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Abstract

We discuss a new approach in singular perturbation theory which is
based on the method of rigged Hilbert spaces. Let A be a self-adjoint
unbounded operator in a state space H0 and H− = H0 = H+ be the
rigged Hilbert space associated with A in the sense that domA = H+

in the graph-norm. We propose to define the perturbed operator Ã as
the self-adjoint operator uniquely associated with a new rigged Hilbert
space H̃− = H0 = H̃+ constructed using a given perturbation of A. We
show that the well-known form-sum and self-adjoint extensions methods
are included in the above construction. Moreover, we show that the super
singular perturbations may also be described in our framework.
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1 Introduction

Let A = A∗ ≥ 1 be an unbounded self-adjoint operator in a Hilbert space H0

with the inner product (·, ·)0. And let

H− = H0 = H+ (1.1)

be the rigged Hilbert space associated with A in the sense that the domain
DomA = H+ in the graph-norm. Here the symbol = means dense and con-
tinuous embedding. We note that a given pre-rigged pair H0 = H+ the Hilbert
space H− is uniquely defined as the conjugate space to H+ with respect to H0

(for details see [8, 9]).
Besides the triplet (1.1) we will use also the chain of five spaces

H− = H−1 = H0 = H1 = H+, (1.2)

where H1 = DomA1/2, and H−1 is the completion of H0 in the norm ‖ · ‖−1 =
‖A−1/2 · ‖.

Given A = A∗ another self-adjoint operator Ã in H0 is said to be a purely
singular perturbation of A if the set

D := {f ∈ DomA ∩DomÃ : Af = Ãf} is dense in H0 (1.3)

(see [3, 5, 15]-[17], [20]-[30]). Under condition (1.3) we write Ã ∈ Ps(A) if Ã is
bounded from below. We write Ã ∈ Pws(A) if DomA1/2 =DomÃ1/2 (ws means
weakly singular, i.e., a perturbation belongs to the H−1-class), and Ã ∈ Pss(A)
if the set D is dense in H1 (ss stands for strongly singular, i.e., a perturbation
belongs to the H−2− class). Thus Ps(A) = Pws(A) ∪ Pss(A).

It is clear that for each Ã ∈ Ps(A) there exists a densely defined symmetric
operator

◦
A := A|D = Ã|D

with non-trivial deficiency indices n±(
◦
A) = dim ker(

◦
A∓z)∗ 6= 0, Imz 6= 0. There-

fore each Ã ∈ Ps(A) may be defined as a self-adjoint extension of
◦
A, different

from A. In singular perturbation theory each Ã is fixed by some abstract bound-
ary condition, which corresponds to a singular perturbation. In turn a singular
perturbation is usually presented by a singular quadratic form γ given in the
rigged Hilbert space (1.1).
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In the present paper we propose to use a singular quadratic form γ (corre-
sponding to a perturbation) for the construction of a new chain of Hilbert spaces
similar to (1.2),

H̃− = H̃−1 = H0 = H̃1 = H̃+, (1.4)

and then to define the perturbed operator Ã as an operator associated with this
new rigging (1.4).

In the paper, see below Theorem 5.1, Theorem 5.2, Theorem 6.1, and Theo-
rem 7.1 we establish a one-to-one correspondence between three families of ob-
jects: singular perturbations Ã ∈ Pss(A), rigged Hilbert spaces of the form (1.4),
and singular quadratic forms γ with fixed properties. We extend this one-to-
one correspondences to a more general set of objects involving super singular
perturbations.

2 Singular quadratic forms in A-scales

Let A ≥ 1 be a self-adjoint unbounded operator in a separable Hilbert space
H0 which is equipped in such a way that the domain DomA = H+ in the norm
‖ · ‖+ := ‖A · ‖ (see (1.1)).

In the paper we discuss a new construction of singularly perturbed operator
Ã in H0. Namely, we define Ã as the operator associated with a new rigged
Hilbert space H̃− = H0 = H̃+, where H̃+ = D(Ã). The inner product (·, ·)∼+
in H̃+ is defined as a perturbation of the inner product (·, ·)+ in H+. Formally
one can write (·, ·)∼+ = (·, ·)+ + γ(·, ·), where the form γ corresponds to a singular

perturbation. Respectively the space H̃− is the completion of H0 in the inner
product of a form (·, ·)∼− = (·, ·)− + τ(·, ·), where (·, ·)− denotes the inner product
inH− and τ(·, ·) stands for the symmetric singular quadratic form which is defined
by γ (see below). The construction of H̃− and H̃+ by a given singular perturbation
γ is one of the main problem which we solve in the paper.

We show also that our method includes the usual well-known approaches in
the singular perturbations theory [2, 6, 25].

We start with recalling standard constructions connected with the rigged
Hilbert spaces [8, 9] (see also [1]) and some definitions concerning the singular
perturbation theory [2, 6, 7, 12, 19, 30] and singular quadratic forms [3, 13]-
[20, 22, 23, 25, 27].

We remind that given A = A∗ ≥ 1 the domain DomA ≡ H+ is a complete
Hilbert space with respect to the inner product (·, ·)+ := (A·, A·)0. Let H− be the
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space conjugate toH+ with respect toH0. Then we get the triplet of continuously
and densely imbedding of spaces

H− = H0 = H+, (2.1)

called the rigged Hilbert space associated with A.
In the same way one can construct the A-scale of Hilbert spaces

· · · = H−k = H0 = Hk = · · · , k ≥ 0, (2.2)

where Hk ≡ Hk(A) =DomAk/2 in the inner product (·, ·)k := (Ak/2·, Ak/2·)0. So
(·, ·)2 = (·, ·)+ and (·, ·)−2 = (·, ·)−. Let D−k,k : Hk → H−k denote the canonical
identification operator,

〈D−k,kϕ, ψ〉−k,k = (ϕ, ψ)k, ϕ, ψ ∈ Hk,

where 〈·, ·〉−k,k stands for the dual inner product between H−k and Hk. Using
the invariance property of the scale (2.2) with respect to the shift one can easily
construct the canonical identification operator Dl,k : Hk → Hl for a couple of
spaces Hk, Hl, k, l ∈ R.

