
Abstract. We develop mathematical tools suitable for the construction of
conflict models with non-annihilating adversaries. In a set of probability
measures we introduce a non-commutative conflict composition and consider
the associated dynamical system. We prove that for each couple of non-
identical mutually nonsingular measures, the corresponding trajectory of the
dynamical system converges to an invariant point represented by a pair of
mutually singular measures. The disjoint supports of the limiting measures
determine the final re-distribution of the starting area of conflict as a result of
an ‘‘infinite war’’ for existence space (the pure repelling effect).
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1 Introduction

This paper is aimed to develop mathematical tools for constructing of conflict
models in a situation where none of the opponents have any strategic priority.
The conflicting interaction among the opponents only produces a certain re-
distribution of the common area of interests. In other words we assume that
each adversary is a priori non-annihilating.

In fact we develop an alternative approach to the well-known mathe-
matical theory of population dynamics (see e.g. [3]-[6]) based on a modified
Lotka-Volterra equation and aimed to describe the quantitative changes of
conflicting species.

We assign to each opponent a probability measure on the same metric
space, which is interpreted as the existence space or area of common interests.
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The competition interaction between opponents we express in a form of a
conflict composition between probability measures. The iteration of this
composition generates a certain dynamical system. We investigate its trajec-
tories and prove the existence of the limiting states.

Here is a more detailed explanation of our ideas.
Let us assign to adversaries, here we consider only a pair of them, say A

and B, a couple of probability measures l0 and m0 on some metric space X .
Independently, A and B occupy a subset E � X with probabilities l0ðEÞ and
m0ðEÞ, respectively. We assume that l0; m0 are non-identical and are mutually
nonsingular. Hence suppl0 \ suppm0 6¼ ;. Incompatibility of A and B gen-
erates a conflicting interaction. We write this fact mathematically in a form of
a non-commutative conflict composition, notation �	, between measures l0

and m0. In other words, we construct a new pair of probability measures,
l1 ¼ l0�	m0 and m1 ¼ m0�	l0 in terms of the conditional probability to occupy
a subset E by A (or B) when B (A) is absent in E. So a value l1ðEÞ is pro-
portional to the product of l0ðEÞ and m0ðX n EÞ, the starting probability for A
to occupy E and the probability for B to be absent in the set E. Similarly for
the side B. Thus, measures l1; m1 describe the re-distribution of the conflicting
area between A and B after the first step of interaction. However the conflict is
not solved provided that measures l1; m1 are mutually nonsingular. So one
can repeat the above described procedure for infinite times and get two
sequences of probability measures lN ; mN ; N ¼ 1; 2; ::: which generates a
trajectory of a certain dynamical system.

In the present paper we consider mainly the case of discrete measures. We
prove the existence of the limiting pair l1 ¼ limN!1 lN ; m1 ¼ limN!1 mN
and show that l1, m1 are mutually singular and invariant with respect to the
action of �	. The disjoint supports of the limiting measures establish the final
re-distribution of the starting conflict area, i.e., we observe the pure repelling
effect for non-identical adversaries.

In [1, 2] we extend our results for a class of so-called image measures and
investigate the fractal structure of the limiting supports.

2 The conflict composition for stochastic vectors

We start with a simplest case.
Let X 
 X be a finite set, X ¼ x1;x2; :::;xnf g; n > 1; and l0; m0 be a pair

of probability discrete measures,

l0ðxiÞ ¼ pi � 0; m0ðxiÞ ¼ qi � 0; i ¼ 1; 2; :::; n;

l0ðXÞ ¼ p1 þ � � � þ pn ¼ q1 þ � � � þ qn ¼ m0ðXÞ ¼ 1:

So measures l0; m0 are associated with a couple of stochastic vectors, say
p; q 2 Rn

þ. We recall that a vector p ¼ ðp1; p2; :::; pnÞ with coordinates pi � 0 is
called stochastic if kpk1 :¼ p1 þ � � � þ pn ¼ 1.

