Rank-One Singular Perturbations with a Dual Pair of Eigenvalues

SERGIO ALBEVERIO ${ }^{1}$, MYKOLA DUDKIN ${ }^{2}$, and VOLODYMYR KOSHMANENKO ${ }^{3}$
${ }^{1}$ Institut für Angewandte Mathematik, Universität Bonn, Wegelerstr. 6, D-53115 Bonn, Germany; SFB 256, Bonn, BiBoS, Bielefeld, Bonn, Germany; IZKS Bonn Germany and CERFIM, Locarno and Acc. Arch. (USI), Switzerland. e-mail: albeverio@uni-bonn.de
${ }^{2}$ National Technical Uni., Kyiv, Ukraine. e-mail: dudkin@imath.kiev.ua
${ }^{3}$ Institute of Mathematics, Kyiv, Ukraine. e-mail: kosh@imath.kiev.ua

(Received: 19 December 2002)

Abstract

We discuss the eigen-values problem for rank one singular perturbations $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$ of a self-adjoint unbounded operator A with a gap in its spectrum. We give a the constructive description of operators \tilde{A} which possess at least two new eigenvalues, one in the resolvent set and other in the spectrum of A.

Mathematics Subject Classifications (2000). 47A10, 47A55.
Key words. eigen-value problem, Krein's formula, rank one singular perturbation, self-adjoint extension.

1. Introduction

Many recent publications (see, e.g., [1-21]) have been devoted to the spectral theory of rank-one perturbations of self-adjoint operators,

$$
\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega, \quad \alpha \in \mathbf{R} \cup \infty, \omega \in \mathcal{H}_{-2}
$$

where \mathcal{H}_{k} denotes the usual A-scale of spaces. In fact, this spectral theory is rather rich and instructive even though rank-one perturbations are, in a sense, the simplest kind of perturbations. In this Letter, we expose a new phenomenon which can be described in this theory: a rank-one singular perturbation with a special relation between the coupling constant and the element ω characterizing the perturbation may produce the appearance of a dual pair of eigenvalues.

We investigate the inverse eigenvalues problem in the setting developed in [18] and [9]. We give an explicit construction of the operator $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$ which solves the eigenvalue problem with a pair of dual eigenvalues,

$$
\tilde{A} \varphi=\mu \varphi, \quad \tilde{A} \psi=\lambda \psi, \quad \mu \in \rho(A), \lambda \in \sigma(A), \quad(\lambda-\mu)^{-1}=\left(\psi,(A-\mu)^{-1} \psi\right)
$$

Let $A=A^{*}$ be a self-adjoint unbounded operator defined on $\operatorname{dom} A=\mathcal{D}(A)$ in the separable Hilbert space \mathcal{H} with the inner product (\cdot, \cdot) and the norm \|.\|. $\sigma(A)$,
$\sigma_{p}(A)$, and $\rho(A)$ denote the spectrum, the point spectrum, and, resp., the regular points set of A.

Another self-adjoint operator \tilde{A} in \mathcal{H} is called a (pure) singular perturbation of A (notation $\left.\tilde{A} \in \mathcal{P}_{s}(A)\right)([3,17])$ if the set

$$
\mathcal{D}:=\{f \in \mathcal{D}(A) \cap \mathcal{D}(\tilde{A}) \mid A f=\tilde{A} f\}
$$

is dense in \mathcal{H}. It is clear that for each $\tilde{A} \in \mathcal{P}_{s}(A)$, there exists a densely defined symmetric operator $\AA:=A \upharpoonright \mathcal{D}$ with nontrivial deficiency indices $\mathbf{n}^{ \pm}(\AA)=$ $\operatorname{dim} \operatorname{ker}(\AA \mp z)^{*} \neq 0$. In this Letter we discuss only the case of rank-one singular perturbations, $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$, i.e., we assume that $\mathbf{n}^{ \pm}(\AA)=1$.