We write Ik,l for D−1
l,k . Clearly, Ik,l is the unitary operator mapping Hl onto

Hk.

Theorem 2.1. In the above notations the following mappings define the same
operator Ak/2, k > 0 in H0:

(a) D0,k ≡ Ak/2,
(b) D−k/2,k/2 | {f ∈ Hk/2 | D−k/2,k/2f ∈ H0} ≡ DomAk/2,
(c) D−k,0 | {f ∈ H0 | D−k,0f ∈ H0} ≡ DomAk/2,
(d) A−k/2 = I0,−k | {ω ∈ H−k | I0,−kω ∈ Hk} ≡ H0, I0,−k := D−1

−k,0 :
H−k → H0

In particular,

D0,2 = A = D−1,1|{f ∈ H1 | D−1,1f ∈ H0} = D−2,0|{f ∈ H0 | D−2,0f ∈ H0}

and
A−1 = I0,−2|{ω ∈ H−2 | I0,−2ω ∈ H0}.

In what follows we will use the notation A := D−2,0, which is the closure of
the operator A as a mapping from H0 to H−2.
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We remind, for example, that the well-known Sobolev scale of spaces

W−k
2 (Rd) = L2(Rd) = W k

2 (Rd), k > 0

is associated with the operator A = −∆ + 1, where ∆ denotes the Laplacian on
Rd. In particular, for k = 2 the canonical identification operator D0,2 : W 2

2 (Rd) →
L2(Rd) exactly coincides with −∆ + 1 if the norm in W k

2 (Rd), k > 1 is defined as
‖ϕ‖k := ‖(−∆ + 1)k/2ϕ‖L2 .

To develop a new point of view about the construction of singularly perturbed
operators by the method of the rigged Hilbert spaces we need recall the additional
definitions on singular quadratic forms and operators in the A-scale of spaces (for
more details see [13, 21, 22, 24]).

A positive quadratic form γ in an abstract Hilbert space H is said to be
singular if it is nowhere closable. Precisely this means that

∀ϕ ∈ H, ∃ ϕn ∈ Domγ such that ϕn → ϕ in H and γ[ϕn] → 0, (2.3)

where γ[ϕ] = γ(ϕ, ϕ). Obviously a form γ is singular in H if the set

Kerγ := {ϕ ∈ Domγ | γ[ϕ] = 0} is dense in H. (2.4)

In other words, (2.4) gives a simple sufficient condition for the singularity of a
positive quadratic form in H.

We say that a symmetric not necessarily positive quadratic form γ is singular
in H if (2.4) holds.

In the same way one can introduce a notion of singular operator. A linear
densely defined operator S is said to be singular in H if

∀f ∈ H, ∃fn ∈ DomS such that fn → f and Sfn → 0 in H.

In what follows we use operators S acting from Hk to H−k, k ≥ 1, such that
KerS < H0. Therefore these S are singular in H0.

We say that a Hermitian form γ is regular in H, if it is bounded from below
and closed. Each regular quadratic form is associated with a lower semi-bounded
self-adjoint operator [18]. This connections may be extended to the wide class of
singular quadratic forms and operators considered in the A-scale (2.2).

For a densely defined symmetric quadratic form γ in H0 we say that γ belongs
to the H−k−class with some fixed k ≥ 1 if two conditions are fulfilled:

(1) γ is bounded on Hk, Domγ = Hk,
(2) γ is singular in Hk−1, Kerγ < Hk−1.
Directly from this definition we obtain the following result.
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Theorem 2.2. Each quadratic form γ of the H−k−class ( γ is singular in H0 !)
admits the operator representation:

γ(ϕ, ψ) = 〈Sϕ, ψ〉−k,k, ϕ, ψ ∈ DomS = Hk, (2.5)

where the associated operator S : Hk → H−k may be written in the form: S =
Aks, where s denotes a bounded self-adjoint operator in Hk such that

Ker s = Ker S = Ker γ < Hk−1.

Example 2.1. Rank one singular quadratic forms.
Consider in (2.1) a fixed vector ω ∈ H−\H0 and define the operator S acting

from H+ to H− according to

Sϕ = 〈ϕ, ω〉+,−ω, ϕ ∈ H+ = DomS.

Clearly S is a singular rank one operator in H0 since the set

KerS = {ϕ ∈ H+ | 〈ϕ, ω〉+,− = 0}

is dense in H0 due to ω /∈ H0. The quadratic form associated with this operator
S has the form:

γω(ϕ, ψ) := 〈ϕ, ω〉+,−〈ω, ψ〉−,+ = 〈Sϕ, ψ〉−,+ = 〈A2sϕ, ψ〉−,+ = (sϕ, ψ)+,

where the rank one operator s acts in H+ as follows,

sϕ = (ϕ, η+)+η+, with η+ := A−2ω.

Clearly, that γω belongs to the H−2−class, if ω ∈ H−\H−1, since then Kerγω is
dense in H1, and γω ∈ H−1−class, if ω ∈ H−1\H0.

In the more general case where ω ∈ H−k\H−k+1, k > 2 the singular quadratic
form

γω(ϕ, ψ) := 〈ϕ, ω〉k,−k〈ω, ψ〉−k,k, ϕ, ψ ∈ H−k

has a similar representation:

γω(ϕ, ψ) = 〈Sϕ, ψ〉−k,k = 〈Aksϕ, ψ〉−k,k = (sϕ, ψ)k.

Here sϕ = (ϕ, ηk)kηk, with ηk := A−kω. Now the form γω belongs to theH−k-class
since ω /∈ H−k+1 and therefore the set Kerγω is dense in Hk−1.
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Example 2.2. Finite rank singular quadratic forms.
Let the vectors hi ∈ H0, i = 1, ..., n < ∞ be orthogonal and satisfy the

condition:
span{hi} ∩DomA = {0}.

Then the operator S of rank n defined as follows

Sf =
n∑

i=1

(Af, hi)0Ahi =
n∑

i=1

〈f, ωi〉+,−ωi, f ∈ H+ = DomS, ωi := Ahi

is singular in H0 since KerS is obviously dense in H0. The quadratic form γ[f ] :=
〈Sf, f〉−,+ belongs to the H−2-class if span{hi} ∩DomA1/2 = {0}. However if all
hi ∈ DomA1/2 then this form belongs to the H−1-class.

