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DRAFT LECTURE NOTES ON HIGHER-RANK GRAPHS AND
THEIR C*-ALGEBRAS

AIDAN SIMS

ABSTRACT. These are notes for a short lectwve course on k-graph C*-algebras to be
delivered at the Summer School on C*-algebrus and their interplay with dynamics at
the Sophus Lie Conference Centre in Nordfjordeid, Norway in June 2010. They are not
even remotely comprehensive of the work that many authors have done on A-graphs.
uor are all details even of the material covered included. In addition, there are likely
to be plenty of typa’s and possibly more sevious errors, and I would be grateful if you
could pass any you find on to me. These notes are not intended for distribution, but
as al ald to those attending the course.

These notes are also not properly ~ or comprehensively — referenced. Instead,
I have just tried to attribute major results and definitions to the people who proved
thewn. There are many people who have been involved in the area who have not been
mentioned; I apologise for niy oversights.

1. HIGHER-RANK GRAPHS, COLOURED GRAPHS AND SKELETONS

Iu these notes, a directed graph is a quadruple (E°, E*, 1, s) where E®, B! are count-
able (discrete) sets, and r, s are maps from E* to E°. A path in F is a sequence o . .. v,
with each o € E' and with s(a;) = r{a.) for all 3. We regard the set E* of all paths
as a category with objects E® and composition given by concatenation of paths.

Definition 1.1. Let k € N. A graph of rank k or a k-grapli is a countable category A
equipped with a functor d @ A — N¥, called the degree functor satisfying the following
factorisation property:
for all A € A and m,n € N* such that d(A) = m + n there are unique
elemients g € d~Ym) and v € d~1(n) such that A = pv.
Lemma 1.2. Let A be a k-graph. Then d=*(0) = {id, : 0 € Obj(A)

Proof. If o € Obj{A). then

d{id,) = d(id, id,} = 2d(id),
forcing d(id,) = 0. Thus {id, : 0 € Obj{A) C " Y(0).

For the reverse inclusion. fix A with d(A) = 0. We have d{\) = 0+ 0, and

ideoagn A = A = Midgomen) -
Uniqueness of factorisations therefore forces A = i(idm,(’,gm. [
Notation 1.3. We will adopt the following notation throughout these notes.

e A" = dmHn)
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¢ 7(A) = ideany € A" and s(A) = iddominy € AY.

efor £C Aand a €A wewite aF = {a) 1 A € E r()) = s{a)}, and
Bo = {da X g B s{A) = r(a)}. So in particular. for v € A? and n € N*,
vA* = {A € A r(A) = v and d{)) = n}.

We describe k-graphs i tenus of their k-coloured skeletons.

Definition 1.4. Let £ € N. A k-coloured graph is a directed grapl {E° E' 7, )
together with a colonr map ¢ : £* — {1,. .., k}.

Given a k-coloured graph E, we extend the colour niap ¢ to a functor ¢ : X — F;
$0 c(a) = cloy)elay) . cloy) for o € E7.
Example 1.5. Fix k € N and m € N*. The coloured graph Fy,, has vertices LR,

3

{ne N n<ml aud edges El, ={n+vu:nn+ee B} with structure maps

rin+o)=n, sn+wv)=n+e aud e(n -+ ) = 1.

For example, By 3,2 could be drawn as follows:

o - ¥ ; ¥
a3, * . G 1); <
i : : 3

©0 T b

A graph worphism @ from a graph F to a grapli F' is a pair of naps @ B0 — FO
aud @’ : BT — [ sucl that (' (e)) = ¢°(r(e)) and s(p'(e)) = @(s(e)) for all e € B2
We will often simply write ¢ for eachi of ¢ and ¢!, A coloured-graph morphism between
k-coloured graphs is then a graph morphism which preserves eolour.

For distinct 4,7 < k, an 4j-square in a k-coloured graph F is a coloured-grapli mor-
phisut @ : Ep g e, — E.