Let $\left\{\mathcal{H}_{k}(A)\right\}_{k \in \mathbf{R}^{1}}$ denote the associated A-scale of Hilbert spaces where $\mathcal{H}_{k} \equiv$ $\mathcal{H}_{k}(A)=\mathcal{D}\left(|A|^{k / 2}\right), k=1,2$, in the norm $\|\varphi\|_{k}:=\left\|(|A|+I)^{k / 2} \varphi\right\|(I$ stands for the identity) and $\mathcal{H}_{-k} \equiv \mathcal{H}_{-k}(A)$ is the dual space (\mathcal{H}_{-k} is the completion of \mathcal{H} in the norm $\left.\|f\|_{-k}:=\left\|(|A|+I)^{-k / 2} f\right\|\right)$. Let $\langle\cdot, \cdot\rangle$ denote the dual inner product between \mathcal{H}_{k} and \mathcal{H}_{-k}. Obviously, A is bounded as a map from \mathcal{H}_{1} to \mathcal{H}_{-1}, and from \mathcal{H} to \mathcal{H}_{-2} and, therefore, the expression $\langle\varphi, \omega\rangle, \omega=\mathbf{A} \psi$ has a sense for any $\varphi, \psi \in \mathcal{H}_{1}$, where \mathbf{A} denotes the closure of $A: \mathcal{H}_{1} \rightarrow \mathcal{H}_{-1}$. Moreover, $R_{\lambda}=(\mathbf{A}-\lambda)^{-1}$ is densely defined in \mathcal{H}_{-2} if $\lambda \notin \sigma_{p}(A)$.

Each $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ admits the representation $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$, where $0 \neq \alpha \in \mathbf{R} \cup \infty$ $\left(\infty^{-1}:=0\right), \omega \in \mathcal{H}_{-2}$, and $\tilde{+}$ stands for the generalized sum (see [12, 20]). The resolvent of \tilde{A} may be written by Krein's formula (see $[5,6,10,14]$) as

$$
\begin{equation*}
\tilde{R}_{z}=(A-z)^{-1}+b_{z}^{-1}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}, \quad \operatorname{Im} z \neq 0 \tag{1}
\end{equation*}
$$

where the scalar function b_{z} satisfies the equation

$$
\begin{equation*}
b_{\xi}=b_{z}+(z-\xi)\left(\eta_{z}, \eta_{\bar{\xi}}\right), \quad \bar{b}_{z}=b_{\bar{z}}, \quad \operatorname{Im} z, \quad \operatorname{Im} \xi \neq 0 \tag{2}
\end{equation*}
$$

and where the vector function η_{z} belongs to $\mathcal{H} \backslash \mathcal{D}(A)$ and one has

$$
\begin{equation*}
\eta_{z}=(A-\xi) R_{z} \eta_{\xi} . \tag{3}
\end{equation*}
$$

In the case where $\omega \in \mathcal{H}_{-1}$, we have

$$
b_{z}=-\alpha^{-1}-\left\langle\omega, \eta_{\bar{z}}\right\rangle, \quad \eta_{z}=(\mathbf{A}-z)^{-1} \omega .
$$

Vice-versa, the operator function (1) uniquely defines the resolvent of some operator $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ if (2), (3) are fulfilled (see Theorem 2 below).

We are able to formulate our main result.

THEOREM 1. Let A be a self-adjoint unbounded operator with a nonempty connected spectral gap (i.e., the set $\rho(A) \cap \mathbf{R} \neq \emptyset$ is connected). Then for any vector $\psi \in \mathcal{H} \backslash \mathcal{D}(A),\|\psi\|=1$ and any $\mu \in \rho(A)$, there exists a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ uniquely defined by (1) with

$$
\begin{equation*}
\eta_{z}:=(A-\lambda) R_{z} \psi, \quad b_{z}:=(\lambda-z)\left(\psi, \eta_{\bar{z}}\right), \tag{4}
\end{equation*}
$$

which solves the eigenvalue problems with a dual pair of values:

$$
\begin{equation*}
\tilde{A} \psi=\lambda \psi, \quad \tilde{A} \varphi=\mu \varphi, \quad \mu \in \rho(A), \lambda \in \sigma(A) \tag{5}
\end{equation*}
$$

where

$$
\lambda=\mu+\frac{1}{\left(\psi, R_{\mu} \psi\right)}, \quad \varphi=(A-\lambda) R_{\mu} \psi
$$

If $\psi \in \mathcal{H}_{1} \backslash \mathcal{D}(A)$, then \tilde{A} admits the representation, $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$, with

$$
\begin{equation*}
\omega=(A-\mu) \psi-\frac{1}{\left(\psi, R_{\mu} \psi\right)} \psi, \quad \alpha=-\frac{1}{\langle\psi, \omega\rangle} . \tag{6}
\end{equation*}
$$

For the proof, see Section 4.