In the general case we have (cf. with [3, 13]) the following result.

Theorem 2.3. Let γ be a Hermitian bounded quadratic form in Hk, k > 1. Set

Mk := Kerγ and Nk = Hk ªMk.

Then γ ∈ H−k−class iff

N−k ∩H−k+1 = {0}, where N−k := AkNk.

Proof. This follows from Theorem A1 (see [3]) since

Mk < Hk−1 ⇔ N−k ∩H−k+1 = {0}. 2

3 On rigged Hilbert spaces associated with sin-

gular perturbations

Let
H− = H0 = H+ (3.1)

be the rigged Hilbert spaces associated with a self-adjoint operator A ≥ 1 in
H0. We recall that H+ = DomA in the graph-norm of A. Let Ã ∈ Ps(A) be a
singular perturbation of A. We will assume that Ã ≥ 1. In other case, i.e., if
Ã ≥ m > −∞, m := infσ(Ã) < 1, we take the operator Ãm−1 := Ã+(m−1)1 ≥ 1
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to play the role of Ã, where 1 stands for the identical operator. With each
operator Ã there is associated a new rigged Hilbert space

H̃− = H0 = H̃+ (3.2)

constructed by the standard methods using Ã (see [8, 9]).
In this section we study the structure of (3.2) in terms of singular perturba-

tions.
By the assumption that Ã ≥ 1 the space H̃+ coincides with DomÃ endowed

by the inner product (f, g)∼+ = (Ãf, Ãg)0. Thanks to Ã ∈ Ps(A) there exist a
liner set D dense in H0 and such that

(f, g)+ = (f, g)∼+, f, g ∈ D. (3.3)

Thus, the set D consists a proper subspace in each of the spaces H+, H̃+:

H+ = M+ ⊕N+, H̃+ = M̃+ ⊕ Ñ+, (3.4)

where just due to (3.3) we can write

M+ = M̃+ = D < H0. (3.5)

From (3.4) (3.5) it follows that

H0 = M0 ⊕N0, where M0 = AM+ = ÃM+, N0 = AN+ = ÃÑ+. (3.6)

Now we establish some more complete connections between (3.1) and (3.2).

Proposition 3.1. Given two rigged triplets (3.1) and (3.2) assume that (3.4)
(3.5) hold. Then the spaces H−, H̃− admit the orthogonal decompositions:

H− = M− ⊕N−, H̃− = M̃− ⊕ Ñ−, (3.7)

such that
M− = M̃−, (3.8)

and
N− ∩H0 = {0} = Ñ− ∩H0. (3.9)

Proof. Let D−,+, D̃−,+ denote the standard canonical identification operators in
(3.1), (3.2) resp. Applying D−,+, D̃−,+ to (3.4) we get (3.7). For ω = D−,+ϕ and
ω̃ = D̃−,+ϕ, ϕ ∈ D due to (3.5) we have:

〈ω, ψ〉−,+ = 〈ω̃, ψ〉∼−,+, ψ ∈ D. (3.10)
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Therefore due to density of D we get:

‖ω‖− = ‖D−,+ϕ‖− = ‖ϕ‖+ = ‖D̃−,+ϕ‖∼− = ‖ω̃‖∼−.

Moreover, by this construction we also have

〈ω, η〉−,+ = 0 = 〈ω̃, η̃〉∼−,+, η ∈ N+, η̃ ∈ Ñ+. (3.11)

Therefore (3.8) is proved. The relation (3.9) follows from density D in H0. 2

Since Ã ≥ 1 we can use Krein’s formula for this operator:

Ã−1 = A−1 + B, (3.12)

where B is a bounded and positive operator in H0 with KerB = M0, where
M0 := AD. We recall that in terms of B the domain of Ã has the description:

DomÃ = {g ∈ H0 : g = f + BAf, f ∈ H+ = DomA}. (3.13)

Proposition 3.2. For each operator Ã ∈ Ps(A), Ã ≥ 1, the space H̃+ =
DomÃ has the following structure

H̃+ = M̃+ ⊕ Ñ+ = M+ ⊕ Ñ+, where M̃+ = M+ = D < H0, (3.14)

where the subspace Ñ+ is connected with N+ in the following way:

Ñ+ = {θ+ ∈ H0 : θ+ = η+ + BAη+, η+ ∈ N+}, ‖ θ+ ‖∼+=‖ η+ ‖+ . (3.15)

Proof. (3.14) holds due to (3.4)) (3.5)). Since H+ = M+ ⊕N+, M+ = D,
for each f ∈ H+ we can write:

f = ϕ+ ⊕ η+, ϕ+ = PM+f, η+ = PN+f,

where PL stands for the orthogonal projector onto the subspace L. Using that
H̃+ = DomÃ for g ∈ DomÃ by (3.13) we have:

g = ϕ+ + η+ + BA(ϕ+ + η+) = ϕ+ + θ+, θ+ := η+ + BAη+.

Here BAϕ+ = 0 thanks to Aϕ+ ∈KerB. By Af = Ãg, we get Aη+ = Ãθ+ that
proves (3.15). 2

Now we able to formulate the important new result.
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Theorem 3.1. For each Ã ∈ Ps(A), Ã ≥ 1, the inner product (·, ·)∼− in

the space H̃− is the form-sum perturbation of the inner product in H−. It means
that:

(·, ·)∼− = (·, ·)− + τ(·, ·), (3.16)

where the Hermitian quadratic form τ is singular in H−.
Proof. By construction H̃− is the completion of H0 with respect to the inner

product
(h1, h2)

∼
− := (Ã−1h1, Ã

−1h2)0, h1, h2 ∈ H0.

By Krein’s formula (3.12) we get:

(h1, h2)
∼
− = (A−1h1, A

−1h2)0 + τ(h1, h2),

where
τ(·, ·) := (A−1·, B·)0 + (B·, A−1·)0 + (B·, B·)0. (3.17)

Obviously the form τ is Hermitian but non-positive. From(3.17) it follows that

Kerτ = KerB = M0.