Given a pair of stochastic vectors p; q, we introduce the non-linear non-
commutative conflict composition, notation �	, by

p�	; 1 ¼ p�	q; q�	; 1 ¼ q�	p;

where the coordinates of the vectors p�	; 1; q�	; 1 2 Rn
þ are defined as follows:
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p
�	;1
i :¼ pið1 � qiÞ

z
; q

�	;1
i :¼ qið1 � piÞ

z
; i ¼ 1; 2; :::; n: ð1Þ

The normalizing coefficient z is determined by the condition kp�	;1k1 ¼
kq�	;1k1 ¼ 1, and it follows that

z ¼ 1 � ðp; qÞ; 0 � z � 1; ð2Þ
where ð�; �Þ stands for the inner Euclidean product in Rn.

Remark. The conflict composition is well defined only if ðp; qÞ 6¼ 1, and it
acts as the identical transformation if ðp; qÞ ¼ 0. So we will suppose that
0 < ðp; qÞ < 1.

The N -fold iteration of the conflict composition �	 produces a couple of
stochastic vectors p

�	;N ; q
�	;N 2 Rn

þ with coordinates

p
�	;N
i :¼ 1

zN�1
p

�	;N�1
i ð1�q

�	;N�1
i Þ; q

�	;N
i :¼ 1

zN�1
q

�	;N�1
i ð1�p

�	;N�1
i Þ; N ¼ 1;2; :::;

ð3Þ
where pð0Þi 
 pi; q

ð0Þ
i 
 qi; z0 ¼ z, and

0 < zN�1 ¼ 1 � ðp�	;N�1; q
�	;N�1Þ < 1: ð4Þ

We are interested in the existence of the limits p
�	;1 ¼ limN!1 p

�	;N ;
q

�	;1 ¼ limN!1 q
�	;N :

Example. Let n ¼ 2. Consider a couple of vectors p ¼ ðp1; p2Þ; q ¼
ðq1; q2Þ 2 R2

þ, with coordinates 0 < p1; p2; q1; q2 < 1; p1 þ p2 ¼ q1 þ q2 ¼ 1:

We observe that already on the first step, p
�	;1
1 ¼ q

�	;1
2 ; p

�	;1
2 ¼ q

�	;1
1 : So one can

start at once with the case:

p ¼ ða; bÞ; q ¼ ðb; aÞ; 0 < a; b < 1; aþ b ¼ 1:

Then by (1) and (2) we get, p
�	;1 ¼ ða1; b1Þ; q

�	;1 ¼ ðb1; a1Þ; a1 þ b1 ¼ 1;
where

a1 ¼ 1

z
að1 � bÞ ¼ a2

z
; b1 ¼ 1

z
bð1 � aÞ ¼ b2

z
; z ¼ 1 � 2ab ¼ a2 þ b2:

Thus a1 ¼ a2ða2 þ b2Þ�1; b1 ¼ b2ða2 þ b2Þ�1: If we assume that a < b, i.e.,
a < 1=2 < b, then we get a1 ¼ ak1 < a since k1 :¼ aða2 þ b2Þ�1 < 1. For
p

�	;2 ¼ ða2; b2Þ we find a2 ¼ a1k2 with k2 :¼ a1ða2
1 þ b2

1Þ
�1 < 1. Thus

a2 ¼ ak1k2; with k1; k2 < 1. By induction, for p
�	;N ¼ ðaN ; bN Þ we get

aN ¼ ak1 � � � kN with kN :¼ aN�1ða2
N�1 þ b2

N�1Þ < 1. We see that aN ! 0 since

in the opposite case, kN ! 1, 2a2
N � 3aN þ 1 ! 0, and aN ! 1=2, which is

contradictory to aN < a < 1=2. So the limiting vectors are p
�	;1 ¼ ð0; 1Þ and

q
�	;1 ¼ ð1; 0Þ provided that a < b.