2. Preliminaries

Let $\psi \in \mathcal{D}(A)$ and $\lambda \in \rho(A)$ be fixed. Consider a rank-one (regular) perturbation $\tilde{A}=A+\alpha(\cdot, \omega) \omega$ with $\omega=(A-\lambda) \psi$ and $\alpha=-(1 /(\psi, \omega))$. Then obviously \tilde{A} solves the eigenvalue problem $\tilde{A} \psi=\lambda \psi$.

One can repeat this construction for $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$ in the case where $\psi \in \mathcal{H}_{1} \backslash \mathcal{D}(A)$. Then $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ and $\tilde{A} \psi=\lambda \psi$ is fulfilled if $\alpha=-(1 /\langle\psi, \omega\rangle)$ with $\omega=(\mathbf{A}-\lambda) \psi$. The resolvent of \tilde{A} has the form

$$
\tilde{R}_{z}:=R_{z}-\frac{1}{\frac{1}{\alpha}+\left\langle\omega, \eta_{\bar{z}}\right\rangle}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z},
$$

where $\eta_{z}:=(A-\lambda) R_{z} \psi \equiv R_{z} \omega$.
Moreover, we assert that one can take any $\psi \in \mathcal{H} \backslash \mathcal{D}(A)$ and any $\lambda \in \mathbf{R}$.
THEOREM 2. Let A be a self-adjoint unbounded operator. Given $\lambda \in \mathbf{R}$ and a vector $\psi \in \mathcal{H} \backslash \mathcal{D}(A),\|\psi\|=1$, there exists a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ uniquely defined by (1) with η_{z} and b_{z} given by (4). \tilde{A} solves the eigenvalue problem $\tilde{A} \psi=\lambda \psi$. If $\psi \in \mathcal{H}_{1} \backslash \mathcal{D}(A)$, the operator \tilde{A} admits the representation in a form, $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$, with $\omega=(A-\lambda) \psi, \alpha^{-1}=-\langle\psi, \omega\rangle$.

For the proof see Appendix and ([9]).

3. Rank-One Singular Perturbations with Two New Eigenvalues

Let A be as in Theorem 1. Let the vector $\psi \in \mathcal{H}_{1} \backslash \mathcal{D}(A),\|\psi\|=1$, and the number $\mu \in \rho(A)$ be fixed. Consider the operator $\tilde{A}_{0}=A \tilde{+} \alpha_{0}\left\langle\cdot, \omega_{0}\right\rangle \omega_{0} \in \mathcal{P}_{s}^{1}(A)$ with

$$
\omega_{0}=(\mathbf{A}-\mu) \psi \in \mathcal{H}_{-1} \quad \text { and } \quad \alpha_{0}=-\frac{1}{\left\langle\psi, \omega_{0}\right\rangle}
$$

From the above considerations, this operator solves the eigenvalue problem $\tilde{A}_{0} \psi=\mu \psi$.

Now we will construct another operator $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ which solves the eigenvalue problems with a pair of values: the same $\mu \in \rho(A)$ and an additional one, $\lambda \in \sigma(A)$.

We define \tilde{A} by Krein's formula (1) with $b_{z}=(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)$:

$$
\tilde{R}_{z}:=R_{z}-\frac{1}{(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}
$$

where

$$
\eta_{z}:=(A-\lambda) R_{z} \psi \quad \text { and } \quad \lambda:=\mu+\left(\psi, R_{\mu} \psi\right)^{-1}
$$

\tilde{A} solves the eigenvalue problem $\tilde{A} \eta_{\lambda}=\lambda \eta_{\lambda}$ with $\eta_{\lambda}=\psi$, since obviously $b_{\lambda}=0$ (see Theorem 2 above and Proposition 3 in [3]). The operator \tilde{A} also solves the eigenvalue problem $\tilde{A} \eta_{\mu}=\mu \eta_{\mu}$ with $\eta_{\mu}=(A-\lambda) R_{\mu} \psi$, since $b_{\mu}=0$. Indeed, $b_{\mu}=(\lambda-\mu)\left(\psi, \eta_{\mu}\right)=0$ because

$$
\left(\psi, \eta_{\mu}\right)=\left(\psi,(A-\lambda) R_{\mu} \psi\right)=1+(\mu-\lambda)\left(\psi, R_{\mu} \psi\right)=0
$$

