)R_{\mu}\psi) = 1 + (\mu - \lambda)(\psi, R_{\mu}\psi) = 0,$$

due to the above connection between λ and μ . We note that $\lambda \in \sigma(A)$ since a rankone perturbation may produce only one new eigenvalue in each spectral gap of the starting operator. Thus, we described the construction of a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_s^1(A)$ which solves the eigenvalues problems with two new values, one lying in the gap of the spectrum $\sigma(A)$ of the original operator A. Since $\omega_0 = (\mathbf{A} - \mu)\psi \in \mathcal{H}_{-1}$, one can present \tilde{A} in the form $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$ with

$$\alpha = -\langle \psi, \omega \rangle^{-1}$$
 and $\omega = (\mathbf{A} - \lambda)\psi = \omega_0 + (\psi, R_\mu \psi)^{-1}\psi$.

We remark that the same operator appears in another (dual) way. Namely, using $\lambda = \mu + (\psi, R_{\mu}\psi)^{-1}$ and putting $\varphi := (A - \lambda)R_{\mu}\psi$, we can define the resolvent of \tilde{A} in the form

$$\tilde{R}_z = R_z - \frac{1}{(\mu - z)(\varphi, \eta_{\bar{z}})} (\cdot, \eta_{\bar{z}}) \eta_z,$$

where

$$\eta_z = (A - \mu)R_z\varphi = (A - \lambda)R_z\psi = R_z\omega$$

with $\omega = (\mathbf{A} - \lambda)\psi = (\mathbf{A} - \mu)\varphi$, and where $b_z = (\mu - z)(\varphi, \eta_{\bar{z}})$ coincides with $b_z = (\lambda - z)(\psi, \eta_{\bar{z}})$. The latter is true due to (11) (see below) and since, by the Hilbert identity, one has

$$(\lambda - z)(\psi, \eta_{\overline{z}}) = \langle R_{\lambda}\omega, \omega \rangle - \langle R_{z}\omega, \omega \rangle, (\mu - z)(\varphi, \eta_{\overline{z}}) = \langle R_{\mu}\omega, \omega \rangle - \langle R_{z}\omega, \omega \rangle.$$

Thus, one can to calculate the coupling constant α in the representation $\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega$ by two formulas.

$$\alpha = -\langle \psi, \omega \rangle^{-1}$$
 and $\alpha = -\langle \varphi, \omega \rangle^{-1}$.

Obviously, α is negative for positive A, since $\langle \varphi, \omega \rangle = \langle \varphi, (\mathbf{A} - \mu)\varphi \rangle > 0$ for all $\mu < 0$.

RANK-ONE SINGULAR PERTURBATIONS

EXAMPLE. Let

 $\mathcal{H} = L_2(\mathbf{R}, \mathrm{d}x)$ and $A = -\Delta = -\frac{\mathrm{d}^2}{\mathrm{d}x^2}.$

First consider the perturbed operator $-\tilde{\Delta}_{\alpha_0,y} = -\Delta + \alpha_0 \langle \cdot, \delta_y \rangle \delta_y$, where the coupling constant is real and δ_y is the Dirac distribution concentrated at the point $y \in \mathbf{R}$. For each $\alpha_0 < 0$, the operator $-\tilde{\Delta}_{\alpha_0,y}$ has a single eigenvalue $\mu = -\alpha_0^2/4 < 0$ with the corresponding eigenfunction $\psi(x) = e^{\alpha_0 |x-y|/2}$ (for more details, see ([1])).

Now we will construct the new rank-one singular perturbation of the Laplace operator which has a pair of dual eigenvalues.