Definition 1.6. A complete and associative collcction of squares for a k-coloured grapl
E is a set C of squares in F such that
{1) for each ij-coloured path fg € £2 there is a unique ¢ € C sueh that P0+0) = [
and p{e; +v,) = ¢; and
(2} if we write fg ~ ¢ /" whenever tliere is a square ¢ sucli that
plo+u=J pletuy)=9 @O0+ =¢ ad ole;+v)=f,
then if fgh i a tri-coloured path and
for~gifis N~ hifa gihy ~ hogs,
gh~blgt, fR R and  flgt g7

then fy = f%, g5 = ¢% aud hy = A
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Given a k-coloured graph £ and a coloured-graph morphismt ¢ : By, — F, we say
that an ij-square ¥ in E occurs in p if there exists € N* such that n + e, + e; <m
and
pln+ e+ ) = les + vy,

p(n + ;) = {0+ vy) and pln+ e+ ) = Ple; + v

pln+ ;) = Y0+ v)

If I is a k-coloured graph and C is a complete and associative colleetion of squares
in F. we say that a coloured-graph wmorphism ¢ : Fi,, — E is C-compatible if every
square which occurs in ¢ belongs to C.

The next lemma is due to Robbie Hazlewood and is the key step in our construction
of a k-graph from a coloured graph.

Lemma 1.7. Let E be o k-coloured graph and let C be a complete and associative
collection of squares in E. Let w : F — N¥ be the homomorphism satisfying (1) = e;.
Then for each path o = a0 ... g € E, there is a unigue C-compatible coloured-graph
morphism ¢ © Epx(eay — E such that

(1.1) wlm{e(oy ... ar)) + Dya, ) = (g for all ] < |a].

Proof. We proceed by induction on ja|. If | = 0 then the assertion is trivial.

Now fix n > 1 and suppose that there is a unique ¢ satisfying (1.1) whenever |o] <
n €N, and fix o € E™. Let i = c{w,), and let m = w(c{a)).

By the inductive hypothesis. there is a unique C-compatible coloured-graph morphism
¥ ¢ Bymes, — E which is traversed by ... oy, For each j € {1,... .k} \ {i} such
that m; # 0, that C is a complete collection of squares ensures that there is a unique
e ) and B7 € o7H(i) such that g((m ~ e — ;) + v;)a, ~ I F.

o
o

i

A
&

24 ;i te ;;
O v ¢
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For each 7, the inductive hypothesis applied to {17 for any traversal £ of ¢, S
vields a unique C-compatible morphism M traversed by £147.

.o .
# #
PO -
# » »
- > il
*
W PR
¥ te
.- .-
+ . s ¥ i n
- - - -
L5 .- L e .
b ¥ a o 5
.- - - .
A s - e At
e - ——

We claim that for distinet p, ¢, the worphisms X and A% agree ou the intersection of
their domains, namely Ep ¢, —,. To see this, let 7= A((m — e, — e, —¢;) + ;). Then
7= A((m — e, — ¢, — &) + v;) because the two are the paths h? and hy obtained from
Definition 1.6(2) with

(12) f=9plm—e,~e,—e)+w)., g=0({{m—c,~e)+u,) and h= o,
Hernce each of A7} Erimepey and A9 By —eq 18 traversed by (7 for any traversal ¢ of
Y| B mip—eg—er - The inductive hypothesis therefore gives

{1.3) Mg, e

—eq

— \Y
e = A By ey

Siuce [}, = (Umrﬂ)’p?i E,f_‘m»éJ U{lm ~ep) + v, - my # 0,p # i}, equation {1.3)
implies that there is a well-defined coloured-graph morphisin ¢ : Fi,, — F determined
by

P18 ., = A7 whenever p # i and m, # 0, and

o{m — ep) +1v,) = #°  for all p # ¢ with m, # 0.

Every square which occurs i1 yp either occurs in one of the A? or occurs in the cube
#P4 traversed by the path fgh of (1.2) for some p, ¢. Since the A and the xP9 are all
C-compatible, it follows that ¢ is also. That the 57 and A? were uniquely determined by
requiring that all squares occurring in them belonged to C mplies that o is the unique
C-compatible morphism traversed by «. !
Corollary 1.8. Let E be a k-coloured graph, and let C be o complete and associative
collection of squares for IS, If

9 EBgm—E  and ¢ B, — B
are C-compatible colowred-graph morphisms such that @(m) = {0}, then there 1is o
umigue C-compatible morphism (¥} : Eppsn — E such that

whenever p + e; < m, and

i
}

my+ o wheneverm <p <mbom— e

©
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Moregver, this defines an associative partial multiplication on the set