due to the above connection between λ and μ. We note that $\lambda \in \sigma(A)$ since a rankone perturbation may produce only one new eigenvalue in each spectral gap of the starting operator. Thus, we described the construction of a rank-one singular perturbation $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ which solves the eigenvalues problems with two new values, one lying in the gap of the spectrum $\sigma(A)$ of the original operator A. Since $\omega_{0}=(\mathbf{A}-\mu) \psi \in \mathcal{H}_{-1}$, one can present \tilde{A} in the form $\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$ with

$$
\alpha=-\langle\psi, \omega\rangle^{-1} \quad \text { and } \quad \omega=(\mathbf{A}-\lambda) \psi=\omega_{0}+\left(\psi, R_{\mu} \psi\right)^{-1} \psi
$$

We remark that the same operator appears in another (dual) way. Namely, using $\lambda=\mu+\left(\psi, R_{\mu} \psi\right)^{-1}$ and putting $\varphi:=(A-\lambda) R_{\mu} \psi$, we can define the resolvent of \tilde{A} in the form

$$
\tilde{R}_{z}=R_{z}-\frac{1}{(\mu-z)\left(\varphi, \eta_{\bar{z}}\right)}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}
$$

where

$$
\eta_{z}=(A-\mu) R_{z} \varphi=(A-\lambda) R_{z} \psi=R_{z} \omega
$$

with $\omega=(\mathbf{A}-\lambda) \psi=(\mathbf{A}-\mu) \varphi$, and where $b_{z}=(\mu-z)\left(\varphi, \eta_{\bar{z}}\right)$ coincides with $b_{z}=$ $(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)$. The latter is true due to (11) (see below) and since, by the Hilbert identity, one has

$$
(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)=\left\langle R_{\lambda} \omega, \omega\right\rangle-\left\langle R_{z} \omega, \omega\right\rangle,(\mu-z)\left(\varphi, \eta_{\bar{z}}\right)=\left\langle R_{\mu} \omega, \omega\right\rangle-\left\langle R_{z} \omega, \omega\right\rangle
$$

Thus, one can to calculate the coupling constant α in the representation $\tilde{A}=$ $A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega$ by two formulas.

$$
\alpha=-\langle\psi, \omega\rangle^{-1} \quad \text { and } \quad \alpha=-\langle\varphi, \omega\rangle^{-1} .
$$

Obviously, α is negative for positive A, since $\langle\varphi, \omega\rangle=\langle\varphi,(\mathbf{A}-\mu) \varphi\rangle>0$ for all $\mu<0$.

EXAMPLE. Let

$$
\mathcal{H}=L_{2}(\mathbf{R}, \mathrm{~d} x) \quad \text { and } \quad A=-\Delta=-\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}
$$

First consider the perturbed operator $-\tilde{\Delta}_{\alpha_{0}, y}=-\Delta \tilde{+} \alpha_{0}\left\langle\cdot, \delta_{y}\right\rangle \delta_{y}$, where the coupling constant is real and δ_{y} is the Dirac distribution concentrated at the point $y \in \mathbf{R}$. For each $\alpha_{0}<0$, the operator $-\tilde{\Delta}_{\alpha_{0}, y}$ has a single eigenvalue $\mu=-\alpha_{0}^{2} / 4<0$ with the corresponding eigenfunction $\psi(x)=\mathrm{e}^{\alpha_{0}|x-y| / 2}$ (for more details, see ([1])).

Now we will construct the new rank-one singular perturbation of the Laplace operator which has a pair of dual eigenvalues.

Fix $\mu=-1$ and $\psi=\mathrm{e}^{-|x|}$ and define

$$
\xi=\left((-\Delta+1)^{-1} \psi, \psi\right)=\|\psi\|_{-1}^{2}<1
$$

and

$$
\lambda \equiv \mu+\xi^{-1}=-1+\xi^{-1}>0
$$

Put

$$
\varphi \equiv \psi-\xi^{-1}(-\Delta+1)^{-1} \psi
$$

and

$$
\omega \equiv(-\Delta-\lambda) \psi=(-\Delta+1) \varphi=2 \delta-\xi^{-1} \psi
$$

where we used $(-\Delta+1) \psi=2 \delta$, (with $\delta=\delta_{0}$). Introduce the operator

$$
-\tilde{\Delta}=-\Delta \tilde{+} \alpha\langle\cdot, \omega\rangle \omega
$$

where

$$
\alpha=-1 /\langle\psi, \omega\rangle \equiv-1 /\langle\varphi, \omega\rangle=-\left(2-\xi^{-1}\right)^{-1} .
$$