Fix $\mu = -1$ and $\psi = e^{-|x|}$ and define

$$\xi = ((-\Delta + 1)^{-1}\psi, \psi) = ||\psi||_{-1}^2 < 1$$

and

$$\lambda \equiv \mu + \xi^{-1} = -1 + \xi^{-1} > 0.$$

Put

$$\varphi \equiv \psi - \xi^{-1} (-\Delta + 1)^{-1} \psi$$

and

$$\omega \equiv (-\Delta - \lambda)\psi = (-\Delta + 1)\varphi = 2\delta - \xi^{-1}\psi,$$

where we used $(-\Delta + 1)\psi = 2\delta$, (with $\delta = \delta_0$). Introduce the operator

$$-\tilde{\Delta} = -\Delta \tilde{+} \alpha \langle \cdot, \omega \rangle \omega$$

where

$$\alpha = -1/\langle \psi, \omega \rangle \equiv -1/\langle \varphi, \omega \rangle = -(2 - \xi^{-1})^{-1}.$$

If we put $\alpha = -1/\langle \varphi, \omega \rangle$, then by direct calculation, we find that

$$\begin{aligned} (-\tilde{\Delta}+1)\varphi &= (-\Delta+1)\varphi + \alpha \langle \varphi, \omega \rangle \omega = (-\Delta+1)\psi - \xi^{-1}\psi + \alpha \langle \varphi, \omega \rangle \omega \\ &= 2\delta - \xi^{-1}\psi - \omega = 2\delta - \xi^{-1}\psi - 2\delta + \xi^{-1}\psi = 0, \end{aligned}$$

i.e., $-\tilde{\Delta}\varphi = -\varphi$. Moreover, if we put $\alpha = -1/\langle \psi, \omega \rangle$, then

$$-\Delta\psi = -\Delta\psi + \alpha\langle\psi,\omega\rangle\omega = 2\delta - \psi - \omega = 2\delta - \psi - 2\delta + \xi^{-1}\psi = (-1 + \xi^{-1})\psi = \lambda\psi$$

Of course, we can verify that

$$(\psi, \varphi) = (\psi, \psi - \xi^{-1}(-\Delta + 1)^{-1}\psi) = 1 - \xi^{-1}((-\Delta + 1)^{-1}\psi, \psi) = 1 - \xi^{-1}\xi = 0.$$

Simple calculations show that the above terms and expressions have the following explicit values: $\xi = 3/4$, $\lambda = 1/3$, $\alpha = -3/2$,

$$\varphi(x) = e^{-|x|} - \frac{2}{3}(1+|x|)e^{-|x|}, \qquad \omega(x) = 2\delta(x) - \frac{4}{3}e^{-|x|}$$

Thus, $-\tilde{\Delta}$ possesses the two eigenvalues, $\mu = -1 < 0$ and $\lambda = \frac{1}{3} > 0$.

4. Dual Eigenvalues Pairs

For a fixed vector $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$, $||\psi|| = 1$, a point $\lambda \in \sigma(A)$ will be said to be dual with respect to a given $\mu \in \rho(A)$ if $(\lambda - \mu)^{-1} = (\psi, R_{\mu}\psi)$.

Let us consider a positive operator, $A \ge 0$. If $\sigma(A) = [0, \infty)$, then for any $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$ and any point $\mu < 0$, there exists a dual point λ which is uniquely defined by

$$\lambda = \mu + \frac{1}{(\psi, R_{\mu}\psi)}.$$
(7)

We note that $\lambda > 0$, since for $A \ge 0$

$$0<(\psi,R_{\mu}\psi)<-\frac{1}{\mu},\quad \mu<0.$$

Our main result in this case reads as follows:

THEOREM 3. Let $A = A^* \ge 0$ and $\sigma(A) = [0, \infty)$. Then for any vector $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$, $|\psi| = 1$, and any $\mu < 0$, there exists a uniquely defined rank-one singular perturbation $\tilde{A} \in \mathcal{P}_s^1(A)$ which solves the eigenvalue problems with a dual pair of values

$$A\psi = \lambda\psi, \quad A\varphi = \mu\varphi,$$
 (8)

where $\varphi = (A - \lambda)R_{\mu}\psi$ and $\lambda > 0$ is given by (7). If $\psi \in \mathcal{H}_1 \setminus \mathcal{D}(A)$, then the operator \tilde{A} , which solves (8), admits the representation

$$\tilde{A} = A + \alpha \langle \cdot, \omega \rangle \omega, \quad \alpha = -\frac{1}{\langle \psi, \omega \rangle}, \quad \omega = (\mathbf{A} - \lambda)\psi$$

