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The decomposition theory for the singular continuous spectrum of rank one sin-
gular perturbations is studied. A generalization of the well-known Aronszajn-
Donoghue theory to the case of decompositions with respect to α-dimensional
Hausdorff measures is given and a characterization of the supports of the α-
singular, α-absolutely continuous, and strongly α-continuous parts of the spec-
tral measure of H−2 - class rank one singular perturbations is given in terms
of the limiting behaviour of the regularized Borel transform.
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1 Introduction

Let A = A∗ be a self-adjoint unbounded operator in a Hilbert space H with the inner
product (·, ·) and the norm ‖·‖ . Let {Hk(A)}k∈R denote the associated A−scale of
Hilbert spaces and 〈·, ·〉 the dual inner product between Hk and H−k.

Here we use only a part of the A−scale of Hilbert spaces:

H−2 ⊃ H−1 ⊃ H0 ≡ H ⊃ H1 ⊃ H2,
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where Hk ≡ Hk(A) = D(|A|k/2), k = 1, 2, in the norm ‖ϕ‖k := ‖(|A|+ I)k/2ϕ‖, where
I stands for identity, and H−k ≡ H−k(A) is the dual space ( H−k is the completion of
H in the norm ‖f‖−k := ‖(|A| + I)−k/2f‖). Obviously A is bounded as a map from
H1 to H−1 and from H to H−2, and therefore the expression 〈f,Ag〉 has sense for any
f, g ∈ H1.

Let ϕ ∈ H−2 \H−1, ‖ϕ‖−2 = 1, be fixed. Define a rank one (singular) perturbation
(see, e.g., [1, 2, 3, 4, 9, 14]) Aλ of A, formally written as Aλ = A + λ 〈ϕ, ·〉ϕ, 0 6= λ ∈
R ∪∞ (∞−1 := 0) by Krein’s resolvent formula

(Aλ − z)−1 = (A− z)−1 − 1

λ−1 + F (z)
((A− z)−1ϕ, ·)(A− z)−1ϕ, Imz 6= 0. (1.1)

Here

F (z) =

〈
ϕ,

1 + zA

A− z
(A2 + 1)−1ϕ

〉
(1.2)

is the regularized Borel transform of the scalar spectral measure of A associated with
ϕ ∈ H−2.

In this paper we study the structure of the singular continuous spectrum of Aλ.
We recall that the well-known Aronszajn-Donoghue theory gives a decomposition of
the spectral measure of Aλ into an absolutely continuous, a singular continuous, and a
pure point part in terms of the limiting behaviour of F (λ+ iε) as ε → 0. Our aim here
is to give an analogue of this result for decompositions with respect to α - dimensional
Hausdorff measures (α ∈ [0, 1)). In particular, our results can be considered as a
development of the approach proposed in [7]. Note, that in comparison with [7] we
made two new steps. First, we consider the more singular case of H−2 - perturbations.
Second, we give the explicit description of the decomposition of the spectral measure
of Aλ with respect to α - dimensional Hausdorff measure (α ∈ [0, 1)) in terms of the
limiting behaviour of F. We remark that the final formulation of our results is new
even for regular rank one perturbations.

2 Hausdorff measures and decomposition theory

Let us recall some basic facts of the decomposition theory, due to Rodgers and Taylor,
with respect to Hausdorff measures. The detailed presentation of this theory can be
found in the book [11] or the original papers [12, 13].

For any subset S of R and α ∈ [0, 1], the α-dimensional Hausdorff measure, hα, is
defined by

hα(S) := lim
δ↓0

inf
δ−covers

∞∑
ν=1

|bν |α,
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where a δ-cover is a cover of S by a countably collection of intervals, S ⊂ ⋃∞
ν=1 bν ,

such that for each ν the length of bν is at most δ. Then hα is an outer measure on
R and its restriction to Borel subsets is a Borel measure. h1 coincides with Lebesgue
measure and h0 is the counting measure (assigning to each set the number of points in
it). Given any ∅ 6= S ⊂ R, there exist a unique α = α(S) ∈ [0, 1] such that hα(S) = 0
for any α > α(S), and hα(S) = ∞ for any α < α(S). This unique α(S) is called the
Hausdorff dimension of S.