If we put $\alpha=-1 /\langle\varphi, \omega\rangle$, then by direct calculation, we find that

$$
\begin{aligned}
(-\tilde{\Delta}+1) \varphi & =(-\Delta+1) \varphi+\alpha\langle\varphi, \omega\rangle \omega=(-\Delta+1) \psi-\xi^{-1} \psi+\alpha\langle\varphi, \omega\rangle \omega \\
& =2 \delta-\xi^{-1} \psi-\omega=2 \delta-\xi^{-1} \psi-2 \delta+\xi^{-1} \psi=0
\end{aligned}
$$

i.e., $-\tilde{\Delta} \varphi=-\varphi$. Moreover, if we put $\alpha=-1 /\langle\psi, \omega\rangle$, then

$$
-\tilde{\Delta} \psi=-\Delta \psi+\alpha\langle\psi, \omega\rangle \omega=2 \delta-\psi-\omega=2 \delta-\psi-2 \delta+\xi^{-1} \psi=\left(-1+\xi^{-1}\right) \psi=\lambda \psi
$$

Of course, we can verify that

$$
(\psi, \varphi)=\left(\psi, \psi-\xi^{-1}(-\Delta+1)^{-1} \psi\right)=1-\xi^{-1}\left((-\Delta+1)^{-1} \psi, \psi\right)=1-\xi^{-1} \xi=0
$$

Simple calculations show that the above terms and expressions have the following explicit values: $\xi=3 / 4, \lambda=1 / 3, \alpha=-3 / 2$,

$$
\varphi(x)=\mathrm{e}^{-|x|}-\frac{2}{3}(1+|x|) \mathrm{e}^{-|x|}, \quad \omega(x)=2 \delta(x)-\frac{4}{3} \mathrm{e}^{-|x|} .
$$

Thus, $-\tilde{\Delta}$ possesses the two eigenvalues, $\mu=-1<0$ and $\lambda=\frac{1}{3}>0$.

4. Dual Eigenvalues Pairs

For a fixed vector $\psi \in \mathcal{H} \backslash \mathcal{D}(A),\|\psi\|=1$, a point $\lambda \in \sigma(A)$ will be said to be dual with respect to a given $\mu \in \rho(A)$ if $(\lambda-\mu)^{-1}=\left(\psi, R_{\mu} \psi\right)$.

Let us consider a positive operator, $A \geqslant 0$. If $\sigma(A)=[0, \infty)$, then for any $\psi \in \mathcal{H} \backslash \mathcal{D}(A)$ and any point $\mu<0$, there exists a dual point λ which is uniquely defined by

$$
\begin{equation*}
\lambda=\mu+\frac{1}{\left(\psi, R_{\mu} \psi\right)} \tag{7}
\end{equation*}
$$

We note that $\lambda>0$, since for $A \geqslant 0$

$$
0<\left(\psi, R_{\mu} \psi\right)<-\frac{1}{\mu}, \quad \mu<0
$$

Our main result in this case reads as follows:
THEOREM 3. Let $A=A^{*} \geqslant 0$ and $\sigma(A)=[0, \infty)$. Then for any vector $\psi \in \mathcal{H} \backslash \mathcal{D}(A)$, $|\psi|=1$, and any $\mu<0$, there exists a uniquely defined rank-one singular perturbation $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$ which solves the eigenvalue problems with a dual pair of values

$$
\begin{equation*}
\tilde{A} \psi=\lambda \psi, \quad \tilde{A} \varphi=\mu \varphi \tag{8}
\end{equation*}
$$

where $\varphi=(A-\lambda) R_{\mu} \psi$ and $\lambda>0$ is given by (7). If $\psi \in \mathcal{H}_{1} \backslash \mathcal{D}(A)$, then the operator \tilde{A}, which solves (8), admits the representation

$$
\tilde{A}=A \tilde{+} \alpha\langle\cdot, \omega\rangle \omega, \quad \alpha=-\frac{1}{\langle\psi, \omega\rangle}, \quad \omega=(\mathbf{A}-\lambda) \psi
$$

