Additive spectral problem
(brief survey and some recent results)

K. Yusenko

Institute of Mathematics NAS of Ukraine,
Department of Functional Analysis

Lisbon, 22 June 2009
1. Weyl’s problem
2. Additive spectral problem
3. Quivers. Algebras associated to quivers
4. Coxeter transformation
5. Extended Dynkin case
Let $A = A^*$, $B = B^*$ and $C = C^*$ be hermitian $n \times n$ matrices. For hermitian matrix X we denote its eigenvalues by

$$\sigma(X) : \sigma_1(X) \geq \sigma_2(X) \geq \ldots \geq \sigma_n(X),$$

In 1912 Hermann Weyl posed the following problem:
Let $A = A^*$, $B = B^*$ and $C = C^*$ be hermitian $n \times n$ matrices. For hermitian matrix X we denote its eigenvalues by

$$\sigma(X) : \sigma_1(X) \geq \sigma_2(X) \geq \ldots \geq \sigma_n(X),$$

In 1912 Hermann Weyl posed the following problem:

Problem 1.1

*What $\sigma(A), \sigma(B), \sigma(C)$ can be the eigenvalues of $n \times n$ Hermitian matrices A, B and C, with $A + B = C$.***
Let $A = A^*$, $B = B^*$ and $C = C^*$ be hermitian $n \times n$ matrices. For hermitian matrix X we denote its eigenvalues by

$$\sigma(X) : \sigma_1(X) \geq \sigma_2(X) \geq \ldots \geq \sigma_n(X),$$

In 1912 Hermann Weyl posed the following problem:

Problem 1.1

What $\sigma(A), \sigma(B), \sigma(C)$ can be the eigenvalues of $n \times n$ Hermitian matrices A, B and C, with $A + B = C$.
One can find commonly known restriction on spectra \((trace\ identity)\)
One can find commonly known restriction on spectra (trace identity)

\[\sum_i \sigma_i(A + B) = \sum_j \sigma_j(A) + \sum_k \sigma_k(B), \]

where \(I \) is any subset of \(\{1, 2, \ldots, n\} \) of cardinality \(p \).
One can find commonly known restriction on spectra (trace identity)

\[\sum_i \sigma_i(A + B) = \sum_j \sigma_j(A) + \sum_k \sigma_k(B), \]

Another classical inequalities are due to H. Weil, Ky Fan, Lidskii and Wielandt
One can find commonly known restriction on spectra (trace identity)

\[\sum_{i} \sigma_{i}(A + B) = \sum_{j} \sigma_{j}(A) + \sum_{k} \sigma_{k}(B), \]

Another classical inequalities are due to H. Weil, Ky Fan, Lidskii and Wielandt

\[\sigma_{i+j-1}(A + B) \leq \sigma_{i}(A) + \sigma_{j}(B), \quad i + j \leq n + 1, \]
\[\sigma_{i+j-n}(A + B) \geq \sigma_{i}(A) + \sigma_{j}(B), \quad i + j \geq n + 1, \]
\[\sum_{i \leq p} \sigma_{i}(A + B) \leq \sum_{j \leq p} \sigma_{j}(A) + \sum_{k \leq p} \sigma_{k}(B), \]
\[\sum_{i \in I} \sigma_{i}(A + B) \leq \sum_{j \in I} \sigma_{j}(A) + \sum_{k \leq p} \sigma_{k}(B), \]

where \(I \) is any subset of \(\{1, 2, \ldots, n\} \) of cardinality \(p \).
In 1962 Alfred Horn found series of necessarily inequalities

\[\sum_{k \in K} \sigma_k(A + B) \leq \sum_{i \in I} \sigma_i(A) + \sum_{j \in J} \sigma_j(B), \]

for some triple of subsets \(I, J, K \subset \{1, 2, \ldots, n\} \).
In 1962 Alfred Horn found series of necessarily inequalities

\[\sum_{k \in K} \sigma_k(A + B) \leq \sum_{i \in I} \sigma_i(A) + \sum_{j \in J} \sigma_j(B), \]

for some triple of subsets \(I, J, K \subset \{1, 2, \ldots, n\} \).

Conjecture 1.1 (Alfred Horn)

These inequalities form complete list of the restrictions on the spectrums
Horn’s conjecture was finally proved by Allen Knutson, Terence Tao

Horn’s conjecture was finally proved by Allen Knutson, Terence Tao

and by Alexander Klyachko

Weyl’s problem and Horn’s conjecture related to:
Weyl’s problem and Horn’s conjecture related to:

- tensor product problem for components of irreducible representations of GL_n with highest weights;
Weyl’s problem and Horn’s conjecture related to:

- tensor product problem for components of irreducible representations of GL_n with highest weights;
- invariant factors;
Weyl’s problem and Horn’s conjecture related to:

- tensor product problem for components of irreducible representations of GL_n with highest weights;
- invariant factors;
- schubert calculus;
Weyl’s problem and Horn’s conjecture related to:

- tensor product problem for components of irreducible representations of GL_n with highest weights;
- invariant factors;
- schubert calculus;
- semi-stable toric bundles;
Weyl’s problem and Horn’s conjecture related to:

- tensor product problem for components of irreducible representations of GL_n with highest weights;
- invariant factors;
- schubert calculus;
- semi-stable toric bundles;

One of the generalizations of Weyl’s problem (without going into details)
One of the generalizations of Weyl’s problem (without going into details)

m-filtration of vector space V is semistable
One of the generalizations of Weyl’s problem (without going into details)

\[m \text{-filtration of vector space } V \text{ is semistable} \]
One of the generalizations of Weyl’s problem (without going into details)

m-filtration of vector space V is semistable

\uparrow

there exists a solution for

$$A_1 + \ldots + A_n = \gamma I,$$

$$A_i = A_i^*, \text{ with given } \sigma(A_i).$$
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}^+$ and $\gamma \in \mathbb{R}^+$.

Remark 1
An essential difference with classical Weyl’s problem is that we do not fix the dimension of Hilbert space and we do not fix spectral multiplicities.
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}^+$ and $\gamma \in \mathbb{R}^+$.

Problems are:
Let H be separable Hilbert space. Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}_+$ and $\gamma \in \mathbb{R}_+$.

Problems are:

- whether there exist n-tuple of $A_i = A_i^*$ such that $\sigma(A_i) \subset M_i$ and

$$A_1 + A_2 + \cdots + A_n = \gamma I,$$
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha^{(i)}_0 < \alpha^{(i)}_1 < \ldots < \alpha^{(i)}_{m_i}\} \subset \mathbb{R}^+$ and $\gamma \in \mathbb{R}^+$.

Problems are:

- whether there exist n-tuple of $A_i = A_i^*$ such that $\sigma(A_i) \subset M_i$ and
 $$A_1 + A_2 + \cdots + A_n = \gamma I,$$
- describe all irreducible (up to the unitary equivalence) n-tuples of such operators.

Remark 1
An essential difference with classical Weyl's problem is that we do not fix the dimension of Hilbert space and we do not fix spectral multiplicities.
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}_+$ and $\gamma \in \mathbb{R}_+$.

Problems are:

- whether there exist n-tuple of $A_i = A_i^*$ such that $\sigma(A_i) \subset M_i$ and

 $$A_1 + A_2 + \cdots + A_n = \gamma I,$$

- describe all irreducible (up to the unitary equivalence) n-tuples of such operators.

Remark 1

An essential difference with classical Weyl’s problem is that
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}_+$ and $\gamma \in \mathbb{R}_+$.

Problems are:

- whether there exist n-tuple of $A_i = A_i^*$ such that $\sigma(A_i) \subset M_i$ and
 $$A_1 + A_2 + \cdots + A_n = \gamma I,$$

- describe all irreducible (up to the unitary equivalence) n-tuples of such operators.

Remark 1

An essential difference with classical Weyl’s problem is that we do not fix the dimension of Hilbert space
Let H be separable Hilbert space.
Let $M_i = \{0 = \alpha_0^{(i)} < \alpha_1^{(i)} < \ldots < \alpha_{m_i}^{(i)}\} \subset \mathbb{R}_+$ and $\gamma \in \mathbb{R}_+$.

Problems are:

- whether there exist n-tuple of $A_i = A_i^*$ such that $\sigma(A_i) \subset M_i$ and
 $$A_1 + A_2 + \cdots + A_n = \gamma I,$$
- describe all irreducible (up to the unitary equivalence) n-tuples of such operators.

Remark 1

An essential difference with classical Weyl’s problem is that we do not fix the dimension of Hilbert space and we do not fix spectral multiplicities.
The above problems could be reformulated in terms of existing the representations for the following \ast-algebra.
The above problems could be reformulated in terms of existing the representations for the following \ast-algebra

$$\mathcal{A}_{M_1, M_2, \ldots, M_n; \gamma} = \mathbb{C}\langle a_1, \ldots, a_n \mid a_i = a_i^*, (a_i - \alpha_0^{(i)}) \ldots (a_i - \alpha_{m_i}^{(i)}) = 0, a_1 + a_2 + \cdots + a_n = \gamma e \rangle.$$
The above problems could be reformulated in terms of existing the representations for the following \ast-algebra

$$\mathcal{A}_{M_1, M_2, \ldots, M_n; \gamma} = \mathbb{C}\langle a_1, \ldots, a_n | a_i = a_i^*, (a_i - \alpha^{(i)}_0) \cdots (a_i - \alpha^{(i)}_{m_i}) = 0, a_1 + a_2 + \cdots + a_n = \gamma e \rangle.$$