Definition 2.1. Let µ be a Borel measure on R and let α ∈ [0, 1].
(i) µ is called α-continuous (denoted αc) if µ(S) = 0 for any set S with hα(S) = 0.
(ii) µ is called strongly α-continuous (denoted sαc) if µ(S) = 0 for any set S which

has σ-finite hα measure.
(iii) µ is called α-singular (denoted αs) if it is supported on a set S with hα(S) = 0.
(iv) µ is called absolutely continuous with respect to hα (denoted αac) if dµ =

f(x)dhα for some Borel function f .

Remark 2.2. If µ is σ-finite, then it follows from the Radon-Nikodym theorem that µ is
absolutely continuous with respect to hα if and only if it is α-continuous and supported
on a set of σ-finite hα measure.

We say that a Borel measure on R is locally finite if it is finite on any bounded
Borel set. The following unique decomposition of a locally finite Borel measure µ on
R holds [11]

µ = µαs + µαac + µsαc, (2.1)

where µαs is α-singular, µαac is absolutely continuous with respect to hα (on a set of
σ-finite hα measure), and µsαc is strongly α-continuous. This decomposition extends
the usual Lebesgue decomposition into pure point, singular continuous, and absolutely
continuous parts. In particular if α = 0, one has µαs = 0, and the decomposition
µ = µαac + µsαc coincides with the decomposition of µ into a pure point part and
a continuous part. If α = 1, then µsαc = 0, and the decomposition µ = µαs + µαac

coincides with the decomposition of µ into a singular part and an absolutely continuous
part (with respect to Lebesgue measure).

One can obtain the decomposition (2.1) in the following way. Given a (locally)
finite Borel measure µ and α ∈ [0, 1], we define the upper α - derivative of µ by

Dα
µ(x) := lim sup

ε→0

µ(x− ε, x + ε)

(2ε)α
.

Set

T0 := T0(α, µ) := {x : Dα
µ(x) = 0},

T+ := T+(α, µ) := {x : 0 < Dα
µ(x) < ∞},

T∞ := T∞(α, µ) := {x : Dα
µ(x) = ∞}.
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Theorem 2.3. (Rodgers and Taylor [11, 12]) T0, T+, T∞ are disjoint Borel sets, and
(i) hα(T∞) = 0,
(ii) T+ has σ-finite hα measure,
(iii) µ(S ∩ T+) = 0 for any S with hα(S) = 0,
(iv) µ(S ∩ T0) = 0 for any S which has σ-finite hα measure.

Corollary 2.4. Set

µαs(∆) = µ(∆ ∩ T∞), µαac(∆) = µ(∆ ∩ T+), µsαc(∆) = µ(∆ ∩ T0). (2.2)

Then the formula (2.2) gives the decomposition (2.1) of the measure µ.

We shall say that a Borel measure µ is supported by a Borel set T (or T is a (not
necessarily closed) support of µ) if µ(R \ T ) = 0. It follows that T∞, T+, T0 are the
supports of µαs, µαac, µsαc, respectively.

3 Regularized Borel Transform

In this section we generalize the well-known connection between the decomposition
(2.1) of measures µ and the limiting behaviour of their Borel transforms. For a measure
µ with ∫

(1 + |x|)−1dµ(x) < ∞, (3.1)

one can define its Borel transform by

Φµ(z) =

∫
1

x− z
dµ(x), Imz > 0, (3.2)

The properties of Φµ(z) discussed in details in [14]. Here we consider the more general
situation of a Borel measure µ on R satisfying

∫
(1 + x2)−1dµ(x) < ∞. (3.3)

In this case we define its regularized Borel transform by

Fµ(z) =

∫
(

1

x− z
− x

1 + x2
)dµ(x), Imz > 0. (3.4)

Note that the generalized Borel transform plays a crucial role in the H−2 rank one
perturbation theory (see [3, 4, 1]). Fix γ ≤ 1 and x ∈ R. Let

Q γ
µ (x) := lim sup

ε↓0
εγImFµ(x + iε),

R γ
µ (x) := lim sup

ε↓0
εγ|Fµ(x + iε)|,
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Theorem 3.1. Fix x0 ∈ R and α ∈ [0, 1) and let γ := 1 − α. Then Dα
µ(x0), Q γ

µ (x0),
and R γ

µ (x0) are either all infinite, all zero, or all belonging to (0,∞).