We recall that M0 = AD. Therefore the inner product in H̃− on vectors from
M0 is the same as in H−:

(·, ·)− | M0 = (·, ·)∼− | M0. (3.18)

This means that τ is singular in H− since the set Kerτ = M0 is dense in H−.
The latter fact is true due to the general criterion (see for example [1] ): M0 <

H− ⇐⇒ N− ∩H0 = {0}, where N− := AN0. 2

(3.18) implies that in H̃− = M̃− ⊕ Ñ− the subspace M̃− = M− and is the
completion of M0 in the norm

‖µ‖∼− = ‖A−1µ‖0 = ‖Ã−1µ‖0, µ ∈M0,

but the subspace Ñ− 6= N− and is the completion of N0 in the norm

‖η‖∼,2
− = ‖η‖2

− + τ [η], η ∈ N0. (3.19)

Moreover, (3.18) means that the operators A : H0 → H− and Ã : H0 → H̃−
coincide not only on D but on M0 too:

AM0 = M− = ÃM0. (3.20)
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Remark 3.1. It is well-known that for Ã ∈ Pws(A) the space H̃1 may be
produced by the form-sum method, i.e., the inner product (·, ·)∼1 = (·, ·)1 +γ(·, ·),
where the singular perturbation is given by a quadratic form γ of the H−1−class.
Above Theorem 3.1 shows that in the more general case where γ ∈ H−2−class
and Ã is defined by the method of self-adjoint extensions, we can use the form-
sum method also, but for construction of the space H̃−. In this way the operator
Ã is produced as an operator associated with the rigged Hilbert space (3.2). In
other words Theorem 3.1 has the following consequence.

Theorem 3.2. For each Ã ∈ Ps(A), Ã ≥ 1, the inverse operator Ã−1 is
uniquely associated ( in the sense of the second representation theorem (see [18]))
with the positive quadratic form χ∼−[·] := (·, ·)∼−:

χ∼−(h1, h2) = (Th1, Th2)0, T ≡ Ã−1, h1, h2 ∈ H0.

Proof. By the above constructions the form χ∼−[·] = χ−[·] + τ [·] is positive.
Here χ−[·] := ‖ · ‖2

− and τ has a view (3.17) and is defined by a positive operator

B in H−. From Ã ≥ 1 it follows that χ∼− ≤ χ0, where χ0[·] := (·, ·)0. Therefore

χ∼−(·, ·) = (T ·, T ·)0, and T = Ã−1 due to uniqueness of the operator represen-
tation. Conversely if we assumed that the quadratic form γB[·] := (B·, ·)0 of a
bounded operator B satisfies the inequality

χ−1 ≤ γB ≤ χ0 − χ−1, (3.21)

and the set M0 :=KerB is dense in H0 then it is easy to see that the operator T
associated with χ∼− coincides with Ã−1 for some Ã ∈ Ps(A), Ã ≥ 1. 2

Example 3.1. Construction of rank one singular perturbations by the rigged
Hilbert spaces method.

Consider a rank one singular perturbation Ã formally given as Ã = A + γω,
where γω(·, ·) = 〈·, ω〉〈ω, ·〉, ω ∈ H−\H0, ‖ω‖− = 1 stands for the singular
quadratic form. Precisely Ã ∈ Ps(A) is defined by Krein’s formula:

Ã−1 = A−1 + β(·, η)0η, η = A−1ω, β ∈ R. (3.22)

For Ã ≥ 1 the parameter β should satisfy the condition

0 < β ≤ 1− (A−1η, η)0.

It is known that
Ãg = Af, g ∈ DomÃ, f ∈ DomA, (3.23)
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where

DomÃ = {g ∈ H : g = f + β(Af, η)0η = f + β〈f, ω〉η, f ∈ DomA.} (3.24)

At first we introduce H̃1 as DomÃ equipped by the inner product

(g1, g2)
∼
1 := (Ãg1, g2)0 = (Af1, g2)0 = (Af1, f2)0 + β(Af1, η)0(η,Af2)0

= (f1, f2)1 + β〈f1, ω〉〈ω, f2〉 = (f1, f2)1 + βγω(f1, f2).

Thus, if we assume that γω ∈ H−2−class, i.e., if ω ∈ H−2 \ H−1, then

H̃1 = H1 ⊕ Ñ1, (3.25)

where Ñ1 is the one-dimensional space constructed by the form γω. Clearly γω is
singular in H1 since Kerγω is dense in H1.

In turn, the conjugate space H̃−1 is the completion of H0 in the inner product

(h, l)∼−1 := (Ã−1h, l)0 = (A−1h, l)0+β(h, η)0(η, l)0 = (h, l)−1+β〈A−1h, ω〉〈ω, A−1l〉,

i.e.,
(·, ·)∼−1 = (·, ·)−1 + βγη(·, ·) = (·, ·)−1 + βγω(A−1·, A−1·),

where γη(·, ·) := (·, η)(η, ·). Obviously, the quadratic form γη is singular in H−1

since M0 := {h ∈ H0 : (h, η)0 = 0} is dense in H̃−1. Consequently we have

H̃−1 = H−1 ⊕ Ñ−1, (3.26)

where Ñ−1 is a one-dimensional space constructed by the form γη.
Further, the space H̃+ = DomÃ in the inner product:

(g1, g2)
∼
+ = (Ãg1, Ãg2)0 = (Af1, Af2)0 = (f1, f2)+, (3.27)

where vectors f1, f2 ∈ DomA are connected with g1, g2 ∈ DomÃ according to
(3.24). In particular, g1 = f1, g2 = f2 if the vectors f1, f2 are orthogonal to ω in
the sense of the dual inner product. Then they belong to the set M+ :=Kerγω,
and we have

(·, ·)∼+ | D = (·, ·)+ | D.

This means that M̃+ coincides with M+, and therefore we have

H̃+ = M+ ⊕ Ñ+, (3.28)
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where Ñ+ is a one-dimensional space unitary equivalent to N0. Finally, the
conjugate space H̃− is the completion of H0 in the inner product:

(h1, h2)
∼
− := (Ã−1h1, Ã

−1h2)0, h1, h2 ∈ H0.