Ape = U {9 Bean — Elp is @ C-compatible coloured-graph morphism}.
e
Proof. Fix paths o and o in E which traverse ¢ and . Then Lemma 1.7 implies
that there is a unique C-compatible coloured- gzaph morphisu gy traversed by o¥a¥.
The uniqueness assertion of Lemma 1.7 implies that 21 satisfies (1.4). Moreover, any
coloured-graph morphism # satisfyiug (1.4) is traversed by ()ﬁ(y'*” and hence another
application of uniqueness from Lemma 1.7 implies that 7 = b,
Associativity follows from associativity of concatenation of paths in £, [m]

Theorem 1.9. Let E be a k-coloured graph, and let C be o eomplete and associative
collection of squares for E. Let A = A be as in Corollary 1.8, and define d 0 A — N‘
by d(¢) = m if dom{p) = Er,. Then A is the umque k-graph such that A
for cach i and fg=g'f' in A if and only if fg ~ ¢ in E.
Proof. Corollary 1.8 shows that A is a category, and it has A% = ¢4 (i) and fg = ¢'f’
whenever fg ~ ¢/’ in E by definition. To see that A is a k-graph, we must verify the
factorisation property. This follows from Lemma 1.7 and nniqueness of factorisations of
paths in £.

For uniqueness, observe that if I' is a k-graph with the given propertics. then each
7 € T detennines a C-compatible coloured- Tmph morphisnt ¢, by ¢, (n + ) = o
where o is the unique path satisfying v = Yoy with d(v) = m. d(er) = ¢; and
A" = d(y) ~ m — e, 0
Example 1.10. The associative condition is necessary in three or more dimensions as
is demonstrated by the following three-coloured graph due to Jack Spielberg:

There is a unique complete collection of squares in this graph, but the collection is not
associative as can be seen by chasing through the possible factorisations of the path
Fah.
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2. k-GRAPH C"-ALGEBRAS AND THE GAUGE-INVARIANT UNIQUENESS THEOREM

A k-graph is rour-finite if [0A™] < oc for all v € AY and n € NF. It is loc conver
if whenever 2 € A% and v € A% with 1 # j and r{p) = r{v). we have s(u)A% # @ and

s(V)AT £ B

Pictorially, the graph on the left is not allowed unless the two edges pictured extend
to squares as on the right.

.= *

Remark 2.1. If A is locally convex, then a straightforward induction shows that if
mAn=0and p € A" and v € A™ with r{u) = r(v), then s(p)A™ and s s(rIA™ are
nonempty.

We write A" for the set
A% = {h e Ad(N) < noand AN <y == S(AOA% = 0}

Lemma 2.2. Let A be a locally convex k-graph. Fiz m,n € N*. We have AStmin)
X<m1\<”.

Proof. I i € AS™ and v € A", then certainly d(pv) < m +n. Suppose d(pr), <
(m+mn);. There are two cases to consider: d(v)e < n; or d(p); < my. I d(v); < n. theu
s(pr)A® = s()A% = §. On the other hand, if d(x); < m,. then s(p)A® =, and then
s{pv)A% = s(v)A% = { by the factorisation prop(‘rty S(} A<’"A<” C AStrIn),

Now suppose that A € ASC™ Let ! = AdA) - m/ Tt
is straightforward to check that m/ +n' = (m + n) A (l( ) Lm‘ o= ,\(() m'). Clearly
d(p) < moand d(v) < no I d(v); < ny then d(A); < (m + 1) < {(m + n), and
hence s(#)A® = s(A)JA% = ), giving v € A", Now supposo that d(u); < m;. Then
d{p)i = d(A)i, so d{v); = 0. Moreover, d(/\ < my < (m+n), whence s{A)A = §. It
then follows from Remark 2.1 that r(zz = Sope A 0

The following definition of a Cuntz-Krieger A-family, due originally to Yeend, is the
one suitable to locally convex row-finite k-grapls. However. it is very closely modelled on
Kumjian and Pask’s original definition for row-finite k-graphs with no sources. Likewise.
our analysis in this section leading up to the gauge-invariant uniqueness theoren is
largely due to Rachurn-S-Yeend but is heavily based on Kumjian and Pask’s seminal
work.