In the case p ¼ q we get p
�	;N ¼ q

�	;N ¼ ð1=2; 1=2Þ for any N � 1. Thus for
p; q 2 R2

þ only three limiting cases are possible,�
p

�	;1

q
�	;1

�
¼
�

1 0
0 1

�
;

�
0 1
1 0

�
;

�
1=2 1=2
1=2 1=2

�
:
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Theorem 1. (Theorem of conflicts for stochastic vectors) For each pair of
stochastic vectors p; q 2 Rn

þ; n > 1; 0 < ðp; qÞ < 1, there exist limits

p
�	;1 ¼ lim

N!1
p

�	;N ; q
�	;1 ¼ lim

N!1
q

�	;N ;

where p
�	;N ; q

�	;N are given by (3) and (4). The limiting vectors p
�	;1; q

�	;1 are
invariant with respect to the action of the conflict composition:

p
�	;1 ¼ p

�	;1�	q
�	;1; q

�	;1 ¼ q
�	;1�	p

�	;1: ð5Þ

If p 6¼ q, then the limiting vectors are orthogonal,

p
�	;1 ? q

�	;1: ð6Þ
If p ¼ q, then p

�	;1 ¼ q
�	;1 and p

�	;1
i ¼ q

�	;1
i ¼ 1=m for all i such that

pi ¼ qi 6¼ 0, where m ðm � nÞ denotes the number of non-zero coordinates.
For the proof of this theorem we use the following lemmas and propo-

sitions.

Lemma 1. Let p 6¼ q and 0 � qi < pi � 1 for some i. Then

lim
N!1

q
�	;N
i ¼ 0 ð7Þ

and

lim
N!1

p
�	;N
i ¼ p

�	;1
i > 0: ð8Þ

Proof. If qi ¼ 0 or pi ¼ 1, then obviously q
�	;N
i ¼ 0 and p

�	;N
i ¼ 1 for all N � 1.

So we have to prove only the case 0 < qi < pi < 1. Denote

Rð0Þ
i :¼ pi

qi
and RðNÞ

i :¼ p
�	;N
i

q
�	;N
i

for N � 1:

Clearly,

1 < Rð0Þ
i < Rð1Þ

i ;

since due to (1) and (2), Rð1Þ
i ¼ Rð0Þ

i kð0Þi with kð0Þi :¼ 1�qi
1�pi

> 1. Therefore
0 < q

�	;1
i < p

�	;1
i < 1 . By induction we get 1 < RðNÞ

i < 1 for all N , which is
equivalent to 0 < q

�	;N
i < p

�	;N
i < 1. We note that

RðNÞ
i ¼ p

�	;N�1
i

q
�	;N�1
i

� 1 � q
�	;N�1
i

1 � p
�	;N�1Þ
i

¼ RðN�1Þ
i kðN�1Þ

i ¼ Rð0Þ
i � kð0Þi � � � kðN�1Þ

i ; ð9Þ

where

kðNÞ
i :¼ 1 � q

�	;N
i

1 � p
�	;N
i

:

Let us now show that

1 < kð0Þi < kð1Þi < � � � < kðNÞ
i < � � � ð10Þ
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Indeed, using z ¼ 1 � ðp; qÞ > 0 we have

kð1Þi ¼1�q
�	;1
i

1�p
�	;1
i

¼
1�1

zqið1�piÞ
1�1

zpið1�qiÞ
¼z�qið1�piÞ
z�pið1�qiÞ

¼1�qi�ðp;qÞþqipi
1�pi�ðp;qÞþqipi

¼1�qi�Ii
1�pi�Ii

;

where Ii :¼ ðp; qÞ � qipi. Obviously 0 < Ii < 1 � pi < 1 � qi due to qi < pi and

Ii ¼ ðp; qÞ � qipi ¼
X
k 6¼i

pkqk <
X
k 6¼i

pk ¼ 1 � pi:

This implies that kð0Þi ¼ 1�qi
1�pi

< kð1Þi . By induction we get (10), since

1 � p
�	;N
i < 1 � q

�	;N
i for all N . In turn, (9) and (10) imply

RðNÞ
i ¼ p

�	;N
i

q
�	;N
i

! 1; N ! 1: ð11Þ

This yields q
�	;N
i ! 0 since p

�	;N
i < 1, which proves (7). Let us show (8). Define

Dð0Þ
i :¼ pi � qi; DðNÞ

i :¼ p
�	;N
i � q

�	;N
i ; N ¼ 1; 2; :::

