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Abstract. We introduce the conflict interaction with two positions between
a couple of image probability measures and consider the associated dynamical
system. We prove the existence of invariant limiting measures and find the
criteria for these measures to be a pure point, absolutely continuous, or singular
continuous as well as to have any topological type and arbitrary Hausdorff
dimension.
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1. Introduction

Let (Ω,F) be a measurable space, let P be a class of probability measures on F ,
and let ∗ be a noncommutative binary algebraic operation defined for elements of P.
A measure µ ∈ P can be interpreted as a measure of ”influence” on ”controversial
territory” for some ”subject of controversy”.

If two non-identical measures µ and ν are not mutually singular, then they are
called conflict measures and an operation ∗ represents the mathematical form of
the conflict interaction between µ and ν.

Given µ, ν ∈ P let us consider a sequence of pairs µ(n), ν(n) ∈ P of measures
defined as follows:

µ(1) = µ ∗ ν, ν(1) = ν ∗ µ;
µ(2) = µ(1) ∗ ν(1), ν(2) = ν(1) ∗ µ(1); ...
µ(n+1) = µ(n) ∗ ν(n), ν(n+1) = ν(n) ∗ µ(n); ...

By this each operation ∗ defines an mapping g(∗) : P × P → P × P and generates
a certain dynamical system (P× P, g(∗)). The following problems are of interest:

1) existence of invariant points and invariant sets of (P× P, g(∗));
2) descriptions of the limiting measures

µ∞ = lim
n→∞

µ(n); ν∞ = lim
n→∞

ν(n);
1
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3) topological, metric, and fractal properties of the limiting measures and de-
pendence of these properties on the conflict interaction.

In [6, 7] a variant of a conflict interaction ∗ for discrete measures on finite and
countable spaces was discussed. In this paper we involve in consideration the case
of continuous measures. More precisely, here we handle with measures µ, ν which
are image measures of infinite products of discrete measures. We prove the exis-
tence of the limiting invariant measures µ∞, ν∞ and show that they are mutually
singular if µ 6= ν. We find necessary and sufficient conditions for these measures to
be pure absolutely continuous, pure singular continuous or pure discrete resp. Met-
ric, topological and fractal properties of the supports of the limiting measures are
studied in details. We show that by using rather simple construction one can get a
singular continuous measure µ∞ with desirable fractal properties of its support, in
particular, with any Hausdorff dimension 0 ≤ dimH(suppµ∞) ≤ 1.

2. Sub-class of image measures

Let M([0, 1]) denote the sub-class of probability Borel measures defined on the
segment [0, 1] as follows (for more details see [1, 2]).

Let Q ≡ {qk}∞k=1 be a sequence of stochastic vectors in R2 with strictly positive
coordinates, qk = (q0k, q1k), q0k, q1k > 0, q0k + q1k = 1. We will refer to Q as the
infinite stochastic matrix

(1) Q = {qk}∞k=1 =
(

q01 q02 · · · q0k · · ·
q11 q12 · · · q1k · · ·

)

Given Q we consider a family of closed intervals

∆i1 , ∆i1i2 , ..., ∆i1i2···ik
, ... ⊂ [0, 1], (i1, i2, ...ik, ... are equal to 0 or 1)

with lengths

|∆i1 | = qi11, |∆i1i2 | = qi11 · qi22, |∆i1i2...ik
| = qi11 · qi22 · · · qikk, k ≥ 1,

and such that
[0, 1] = ∆0

⋃
∆1,

∆i1 = ∆i10

⋃
∆i11,

and so on for any k,

∆i1i2...ik
= ∆i1i2...ik0

⋃
∆i1i2...ik1.

Assume

(2)
∞∏

k=1

max
i
{qik} = 0.

Then any x ∈ [0; 1] can be represented in the following form

x =
∞⋂

k=1

∆i1(x)...ik(x) =: ∆i1(x)...ik(x)... .

Moreover, (2) implies that the Borel σ-algebra B on [0; 1] coincides with the
σ-algebra generated by the family of subsets {∆i1...ik

}∞k=1.
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To a fixed Q, we associate a sub-class of measures M([0; 1]) with a family of all
sequences of stochastic vectors

P = {pk}∞k=1 =
(

p01 p02 ... p0k ...
p11 p12 ... p1k ...

)
,

where p0k, p1k ≥ 0, p0k + p1k = 1. Namely, we associate to each such matrix P a
Borel measure µ ∈M([0; 1]) defined as follows.