By Krein’s formula (3.22) we get

(h1, h2)
∼
− = (A−1h1 + β(h1, η)0η, A−1h2 + β(h2, η)0η)0

= (A−1h1, A
−1h2)0 + τω(h1, h2) = (h1, h2)− + τω(h1, h2),

where the Hermitian quadratic form τω has the form

τω(·, ·) = β(A−1·, η)0(η, ·)0 + β(·, η)0(η, A−1·)0 + β2(·, η)0(η, ·)0

= β(·, η+)0(η, ·)0 + β(·, η)0(η+, ·)0 + β2(·, η)0(η, ·)0, (3.29)

where η+ := A−1η and where we used ‖η‖2
0 = 1. Thus (cf. with (3.16))

(·, ·)∼− = (·, ·)− + τω(·, ·). (3.30)

The quadratic forms τω is obviously singular in H− since vectors η, η+ /∈ H+, but
it is non-positive. By the latter reason it is impossible to present the space H̃−
as a sum H− ⊕ Ñ−. However we have

H̃− = M̃− ⊕ Ñ−, M̃+ = M+ (3.31)

where Ñ− is conjugate to Ñ+.
As a general result of the above analysis we conclude that for γω ∈ H−2−class

a singular rank one perturbation admits a construction by the form-sum method
along two ways: (1) to define Ã as the operator associated with a new triplet
H̃−1 = H0 = H̃1, where the inner products in H̃−1, H̃1 have the form-sum repre-
sentations:

(·, ·)∼−1 = (·, ·)−1 + βγω(·, ·), (·, ·)∼1 = (·, ·)1 + βγω(A−1·, A−1·),

(2) to define Ã−1 as the operator associated by the second representation theorem
(see [18]) with the quadratic form χ̃−(·, ·) := (·, ·)∼− which is a singular form-sum
perturbation of (·, ·)− (see (3.30)).
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4 The singularity phenomenon

Let S ⊂ G be a pair of linear sets and (·, ·), (·, ·)∼ be two inner products on
G. Let H, H̃ denote the corresponding Hilbert spaces constructed in a standard
way. Assume that

(1) the above inner products coincide on S, i.e.,

(·, ·) | S = (·, ·)∼ | S,

(2) the set S is dense both in H and H̃.
Then one can naively think that the spaces H, H̃ are identical. However this

is not true. In general H 6= H̃ in the sense that ‖ g ‖6=‖ g ‖∼ for g ∈ G \ S. In
other words, the quadratic form τ [·] := (·, ·)∼ − (·, ·) is non-trivial and singular
both in H and H̃ in the sense that Kerτ < H, H̃. However the Hermitian form
τ is not positive. Indeed, if we assume that τ ≥ 0 then the space H̃ should have
the structure of an orthogonal sum: H̃ = H ⊕ Hτ (see [24]) that is impossible
under (1) and (2).

We will call the above described situation with conditions (1), (2) as a singu-
larity phenomenon.

In fact we already met this phenomenon in the previous section. Namely, for
each Ã ∈ Ps(A), Ã ≥ 1 the corresponding Hilbert space H̃− contains the same
linear setM0 with two properties: (1) the inner products in H̃− andH− restricted
to this set are identical: (·, ·)∼− | M0 = (·, ·)− | M0, (2) M0 is dense both in

H̃− and H−. Indeed, we recall that H̃− is constructed as the completion of H0

with respect to the inner product (·, ·)∼− = (Ã−1 ·, Ã−1 ·)0, where Ã−1 is defined
by Krein’s formula (3.12) with a positive operator B which is non-zero only on
N0 := H0 ªM0. So (2) is fulfilled. The condition (1) is evident due to (3.18).
We remark that the density of M0 in each H̃− can be proven independently in
the following way.

Lemma 4.1 Let Ã ∈ Ps(A), Ã ≥ 1 and let H̃− be the completion of H0 in
the inner product (3.16) where the quadratic form τ is defined by (3.17). Then
the subspace M0 := Kerτ is dense in H̃−:

M0 < H̃−. (4.1)

Therefore the quadratic form τ is singular not only in H− but in each H̃− too.
Proof. By construction M0 < H− since Ã is defined by a singular form. So,

we need to prove only M0 < H̃−. Let h ∈ H0 = RanÃ. Then h = Ãg with some
g ∈ DomÃ. Thanks to the density of the set D = M+ := A−1M0 in H0, there
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exists a sequence ϕn ∈ M+ such that ‖ ϕn − g ‖0→ 0. Set fn := Aϕn = Ãϕn.
Obviously fn ∈M0. Let us check that the sequence fn converges to the vector h
in H̃−. Indeed, using that Ã−1Aϕn = ϕn we have

‖ h− fn ‖∼−=‖ Ã−1(h− fn) ‖0=‖ Ã−1(Ãg − Aϕn) ‖0=‖ g − ϕn ‖0→ 0. 2

We can face the singularity phenomenon in a slightly other form. Let
◦
A be

the symmetric densely defined restriction of A = A∗ ≥ 1 in H0. So, M+ :=

Dom
◦
A < H0. Let Ã be a strongly positive self-adjoint extension of

◦
A and H̃− be

the corresponding space constructed by the inner product (·, ·)∼− := (Ã−1·, Ã−1·)0.

Then the subspace M0 :=
◦
AM+ = AM+ = ÃM+ has two properties: (1) it is

dense both in H− and H̃− and (2) the norms ‖ · ‖∼− and ‖ · ‖− coincide on M0

due to M− := AM0 = ÃM0.

5 Construction of the Ã-scale by a singular quadratic

form

In this section we discuss connections of the new rigged Hilbert space (3.2) with
a quadratic form γ ∈ H−2(A)-class associated to a singular perturbation.

We start with the rigged triplet (3.1) associated to the free operator A = A∗ ≥
1 in H0 and take in the consideration a chain of five spaces

H− ≡ H−2 = H−1 = H0 = H1 = H2 ≡ H+(= DomA), (5.1)

which consists of a part of the A-scale (2.2). We remind that both (3.1) and the
whole scale (2.2) can be reconstructed by any couples of spaces: H0 = Hk or
H−k = H0, k > 0 from the A-scale (see [8]).