This algebra is isomorphic to the \ast-algebra generated by projections
The above problems could be reformulated in terms of existing the representations for the following \ast-algebra

$$\mathcal{A}_{M_1, M_2, \ldots, M_n; \gamma} = \mathbb{C}\langle a_1, \ldots, a_n \mid a_i = a_i^*, (a_i - \alpha_0^{(i)}) \cdots (a_i - \alpha_{m_i}^{(i)}) = 0, a_1 + a_2 + \cdots + a_n = \gamma e \rangle.$$

This algebra is isomorphic to the \ast-algebra generated by projections

$$\mathcal{P}_{M_1, M_2, \ldots, M_n; \gamma} = \mathbb{C}\langle p_1^{(1)}, \ldots, p_{m_n}^{(n)} \mid p_i^{(k)} = p_i^{(k)2} = p_i^{(k)*}, \sum_{i=1}^{n} \sum_{k=1}^{m_i} \alpha_k^{(i)} p_k^{(i)} = \gamma e, p_j^{(i)} p_k^{(i)} = 0 \rangle.$$
To each $P_{M_1,M_2,...,M_n;\gamma}$ we associate
To each $\mathcal{P}_{M_1,M_2,...,M_n;\gamma}$ we associate

- star-shaped graph Γ
To each $P_{M_1, M_2, \ldots, M_n; \gamma}$ we associate

- star-shaped graph Γ

- weight $\chi: \Gamma \to \mathbb{R}_+, \chi = (\alpha_1^{(1)}, \ldots, \alpha_{m_1}^{(1)}; \ldots; \alpha_1^{(n)}, \ldots, \alpha_{m_n}^{(n)})$
For example if

\[\mathcal{P}(\alpha_{1}^{(1)}, \ldots, \alpha_{m_{1}}^{(1)}; \alpha_{1}^{(2)}, \ldots, \alpha_{m_{2}}^{(2)}; \alpha_{1}^{(3)}, \ldots, \alpha_{m_{3}}^{(3)}), \gamma \]

\[\subset \mathbb{C}[p_{1}^{(1)}, \ldots, p_{m_{1}}, \ldots, p_{1}^{(3)}, \ldots, p_{m_{3}}^{(3)} | p_{i}^{(k)} = p_{i}^{(k)2} = p_{i}^{(k)*}, \]

\[\sum_{i=1}^{3} \sum_{k=1}^{m_{i}} \alpha_{k}^{(i)} p_{k}^{(i)} = \gamma e, p_{j}^{(i)} p_{k}^{(i)} = 0 \}, \]
For example if

\[P(\alpha_1^{(1)}, \ldots, \alpha_{m_1}^{(1)}; \alpha_1^{(2)}, \ldots, \alpha_{m_2}^{(2)}; \alpha_1^{(3)}, \ldots, \alpha_{m_3}^{(3)}), \gamma = \mathbb{C}\langle p_1^{(1)}, \ldots, p_{m_1}^{(1)}, \ldots, p_1^{(3)}, \ldots, p_{m_3}^{(3)} | p_i^{(k)} = p_i^{(k)2} = p_i^{(k)*} , \]

\[\sum_{i=1}^{3} \sum_{k=1}^{m_i} \alpha_k^{(i)} p_k^{(i)} = \gamma e, p_j^{(i)} p_k^{(i)} = 0 \rangle, \]

then graph \(\Gamma \) with weight \(\chi \) and \(\gamma \) will have the following form
For example if

\[\mathcal{P}(\alpha_1^{(1)}, \ldots, \alpha_{m_1}^{(1)}; \alpha_1^{(2)}, \ldots, \alpha_{m_2}^{(2)}; \alpha_1^{(3)}, \ldots, \alpha_{m_3}^{(3)}), \gamma = \]

\[\mathbb{C}\langle p_1^{(1)}, \ldots, p_{m_1}^{(1)}, \ldots, p_1^{(3)}, \ldots, p_{m_3}^{(3)} | p_i^{(k)} = p_i^{(k)2} = p_i^{(k)*}, \]

\[\sum_{i=1}^{3} \sum_{k=1}^{m_i} \alpha_k^{(i)} p_k^{(i)} = \gamma e, p_j^{(i)} p_k^{(i)} = 0 \rangle, \]

then graph \(\Gamma \) with weight \(\chi \) and \(\gamma \) will have the following form

[Diagram of a graph with labeled vertices indicating the structure based on the given conditions.]
Problems could be reformulated as follows
Problems could be reformulated as follows

- for each weight χ to describe the set
 \[\Sigma_{\Gamma,\chi} = \]
 \[(\text{all possible } \gamma \text{ for which there are representations of } \mathcal{P}_{\Gamma,\chi,\gamma}); \]
Problems could be reformulated as follows

- for each weight χ to describe the set $\Sigma_{\Gamma,\chi} = (\text{all possible } \gamma \text{ for which there are representations of } \mathcal{P}_{\Gamma,\chi,\gamma});$