Proof. Given $\psi \in \mathcal{H} \backslash \mathcal{D}(\underset{\sim}{A})$ and $\mu<0$, let us consider λ to be connected with μ by (7). Define the operator \tilde{A} by Krein's resolvent formula

$$
\tilde{R}_{z}=R_{z}+b_{z}^{-1}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}=R_{z}+\frac{1}{(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}
$$

where $\eta_{z}:=(A-\lambda) R_{z} \psi$. By Theorem 2, the operator \tilde{A} solves the problem $\tilde{A} \psi=\lambda \psi$. Let us directly show that \tilde{A} also solves the second problem in (8). To this aim, we will show that

$$
\tilde{R}_{z} \varphi=\frac{1}{\mu-z} \varphi
$$

i.e., that

$$
R_{z} \varphi+b_{z}^{-1}\left(\varphi, \eta_{\bar{z}}\right) \eta_{z}=\frac{1}{\mu-z} \varphi
$$

So in the notation $\varphi=(A-\lambda) R_{\mu} \psi \equiv \eta_{\mu}$, we have to prove that

$$
\begin{equation*}
R_{z} \eta_{\mu}+\frac{1}{(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)}\left(\eta_{\mu}, \eta_{\bar{z}}\right) \eta_{z}=\frac{1}{\mu-z} \eta_{\mu}, \tag{9}
\end{equation*}
$$

which is equivalent to $\tilde{A} \varphi=\mu \varphi$. We observe that

$$
\eta_{z}=(A-\mu) R_{z} \eta_{\mu}=\eta_{\mu}+(z-\mu) R_{z} \eta_{\mu} .
$$

Therefore, (9) will be true only if

$$
\begin{equation*}
\frac{\left(\eta_{\mu}, \eta_{\bar{z}}\right)}{(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)}=\frac{1}{\mu-z} \tag{10}
\end{equation*}
$$

Let us prove (10). By the resolvent identity, we have with $\omega=(\mathbf{A}-\lambda) \psi=$ $(\mathbf{A}-\mu) \varphi, \varphi \equiv \eta_{\mu}$,

$$
\left(\eta_{\mu}, \eta_{\bar{z}}\right)=\left(R_{\mu} \omega, R_{\bar{z}} \omega\right)=\frac{1}{\mu-z}\left[\left\langle R_{\mu} \omega, \omega\right\rangle-\left\langle R_{z} \omega, \omega\right\rangle\right] .
$$

Besides

$$
(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)=(\lambda-z)\left(R_{\lambda} \omega, R_{\bar{z}} \omega\right)=\left\langle R_{\lambda} \omega, \omega\right\rangle-\left\langle R_{z} \omega, \omega\right\rangle
$$

So we have only to prove that

$$
\begin{equation*}
\left\langle R_{\mu} \omega, \omega\right\rangle=\left\langle R_{\lambda} \omega, \omega\right\rangle \tag{11}
\end{equation*}
$$

It follows from $\psi \equiv \eta_{\lambda} \perp \lambda_{\mu} \equiv \varphi$, which is true since

$$
\left(\psi, \eta_{\mu}\right)=\left(\psi,(A-\lambda) R_{\mu} \psi\right)=1+(\mu-\lambda)\left(\psi, R_{\mu} \psi\right)=0
$$

by virtue of (7). Now we have

$$
0=\left(\eta_{\lambda}, \eta_{\mu}\right)=\left(R_{\lambda} \omega, R_{\mu} \omega\right)=\frac{1}{\lambda-\mu}\left[\left\langle R_{\lambda} \omega, \omega\right\rangle-\left\langle R_{\mu} \omega, \omega\right\rangle\right] .
$$

That proves (11) and therefore (10) too. The uniqueness of \tilde{A} was proved in Theorem 2.

Proof of Theorem 1. In the general case where the nonempty set $\rho(A)$ is connected, the proof is the same as for a positive operator. We only have to be sure that $\lambda \in \sigma(A)$. This follows from the fact that any singular rank-one perturbation (as a self-adjoint extension of the symmetric operator \AA) may produce only a single new eigenvalue in each spectral gap. Since $\mu \in \rho(A)$, this implies that λ, which is an eigenvalue by construction, belongs to $\sigma(A)$ by necessity.