Definition 2.3. Let A be a loeally convex row-finite &-graph. A CuntzKrieger A-fomily
ina C*-algebra B is o function £ - A — B, A , such that

(CK1} {1, s v € A"}

- of mutually orthogoual projections:
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(CK2) 1,4, = t,, whenever s(p) = r(v};
(CK3) it = by for all g€ A; and

(CK4) t, = 3, onse 0223 for all v € A” and n € N*.
We write C*{1) for C*{{{y: A € A}).

To give an example of a Cuntz-Krieger A-family, we introduce filters in k-graphs.
The idea of using filters and ultrafilters to construct representations of combinatorial
objects such as k-graphs is due to Exel in the context of inverse semigroups, though the
procedure is greatly simplified in our setting. To iutroduce filters. we need the notion
of a minimal common extension of paths in A.

Definition 2.4. Let A be a k-graph, and let g, v € A We say that A is a minimal
common extension of poand v if d(X) = d{p) v d{v) and X = pg' = v/’ for some
#.v e Al We write MCE(g, v} for the set of all minimal conmuon extensions of p and
v.

A filter of a k-graph A is a set 2 C A such that

(F1y i A e 2 and X = pyd, then p € z; and

(F2) if y. v € x then MCE(p, v) N # @,

It follows that if = is a filter of A. then A” Mz contains a unique elentent r{x), and also
that if i1, v € @ then there is a unique elentent pV, v of MCE(y. ) which belongs to .

An ultrafilter of A is a filter which is maximal with respect to contaimuent. A standard
Zorn's Lemuna arguntent shows that for each A € A there - exists an ultrafilter @ of A
such that A € . We write A for the set of filters of A, and Ao for the set of ultrafilters
of A.

Lemma 2.5, Let A be a row-finite locally-conver k-graph. Let x € A and fix New and
e Ar(x). Then

(B XMe={a:daecz}andp-x:={F: AN ux # 0} are filters:

2y A-(Xx)y=a=p(u-x).

(3) If « belongs to Au, then so do A -2 and ju - x.
Proof. (1) If & € A and o = Fo’ then AP € z and then (F1) forces A3 € z and hence
feXx Hoepzando=7g then @ # aANpr CBANpur. S0 B € -2 So Ao
and g - x satisty (F1).

For (F2), suppose that «, 3 € A* - 2. Then A v, A3 belongs to MCE(A() Ad)ma =
AMCE(e,8) Nz, Hence MCE(a. )N A -2 # . If 0.8 € p -z, then there exists
ppd € xosuch that ' = aof = g’ for some o, [F. Use the f')x:tonsatlon property to
write gy’ = i where d{7) = d(a) v d{8). Then 7 € MCE{a, ) and 7A 0 px # . so
7€ MCE(e, 5} 0 1 .

(2) We calculate

aeX AN e aANAMN -2} £ 0
= ahN{NF:AFe ) #£D
= oAhz £ 0

Similarly, f e p* - p-2 e pfep-o & pfAnur £l <= geur
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(3} Suppose that X'z Cy € A Thenz =X -\ -2¢C A y. 80 A-y = x and then
y=AA-y=A -z Similarly for p -z [}

Lemma 2.6. Let A be o locally conver row-finite k-graph. If ¢ & A andn € N¢, then
r{)AS N £ 0.

Proof. Fix an increasing cofinal subsequence {14;)72, of « such that g = r{z). For cach
i each @ € (i )AS", and each j < 4, Lenima 2.2 inmplies that there is a unique 3 €
s(ey JAS" such that gy € 84, Since each s JAS" is finite, we may inductively choose
o € 3(11:)AS" such that 1oy € pyogA whenever § <4, and such that oA N mAS" is
nonempty for infinitely many (and hence all) [ > 1.

The set y .= {# € A« ey € PA for some i} is a filter of A which contaius z. Since
x is an ultrafilter, y = z. Since ¢ € y by definition, and siuce ay € r{2)AS", the result
follows. .}

Example 2.7. Let A be a locally convex row-finite k-grapl, and let H = EQ(X&)
Routine calculations show that

T\éar = )(,(S(/\) )f)\-ar

yields a Cuntz-Krieger A-family T in B(H) (it satisfies (CK4) by Lemma 2.6). Moreover,
for A g A,

T = Xﬂ'(/\)‘fk’urs 80 T = projspan{ﬁ,:/\em} -

Example 2.7 shows in particular that for any k-graph A there exist Cuntz-Krieger
A-families in which every £, is nonzero.