Proof. Given $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$ and $\mu < 0$, let us consider λ to be connected with μ by (7). Define the operator \tilde{A} by Krein's resolvent formula

$$\tilde{R}_z = R_z + b_z^{-1}(\cdot,\eta_{\bar{z}})\eta_z = R_z + \frac{1}{(\lambda - z)(\psi,\eta_{\bar{z}})}(\cdot,\eta_{\bar{z}})\eta_z,$$

where $\eta_z := (A - \lambda)R_z\psi$. By Theorem 2, the operator \tilde{A} solves the problem $\tilde{A}\psi = \lambda\psi$. Let us directly show that \tilde{A} also solves the second problem in (8). To this aim, we will show that

$$\tilde{R}_z \varphi = \frac{1}{\mu - z} \varphi,$$

i.e., that

$$R_z \varphi + b_z^{-1}(\varphi, \eta_{\bar{z}})\eta_z = \frac{1}{\mu - z}\varphi.$$

RANK-ONE SINGULAR PERTURBATIONS

So in the notation $\varphi = (A - \lambda)R_{\mu}\psi \equiv \eta_{\mu}$, we have to prove that

$$R_z \eta_\mu + \frac{1}{(\lambda - z)(\psi, \eta_{\bar{z}})} (\eta_\mu, \eta_{\bar{z}}) \eta_z = \frac{1}{\mu - z} \eta_\mu, \tag{9}$$

which is equivalent to $\tilde{A}\varphi = \mu\varphi$. We observe that

$$\eta_z = (A - \mu)R_z\eta_\mu = \eta_\mu + (z - \mu)R_z\eta_\mu.$$

Therefore, (9) will be true only if

$$\frac{(\eta_{\mu}, \eta_{\overline{z}})}{(\lambda - z)(\psi, \eta_{\overline{z}})} = \frac{1}{\mu - z}.$$
(10)

Let us prove (10). By the resolvent identity, we have with $\omega = (\mathbf{A} - \lambda)\psi = (\mathbf{A} - \mu)\varphi$, $\varphi \equiv \eta_{\mu}$,

$$(\eta_{\mu},\eta_{\bar{z}}) = (R_{\mu}\omega, R_{\bar{z}}\omega) = \frac{1}{\mu - z} [\langle R_{\mu}\omega, \omega \rangle - \langle R_{z}\omega, \omega \rangle]$$

Besides

$$(\lambda - z)(\psi, \eta_{\overline{z}}) = (\lambda - z)(R_{\lambda}\omega, R_{\overline{z}}\omega) = \langle R_{\lambda}\omega, \omega \rangle - \langle R_{z}\omega, \omega \rangle.$$

So we have only to prove that

$$\langle R_{\mu}\omega,\omega\rangle = \langle R_{\lambda}\omega,\omega\rangle. \tag{11}$$

It follows from $\psi \equiv \eta_{\lambda} \perp \lambda_{\mu} \equiv \phi$, which is true since

$$(\psi, \eta_{\mu}) = (\psi, (A - \lambda)R_{\mu}\psi) = 1 + (\mu - \lambda)(\psi, R_{\mu}\psi) = 0,$$

by virtue of (7). Now we have

$$0 = (\eta_{\lambda}, \eta_{\mu}) = (R_{\lambda}\omega, R_{\mu}\omega) = \frac{1}{\lambda - \mu} [\langle R_{\lambda}\omega, \omega \rangle - \langle R_{\mu}\omega, \omega \rangle]$$

That proves (11) and therefore (10) too. The uniqueness of \tilde{A} was proved in Theorem 2.

Proof of Theorem 1. In the general case where the nonempty set $\rho(A)$ is connected, the proof is the same as for a positive operator. We only have to be sure that $\lambda \in \sigma(A)$. This follows from the fact that any singular rank-one perturbation (as a self-adjoint extension of the symmetric operator \mathring{A}) may produce only a single new eigenvalue in each spectral gap. Since $\mu \in \rho(A)$, this implies that λ , which is an eigenvalue by construction, belongs to $\sigma(A)$ by necessity.