Appendix

Proof of Theorem 2. Consider the operator function defined by (1)

$$
\tilde{R}_{z}:=R_{z}+b_{z}^{-1}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z}
$$

where the vector function η_{z} and the scalar function b_{z} have the form

$$
\eta_{z}:=(A-\lambda) R_{z} \psi, \quad b_{z}:=(\lambda-z)\left(\psi, \eta_{\bar{z}}\right), \quad \lambda \in \mathbf{R}, \psi \in \mathcal{H} \backslash \mathcal{D}(A)
$$

First, we will prove that \tilde{R}_{z} is the resolvent of a some self-adjoint operator $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$. With this aim, we check by direct calculations, using the Hilbert identity for the resolvent $R_{z}=(A-z)^{-1}$, that η_{z} and b_{z} satisfiy (2). Then again by direct calculations, we check that the operator function \tilde{R}_{z} is a pseudo-resolvent (see [13]), i.e., that \tilde{R}_{z} satisfies the Hilbert identity. To be sure that \tilde{R}_{z} is the resolvent of a some closed operator, we have to show that $\operatorname{Ker} \tilde{R}_{z}=\{0\}$.

This is a consequence of the condition $\psi \in \mathcal{H} \backslash \mathcal{D}(A)$. Indeed

$$
\tilde{R}_{z} h=R_{z} h+b_{z}^{-1}\left(h, \eta_{\bar{z}}\right) \eta_{z}=0
$$

implies that $h=0$ because

$$
R_{z} h \in \mathcal{D}(A) \quad \text { and } \quad \eta_{z}=\psi+(z-\lambda) R_{z} \psi \notin \mathcal{D}(A)
$$

due to $\psi \notin \mathcal{D}(A)$. In fact, \tilde{R}_{z} is the resolvent a self-adjoint operator. Denote it by \tilde{A}, since

$$
\left(\tilde{R}_{z}\right)^{*}=R_{\bar{z}}+\bar{b}_{z}^{-1}\left(\cdot, \eta_{z}\right) \eta_{\bar{z}}=\tilde{R}_{\bar{z}},
$$

where we used, $\bar{b}_{z}^{-1}=b_{\bar{z}}^{-1}$. Further, $\eta_{z} \notin \mathcal{D}(A), \operatorname{Im} z>0$ implies that the set

$$
\mathcal{D}=\left\{f \in \mathcal{H}: f=\tilde{R}_{z} h=R_{z} h\right\} \equiv\{f \in \mathcal{D}(A):\langle f, \omega\rangle=0, \omega=(\mathbf{A}-\lambda) \psi\}
$$

does not depend on z and is dense in \mathcal{H}. Thus, \tilde{A} is a self-adjoint extension of the symmetric operator $\AA=A \upharpoonright \mathcal{D}$. The deficiency indices of \AA are $(1,1)$ because the deficiency subspaces $\Re_{z}:=\operatorname{Ker}(\dot{A}-z)^{*}$ are one-dimensional (they are spanned by η_{z}). Therefore, $\tilde{A} \in \mathcal{P}_{s}^{1}(A)$).

The operator $\tilde{\tilde{A}}$ solves the problem $\tilde{A} \psi=\lambda \psi$, since due to $\eta_{z}=\psi+(z-\lambda) R_{z} \psi$, we have

$$
\tilde{R}_{z} \psi=R_{z} \psi+\frac{1}{(\lambda-z)\left(\psi, \eta_{\bar{z}}\right)}\left(\psi, \eta_{\bar{z}}\right) \eta_{z}=\frac{1}{\lambda-z} \psi
$$

Finally, let us prove the uniqueness. Suppose that there exists another operator $\hat{A} \in \mathcal{P}_{s}^{1}(A)$, which also solves the problem $\hat{A} \psi=\lambda \psi$. From the above considerations, its resolvent admits the representation

$$
\hat{R}_{z}:=R_{z}+\hat{b}_{z}^{-1}\left(\cdot, \hat{\eta}_{\bar{z}}\right) \hat{\eta}_{z}, \quad \operatorname{Im} z \neq 0
$$

and, moreover, for the above λ and ψ we have

$$
\hat{R}_{z} \psi=\tilde{R}_{z} \psi=\frac{1}{\lambda-z} \psi=R_{z} \psi+\hat{b}_{z}^{-1}\left(\cdot, \hat{\eta}_{\bar{z}}\right) \hat{\eta}_{z}=R_{z} \psi+b_{z}^{-1}\left(\cdot, \eta_{\bar{z}}\right) \eta_{z} .
$$

Now it is clear that $\hat{b}_{z}^{-1}=b_{z}^{-1}$, and $\hat{\eta}_{z}=\eta_{z}$ up to a constant of modulus one. Therefore $\hat{A}=\tilde{A}$.