Given a positive quadratic form γ ∈ H−2-class define a new inner product on
H0:

(h1, h2)
∼
−1 := (A−1h1, h2)0 + γ(A−1h1, A

−1h2), h1, h2 ∈ H0. (5.2)

We note that (5.2) is well defined since the operator A−1 maps H0 onto H+ and
therefore vectors A−1h1, A

−1h2 ∈ H+ = Domγ. Let H̃−1 be the Hilbert space
corresponding to the inner product (5.2), i.e., H̃−1 is the completion of H0 in the
norm

‖ · ‖∼−1:= (‖ A−1/2· ‖2
0 + γ[A−1·])1/2. (5.3)

15



Assume that γ is such that
‖ · ‖∼−1≤‖ · ‖0 . (5.4)

Then
H̃−1 = H0, (5.5)

and one can extend this couple of spaces to the rigged triplet

H̃−1 = H0 = H̃1. (5.6)

and construct the associated operator

Ã := D̃−1,1 | {f ∈ H̃1 : D̃−1,1f ∈ H0}, (5.7)

where D̃−1,1 : H̃1 → H̃−1 is the standard canonical isomorphism. Clearly that
Ã ≥ 1 since by (5.4),

‖ · ‖0≤‖ · ‖∼1 =‖ Ã· ‖0 . (5.8)

Further, by Ã we can introduce the chain of five spaces similar to (5.1),

H̃− ≡ H̃−2 = H̃−1 = H0 = H̃1 = H̃2 ≡ H̃+(= DomÃ). (5.9)

Proposition 5.1. Let a quadratic form γ ∈ H−2-class satisfies the condition:

− ‖ f ‖2
1≤ γ[f ] ≤‖ f ‖2

2 − ‖ f ‖2
1, f ∈ H2 = DomA. (5.10)

Then the associated operator Ã ∈ Pss(A).
Proof. From (5.10) we have

−(Af, f)0 ≤ γ[f ] ≤‖ Af ‖2
0 −(Af, f)0, f ∈ H+.

This implies

−(A−1h, h)0 ≤ γ[A−1h] ≤‖ h ‖2
0 −(A−1h, h)0, h ∈ H0

Since each f = A−1h for some h ∈ H0. In other terms

− ‖ h ‖2
−1≤ γ[A−1h] ≤‖ h ‖2

0 − ‖ h ‖2
−1

that is equivalent to
0 ≤ γ[A−1h]+ ‖ h ‖2

−1≤‖ h ‖2
0

Therefore condition (5.4) is fulfilled and by the construction before Proposition
5.1 we get the operator Ã ≥ 1. We need check now that Ã ∈ Pss(A). To this
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aim we remark that γ[A−1h] = 0, h ∈ M0, where M0 := AKerγ. Therefore
Ã−1h = A−1h, h ∈ M0 and Ãf = Af, f ∈ Kerγ := D. Thus Ã ∈ Pss(A) since
Kerγ < H1. 2

The chain (5.9) may be constructed using the operator S : H+ → H− associ-
ated with γ (see (2.5)). So, let S = A2s, where s is a bounded operator in H+

such that γ[·] = (s·, ·)+.
Introduce the bounded operator T : H0 → H− acting as follows,

Th = (1 + SA−1)h, h ∈ H0,

where 1 stands for an identical mapping.
Using T one can define a new inner product on H0,

(h, l)∼− := (Th,Tl)− ∀ h, l ∈ H0. (5.11)

Assume
‖ h ‖∼−≤‖ h ‖0, h ∈ H0, (5.12)

and define H̃− as the completion of H0 in the norm ‖ h ‖∼−. Due to (5.12) we get

H̃− = H0. By the standard procedure one can construct H̃+ and define Ã as the
operator associated with the triplet : H̃− = H0 = H̃+.

Proposition 5.2 Let s be a positive bounded operator in H+. Assume the
inequality

−(Af, f)0 ≤ (sf, f)+ ≤‖ f ‖2
+ −(Af, f)0, f ∈ H+ (5.13)

holds and
Kers = M+ < H1.

Let the rigged Hilbert space H̃− = H0 = H̃+ be constructed by S = A2s and T
in according with the above described way. Then the associated with this rigged
Hilbert space operator Ã ∈ Pss(A) and Ã ≥ 1.

Proof. From (5.11) it follows that the associated with the new rigged Hilbert
space operator has the representation:

Ã−1 := A−1T = A−1 + AsA−1 = A−1 + B.

By this construction KerB = M0 := AM+ and therefore

Ã|D = A|D, D ≡M+.
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Thus Ã ∈ Pss(A) since the set D is dense in H1. Further, the inequality Ã ≥ 1 is
equivalent to (5.12) which follows from (5.13). 2

We shall say that the chains (5.1) and (5.9) are s−similar (=singularly similar)
if

H+ ∩ H̃+ =: D < H1 (5.14)

and
‖ f ‖∼1 =‖ f ‖1, f ∈ D. (5.15)

We get an important result.
Theorem 5.1. The associated with (5.9) operator Ã ∈ Pss(A), Ã ≥ 1 if and

only if the chains (5.1) and (5.9) are s−similar.
Proof. By (5.15) we have

(Ãf, l)0 = (Af, l)0, f, l ∈ D.

Since D is dense in H0 we can introduce the symmetric operator
◦
A,

◦
A := Ã | D = A | D.

Thus, both A and Ã are different self-adjoint extensions of
◦
A. In particular,

Ã ∈ Pss(A) since in fact the set D is dense in H1. 2

We emphasize that one can not change condition (5.15) into the condition
‖ f ‖∼+=‖ f ‖+, f ∈ D.