- for each appropriated pair $(\chi; \gamma)$ to describe all irreducible \ast-representation of $\mathcal{P}_{\Gamma,\chi,\gamma}.$
If Γ is Dynkin graph
If Γ is Dynkin graph

A_n

\[\begin{array}{c}
\bullet & \bullet & \cdots & \bullet \\
\end{array} \]

D_n

\[\begin{array}{c}
\bullet \\
\end{array} \begin{array}{c}
\cdots \\
\end{array} \]

E_6

\[\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array} \]

E_7

\[\begin{array}{c}
\bullet \\
\end{array} \begin{array}{c}
\bullet \\
\end{array} \begin{array}{c}
\cdots \\
\end{array} \]

E_8

\[\begin{array}{c}
\bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\
\end{array} \]
If Γ is Dynkin graph

A_n

\[\cdots \]

D_n

\[\cdots \]

E_6

\[\cdots \]

E_7

\[\cdots \]

E_8

\[\cdots \]

then $\mathcal{P}_{\Gamma,\chi,\gamma}$ is finite dimensional, and complete answers for posed problem are known for all possible weights χ;
if Γ is extended Dynkin graph
if Γ is extended Dynkin graph

\tilde{D}_4

\tilde{E}_6

\tilde{E}_7

\tilde{E}_8
if Γ is extended Dynkin graph

then the algebra $P_{\Gamma, \chi, \gamma}$ is infinite dimensional and of polynomial growth
Finally if Γ is not Dynkin and is not extended Dynkin then
Finally if Γ is not Dynkin and is not extenden Dynkin then algebra $\mathcal{P}_{\Gamma,\chi,\gamma}$ contains free algebra of two generators.
Finally if Γ is not Dynkin and is not extenden Dynkin then algebra $\mathcal{P}_{\Gamma,\chi,\gamma}$ contains free algebra of two generators and there exists infinite dimensional irreducible representations.
Finally if Γ is not Dynkin and is not extenden Dynkin then algebra $\mathcal{P}_{\Gamma,\chi,\gamma}$ contains free algebra of two generators and there exists infinite dimensional irreducible representations.

M. A. Vlasenko, A. S. Mellit, and Yu. S. Samoilenko, *On algebras generated with linearly dependent generators that have given spectra*, 2005

A quiver Q consists of a finite set Q_0 of vertices, a finite sets Q_1 of arrows, and two maps $s, t : Q_1 \to Q_0$: $s(a) \rightarrow^a t(a)$
A quiver Q consists of a finite set Q_0 of vertices, a finite sets Q_1 of arrows, and two maps $s, t : Q_1 \to Q_0$: $s(a) \xrightarrow{a} t(a)$

A path in Q is the sequence

$$\xi = \xi_r \ldots \xi_1$$

of arrows s.t. $t(\xi_p) = s(\xi_{p+1})$, $1 \leq p < r$.

Each vertex $i \in Q_0$ defines trivial path e_i.

K. Yusenko Institute of Mathematics NAS of Ukraine

Additive spectral problem
A quiver Q consists of a finite set Q_0 of vertices, a finite sets Q_1 of arrows, and two maps $s, t : Q_1 \to Q_0$: $s(a) \xrightarrow{a} t(a)$

A path in Q is the sequence

$$\xi = \xi_r \ldots \xi_1$$

of arrows s.t. $t(\xi_p) = s(\xi_{p+1})$, $1 \leq p < r$.

Each vertex $i \in Q_0$ defines trivial path e_i.

Path algebra $\mathbb{C}Q$ of a quiver Q is algebra spanned by all paths in Q with multiplication given by composition

$$xy = \begin{cases} 	ext{obvious composition (if } t(y) = s(x)) & \text{(otherwise)} \\ 0 & \end{cases}$$
A representation X of a quiver Q is given by a vector space X_i for each vertex $i \in Q_0$ and linear operator $X_\rho : X_{s(\rho)} \rightarrow X_{t(\rho)}$ for each arrow $\rho \in Q_1$.
A representation X of a quiver Q is given by a vector space X_i for each vertex $i \in Q_0$ and linear operator $X_\rho : X_{s(\rho)} \rightarrow X_{t(\rho)}$ for each arrow $\rho \in Q_1$.

A morphism $\theta : X \rightarrow X'$ is given by linear maps $\theta_i : X_i \rightarrow X_i$ for each $i \in Q_0$, satisfying $X'_\rho \theta_{s(\rho)} = \theta_{t(\rho)} X_\rho$ for each $\rho \in Q_1$.
A representation X of a quiver Q is given by a vector space X_i for each vertex $i \in Q_0$ and linear operator $X_\rho : X_{s(\rho)} \to X_{t(\rho)}$ for each arrow $\rho \in Q_1$.

A morphism $\theta : X \to X'$ is given by linear maps $\theta_i : X_i \to X_i$ for each $i \in Q_0$, satisfying $X'_\rho \theta_{s(\rho)} = \theta_{t(\rho)} X_\rho$ for each $\rho \in Q_1$.