Obviously Dð0Þ
i > 0 and by (1)

Dð1Þ
i ¼ p

�	;1
i � q

�	;1
i ¼ 1

z
½pið1 � qiÞ � qið1 � piÞ� ¼

1

z
Dð0Þ

i :

Hence Dð0Þ
i < Dð1Þ

i since 0 < z < 1: By induction, DðNÞ
i < DðNþ1Þ

i for all N .
Therefore, there exists the limit Dð1Þ

i ¼ limN!1 DðNÞ
i � 1, since DðNÞ

i ¼
p

�	;N
i � q

�	;N
i < 1, and q

�	;N
i ! 0 by (7). Moreover, we see that due to q

�	;N
i ! 0,

lim
N!1

p
�	;N
i ¼ p

�	;1
i ¼ Dð1Þ

i ¼ sup
N

DðNÞ
i > 0: h

In the case 0 � pk < qk � 1, similarly to (7) we get

lim
N!1

p
�	;N
k ¼ 0; ð12Þ

and hence

lim
N!1

q
�	;N
k ¼ q

�	;1
k ¼ Dð1Þ

k ¼ sup
N

DðNÞ
k > 0;

where DðNÞ
k ¼ q

�	;N
k � p

�	;N
k :

Proposition 1. Let 1 > pi ¼ qi > 0 for some i, then

1 > p
�	;N
i ¼ q

�	;N
i > 0 for all N ¼ 1; 2; :::

Proof. By (3) we have p
�	;N
i ¼ q

�	;N
i if and only if

p
�	;N�1
i ð1 � q

�	;N�1
i Þ ¼ q

�	;N�1
i ð1 � p

�	;N�1
i Þ;

i.e., if and only if p
�	;N�1
i ¼ q

�	;N�1
i : h

Lemma 2. Let p 6¼ q, but pj ¼ qj for some j. Then

pj ¼ qj¼)p
�	;N
j ¼ q

�	;N
j ! 0; N ! 1: ð13Þ
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Proof. If 1 > pj ¼ qj > 0 for some j, then 1 > p
�	;N
j ¼ q

�	;N
j > 0 for all N due to

Proposition 1. Assume for a moment that p
�	;N
j does not converge to zero.

Then one can choose a subsequence N 0 such that p
�	;N 0

j �! c > 0. This yields a
contradiction. Indeed, since p 6¼ q, there exists i such that 0 � qi < pi � 1, and
then due to (7) and (8) the right- and the left-hand sides of the relation

p
�	;N 0þ1
i ¼ p

�	;N 0

i ð1 � q
�	;N 0

i Þ
zN 0

have different limiting behaviour. Indeed, q
�	;N 0

i ! 0, but zN 0 ¼ 1�
ðp�	;N 0

; q
�	;N 0 Þ ¼ 1 � ðp

�	;N 0

j Þ2 �
P

k 6¼j p
�	;N 0

k q
�	;N 0

k � 1 � ðp
�	;N 0

j Þ2 ! 1� c2 < 1 by
assumption. h

Proposition 2. If pi � qi for some i, then

p
�	;N
i � q

�	;N
i for all N � 1: ð14Þ

Proof. By (1), (2) we get p
�	;1
i � q

�	;1
i . By induction we have

p
�	;Nþ1
i ¼ 1

zN
p

�	;N
i ð1 � q

�	;N
i Þ � q

�	;Nþ1
i ¼ 1

zN
q

�	;N
i ð1 � p

�	;N
i Þ � q

�	;Nþ1
i ;

since p
�	;N
i � q

�	;N
i implies ð1 � q

�	;N
i Þ � ð1 � p

�	;N
i Þ: h

Proposition 3. If p ? q, then

p ¼ p�	q; q ¼ q�	p;

i.e., vectors p; q are invariant with respect to the action of the conflict com-
position.