Remark 3.2. In the case of the measure µ satisfying (3.1) Theorem 3.1 is proved in [7].

Remark 3.3. The relation between Dα
µ(x0) and Q γ

µ (x0) extends to the range α ∈ [1, 2).

Proof. Consider

ImF (x0 + iε) = ε

∫
dµ(x)

(x− x0)2 + ε2
.

For any δ > 0 we have

∫

|x−x0|≥δ

dµ(x)

(x− x0)2 + ε2
≤ C(δ) < ∞

where C(δ) does not depend on ε. Therefore for γ > −1

Q γ
µ (x) = lim sup

ε↓0
εγ+1

∫

|x−x0|<δ

dµ(x)

(x− x0)2 + ε2
. (3.5)

Let I ⊂ R be an open bounded interval containing x0. By (3.5) one can replace in the
definition of Q γ

µ (x0) the measure µ by its restriction µI := µ¹I. The same arguments
show that R γ

µ (x0) = R γ
µI

(x0) for any γ > 0. Therefore it is sufficient to consider the case
of compactly supported measures µ and apply the results of [7] (see Remark 3.2).

4 Decompositions of singular spectra

In this section we prove our main result (see Theorem 4.1 below). It generalizes the well-
known Aronszajn-Donoghue theory to the case of decompositions (2.1) with respect to
Hausdorff measures.

Let E(·) be the operator spectral measure (the resolution of the identity) of a self-
adjoint operator A, and let µ(∆) ≡ µϕ(∆) = (ϕ,E(∆)ϕ) denote the scalar spectral
measure of A associated with ϕ ∈ H−2 \H−1, ‖ϕ‖−2 = 1. This measure is not finite as
ϕ /∈ H. One can introduce a regularization of this measure by

dµreg(x) :=
dµ(x)

1 + x2
,

so that µreg(R) =
∫

dµreg(x) = 1. Clearly the measures µ and µreg are equivalent.
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Let a rank one (singular) perturbation Aλ of A, formally written as Aλ = A +
λ 〈ϕ, ·〉ϕ, defined by (1.1). Consider the operator spectral measure E λ(·) for Aλ .
Similarly to above constructions one can introduce

µreg
λ (∆) := ((A + i)−1ϕ,E λ(∆)(A + i)−1ϕ),

and

dµλ (x) := (1 + x2)dµreg
λ (x).

Henceforth, we shall assume that ϕ is a cyclic vector for A, i.e. {(A− z)−1ϕ | Imz 6= 0}
is a total set for H. ( In general, if Hϕ denotes the closed subspace in H generated by
the vectors from this set, then Hϕ is an invariant subspace for each Aλ and Aλ = A on
the orthogonal complement to Hϕ. Thus the extension from the cyclic to the general
case is trivial.) It is easy to see that (A + i)−1ϕ is a cyclic vector for Aλ (cf. [8]) and
µλ is equivalent to the spectral measure Eλ(·). In the following we shall say that µλ is
the scalar spectral measure of Aλ associated with ϕ.