Proposition 1 (see for example Crawley-Boevey)

Representations of quiver $Q \iff$ left $\mathbb{C}Q$-modules.
Theorem 1 (Gabriel ~ 1973)

The classification of all indecomposable representations of Q is

- **finite problem**, if Q is Dynkin quiver;
- **tame problem**, if Q is an extended Dynkin quiver;
- **wild problem**, in all other cases
The double quiver of \overline{Q} is the quiver obtained by adjoining an arrow $a^* : j \to i$ for each arrow $a : i \to j$ in Q.
The double quiver of \overline{Q} is the quiver obtained by adjoining an arrow $a^* : j \rightarrow i$ for each arrow $a : i \rightarrow j$ in Q.

The preprojective algebra is

$$\Pi(Q) = \mathbb{C} \overline{Q} / \left(\sum_{a \in Q} [a, a^*] \right).$$
The double quiver of \overline{Q} is the quiver obtained by adjoining an arrow $a^* : j \to i$ for each arrow $a : i \to j$ in Q.

The preprojective algebra is

$$\Pi(Q) = \mathbb{C} \overline{Q} / \left(\sum_{a \in Q} [a, a^*] \right).$$

The deformed preprojective algebra of weight $\lambda \in \mathbb{C}^{Q_0}$ is

$$\Pi^\lambda(Q) = \mathbb{C} \overline{Q} / \left(\sum_{a \in Q} [a, a^*] - \sum_{i \in Q_0} \lambda_i e_i \right).$$
Let $Q\ (\Gamma$ its underlying graph) be star-shaped quiver with orientation to root vertex c, then
Let Q (Γ its underlying graph) be star-shaped quiver with orientation to root vertex c, then

Theorem 2

For given weight χ it is possible to determine λ s.t. algebras $\mathcal{P}_{\Gamma,\chi,\gamma}$ and $e_c \Pi^\lambda(Q)e_c$ are isomorphic.
Let Q (Γ its underlying graph) be star-shaped quiver with orientation to root vertex c, then

Theorem 2

For given weight χ it is possible to determine λ s.t. algebras $P_{\Gamma, \chi, \gamma}$ and $e_c \Pi^\lambda(Q)e_c$ are isomorphic.

There also exist interconnection between $P_{\Gamma, \chi, \gamma}$ and orthoscalar representation of quivers.

A powerful tool to investigate representations of quiver are Coxeter functors which allow to build series of representations starting from simplest representation

A powerful tool to investigate representations of quiver are Coxeter functors which allow to build series of representations starting from simplest representation.

Similar functors were built for algebras $\mathcal{P}_{\Gamma,\chi,\gamma}$ by Kruglyak and Roiter. Namely there are exist two functors linear S (which generate representation in the same space) and hyperbolical T (which, strictly speaking, build representation in new space).
More precisely if functors S and T are applicable they establish the equivalence between categories:
More precisely if functors S and T are applicable they establish the equivalence between categories:

$S: \text{Rep}(\mathcal{P}_{\Gamma,\chi,\gamma}) \rightarrow \text{Rep}(\mathcal{P}_{\Gamma,\chi',\gamma'});$
$T: \text{Rep}(\mathcal{P}_{\Gamma,\chi,\gamma}) \rightarrow \text{Rep}(\mathcal{P}_{\Gamma,\chi'',\gamma'}).$
More precisely if functors S and T are applicable they establish the equivalence between categories:

$S : \text{Rep}(\mathcal{P}_\Gamma, \chi, \gamma) \rightarrow \text{Rep}(\mathcal{P}_\Gamma, \chi', \gamma');$

$T : \text{Rep}(\mathcal{P}_\Gamma, \chi, \gamma) \rightarrow \text{Rep}(\mathcal{P}_\Gamma, \chi'', \gamma').$

On the pairs (χ, γ) they act as follows
More precisely if functors S and T are applicable they establish the equivalence between categories:

$S : \text{Rep}(\mathcal{P}_{\Gamma,\chi,\gamma}) \rightarrow \text{Rep}(\mathcal{P}_{\Gamma,\chi',\gamma'});$
$T : \text{Rep}(\mathcal{P}_{\Gamma,\chi,\gamma}) \rightarrow \text{Rep}(\mathcal{P}_{\Gamma,\chi'',\gamma}).$

On the pairs (χ, γ) they act as follows

$S : (\chi; \gamma) \longmapsto (\chi'; \gamma'),$

$\chi' = (\alpha_{m_1}^{(1)} - \alpha_{m_1-1}^{(1)}, \ldots, \alpha_{m_1}^{(1)}; \ldots; \alpha_{m_n}^{(n)} - \alpha_{m_{n-1}}^{(n)}, \ldots, \alpha_{m_n}^{(n)}),$
$\gamma' = \alpha_{m_1}^{(1)} + \cdots + \alpha_{m_n}^{(n)} - \gamma;$