Appendix

Proof of Theorem 2. Consider the operator function defined by (1)

$$\hat{R}_z := R_z + b_z^{-1}(\cdot, \eta_{\bar{z}})\eta_z,$$

where the vector function η_z and the scalar function b_z have the form

$$\eta_z := (A - \lambda)R_z\psi, \qquad b_z := (\lambda - z)(\psi, \eta_{\bar{z}}), \quad \lambda \in \mathbf{R}, \ \psi \in \mathcal{H} \setminus \mathcal{D}(A).$$

First, we will prove that \tilde{R}_z is the resolvent of a some self-adjoint operator $\tilde{A} \in \mathcal{P}_s^1(A)$. With this aim, we check by direct calculations, using the Hilbert identity for the resolvent $R_z = (A - z)^{-1}$, that η_z and b_z satisfy (2). Then again by direct calculations, we check that the operator function \tilde{R}_z is a pseudo-resolvent (see [13]), i.e., that \tilde{R}_z satisfies the Hilbert identity. To be sure that \tilde{R}_z is the resolvent of a some closed operator, we have to show that Ker $\tilde{R}_z = \{0\}$.

This is a consequence of the condition $\psi \in \mathcal{H} \setminus \mathcal{D}(A)$. Indeed

$$\tilde{R}_z h = R_z h + b_z^{-1}(h, \eta_{\bar{z}})\eta_z = 0$$

implies that h = 0 because

~

$$R_z h \in \mathcal{D}(A)$$
 and $\eta_z = \psi + (z - \lambda)R_z \psi \notin \mathcal{D}(A)$

due to $\psi \notin \mathcal{D}(A)$. In fact, \tilde{R}_z is the resolvent a self-adjoint operator. Denote it by \tilde{A} , since

$$(\tilde{R}_z)^* = R_{\bar{z}} + \bar{b}_z^{-1}(\cdot,\eta_z)\eta_{\bar{z}} = \tilde{R}_{\bar{z}}$$

where we used, $\bar{b}_z^{-1} = b_{\bar{z}}^{-1}$. Further, $\eta_z \notin \mathcal{D}(A)$, Im z > 0 implies that the set

$$\mathcal{D} = \{ f \in \mathcal{H} : f = \tilde{R}_z h = R_z h \} \equiv \{ f \in \mathcal{D}(A) : \langle f, \omega \rangle = 0, \ \omega = (\mathbf{A} - \lambda) \psi \}$$

does not depend on z and is dense in \mathcal{H} . Thus, \tilde{A} is a self-adjoint extension of the symmetric operator $\mathring{A} = A \upharpoonright \mathcal{D}$. The deficiency indices of \mathring{A} are (1,1) because the deficiency subspaces $\Re_z := \text{Ker}(\mathring{A} - z)^*$ are one-dimensional (they are spanned by η_z). Therefore, $\tilde{A} \in \mathcal{P}_s^1(A)$).

The operator \tilde{A} solves the problem $\tilde{A}\psi = \lambda\psi$, since due to $\eta_z = \psi + (z - \lambda)R_z\psi$, we have

$$\tilde{R}_z \psi = R_z \psi + \frac{1}{(\lambda - z)(\psi, \eta_{\bar{z}})} (\psi, \eta_{\bar{z}}) \eta_z = \frac{1}{\lambda - z} \psi.$$

Finally, let us prove the uniqueness. Suppose that there exists another operator $\hat{A} \in \mathcal{P}_s^1(A)$, which also solves the problem $\hat{A}\psi = \lambda\psi$. From the above considerations, its resolvent admits the representation

$$\hat{R}_z := R_z + \hat{b}_z^{-1}(\cdot, \hat{\eta}_{\bar{z}})\hat{\eta}_z, \quad \text{Im} \, z \neq 0,$$

and, moreover, for the above λ and ψ we have

$$\hat{R}_z\psi=\tilde{R}_z\psi=\frac{1}{\lambda-z}\psi=R_z\psi+\hat{b}_z^{-1}(\cdot,\hat{\eta}_{\bar{z}})\hat{\eta}_z=R_z\psi+b_z^{-1}(\cdot,\eta_{\bar{z}})\eta_z.$$

Now it is clear that $\hat{b}_z^{-1} = b_z^{-1}$, and $\hat{\eta}_z = \eta_z$ up to a constant of modulus one. Therefore $\hat{A} = \tilde{A}$.