Let Fλ be the regularized Borel transform of µλ (cf. (3.4))

Fλ(z) :=

∫
(

1

x− z
− x

1 + x2
)dµλ(x) =

∫
(
1 + zx

x− z
)dµreg

λ (x)

and F (z) be the regularized Borel transform of µ. By the Aronszajn-Krein formula
(see, [1], [8], [9])

Fλ(z) =
F (z)− λ

1 + λF (z)
, Imz > 0, 0 6= λ ∈ R, (4.1)

and

F∞(z) = − 1

F (z)
, Imz > 0. (4.2)

In particular

ImFλ(z) = (1 + λ−2)
ImF (z)

|λ−1 + F (z)|2 , Imz > 0. (4.3)

Recall that the absolutely continuous part of µλ is supported by

L := {x ∈ R : 0 < ImF (x + i0) < ∞}, (4.4)

(see, [1], [8], [14]) and the singular part µλ,s (λ = ∞ allowed with∞−1 = 0) is supported
by

Sλ :=
{
x ∈ R : F (x + i0) = −λ−1

}
. (4.5)

Moreover the set of eigenvalues of Aλ coincides with the set

Pλ :=
{
x ∈ R : F (x + i0) = −λ−1, H(x) < ∞}

. (4.6)
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Here

H(x) := lim
ε↓0

ε−1ImF (x + iε) =

∫
dµ(y)

(x− y)2
. (4.7)

Note that if H(x) < ∞, then there exist the real limits limε↓0 F (x + iε) and

lim
ε↓0

(iε)−1[F (x + iε)− F (x + i0)] = H(x) (4.8)

exist ([8, 14]). Let α ∈ [0, 1]. For λ 6= 0 define the following sets

Sα,λ := {x ∈ R : lim inf
ε↓0

ε−(1−α)|F (x + iε) + λ−1| = 0, F (x + i0) = −λ−1}, (4.9)

Pα,λ := {x ∈ R : 0 < lim inf
ε↓0

ε−(1−α)|F (x + iε) + λ−1| < ∞, F (x + i0) = −λ−1},
(4.10)

Jα,λ := {x ∈ R : lim
ε↓0

ε−(1−α)|F (x + iε) + λ−1| = ∞}, (4.11)

Theorem 4.1. Let α ∈ [0, 1), 0 6= λ ∈ R∪∞. Suppose that ϕ ∈ H−2 \H−1 and let µλ

be the scalar spectral measure of Aλ associated with ϕ . Then the decomposition (2.1)
for the measure µλ has the form

µλ = µλ,αs + µλ,αac + µλ,sαc, (4.12)

where for any Borel set ∆ ⊂ R
µλ,αs(∆) = µ(∆ ∩ Sα,λ), µλ,αac(∆) = µ(∆ ∩ Pα,λ), µλ,sαc(∆) = µ(∆ ∩ Jα,λ). (4.13)

Remark 4.2. If α = 0, µλ,αs = 0, and the decomposition µλ = µλ,αac + µλ,sαc coin-
cides with the decomposition of µλ into a pure point part and a continuous part. In
particular, the set of eigenvalues of Aλ coincides (see (4.6) - (4.8)) with the set

P0,λ = {x ∈ R : 0 < lim inf
ε↓0

ε−1|F (x + iε) + λ−1| < ∞, F (x + i0) = −λ−1} = Pλ.

Moreover, S0,λ = ∅ and (L∪Sλ)\Pλ ⊂ J0,λ. In particular, J0,λ supports the continuous
part of µλ. If α = 1, then µλ,sαc = 0, and the decomposition µλ = µλ,αs+µλ,αac coincides
with the decomposition of µλ into a singular part and an absolutely continuous part
(with respect to Lebesgue measure). In particular (see (4.5)) the singular part of µλ is
supported by S1,λ = Sλ and one has µλ(J1,λ) = 0. Note that in this case the absolutely
continuous part of µλ is supported by L 6= P1,λ and the result of the theorem is not
valid for α = 1.

Remark 4.3. The result of Theorem 4.1 remains true for rank one regular and H−1

perturbations. One need only to replace the regularized Borel transform F = Fµ by
the standard Borel transform Φµ (3.2) (cf. [1]).
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Proof. We remark that the sets Sα,λ, Pα,λ, Jα,λ, are mutually disjoint (for fixed α) and

L ∪ Sλ ⊂ Sα,λ ∪ Pα,λ ∪ Jα,λ, α ∈ [0, 1).