$T : (\chi; \gamma) \longmapsto (\chi''; \gamma'),$

$\chi'' = (\gamma - \alpha_{m_1}^{(1)}, \ldots, \gamma - \alpha_1^{(1)}; \ldots; \gamma - \alpha_{m_n}^{(n)}, \ldots, \gamma - \alpha_1^{(n)}).$
More precisely if functors S and T are applicable they establish the equivalence between categories:

$$S : \text{Rep}(\mathcal{P}_\Gamma,\chi,\gamma) \rightarrow \text{Rep}(\mathcal{P}_\Gamma,\chi',\gamma');$$
$$T : \text{Rep}(\mathcal{P}_\Gamma,\chi,\gamma) \rightarrow \text{Rep}(\mathcal{P}_\Gamma,\chi'',\gamma').$$

On the pairs (χ, γ) they act as follows

$$S : (\chi; \gamma) \mapsto (\chi'; \gamma'),$$
$$\chi' = (\alpha^{(1)}_{m_1} - \alpha^{(1)}_{m_1-1}, \ldots, \alpha^{(1)}_{m_1}; \ldots; \alpha^{(n)}_{m_n} - \alpha^{(n)}_{m_{n-1}}, \ldots, \alpha^{(n)}_{m_n}),$$
$$\gamma' = \alpha^{(1)}_{m_1} + \cdots + \alpha^{(n)}_{m_n} - \gamma;$$

$$T : (\chi; \gamma) \mapsto (\chi''; \gamma),$$
$$\chi'' = (\gamma - \alpha^{(1)}_{m_1}, \ldots, \gamma - \alpha^{(1)}_{1}; \ldots; \gamma - \alpha^{(n)}_{m_n}, \ldots, \gamma - \alpha^{(n)}_{1}).$$
Now we are going to study the dynamic of Coxeter functors for the case where Γ is an extended Dynkin graph.
Let us denote

\[\tilde{\omega}_{D_4}(\chi) = \frac{1}{2}(\alpha_{1}^{(1)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{1}^{(4)}) \]

\[\tilde{\omega}_{E_6}(\chi) = \frac{1}{3}(\alpha_{1}^{(1)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{2}^{(1)} + \alpha_{2}^{(2)}) \]

\[\tilde{\omega}_{E_7}(\chi) = \frac{1}{4}(\alpha_{1}^{(1)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{1}^{(4)} + 2\alpha_{2}^{(1)}) \]

\[\tilde{\omega}_{E_8}(\chi) = \frac{1}{6}(\alpha_{1}^{(1)} + \alpha_{1}^{(2)} + \alpha_{1}^{(3)} + \alpha_{1}^{(4)} + \alpha_{1}^{(5)} + 2\alpha_{1}^{(2)} + 2\alpha_{1}^{(3)} + 3\alpha_{1}^{(2)}) \]

these hyperplanes are invariant in the sense

\[S: (\chi; \omega(\chi)) \mapsto -\rightarrow (\chi'; \omega(\chi')) \]

\[T: (\chi; \omega(\chi)) \mapsto -\rightarrow (\chi''; \omega(\chi'')) \]
Let us denote

\[
\omega_{\tilde{D}_4}(\chi) = \frac{1}{2}(\alpha^{(1)}_1 + \alpha^{(2)}_1 + \alpha^{(3)}_1 + \alpha^{(4)}_1),
\]

\[
\omega_{\tilde{E}_6}(\chi) = \frac{1}{3}(\alpha^{(1)}_1 + \alpha^{(2)}_1 + \alpha^{(2)}_1 + \alpha^{(3)}_1 + \alpha^{(3)}_2),
\]

\[
\omega_{\tilde{E}_7}(\chi) = \frac{1}{4}(\alpha^{(1)}_1 + \alpha^{(1)}_2 + \alpha^{(1)}_3 + \alpha^{(2)}_1 + \alpha^{(2)}_2 + \alpha^{(2)}_3 + 2\alpha^{(3)}_1),
\]

\[
\omega_{\tilde{E}_8}(\chi) = \frac{1}{6}(\alpha^{(1)}_1 + \alpha^{(1)}_2 + \alpha^{(1)}_3 + \alpha^{(1)}_4 + \alpha^{(1)}_5 + 2\alpha^{(2)}_1 + 2\alpha^{(2)}_2 + 3\alpha^{(3)}_1).
\]

these hyperplanes are invariant in the sense

\[
S : (\chi; \omega(\chi)) \mapsto (\chi'; \omega(\chi')),
\]

\[
T : (\chi; \omega(\chi)) \mapsto (\chi''; \omega(\chi'')).
\]