The following theorem is the main result of this section.
Theorem 5.2. There exists a one-to-one correspondence between three fam-

ilies of objects: the operators Ã ∈ Pss(A), Ã ≥ 1, the quadratic forms γ ∈
H−2−class with condition (5.10), and the chains of spaces (5.9) which are s−similar
to (5.1). These correspondences are fixed by the formulas

γ[f ] = (Ã−1h, h)0 − (Af, f)0, h = Af, f ∈ H+, (5.16)

(h, l)∼−1 = (Ã−1h, l)0 = (h, l)−1 + γ(A−1h,A−1l), h, l ∈ H0. (5.17)

Proof. By an operator Ã ∈ Pss(A), Ã ≥ 1 we can define a form γ ∈ H−2−class
according to (5.16). This form satisfies condition (5.10) since Ã ≥ 1. By using
the form γ one can introduce the space H̃−1 completing the space H0 with respect
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to the inner product (h, l)∼−1 := (h, l)−1 +γ(A−1h,A−1l), h, l ∈ H0. Then starting

with the so-called pre-rigged pair H̃−1 = H0 one can construct the chain of
spaces (5.9). Clearly, we get the chain which is s−similar to (5.1) by Theorem
5.1. Finally, starting from (5.9) we can reconstruct Ã as the operator associated
with this chain. 2

Of course, the same result is true in the general case where Ã is not necessarily
strongly positive but only bounded from below.

Indeed, let
Ã ∈ Pss(A), Ã ≥ m, m := infσ(Ã) < 1.

Then the quadratic form γ is defined by a formula of the form (5.16) with the
operators Ã, A replaced by Ãa = Ã+a, Aa = A+a, resp., where a = 1−m > 0:

γ[f ] = (Ã−1
a h, h)0 − (Aaf, f)0, h = Af, f ∈ H+.

Obviously γ ∈ H−2− class and satisfies the inequalities

−(Aaf, f)0 ≤ γ[f ] ≤ (Aaf, Aaf)0 − (Aaf, f)0, f ∈ H+.

Having γ one can introduce the space H̃−1 as the completion of H0 in the norm
corresponding to the inner product

(·, ·)∼−1 := (A−1
a ·, ·)0 + γ[A−1

a ·].

Then, starting with the pre-rigged couple H̃−1 = H0 we construct whole chain of
spaces of type (5.9) by the standard methods. Surely, this chain will be s−similar
to the chain of the form (5.1) which is constructed by Aa. Finally, we may
reconstruct the operator Ãa as associated with the latter chain and return to
Ã = Ãa−a. Of course, in the above round of implications one can start with any
object: an operator Ã ∈ Pss(A), a quadratic form γ ∈ H−2−class, or, finally, a
chain of s−similar to (5.1) spaces of form (5.9).

6 Singular rank one perturbation of a higher or-

der

In this section we show that the method of rigged Hilbert spaces may be applied
in the singular perturbation theory of a higher order (the so-called super singular
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perturbation theory, see e.g., [10] and references wherein). However our method
differs from the approach developed in [10], where the state space is changed by
the procedure of the orthogonal extension.

We will consider simplest case of rank-one perturbations. Let

H− ≡ H−k = H−k/2 = H0 = Hk/2 = Hk ≡ H+, k > 2 (6.1)

be the A-scale of Hilbert spaces associated with an operator A = A∗ ≥ 1 in H0.
Fix a vector ω ∈ H−k\H−k+1, k > 2. Then the quadratic form

γω(ϕ, ψ) := 〈ϕ, ω〉k,−k〈ω, ψ〉−k,k, ϕ, ψ ∈ Hk (6.2)

obviously belongs to H−k−class since the set

Kerγ = M+ ≡Mk := {ϕ ∈ Hk : 〈ϕ, ω〉k,−k = 0}

is dense in Hk−1 just due to ω /∈ H−k+1. For example, if k = 3, then Mk is dense
in H2 =DomA, and it is impossible to define the perturbed operator Ã by any
standard method. Here we will define the operator Ã in H0 by the method of
rigged Hilbert spaces.

With this aim we at first construct by A and γω a new scale of Hilbert spaces

H̃− ≡ H̃−k = H̃−k/2 = H0 = H̃k/2 = H̃k ≡ H̃+, k > 2. (6.3)

and then introduce Ã as the associated operator. We recall that the chain (6.3) is
fixed by every couple of spaces of the form H0 = H̃j or H̃−j = H0, j > 0, where
H̃j or H̃−j may be chosen from the infinite scale of spaces (6.3). We choose the
space H̃−k/2 which is defined by A and γω as the completion of H0 with respect
to the inner product

(h1, h2)
∼
−k/2 := (A−k/2h1, h2)+βγ(A−k/2h1, A

−k/2h2), h1, h2 ∈ H0, β ∈ R. (6.4)

We recall that the operator A−k/2 is isometric as a map from H0 onto Hk. So,
we get the inequality

‖ · ‖∼−k/2≤‖ · ‖0

only if the coupling constant β satisfies the condition:

0 ≤ β + ‖ηk‖2
k/2 ≤ 1, ηk/2 := A−kω ∈ Hk. (6.5)

20



Hence, under (6.5) the embedding H̃−k/2 = H0 holds. Now one can extend this
pre-rigged couple to the whole scale (6.3). By using (6.3) we define the operator
Ãk/2 by:

Ãk/2 := D̃0,k = D̃−k/2,k/2 | {ϕ ∈ Hk/2 : D̃−k/2,k/2ϕ ∈ H0}

where D̃0,k, D̃−k/2,k/2 denote the canonical identification operators in the scale

(6.3). Of course, the operator Ãk/2 is a strongly singular perturbation of Ak/2,
i.e., Ãk/2 ∈ Pss(A

k/2). Finally, by the spectral theorem we can define Ã :=
(Ãk/2)2/k ≡ D̃0,2. This operator we call the super singular perturbation of A
corresponding to a singular rank-one quadratic form γω ∈ H−k−class, k > 2,
where ω ∈ H−k\H−k+1.

Theorem 6.1. Given two chains of Hilbert spaces (6.1) and (6.3) assume
that for some k > 2 the difference of the inner products in H̃−k/2 and H−k/2

defines a rank-one positive quadratic form on H0:

βγω(·, ·) := (·, ·)∼−k/2 − (·, ·)−k/2, ω ∈ H−k \ H−k+1,

where a constant β satisfies inequality (6.5). Then this form admits the interpre-
tation as a super singular H−k−class perturbation of A, and define the uniquely
associated with the rigged triplet H̃−k/2 = H0 = H̃k/2 self-adjoint in H0 operator

Ãk/2 ∈ Pss(A
k/2) as well as the super singularly perturbed operator Ã associated

with the scale (6.3).
Proof. The result is true due to the arguments based on Theorem 5.2 (see

also Example 3.1). 2

Example 6.1. A model d4

dx4 + δ − δ′′.
Here we consider a rank one singular perturbation ω := δ − δ′′ ∈ W−3

2 (R)
of the operator d4/dx4 in L2(R). Formally this perturbation is given by the
expression: d4/dx4 + β(δ − δ′′) = d4/dx4 + βγω, where γω(·, ·) := 〈·, ω〉〈ω, ·〉 and
β ∈ R . Precisely we construct d4/dx4 + β(δ − δ′′) using the method of rigged
Hilbert spaces as follows.