Proof. The condition p ? q means that either pi or qi is equal to zero for each
i. This yields that all coordinates p

�	;1
i ¼ pi and q

�	;1
i ¼ qi. Indeed, if pi 6¼ 0, then

qi ¼ 0, and p
�	;1
i ¼ 1

z pið1 � qiÞ ¼ pi since z ¼ 1 due to p ? q. And if pi ¼ 0, then
p

�	;1
i ¼ 0 too. h

Assume now that vectors p; q 2 Rn
þ; n > 2; coincide and

pi ¼ qi 6¼ 0; for all i ¼ 1; 2; :::; n: ð15Þ
Then without loss of generality one can assume that

0 < p1 � 1=n � p2 � � � � � pn�1 � 1=n � pn < 1: ð16Þ
Setting qci :¼ 1 � qi ¼ 1 � pi ¼ pci we have

1 > qc1 � 1=n � qc2 � � � � � qcn�1 � 1=n � qcn > 0: ð17Þ

Proposition 4. Under assumption (15) with n > 2 the normalizing coefficient z
satisfies the inequalities

qc1 � z � qcn: ð18Þ

Proof. If p ¼ q ¼ ð1=n; 1=n; :::; 1=nÞ, then z ¼ n�1
n ¼ qc1 ¼ qcn, and (18) is true.

In a general case we note that

z ¼ ðp; qcÞ ¼ p1qc1 þ p2qc2 þ :::þ pnqcn;
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where qc :¼ ðqc1; qc2; :::; qcnÞ. If each term qci is replaced by the maximal term qc1
(see (17)), then obviously

z ¼
Xn
i¼1

piqci � qc1
Xn
i¼1

pi ¼ qc1:

Similarly, if all qci are replaced by the minimal term qcn, then

z ¼
Xn
i¼1

piqci � qcn
Xn
i¼1

pi ¼ qcn:

This proves (18). h

Proposition 5 Under assumption (15) with n > 2 the following inequalities
hold:

p1 � p
�	;1
1 ; p

�	;1
n � pn; ð19Þ

p
�	;1
1 � p

�	;1
i � p

�	;1
n ; i ¼ 1; :::; n; ð20Þ

p1 � p
�	;1
1 � p

�	;N
1 � p

�	;N
i � p

�	;N
n � p

�	;1
n � pn; N � 1: ð21Þ

Proof. For p
�	;1
1 ¼ p1qc1=z0 we have p1 � p

�	;1
1 due to (18). Similarly, for

p
�	;1
n ¼ pnqcn=z0 we have p

�	;1
n � pn again due to (18). Thus (19) is proved.

Further, each coordinate p
�	;1
i ¼ pið1 � qiÞ=z0 satisfies inequalities (20)

because qi ¼ pi and p1ð1 � p1Þ � pið1 � piÞ � pnð1 � pnÞ due to p1 ¼
minfpig � 1=n, and pn ¼maxfpig � 1=n. For more details one can consider a
function y ¼ xð1 � xÞ; x 2 ð0; 1Þ. It has the maximum in the point x0 ¼ 1=2.
From the graphic of this function we see that for any point x ¼ pi � pn; the
value yðpiÞ � yðpnÞ since pi �minfpn; 1 � png; n � 3. By the similar argu-
ments yðp1Þ � yðpiÞ. By induction (19), (20) hold for all N ¼ 1; 2; ::: This
yields (21). h

Proposition 6 Under assumption (15) with n > 2 there exist the limiting vec-
tors,

p
�	;1 ¼ lim

N!1
p

�	;N ¼ lim
N!1

q
�	;N ¼ q

�	;1;

which have the form,

p
�	;1 ¼ q

�	;1 ¼ ð1=n; 1=n; :::; 1=nÞ: ð22Þ

Proof. It is easy to see that (21) and (18) imply

q
�	;N ;c
1 � zN � q

�	;N ;c
n ; N ¼ 1; 2; ::: ð23Þ

where q
�	;N ;c
i ¼ 1 � q

�	;N
i . In turn, (21), (23) imply that sequences p

�	;N
i with

i ¼ 1 and i ¼ n are monotonic on N and therefore there exist the
limits p

�	;1
1 ¼ limN!1 p

�	;N
1 , p

�	;1
n ¼ limN!1 p

�	;N
n . Further, since p

�	;1
1 ¼

p
�	;1
1 ð1 � p

�	;1
1 Þ=z1 and p

�	;1
n ¼ p

�	;1
n ð1 � p

�	;1
n Þ=z1, we conclude that z1 ¼

1 � p
�	;1
1 ¼ 1 � p

�	;1
n . By (16) and (21) this is only possible if

p
�	;1
1 ¼ p

�	;1
n ¼ 1=n:
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Hence p
�	;1
i ¼ limN!1 p