Lemma 2.8. Let A b a locally conver row-finite k-graph and let ¢ be o Cuntz-Krieger
A-family. Then for p.v € A, we have

I
(2.1)
MOE (. 1) — ol SUOVIN =)y A RN ~A0) _ GV, (1) )

and

(2.2) it = > Lut?,.

v MO e}
Proof. To establish (2.1} first note that

MOE(p, 1) = pA Pt oy A Vo) ) o ) g S (i 0y, g SEpvdlol=die)

by definition. For the reverse inclusion, note that A € pAnvA = d(A) > d{p)vdlv).
To establish (2.2}, let m .= d{p), n = d{v}) and use (CK4) to caleulate

(2.3) N R G ) zw,s;;}(\ S bt )i

WEASEnYn)—m P EASImYn)—n
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By Lemma 2.2, cach pif. v/ € AS™" gq another application of (CK4) ensures that
Al Ly b b Ul = Byl . Henee
g AP
£, = r/”( ) zm)tv
ACEASOrVRIme, AL (mys)an
= > Elululild, by (2.1)
popt = EMOB ()
= > Ll
pgat =1 EMOE ()

by (CK3). O

Corollary 2.9. Let A be a locally convez row-finite k-graph and let L be ¢ Cuntz-Krieger

A-family. Then C*(t) = span{tut, : y,v € A}.

Our proof of the following result is taken more or less directly from Raebum’s notes
on graph algebras from the CBMS conference held at the University of lowa in 2004.

Proposition 2.10. There is o C*-algebra C*(A) generated by a Cuntz-Krieger A-family
s which is unwersal in the sense that cach Cuntz-Krieger A-family ¢ induces o homo-
morphism m, 0 C*(A) — C*(t) satisfying 7(sy) = tx for all A € A. Moreover, each sy is
nonzero.
Proof. Let AxA i= {(p,v) € Ax A s(p) = s(v)}. Let Ay 1= c(AxgA) and for each ju, v,
let &¢,.) € Ay denote the indicator function. Define * : Ay — Ao by frlv) = flu, ),
and define a multiplication on Aq by extending the assigmmnent
ey Oy > O )
v =’ eMCE(vg)

to a bilinear map. For each Cuntz-Krieger A-family ¢ on Hilbert space, the partial
isowetries ¢,6 satisfy the same relations as the Gpen, 80 each suelt family determines a
representation m, of Ag such that 7,(dq,.,) = 4.6, for all i, v.

Each £t} is a partial isometry, go its norm is less than or cqual to 1. Hence for f € Ap.

=] 3 s Gun)]) < S Vol = 3 Uil = 11

(kw)EhsA (1.v) ()

Henee | fllo == sup; , cx a-amiy 7:(F}]] definies a seminorm on Ay, Let J = o=
0}, and let A := Ay/I. Let C*{A) be the completion of A in the nomu induced by
- o, and let sy = Spuspyy + 1 for all A Then A is a C™-algebra, and is universal hy
construction.

Since the Cuntz-Krieger family 7' of Example 2.7 consists of nonzero partial isometries,
the universal property of C*{A) ensures that the &5 are nonzero as well. 0

Remark 2.11. Let A be a locally convex row-finite k-graph and let ¢ be a Cuntz-Krieger
Afamily. Fix g, v € A with s(z) = s{v} = v, and suppose that ¢, # 0. Then

L2 = etz = Reotsll = el = 2 = [l # 0.

i

In particular. each 5,87 # G in C7(A).
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For each z € T*, the map A = 28 Vg, is a Cuntz-Krieger A-family, so the universal

property of (A} gives an endomorphism
Ve 1 C*{A) — C™{A)  such that Ya(8x) = 2™ sy for all A,

Since vy © 7:{82) = Yuu{82) and Tilsa) = sy for all A, each 7, is an automorphism of
C*(A) and z = 7, is an action of T* If 2, — 2, then FeulSust) = 7o(su55) for all
s v, and then an £ argument shows that v is strongly continuous. 1t is then standard
that ®7(a) = [, 7.(a)dz defines a faithful conditional expectation from C*(A) to
CHAY == {a € C*(A) : v.(a) = a for all 2}.