We consider a sequence of probability spaces (Ωk,Ak, µ∗k), where Ωk = {0; 1},
Ak = 2Ωk , µ∗k(i) = pik. Let (Ω,A, µ∗) be the infinite product of the above proba-
bility spaces. We define a measurable mapping f from Ω into [0; 1] in the following
way: for any ω = (ω1, ω2, ..., ωk, ...) ∈ Ω we set

f(ω) = ∆ω1ω2...ωk... =
∞⋂

k=1

∆ω1...ωk
,

and, finally, we define the measure µ as the image measure of µ∗ under f , i.e., : for
any Borel subset E we put µ(E) = µ∗

(
f−1(E)

)
, where f−1(E) = {ω : f(ω) ∈ E}.

The following results (see Theorem 1 below) on image measures are well known
(see e.g. [5, 4, 2]). In order to formulate them we need some notations. We write,
µ ∈ Mpp,Mac,Msc if the measure µ is pure point, pure absolutely continuous, or
pure singular continuous, resp. Further, for the above Q and P we define

Pmax(µ) :=
∞∏

k=1

max
i
{pik}

and

ρ(µ, λ) :=
∞∏

k=1

(
√

p0k · q0k +
√

p1k · q1k).

Theorem 1. Each measure µ ≡ µP ∈M([0, 1]) is of pure type:
(a) µ ∈Mpp iff Pmax(µ) > 0,
(b) µ ∈Mac iff ρ(µ, λ) > 0,
(c) µ ∈Msc iff Pmax(µ) = 0 and ρ(µ, λ) = 0.
In the continuous case the measure µ can also be defined in the following simple

way. We define a measure µ̂ on the semi-ring of subsets of the form ∆̂i1...ik
= [a; b),

where, a = ∆i1...ik(0); b = ∆i1...ik(1): we put

µ̂
(
∆̂i1...ik

)
= pi11 · ... · pikk.

The extension µ̃ of µ̂ on any Borel subset of [0; 1) is defined in the usual way. We
put, finally µ(E) = µ̃(E ∩ [0; 1)) for any Borel subset of [0; 1]. It is not hard to
prove that µ ≡ µ.

3. Conflict interaction between image measures

We define the non-commutative conflict composition > with two positions for a
couple of stochastic vectors p, r ∈ R2 as follows:

p1 := p>r, r1 := r>p,

where the coordinates of the vectors p1, r1 are given by the formulae:

(3) p
(1)
i :=

pi(1− ri)
1− (p, r)

, r
(1)
i :=

ri(1− pi)
1− (p, r)

, i = 0, 1,
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where (p, r) stands for the inner product in R2. Obviously we have to exclude the
case (p, r) = 1.

The iteration of the composition > generates a dynamical system in the space
R2 ×R2 defined by the mapping:

(4) g :
(

pN−1

rN−1

)
→

(
pN

rN

)
, N ≥ 1, p0 ≡ p, r0 ≡ p,

where the coordinates of pN , rN are defined by induction,

(5) p
(N)
i :=

p
(N−1)
i (1− r

(N−1)
i )

zN−1
, r

(N)
i :=

r
(N−1)
i (1− p

(N−1)
i )

zN−1
, i = 0, 1,

with zN−1 = 1− (pN−1, rN−1) > 0.

Lemma ([6, 7]). For each pair of stochastic vectors p, r ∈ R2, (p, r) 6= 1, the
following limits exist and are invariant with respect to >:

p∞ = lim
N→∞

pN , r∞ = lim
N→∞

rN .

Moreover one has:
p∞ = (1, 0), r∞ = (0, 1) iff p0 > r0,
p∞ = (0, 1), r∞ = (1, 0) iff p1 > r1,
p∞ = r∞ = (1/2, 1/2), iff p0 = r0, p1 = r1.

We will introduce now a non-commutative conflict interaction (in the sense of [6,
7]) between image measures from the sub-class M([0, 1]) and use the just presented
facts for the analysis of the spectral transformations of these measures.

Let µ and ν be a couple of image measures corresponding to a pair of sequences of
stochastic vectors P 0 = {p0

k}∞k=1 and R0 = {r0
k}∞k=1, resp., i.e., µ = µP 0 , ν = νR0 .