V. L. Ostrovskyi, *Special characters on star graphs and representations of \(*\)-algebras*
Let us denote

\[\omega_{\tilde{D}_4}(\chi) = \frac{1}{2}(\alpha_1^{(1)} + \alpha_1^{(2)} + \alpha_1^{(3)} + \alpha_1^{(4)}), \]

\[\omega_{\tilde{E}_6}(\chi) = \frac{1}{3}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_1^{(3)} + \alpha_2^{(3)}), \]

\[\omega_{\tilde{E}_7}(\chi) = \frac{1}{4}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_3^{(2)} + 2\alpha_1^{(3)}), \]

\[\omega_{\tilde{E}_8}(\chi) = \frac{1}{6}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_4^{(1)} + \alpha_5^{(1)} + 2\alpha_1^{(2)} + 2\alpha_2^{(2)} + 3\alpha_1^{(3)}). \]

these hyperplanes are invariant in the sense

\[S : (\chi; \omega(\chi)) \mapsto (\chi'; \omega(\chi')), \]

\[T : (\chi; \omega(\chi)) \mapsto (\chi''; \omega(\chi'')). \]
Let us denote

\[\omega_{\tilde{D}_4}(\chi) = \frac{1}{2}(\alpha_1^{(1)} + \alpha_1^{(2)} + \alpha_1^{(3)} + \alpha_1^{(4)}), \]

\[\omega_{\tilde{E}_6}(\chi) = \frac{1}{3}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_1^{(3)} + \alpha_2^{(3)}), \]

\[\omega_{\tilde{E}_7}(\chi) = \frac{1}{4}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_1^{(2)} + \alpha_2^{(2)} + \alpha_3^{(2)} + 2\alpha_1^{(3)}), \]

\[\omega_{\tilde{E}_8}(\chi) = \frac{1}{6}(\alpha_1^{(1)} + \alpha_2^{(1)} + \alpha_3^{(1)} + \alpha_4^{(1)} + \alpha_5^{(1)} + 2\alpha_1^{(2)} + 2\alpha_2^{(2)} + 3\alpha_1^{(3)}). \]

these hyperplanes are invariant in the sense

\[S : (\chi; \omega(\chi)) \mapsto (\chi'; \omega(\chi')), \]

\[T : (\chi; \omega(\chi)) \mapsto (\chi''; \omega(\chi'')). \]

V. L. Ostrovskyi, *Special characters on star graphs and representations of \(*\)-algebras*
Proposition 2

The action of \((ST)^k\) functor on the pair \((\chi; \gamma)\) could be written in the following way:

\[
(ST)^k(\chi; \gamma) = (f_{1,k}(\chi) - (\omega \Gamma(\chi) - \gamma)f_{2,k}(\chi \Gamma); \psi_{1,k} - (\omega \Gamma(\chi) - \gamma)\psi_{2,k}),
\]

where the characters \(f_{1,k}(\chi)\) and \(f_{2,k}(\chi \Gamma)\), and the numbers \(\psi_{1,k}\) and \(\psi_{2,k}\) satisfy the following properties:

(i) if \(k_1 \equiv k_2 \pmod{p \Gamma(p \Gamma - 1)}\) then \(f_{1,k_1}(\chi) = f_{1,k_2}(\chi)\) and \(\psi_{1,k_1} = \psi_{1,k_2}\);

(ii) the components of \(f_{2,k}(\chi \Gamma)\) and the numbers \(\psi_{2,k}\) are defined in the following way:

\[
\begin{align*}
&f_{2,k}(\chi \Gamma)_{i}^{(j)} = \left[\frac{\chi_{i}^{(j)}}{p \Gamma - 1} k\right], \\
&\psi_{2,k} = \left[\frac{p \Gamma}{p \Gamma - 1} k\right];
\end{align*}
\]

(iii) \(f_{1,p \Gamma(p \Gamma - 1)k} = \chi, f_{2,p \Gamma(p \Gamma - 1)k} = k p \Gamma \chi \Gamma, \psi_{1,k} = \gamma,\) and \(\psi_{2,k} = kp \Gamma^2\).
Theorem 3 (K.Y. 2006)