We associate d4/dx4 + β(δ − δ′′) with the perturbed scale of Sobolev spaces

W̃−4
2 (R) = W̃−2

2 (R) = L2(R) = W̃ 2
2 (R) = W̃ 4

2 (R), k > 0. (6.6)

By definition,

d4/dx4 + β(δ− δ′′) := D̃−2,2 | {ϕ ∈ W̃ 2
2 |ϕ(4)(x) + β(ϕ(0)δ(x)−ϕ′′(0)δ′′(x)) ∈ L2},
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where D̃−2,2 : W̃ 2
2 → W̃−2

2 stands for the unitary identification operator and
all derivatives are taken in the generalized sense. The chain (6.6) may be con-
structed starting from the pre-rigged pair W̃−2

2 (R) = L2(R), where W̃−2
2 (R) is

the completion of L2(R) endowed by the inner product

(f, g)∼−2 := (f, g)W−2
2

+ βγω((1− d2/dx2)−2f, (1− d2/dx2)−2g).

We observe that ω = δ − δ′′ as a vector in W−4
2 (R) admits the representation

ω = (1− d2/dx2)δ = (1− d2/dx2)2η, where η(x) =
1

2
e−|x|,

and therefore we can derive the positive operator

d4/dx4 + β(δ − δ′′) = (1− d2/dx2)2 + β(δ − δ′′) + 2d2/dx2 − 1

using Krein’s formula:

[(1− d2/dx2)2 + β(δ − δ′′)]−1 = (1− d2/dx2)−2 − β

2(2 + β)
(·, η)0η, (6.7)

where β should satisfy the condition

0 < β ≤ 1− ((1− d2/dx2)−1η, η)L2 .

The corresponding integral kernels in (6.7) have the explicit representations. The
domain of the operator d4/dx4 + β(δ − δ′′) has the following description

Dom(d4/dx4+β(δ−δ′′)) = {g ∈ L2|g(x) = ϕ(x)+
β

2
(ϕ(0)−ϕ′′(0))e−|x|}, ϕ ∈ W 4

2 }.

7 On the s-similarity of Hilbert scales

Let A, Ã ≥ 1 be a pair of self-adjoint operators in H0 and let

H−k = H0 = Hk, (7.1)

H̃−k = H0 = H̃k, k > 0 (7.2)

be the scales of Hilbert spaces associated with the operators A, Ã, resp.
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We say that scales (7.1), (7.2) are s-similar in the generalized sense and write
{Hk} ∼ {H̃k} if there exists k ≥ 1 such that the set

Dk := H2k ∩ H̃2k (7.3)

is dense in Hk,
Hk = Dk, (7.4)

and
‖ϕ‖k = ‖ϕ‖∼k , ϕ ∈ Dk. (7.5)

Conditions (7.3), (7.4) imply that both spaces H2k, H̃2k admit the orthogonal
decompositions

H2k = M2k ⊕N2k H̃2k = M̃2k ⊕ Ñ2k, (7.6)

such that the subspaces M2k, M̃2k are identical and dense in Hk:

M2k = M̃2k ≡ Dk < Hk. (7.7)

Theorem 7.1 The scales of Hilbert spaces (7.1),(7.2) are s-similar in the
generalized sense, {Hk} ∼ {H̃k}, iff for some k ≥ 1 the operator Ãk is a strongly
singular perturbation of Ak, i.e., Ãk ∈ Pss(A

k).

Proof. By the construction of scales (7.1), (7.2) the inner products in Hk, H̃k

are defined by the quadratic forms

γk(ϕ, ψ) := (Akϕ, ψ)0, γ̃k(ϕ, ψ) := (Ãkϕ, ψ)0.

Due to (7.5) we have:

(ϕ, ψ)k = (Akϕ, ψ)0 = (ϕ, ψ)∼k = (Ãkϕ, ψ)0 ϕ, ψ ∈ Dk.

Since Dk is dense in Hk (see (7.4)) the restrictions of Ak, Ãk onto Dk coincide:

Ak | Dk = Ãk | Dk. (7.8)

Therefore these restrictions produce the same densely defined symmetric operator
(Ak)◦ inH0. This operator is closed since Dk = M2k = M̃2k is the closed subspace
both in H2k and H̃2k. Clearly each of the operators Ak, Ãk is the self-adjoint
extension of (Ak)◦. We recall that since the set Dk is dense in Hk, the Friedrichs
extension of (Ak)◦ coincides with Ak. So, by definition any other self-adjoint
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extension of (Ak)◦ belongs to Pss(A
k). Thus Ãk ∈ Pss(A

k). The inverse assertion
evidently is also true. 2

We remark that due to (7.7) similarly as for (7.5) we have

‖ϕ‖2k = ‖ϕ‖∼2k, ϕ ∈ Dk. (7.9)

However in general the set Dk does not belong to H4k∩H̃4k. For this reason (7.9)
does not imply that Ã2k is a singular perturbation of A2k.

We note else that according to Theorem 5.2, see (5.16),(5.17), the singular
quadratic form defined by

γ(A−k·, A−k·) := (Ã−k·, ·)0 − (A−k·, ·)0

belongs to the H−2−class with respect to the operator Ak since the set Dk is
dense in Hk. In the case where Ã−k ∈ Pws(A

k), the spaces H̃k, Hk coincide
as sets in H0 however have different norms. Thus, the quadratic form γ[ϕ] :=
(Ãkϕ, ϕ)0− (Akϕ, ϕ)0 is bounded in Hk although belongs to the H−1−class with
respect to the operator Ak.
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