�	;N ;
i exist for all i and due to (21) p

�	;1
i ¼ 1=n. This

proves (22). h

Proof of Theorem 1. For the case p; q 2 R2
þ see Example 1. Let

p; q 2 Rn
þ; n � 3. If p 6¼ q, then the existence of the limiting vectors p

�	;1; q
�	;1

is proved by Lemma 1 and Lemma 2. Moreover due to (7), (12), and (13) we
have ðp�	;N ; q

�	;N Þ ! 0 as N ! 1: Thus, the limiting vectors are orthogonal,
i.e., (6) is proved. Hence zN ! 1, i.e.,

z1 ¼ 1: ð24Þ
In turn (24) imply (5).

If p ¼ q, then by Proposition 1, p
�	;N ¼ q

�	;N for all N and therefore
p

�	;1 ¼ q
�	;1. Under condition (15) all coordinates of vectors p

�	;1; q
�	;1 are

equal to 1=n (see Proposition 6). Clearly that if pi ¼ qi 6¼ 0 only for
i ¼ 1; :::;m < n, then p1i ¼ q1i ¼ 1=m. In any case (5) and (6) are true too. h

3 The conflict composition for discrete measures on a countable space

Let X ¼ X be a countable set of points, X ¼ fx1;x2; :::g, endowed by the
discrete topology. Let l0; m0 be a pair of the discrete probability measures on
X,

l0ðxiÞ ¼ pð0Þi � 0; m0ðxiÞ ¼ qð0Þi � 0; i ¼ 1; 2; :::

l0ðXÞ ¼
X1
i¼1

pð0Þi ¼ m0ðXÞ ¼
X1
i¼1

qð0Þi ¼ 1:

We assume that the measures l0; m0 are mutually nonsingular and exclude the
situation with l0ðxiÞ ¼ m0ðxiÞ ¼ 1 for some xi.

Given measures l0; m0 we introduce a new pair of discrete probability
measures l1; m1 on X by the conflict composition �	 defined as follows:

l1 ¼ l0�	m0; m1 ¼ m0�	l0;

where

l1ðxiÞ :¼ pð1Þi :¼ 1

z0
pð0Þi ð1 � qð0Þi Þ 
 1

z0
pð0Þi �

X1
k¼1;k 6¼i

qð0Þk ;

m1ðxiÞ :¼ qð1Þi :¼ 1

z0
qð0Þi ð1 � pð0Þi Þ 
 1

z0
qð0Þi �

X1
k¼1;k 6¼i

pð0Þk ;

and where the coefficient z0 is calculated using the normalizing condition:

l0ðXÞ ¼
X1
i¼1

pð1Þi ¼ m0ðXÞ ¼
X1
i¼1

qð1Þi ¼ 1:

Thus

z0 ¼
X1
i¼1

pð0Þi �
X1

k¼1;k 6¼i

qð0Þk

 !
¼ 1 �

X1
i¼1

pð0Þi qð0Þi < 1 ¼ 1 � ðp0; q0Þ;
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where ð�; �Þ stands for the inner product in the Hilbert space l2 between
vectors p0 :¼ ðpð0Þ1 ; pð0Þ2 ; :::Þ; q0 :¼ ðqð0Þ1 ; qð0Þ2 ; :::Þ which in fact belong to l1.