Proposition 2.12. Let A be a locally conver row-finite k-graph. Then.
(1) C*{AY” = span{s,.s} - d(p) = d(v), s{p) = s(v)}:
<:) (R<A)7 = l—jﬁn,c,\lk @vEA“mlSu SDHJJ{S}LS; ! 5(/1) = S(l/) =V E AS” N Am}’
(3) Bach spani{s,s, : s(p) = s(v) = v, g v & AS" A A™Y & K(2((AS A" o))

Proof. (1} For p,v € A, we have

B (s,87) = / A=diy o o fsesy B d{p) = d(v)
RS #v 0 otherwise.
Since $7 o &7 = BT and PT(C*(A)} = C*(A)?, this proves (1).
(2) Since g, v € A= implies 83,8 = 8,,55(4). We have

SPAm{s.s) v € AT} = GB span{s,s, : s(u) = s(v) = v, p,v € AT N A™}

ve AL m<n

for each n,o,m. If n < p, and g, v € A with s{p) = s(v). then

Spsn = E Sasyy € SpAn{s,s; 0 n.{ € ASP)
Aes(p)ASE=n

by Lemma 2.2, Hence
Span{s,s; : p, v € AS"} C Spani{s,s) « p, v € ASP,

and (2] follows.

B)FixneN m<nandve A’ Forpvore (A" N Ao, we have (su85)" =
sps), and 8,878,870 == d,.¢5,57. Remark 2.11 therefore implies that the susy, form a family
of nouzero watrix units indexed hy (A" 1 A™)v, and the result then follows from the
uniqueness of K(((AS» 1 A™)e)). O

Proposition 2.13. Let A be a locally convex rou-finite k-graph. Suppose that t is
@ Cuntz-Krieger A-family such that cach L, is nonzero, and suppose that there is a
lnear map W @ C*{L) — C*() such that Wit,tr) = Satyydpylull for all v, Then
7 CH{AY — C*{1) is injective.

AT

Proof. By Remark 2.11, whenever s{p) = s{p) Luty # 0. Since K(#%
A1) s simple, Proposition 2.12{3} implies that 7, is mjective. hence isometric, on
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each 5paii{s, " v € (AS'OA ). So Proposition 2.12(2) implies that 7, is isometrie
By L 7 1 . L
on C*{A)7. Since Yo, = 7, 0P, and since $7 is faithful on positive cletuents. we have

mla) =0 == ¥(m{e'a)) =0 = (P (a*a)) =0 = P"(¢’a) =0 => a=0.
O

The following is oue of the many generalisations to date of an Huef and Raeburn’s
gange-ipvariant uniqueness theorem for unital Cuntz-Krieger algebras, and itz proof
like all the others is more or less identical to the one originally given by an Huef and
Raeburn. It will be the single most useful result in our repertoire later in the course,
and plays a similar role in the theory of k-graph algebras in general.

Corollary 2.14 (The gauge-invariant uniqueness theorenm). Let A be a locally eonver
row-finite k-graph. Suppose that { s o Cuntz-Krieger A-family such thal each t, is
nonzero and such that there is an action 3 of T on C*(8) such that 8.(1x) = 2V, for
all X, Then m, is injective.

Proof. The map ¥ : a = [, 8,(a)dz from C*(1) to C*{() satisfies the hypotheses of
Proposition 2.13. O

3. THe CunTz-KRIEGER UNIQUENESS THEOREM AND SIMPLICITY

The formulations of aperiodicity and cofinality used in this section are due to Lewin.
The aperiodicity condition, in particular, is the latest refinement of a condition originally
given by Kumjian and Pask wlich has since been re-cast and sharpened by many authors
including Raeburn-S-Yeend, D. Robertson, and Shotwell.

Definition 3.1. We say that a k-graph A is aperiodic if. for all g, v € A with s{p) = s(v),
there exists 7 € s(g)A such that MCE(p7, v7) = 6.

Lemma 3.2. Let A be a k-graph, and fir v € A® and a finite subset H of Av. Then
there exists 7 € vA such thet MCE(ur, v1) =@ for allv € H.

Proof. We proceed by induction on M. If |H| = 1 there is nothing to do.