The conflict interaction between µ and ν, denoted by >, is by definition given by
the couple µ1, ν1:

µ1 := µ>ν, ν1 := ν>µ,

where > is defined by using the above defined conflict compositions for stochastic
vectors in R2. Namely, we associate a new couple of measures µ1, ν1 ∈ M([0, 1])
with sequences P 1 = {p1

k}∞k=1 and R1 = {r1
k}∞k=1, where the coordinates of vectors

p1
k, r1

k are defined according to formulae (3), i.e.,

(6) p
(1)
ik :=

pik(1− rik)
1− (pk, rk)

, r
(1)
ik :=

rik(1− pik)
1− (pk, rk)

, i = 0, 1, k = 1, 2, ...

where pik ≡ p
(0)
ik , rik ≡ r

(0)
ik and rk ≡ r0

k, rk ≡ r0
k. Of course we assume that

(7) (p0
k, r0

k) 6= 1, k = 1, 2, ...

By induction we introduce the sequences PN = {pN
k }∞k=1 and RN = {rN

k }∞k=1

for any N = 1, 2, ..., where the stochastic vectors pN
k = pN−1

k >rN−1
k , rN

k =
rN−1

k >pN−1
k are defined as N -times iterations of the composition >; the coordinates

of the vectors pN
k , rN

k are calculated by formulae like (5).
Further, with each pair PN , RN we associate a couple of image measures µN ≡

µP N and νN ≡ νRN from the class M([0, 1]). Therefore the mapping g generates
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the dynamical system in the space M([0, 1])×M([0, 1]):

U(g) :
(

µN−1

νN−1

)
→

(
µN

νN

)

We are interesting in the existence and structure of the invariant points of the
so defined dynamical system.

Theorem 2. For each couple of image measures µ ≡ µP 0 , ν ≡ νR0 , under
condition (7), there exist two limiting invariant measures,

µ∞ = lim
N→∞

µN , ν∞ = lim
N→∞

νN .

The measures µ∞, ν∞ are mutually singular iff P 0 6= R0, and µ∞, ν∞ are identical
iff P 0 = R0.

Proof This follows easily from Lemma. ¤
Our goal here is to investigate the properties of the limiting measures.

4. Metric properties

Let us introduce two sets for a couple of probability image measures µ, ν. N= :=
{k : pk = rk}, and N6= := N \N= ≡ {k : pk 6= rk}, and put

Q= :=
∑

k∈N=

[(1− 2q0k)2 + (1− 2q1k)2],

W 6=(µ) :=
∑

k∈N6=

q(i)k, where q(i)k =
{

q0k, if p0k < r0k

q1k, if p1k < r1k,

W6=(ν) :=
∑

k∈N 6=

(1− q(i)k).

Theorem 3.
(a) µ∞ ∈Mpp, iff |N=| < ∞.
(b) µ∞ ∈Mac, iff Q= < ∞ and W6=(µ) < ∞.
(c) µ∞ ∈ Msc, iff |N=| = ∞ and at least one of the conditions, W6=(µ) = ∞,

or Q= = ∞, is fulfilled.

Proof. (a) By Theorem 1 the measure µ∞ belongs to Mpp iff

Pmax(µ∞) :=
∏

k∈N

max
i
{p∞ik} > 0.

Since for each vector p∞k ∈ R2 the coordinates p
(∞)
ik are equal to 0, 1/2, or 1, we

have

max
i

p
(∞)
ik =

{
1/2, if k ∈ N=

1, if k ∈ N6=.

Hence µ∞ ∈ Mpp if and only if pk 6= rk ∀k > k0 for some k0 ∈ N . This means
that suppµ consists of at most 2|N=| points.

(b) Let |N=| = ∞ and, therefore, µ∞ ∈Mac ∪Msc. By Theorem 1, µ∞ ∈Mac

iff

(8) ρ(µ∞, λ) =
∞∏

k=1

(
√

p
(∞)
0k q0k +

√
p
(∞)
1k q1k) > 0.
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Taking into account that p
(∞)
0k = p

(∞)
1k = 1

2 for all k ∈ N=, and p
(∞)
0k = 1 iff

p0k > r0k, p
(∞)
0k = 0 iff p0k < r0k, we have

√
p
(∞)
0k q0k +

√
p
(∞)
1k q1k =

{ √
1
2q0k +

√
1
2q1k, iff k ∈ N=,√

1− q(i)k, iff k ∈ N6=.

Therefore, µ∞ ∈Mac iff
∏

k∈N=

(

√
1
2
q0k +

√
1
2
q1k) ·

∏

k∈N 6=

(
√

1− q(i)k) > 0 ⇔





∏
k∈N=

(
√

1
2q0k +

√
1
2q1k) > 0,

∏
k∈N6=

(
√

1− q(i)k) > 0.