Similarly we can define the pair of probability measures l2 and m2 as a
result of the second step of the conflict interaction:

l2 ¼ l1�	m1; m2 ¼ m1�	l1;

where

l2ðxiÞ ¼ pð2Þi :¼ 1

z1
pð1Þi ð1 � qð1Þi Þ; m1ðxiÞ ¼ qð2Þi :¼ 1

z1
qð1Þi ð1 � pð1Þi Þ;

with the normalizing coefficient z1 ¼ 1 �
P1

i¼1 p
ð1Þ
i qð1Þi < 1: And so on, for any

N ¼ 1; 2; :::, up to infinity,

lN ðxiÞ ¼ pðNÞ
i :¼ 1

zN�1
pðN�1Þ
i ð1 � qðN�1Þ

i Þ;

mN ðxiÞ ¼ qðNÞ
i :¼ 1

zN�1
qðN�1Þ
i ð1 � pðN�1Þ

i Þ;
ð25Þ

where

zN�1 ¼ 1 � ðpN�1; qN�1Þ ð26Þ
with pN�1 ¼ ðpðN�1Þ

1 ; pðN�1Þ
2 ; :::Þ; qN�1 :¼ ðqðN�1Þ

1 ; qðN�1Þ
2 ; :::Þ:

The problem is to prove the existence of the limiting measures l1; m1 :

l1ðxiÞ ¼ pð1Þ
i ¼ lim

N!1
pðNÞ
i ; m1ðxiÞ ¼ qð1Þ

i ¼ lim
N!1

qðNÞ
i ; ð27Þ

and investigate their distributions on X.

Theorem 2. (Theorem of conflicts for discrete measures) Let l0 6¼ m0 be a pair
of mutually nonsingular discrete probability measures on a space X ¼ fxig1i¼1.
The case l0ðxiÞ ¼ m0ðxiÞ ¼ 1 for some xi is excluded. Then all limits in (27)
exist and thus determine two probability measures

l1 ¼ lim
N!1

lN ; m1 ¼ lim
N!1

mN ;

which are mutually singular,

l1 ? m1;

and are both invariant with respect to the action of the conflict composition:

l1 ¼ l1�	m1; m1 ¼ m1�	l1: ð28Þ

Proof. If 0 � l0ðxiÞ < m0ðxiÞ � 1 for some i, then by the same arguments
as in Lemma 1 we get lN ðxiÞ ! 0, and mN ðxiÞ ! m1ðxiÞ ¼
supN ðq

ðNÞ
i � pðNÞ

i Þ � 1 in notations of (25). Similarly, if 0 � m0ðxkÞ <
l0ðxkÞ � 1 for some k, then mN ðxkÞ ! 0, and lN ðxkÞ ! l1ðxkÞ ¼
supN ðp

ðNÞ
k � qðNÞ

k Þ � 1. Moreover, if l0ðxjÞ ¼ m0ðxjÞ for some j, then both
sequences lN ðxjÞ and mN ðxjÞ converge to zero, as N ! 1. Indeed, l0 6¼ m0

implies the existence at least a point xk such that l0ðxkÞ 6¼ m0ðxkÞ. Suppose
m0ðxkÞ < l0ðxkÞ. Then in notations of (25) we get l1ðxkÞ ¼ pð1Þ

k ¼
pð1Þ
k ð1 � qð1Þ

k Þ=z1, where by Lemma 1, pð1Þ
k > 0 and m1ðxkÞ 
 qð1Þ

k ¼ 0. This
yields z1 ¼ 1. Therefore, (see (26)) ðpN ; qN Þ ! 0. In particular,
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lN ðxjÞ ¼ mN ðxjÞ ! 0 for all indices j such that l0ðxjÞ ¼ m0ðxjÞ. Thus there
exist two non-trivial discrete measures l1; m1 on X, which are mutually
singular due to ðp1; q1Þ ¼ 0, where p1 ¼ ðpð1Þ

1 ; pð1Þ
2 ; :::Þ; q1 ¼

ðqð1Þ
1 ; qð1Þ

2 ; :::Þ. These measures are probability measures since
lN ðXÞ ¼ mN ðXÞ ¼ 1 for each N . Finally, (28) directly follows from
ðp1; q1Þ ¼ 0. h

4 Discussion

The above results admit natural extensions to a general case where X is a
metric space with a r-algebra B of Borel subsets. Here we present a brief
sketch. So let l0; m0 be a pair of Borel mutually nonsingular probability
measures on X . Assume there exists a countable e-covering, e > 0, of X ,