Acknowledgement

The authors would like to thank Professor L. Nizhnik for stimulating discussion. This work was supported by the DFG 436 UKR 113/53, DFG 436 UKR 113/67, INTAS 00-257, and SFB-611 projects. V. K. gratefully acknowledge the hospitality of the Institute of Applied Mathematics and of the IZKS of the University of Bonn.

References

- 1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and Holden, H.: Solvable Models in *Quantum Mechanics*, Springer-Verlag, Berlin, 1988.
- 2. Albeverio, S. and Koshmanenko, V.: Form-sum approximation of singular perturbation of self-adjoint operators, *J. Funct. Anal.* **168** (1999), 32–51.
- Albeverio, S. and Koshmanenko, V.: Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions, *Potential Anal.* 11 (1999), 279–287.
- 4. Albeverio, S., Konstantinov, A. and Koshmanenko, V.: The Aronszajn–Donoghue theory for rank one perturbations of the \mathcal{H}_{-2} -class, *Integral Equations Operator Theory*, to appear.
- 5. Albeverio, S. and Kurasov, P.: Rank one perturbations of not semibounded operators, *Integral Equations Operator Theory* **27** (1997), 379–400.
- 6. Albeverio, S. and Kurasov, P.: Singular Perturbations of Differential Operators and Solvable Schrodinger Type Operators, Cambridge Univ. Press, 2000.
- Albeverio, S., Koshmanenko, V., Kurasov, P. and Niznik, L.: On approximations of rank one *H*₋₂-perturbations, *Proc. Amer. Math. Soc.*, to appear.
- 8. Donoghue, W. F.: On the perturbation of spectra, *Comm. Pure Appl. Math.* 15 (1965), 559–579.
- 9. Dudkin, M. and Koshmanenko, V.: About point spectrum arising under finite rank one perturbations of self-adjoint operators, *Ukrainian Math. J.*, to appear.
- Gesztesy, F. and Simon, B.: Rank-one perturbations at infinite coupling, J. Funct. Anal. 128 (1995), 245–252.
- 11. Karwowski, W. and Koshmanenko, V.: Generalized Laplace operator, In: F. Gesztesy *et al.* (eds), $L_2(\mathbf{R}^n)$, *in Stochastic Processes, Physics and Geometry: New Interplays. II*, Canadian Math. Soc., Conference Proc., 29, (2000), pp. 385–393.
- Karataeva, T. V. and Koshmanenko, V. D.: Generalized sum of operators, *Math. Notes* 66(5) (1999), 671–681.
- 13. Kato, T.: Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
- 14. Kiselev, A. and Simon, B.: Rank one perturbations with infinitesimal coupling, J. Funct. Anal. 130 (1995), 345–356.
- Koshmanenko, V. D.: Towards the rank-one singular perturbations of self-adjoint operators, Ukrainian Math. J. 43(11) (1991), 1559–1566.
- Koshmanenko, V. D.: Singular perturbations at infinite coupling, *Funct. Anal. Appl.* 33(2) (1999), 81–84.
- Koshmanenko, V.: Singular Quadratic Forms in Perturbation Theory, Kluwer Acad. Publ., Dordrecht, 1999.
- Koshmanenko, V.: A variant of the inverse negative eigenvalues problem in singular perturbation theory, *Methods Funct. Anal. Topology* 8(1) (2002), 49–69.
- Makarov, K. A. and Pavlov, B. S.: Quantum scattering on a Cantor bar, J. Math. Phys. 35 (1994), 188–207.

- 20. Niznik, L.: On rank one singular perturbations of self-adjoint operators, Methods Funct. Anal. Topology 7(3) (2001), 54–66. 21. Simon, B.: Spectral analysis of rank one perturbations and applications In: CRM Proc.
- Lecture Notes, 8, Amer. Math. Soc., Providence (1995), pp. 109-149.