By Aronszajn-Donoghue theory the measure µλ is supported by L ∪ Sλ, and therefore
it is supported by Sα,λ ∪ Pα,λ ∪ Jα,λ. Suppose that x ∈ Sα,λ. Then

lim sup
ε↓0

ε(1−α)|Fλ(x + iε)| = lim sup
ε↓0

|λ−1F (x + iε)− 1|
ε−(1−α)|F (x + iε) + λ−1| =

(1 + λ−2)

lim infε↓0 ε−(1−α)|F (x + iε) + λ−1| = ∞.

By Theorem 3.1 it follows that Dα
µλ

(x) = ∞ and x ∈ T∞(α, µλ). Therefore we can
apply Theorem 2.3 and Corollary 2.4 to prove that the restriction of µλ on Sα,λ is α -
singular with respect to hα. Analogously for x ∈ Pα,λ

lim sup
ε↓0

ε(1−α)|Fλ(x + iε)| ∈ (0,∞)

and therefore µλ ¹Pα,λ is absolutely continuous with respect to hα. At last for x ∈ Jα,λ

we have (see (4.3))

lim sup
ε↓0

ε(1−α)ImFλ(x + iε) = lim sup
ε↓0

(1 + λ−2)ImF (x + iε)

ε−(1−α)|F (x + iε) + λ−1|2 ≤

(1 + λ−2)

lim infε↓0 ε−(1−α)|F (x + iε) + λ−1| = 0

and µλ ¹Jα,λ is strongly α-continuous.

We will end by formulating several corollaries, which contain, as particular cases,
the known results for regular rank one perturbations (see [7]).

Corollary 4.4. Let α ∈ [0, 1], λ 6= 0. Set Rα = {x ∈ R : lim infε↓0 ε−(1−α)ImF (x +
iε) > 0}. Then µλ ¹ Rα is α-continuous (i.e., gives zero weight to sets of zero hα-
measure).

Proof. First of all we note that for α = 1 the result directly follows from the Aronszajn-
Donoghue theory (see (4.4)). For α ∈ [0, 1) it is clear that Rα ⊂ Pα,λ ∪ Jα,λ, (λ 6= 0).
This inclusion proves the assertion of the corollary.

Corollary 4.5. Let α ∈ [0, 1], λ 6= 0. Set Rα,∞ = {x ∈ R : limε↓0 ε−(1−α)ImF (x+iε) =
∞}. Then µλ ¹Rα,∞ is strongly α-continuous (i.e., gives zero weight to hα-sigma-finite
sets ).
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Proof. The case α = 1 is clear and for α ∈ [0, 1) we have Rα,∞ ⊂ Jα, λ.

Corollary 4.6. Let α ∈ [0, 1), λ 6= 0. Suppose that µ is purely singular. Set Qα =
{x ∈ R : lim supε↓0 ε−(1−α)ImF (x + iε) < ∞}. Then µλ ¹ Qα is supported on an hα-
sigma-finite set.

Proof. As µ is pure singular, µλ is supported by Sλ (see (4.5)). Suppose that x ∈
Qα ∩ Sλ. Then (see the proof of Theorem 4.2 of [7]) for some C > 0

|1 + λReF (x + iε)| ≤ Cε(1−α)

and
lim sup

ε↓0
ε−(1−α)|F (x + iε) + λ−1| < ∞.

In particular Qα ∩Sλ ⊂ Sα,λ ∪Pα,λ. It follows that µλ,sαc(Qα) = 0 and the assertion of
the corollary is proven.

Corollary 4.7. Let α ∈ [0, 1), λ 6= 0. Suppose that µ is purely singular. Set Qα, 0 =
{x ∈ R : limε↓0 ε−(1−α)ImF (x + iε) = 0}. Then µλ ¹Qα, 0 is α-singular.

Proof. By a variant of the proof of Corollary 4.6 one shows that that for x ∈ Qα, 0∩Sλ

lim sup
ε↓0

ε−(1−α)|F (x + iε) + λ−1| = 0.

In particular one has Qα, 0 ∩ Sλ ⊂ Sα,λ and the result directly follows from Theorem
4.1.
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