X ¼ [iBi; Bi 2 B; diamðBiÞ � e;

such that

l0ðBi \ BkÞ ¼ m0ðBi \ BkÞ ¼ 0; i 6¼ k: ð29Þ
Then we introduce a new pair of probability measures l1 
 l1;e; m1 
 m1;e as
follows, l1 ¼ l0�	m0; m1 ¼ m0�	l0; where for any A 2 B, A ¼ [iAi; Ai ¼
A \ Bi,

l1ðAÞ ¼
X1
i¼1

l1ðAiÞ; m1ðAÞ ¼
X1
i¼1

m1ðAiÞ;

and where

l1ðAiÞ :¼
1

z0
l0ðAiÞm0ðBc

i Þ; m1ðAiÞ :¼
1

z0
m0ðAiÞl0ðBc

i Þ;

with Bc
i ¼ X n Bi. The normalizing coefficient z0 
 z0;e is determined by the

probability condition: 1 ¼ l1ðX Þ ¼ m1ðX Þ: It is easy to check using (29) that
l1 and m1 are Borel measures on X . Of course we have to exclude a blow-up
situation when l0ðBiÞ ¼ m0ðBiÞ ¼ 1 for some i. Clearly we can repeat the
above construction N � 1 times and obtain two sequences of probability
measures: lN ;e 
 lN ¼ lN�1�	mN�1; mN ;e 
 mN ¼ mN�1�	lN�1: By Theorem 2
there exist two limiting probability measures

l1;e ¼ lim
N!0

lN ;e; m1;e ¼ lim
N!0

mN ;e;

which are invariant with respect to the action of the conflict composition and
which are mutually singular provided that l0ðBiÞ 6¼ m0ðBiÞ for some Bi.

Thus under condition (29) we are able to describe the conflict interaction
between a couple of measures l0; m0 on a metric space X with any e�accuracy.

The open problem is to prove the existence of the limiting measures
l1 ¼ lime!0 l1;e and m1 ¼ lime!0 m1;e.

We note that the above version of the conflict composition �	 is not unique.
The existence of the limiting invariant measures l1; m1 may be ensured by
various modifications of�	. A specific choice of�	 is determined by applications.

For example, assume that the conflicting sides do not want to leave
positions with a starting non-zero parity, pj ¼ qj 6¼ 0. We recall that
according to Lemma 2 these coordinates converge to zero under the infinite
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time action of the conflict composition. However one can improve the con-

struction of the composition �	 in such a way that p
�	;N
j ¼ q

�	;N
j will not con-

verge to zero, which means preservation of the non-zero parity with respect to
j position. For instance, in order to reach this one can decompose each
measure into two parts: l0 ¼ l0;p þ l0;c; m0 ¼ m0;p þ m0;c, where

l0;p :¼ l0�X¼ ¼ m0;p :¼ m0�X¼; l0;c :¼ l0�X
c
¼ 6¼ m0;c :¼ m0�X

c
¼;

with X¼ :¼ fxk 2 X : pð0Þk ¼ qð0Þk 6¼ 0g and Xc
¼ ¼ X n X¼. Then we leave

measures l0;p; m0;p without any change and apply the previous version of the
composition �	, with obvious modifications, only to measures l0;c; m0;c, which
in general are not probabilistic. We note that in [2], a version of the conflict
composition suitable to arbitrary normalized measures was developed. In fact
on this way one obtains a new conflict composition which preserves nontrivial
parity positions.

Further, one can construct a more complex conflict composition in the
following way:

l0»m0 :¼ aðl0;c�	m0;cÞ þ bðl0;p!m0;pÞ; a;b 2 ½0; 1�;
where �	 is defined as above and the new term involves interaction, possibly in
some power, which explicitly depends on the starting distributions on all
positions. Computer simulations of such conflict composition exhibit some
new effects including the blow-up, a chaotic behaviour, and infinite oscilla-
tions of values p

�	;N
i ¼ q

�	;N
i as N ! 1. The latter may be interpreted as an

‘‘infinite war’’ without a winner.
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