Acknowledgement

The authors would like to thank Professor L. Nizhnik for stimulating discussion. This work was supported by the DFG 436 UKR 113/53, DFG 436 UKR 113/67, INTAS $00-257$, and SFB-611 projects. V. K. gratefully acknowledge the hospitality of the Institute of Applied Mathematics and of the IZKS of the University of Bonn.

References

1. Albeverio, S., Gesztesy, F., Høegh-Krohn, R. and Holden, H.: Solvable Models in Quantum Mechanics, Springer-Verlag, Berlin, 1988.
2. Albeverio, S. and Koshmanenko, V.: Form-sum approximation of singular perturbation of self-adjoint operators, J. Funct. Anal. 168 (1999), 32-51.
3. Albeverio, S. and Koshmanenko, V.: Singular rank one perturbations of self-adjoint operators and Krein theory of self-adjoint extensions, Potential Anal. 11 (1999), 279-287.
4. Albeverio, S., Konstantinov, A. and Koshmanenko, V.: The Aronszajn-Donoghue theory for rank one perturbations of the \mathcal{H}_{-2}-class, Integral Equations Operator Theory, to appear.
5. Albeverio, S. and Kurasov, P.: Rank one perturbations of not semibounded operators, Integral Equations Operator Theory 27 (1997), 379-400.
6. Albeverio, S. and Kurasov, P.: Singular Perturbations of Differential Operators and Solvable Schrodinger Type Operators, Cambridge Univ. Press, 2000.
7. Albeverio, S., Koshmanenko, V., Kurasov, P. and Niznik, L.: On approximations of rank one \mathcal{H}_{-2}-perturbations, Proc. Amer. Math. Soc., to appear.
8. Donoghue, W. F.: On the perturbation of spectra, Comm. Pure Appl. Math. 15 (1965), 559-579.
9. Dudkin, M. and Koshmanenko, V.: About point spectrum arising under finite rank one perturbations of self-adjoint operators, Ukrainian Math. J., to appear.
10. Gesztesy, F. and Simon, B.: Rank-one perturbations at infinite coupling, J. Funct. Anal. 128 (1995), 245-252.
11. Karwowski, W. and Koshmanenko, V.: Generalized Laplace operator, In: F. Gesztesy et al. (eds), $L_{2}\left(\mathbf{R}^{n}\right)$, in Stochastic Processes, Physics and Geometry: New Interplays. II, Canadian Math. Soc., Conference Proc., 29, (2000), pp. 385-393.
12. Karataeva, T. V. and Koshmanenko, V. D.: Generalized sum of operators, Math. Notes 66(5) (1999), 671-681.
13. Kato, T.: Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, 1980.
14. Kiselev, A. and Simon, B.: Rank one perturbations with infinitesimal coupling, J. Funct. Anal. 130 (1995), 345-356.
15. Koshmanenko, V. D.: Towards the rank-one singular perturbations of self-adjoint operators, Ukrainian Math. J. 43(11) (1991), 1559-1566.
16. Koshmanenko, V. D.: Singular perturbations at infinite coupling, Funct. Anal. Appl. 33(2) (1999), 81-84.
17. Koshmanenko, V.: Singular Quadratic Forms in Perturbation Theory, Kluwer Acad. Publ., Dordrecht, 1999.
18. Koshmanenko, V.: A variant of the inverse negative eigenvalues problem in singular perturbation theory, Methods Funct. Anal. Topology 8(1) (2002), 49-69.
19. Makarov, K. A. and Pavlov, B. S.: Quantum scattering on a Cantor bar, J. Math. Phys. 35 (1994), 188-207.
20. Niznik, L.: On rank one singular perturbations of self-adjoint operators, Methods Funct. Anal. Topology 7(3) (2001), 54-66.
21. Simon, B.: Spectral analysis of rank one perturbations and applications In: CRM Proc. Lecture Notes, 8, Amer. Math. Soc., Providence (1995), pp. 109-149.