By using simple arguments, we have
∏

k∈N6=

(
√

1− q(i)k) > 0 ⇔
∏

k∈N 6=

(1− q(i)k) > 0 ⇔
∑

k∈N 6=

q(i)k < ∞,

and
∏

k∈N=

(

√
1
2
q0k +

√
1
2
q1k) > 0 ⇔

∏

k∈N=

(
1
2

+
√

q0kq1k

)
> 0 ⇔

∑

k∈N=

(
1
2
−√q0kq1k

)
< ∞ ⇔

∑

k∈N=

(1− 2
√

q0kq1k) < ∞ ⇔
∏

k∈N=

4q0kq1k > 0 ⇔
∏

k∈N=

(
1− (1− 2q0k)2

)
> 0 ⇔

∑

k∈N=

(1− 2q0k)2 < ∞ ⇔
∑

k∈N=

(1− 2q1k)2 < ∞.

Therefore,

µ∞ ∈Mac ⇔
{

W 6=(µ) < ∞,
Q= < ∞.

(c) If |N=| = ∞, then from (a) the continuity of µ∞ follows easily. If Q=(µ) = ∞
or W6=(µ) = ∞, then from (b) it follows that µ ⊥ λ, and, therefore µ∞ ∈Msc.

Conversely, if µ∞ ∈ Mac, then µ∞ is a continuous measure and µ∞ ⊥ λ. The
continuity of µ∞ implies |N=| = ∞. Since µ∞ ⊥ λ, we have ρ(µ∞, λ) = 0 and,
therefore Q= = ∞ or W6=(µ) = ∞.

¤

Remarks. (1) The Theorem holds for the measure ν∞ if W 6=(µ) is replaced by
W6=(ν).

(2) Both measures µ∞, ν∞ belong to Mac only in the case |N 6=| < ∞ provided
that Q= < ∞, because, if |N6=| = ∞ then at least one of values W6=(µ) or W 6=(ν)
is infinite.

(3) The condition Q= < ∞ is fulfilled iff
∑

k∈N=

(1− 2q0k)2 < ∞.
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Example 1. Let q0k = q1k = 1/2 for all k ∈ N . Then Q= = 0 for any N=

and W6=(µ) < ∞ iff |N6=| < ∞. Thus both measures µ∞, ν∞ belong to Mpp iff
|N=| < ∞. Moreover µ∞, ν∞ ∈ Mac iff |N6=| < ∞, and µ∞, ν∞ ∈ Msc iff
|N 6=| = ∞ and |N=| = ∞.

Example 2. Let q0k /∈ (
1
2 − ε; 1

2 + ε
)

for some ε > 0. Then Q= < ∞ only if
|N=| < ∞. Thus µ∞, ν∞ ∈ Mpp iff |N=| < ∞, and µ∞, ν∞ ∈ Msc iff |N=| = ∞,
but one never has µ∞, ν∞ ∈Mac.

5. Topological properties

A Borel measure µ on R is of the S-type if its support, suppµ ≡ Sµ, is a regularly
closed set, i.e.,

Sµ = (intSµ)cl,

where intA denotes the interior part of the set A, and (E)cl denotes the closure of
the set E. A measure µ is of the C-type if its support Sµ is a set of zero Lebesgue
measure. A measure µ is of the P-type if its support Sµ is a nowhere dense set
and Sµ has a positive Lebesgue measure in any small neighborhood of each point
x from Sµ, i.e.,

∀x ∈ Sµ, ∀ε > 0 : λ
(
B(x, ε)

⋂
Sµ

)
> 0.

We shall write (cf. with [1, 9]) µ ∈MS , resp. MC , or resp. MP , if µ is of the S-,
resp. C-, or resp. P-type.

Theorem 4. The infinite conflict interaction between two image measures µ, ν ∈
M([0, 1]) produces limiting measures µ∞, ν∞ of pure topological type. We have:

(a) µ∞ ∈MS, iff |N6=| < ∞,
(b) µ∞ ∈MC, iff W6=(µ) = ∞,
(c) µ∞ ∈MP, iff |N6=| = ∞ and W 6=(µ) < ∞.
Proof. (a) By Theorem 8 in [2] the measure µ∞ is of the S-type iff the matrix

P∞ contains only a finite number of zero elements. This is possible iff |N 6=| < ∞.
(b) The measure µ∞ is of the C-type (see Theorem 8 in [2]) iff the matrix P∞

contains infinitely many columns having elements pik = 0, and besides,
∞∑

k=1

(
∑

i:pik=0

qik) =

∞, that is equivalent to |N6=| = ∞ and W6=(µ) = ∞.