The set \(\Sigma_{D_4, \chi} \) is a union of the following sets

\[
\begin{align*}
\Sigma_1 &= \left\{ \frac{\alpha}{2} - \frac{\alpha}{2(4n-1)} \mid n < \frac{\alpha_4}{4\alpha_4 - \alpha}, \ n < \frac{\alpha - \alpha_1}{\alpha - 4\alpha_1}, \ n \in \mathbb{N} \right\}, \\
\Sigma_2 &= \left\{ \frac{\alpha}{2} - \frac{\alpha_i}{2n} \mid n < \frac{\alpha_i}{2\alpha_i + 2\alpha_4 - \alpha}, \ n < \frac{\alpha_i}{\alpha_i - \alpha_1}, \ n < \frac{\alpha_i}{4\alpha_i - \alpha}, \ n \in \mathbb{N} \right\}, \\
\Sigma_3 &= \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_1}{2(2n + 1)} \mid n < \frac{\alpha - \alpha_1}{\alpha - 4\alpha_1}, \ n < \frac{\alpha_2 + \alpha_3}{2(\alpha_4 - \alpha_1)}, n(4\alpha_i - \alpha) < \alpha_i \right\}, \\
\Sigma_4 &= \left\{ \frac{\alpha}{2} - \frac{\alpha}{2(4n + 1)} \mid n < \frac{\alpha - \alpha_4}{4\alpha_4 - \alpha}, \ n < \frac{\alpha_1}{\alpha - 4\alpha_1}, \ n \in \mathbb{N} \right\}, \\
\Sigma_5 &= \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_i}{2(2n + 1)} \mid n < \frac{\alpha_1}{\alpha - 2\alpha_i - 2\alpha_1}, \ n < \frac{\alpha_i}{\alpha - 4\alpha_i}, n < \frac{\alpha - \alpha_4 - \alpha_i}{2(\alpha_4 - \alpha_i)} \right\}, \\
\Sigma_\infty &= \left\{ \frac{\alpha}{2} - \frac{\alpha - 2\alpha_4}{2(2n - 1)} \mid n \in \mathbb{N} \right\}, \\
\Sigma_0 &= \left\{ \frac{\alpha}{2} - \frac{\alpha_1}{2n} \mid n < \frac{\alpha_1}{\alpha_1 + \alpha_4 - \alpha_2 - \alpha_3}, n \in \mathbb{N} \right\}.
\end{align*}
\]
There are exact formulas for representation of algebras $\mathcal{P}_{\tilde{D}_4;\chi,\gamma}$. In other words the description of all irreducible quadruples of projections s.t.

$$\alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \alpha_4 P_4 = \gamma I.$$
There are exact formulas for representation of algebras $\mathcal{P}_{\tilde{D}_4, \chi, \gamma}$. In other words the description of all irreducible quadruples of projections s.t.

$$\alpha_1 P_1 + \alpha_2 P_2 + \alpha_3 P_3 + \alpha_4 P_4 = \gamma I.$$

K. Yusenko
Institute of Mathematics NAS of Ukraine
Let Γ be extended Dynkin graph and χ be the weight on Γ. Next few statements describes structure properties of $\Sigma_{\Gamma, \chi}$.

K.Y. *On existence of $*$-representations of certain algebras related to extended Dynkin graphs*
Let Γ be extended Dynkin graph and χ be the weight on Γ. Next few statements describes structure properties of $\Sigma_{\Gamma,\chi}$.

K.Y. On existence of \ast-representations of certain algebras related to extended Dynkin graphs

Theorem 4

The set $\Sigma_{\Gamma,\chi}$ is infinite if and only if all components of weight satisfies two conditions: $\chi_i < \omega_\Gamma(\chi)$ and $\chi'_i < \omega_\Gamma(\chi')$.
Let Γ be extended Dynkin graph and χ be the weight on Γ. Next few statements describes structure properties of $\Sigma_{\Gamma,\chi}$.

K.Y. On existence of $*$-representations of certain algebras related to extended Dynkin graphs

Theorem 4

The set $\Sigma_{\Gamma,\chi}$ is infinite if and only if all components of weight satisfies two conditions: $\chi_i < \omega_\Gamma(\chi)$ and $\chi'_i < \omega_\Gamma(\chi')$.

Corollary 1

Let χ be the weight on Γ such that the conditions of previous theorem are satisfied. Then there is a representation of algebra $\mathcal{P}_{\Gamma,\chi,\omega_\Gamma(\chi)}$ on hyperplane $\gamma = \omega_\Gamma(\chi)$.
Theorem 5

If the set $\Sigma_{\Gamma,\chi}$ is infinite then it contains the only limit point.
Theorem 5

If the set $\Sigma_{\Gamma, \chi}$ is infinite then it contains the only limit point.

Corollary 2

Let Γ be extended Dynkin graph. The algebras $\mathcal{P}_{\Gamma, \chi, \gamma}$ are of tame representation type when $\chi_i < \omega_\Gamma(\chi)$ and $\chi'_i < \omega_\Gamma(\chi')$ otherwise they are of finite representation type.
A few open problem:
Let Γ be neither Dynkin graph nor extended Dynkin graph. Is there such weight χ on Γ that
A few open problem:
Let Γ be neither Dynkin graph nor extended Dynkin graph. Is there such weight χ on Γ that

\[\Sigma_{\Gamma,\chi} \text{ contain continuous part?} \]
A few open problem:
Let Γ be neither Dynkin graph nor extended Dynkin graph. Is there such weight χ on Γ that
- $\Sigma_{\Gamma,\chi}$ contain continuous part?
- algebra $\mathcal{P}_{\Gamma,\chi,\gamma}$ is of \ast-wild representation type?
Thank you very much for your attention.