Since
∞∏

k=1

max
i

qik = 0, we conclude that from W 6= = ∞ it follows that |N 6=| = ∞.

(c) Finally the measure µ∞ is of the P -type (see again Theorem 8 in [2]) iff the
matrix P∞ contains infinitely many columns with zero elements pik, and moreover,
∞∑

k=1

(
∑

i:pik=0

qik) < ∞, i.e., |N6=| = ∞ and W 6=(µ) < ∞.

¤

Remarks. (1) The assertions of Theorem 4 are also true for the measure ν∞ if
one replaces W6=(µ) by W6=(ν).

(2) It is not possible for the measures µ∞, ν∞ to be both of the P -type. So if
one of them is of the P -type, then the other is necessarily of the C-type.

The combination of Theorem 3 and Theorem 4 leads to
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Corollaries.
(a) The set Mpp ∩MS is empty.
µ∞ ∈Mpp ∩MC iff |N=| < ∞.
The set Mpp ∩MP is empty.
(b) µ∞ ∈Mac ∩MS iff |N6=| < ∞, and Q= < ∞.
The set Mac ∩MC is empty.
µ∞ ∈Mac ∩MP iff |N=| = ∞, |N6=| = ∞, but Q= < ∞ and W 6=(µ) < ∞.
(c) µ∞ ∈Msc ∩MS iff |N 6=| < ∞, and Q= = ∞.
µ∞ ∈Msc ∩MC iff W 6=(µ) = ∞.
µ∞ ∈Msc ∩MP iff |N6=| = ∞, W 6=(µ) < ∞ and Q= = ∞.

Proof. (a)Mpp∩MS = ∅ since |N 6=| < ∞ and |N=| < ∞ are mutually exclusive
conditions. So, if |N=| < ∞, then |N6=| = ∞, and µ∞ ∈ MC. Mpp ∩MP = ∅,
since W 6=(µ) < ∞ with |N=| < ∞ mean that

∞∏
k=1

qik > 0, but this contradicts our

assumption (2).
(b) The first assertion is evident since |N 6=| < ∞ implies W6=(µ) < ∞. Further

M ac ∩MC = ∅ since the conditions W 6=(µ) < ∞ and W 6=(µ) = ∞ can not be
simultaneously fulfilled. Finally, in the case |N6=| = ∞, µ∞ ∈Mac iff µ∞ ∈MP

.
(c) In spite of that W6=(µ) < ∞ if |N6=| < ∞, it is still possible that Q=(µ) = ∞.

Thus, in general, we have Msc ∩MS 6= ∅.
Moreover, if |N6=| = ∞, then W6=(µ) = ∞ implies µ∞ ∈Msc ∩MC.
But if |N6=| = ∞ and W6=(µ) < ∞, then it still possible that Q=(µ) = ∞, or

equivalently, µ∞ ∈Msc ∩MP. ¤

Remark. Of course, all corollaries are true for the measure ν∞ if one replaces
W6=(µ) by W6=(ν).

The measures µ∞, ν∞ in general have a rather complicated local structure and
their supports might posses arbitrary Hausdorff dimensions.

Let us denote by dimH(E) the Hausdorff dimension of a set E ⊂ R.
Suppose q0k = q1k = 1/2.

Theorem 5. Given a number c0 ∈ [0, 1] let µ ∈ M([0, 1]) be any probability
image measure. Then there exists another probability image measure ν such that

(9) dimH(suppµ∞) = c0.

Proof. Let |N 6=, k| = |N6=∩{1, 2, ..., k}| denote the cardinality of the set N6=, k :=
{s ∈ N6= : s ≤ k}. Clearly |N 6=, k|+|N=, k| = k, where N=, k := {s ∈ N= : s ≤ k}.

By Th.2 [8] the Hausdorff dimension of the set suppµ∞ may be calculated by
the formula:

dimH(suppµ∞) = lim inf
k→∞

|N=, k|
k

.

Given the stochastic matrix P corresponding to the starting measure µ one
always can chose (in a non-unique way) another stochastic matrix R (uniquely
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associated with a measure ν) such that the condition lim
k→∞

|N=, k|
k = c0 will be

satisfied. ¤
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