Suppose there exists 7 with the desived property whenever |H| < n, and fix H C Av
with [H| = n. Let A be any clement of H and let G := H\ {A\}. By the induc-
tive hypothesis there exists 7y such that MCE{um, vry) = @ for all p.v € . Enu-
merate G = {j1)...., ptu—1} and iteratively choose pathis 7, € A such that for each .
MCE({ftis170 - - - T)Ter1, (Aomi)7e41) = @, Then 7 := 797y ... 7, has the desired prop-
erty: if u, v € G, then

MCE(u7, v7) C uroA Norgh = 8,
and if g = p; € G, then
MCE(ur, Ar) =C g ... iAN Ay 1 = 0. W]

The following theorem is a generalisation of Cuntz and Krieger's original uniqueness
result theorem for their C*-algebras associated to {0, 1}-matrices. Indeed. the proof is,
modulo the details. very much like the one given by Cuntz in his analysis of O,.

Theorem 3.3 {The Cuntz-Krieger uniqueness theorem}. Let A be a locally conver row-
findte k-graph. Suppose that A is aperiodic. Let § be a Cuntz-Krieger A-family such that
te # 0 for all v € A°. Then =, is injective.

12 SIMB

Proof. We aim to apply Propoesition 2.13. It suffices to show that for any finite F' C A
and any collection of scalars {a,,  p,v e F},

IS atti] < | 30wt
s - el

I
for this implies that there is a well-defined linear map ¥ satisfying W{1,£) = dagu a0 101
for all g, v
Let n = Vo d(A) Then 37, pau.luly € Span{t,t; : p,v € A"} by Proposi-
tion 2.12(2). Heuce, by the same result there exist + € A” and m < n such that the

strict-topology lmit
[)u.m = Z t/zt:

AEASPNAT Y
*
IS atts| =P S antiti P
wrel
dp)=d(v) dis)=d(v)

HYER
Since A is row finite, FA N AS N A™ is finite, so Lemma 3.2 implies that there exists
7 € vA such that whenever p, v € F with d(p) # d(v). and g, v/ € A0 A™, we
have MCE(i/7,1/7) = . Let P be the strict-topology limit

P o= Z turlhr < Poon.
XeAS ATy
We have P, 8§pai{i,t, @ pv € F}P,,. C span{l,,,tz s € AT AT™w). By
Proposition 2.12(3), t,tf = ©, . determined an isomorphisni
SpER{taf; 1 1. C € AT NA™M} 2 K(E(AS 0 A™)).
Since PlytiP = ty,tf, for all n,{ € A" N A™v and since the 4,42, also form a family of
nonzero matrix units, compression by P is an injective C*-homoniorphism, and hence
isometric on 3PAL{t,t7 19, ¢ € AT O A™0]. In particular.
| x
IIP Z bty P l = Hpu,m Z Al Poml] = H Z Cpaluly,
el pUER

pnel VE
ity () ity

satisfies

Moreover, if g, v € F with d{u) # d(v), then
PLiLP = > bt bl et = > ture bty = 0
fu! e ASHOA™ Jpd w EASTOA Y

by choice of 7. Hence

H Z uﬂ\,u&,l(,;!!:”}“ Z u“‘”t“tzpil:

Hpxer

P it
.

el el el el
d{py=d(v) dipeed(vy
as required. 0

Corollary 3.4. Let A be a locally conver row-finite k-graph. The following are equivalent
{1} A is aperiodic;



kE-GRAPH "-ALGEBRAS 13
(2} each nontrivial ideal of C*(A) contains s, for some v € A9,

Proof. (1) == {2} is the Cuntz-Krieger uniqueness theorem.

For {2) == (1) we prove the converse. Suppose that there exist distinet €A
such that MCE{ur, v7) # @ for all + € s(u)A.

We claim that an ultrafilter  of A contains z if and only if it contains v. To see
this, it suffices by symmetry to show that p € ximplies v € z. PFix an ultrafilter 2
such that 4 € 2. Fix a cofinal sequence {1725 of = such that g = . For each i,
s = pr; for sowe 7, € A By assumption, MCE(ur, v Y # 0 for all i, For j < i,
we have MCE(u7,, vr;) ¢ MCE( w7y, v A Since each MCE(ur,, vry) is finite, we nay
Inductively choose v € MCE(ur;, vr;) such that v € A for all 7 < 4, and such that
YANMCE(jim, vny) # 8 for infinitely wany. and hence all, I > i. Let y={aeh:v¢
ah for some j}. Then y is a filter. We have = y because the s, were cofinal. Hence
¥ = x. Since v € y by definition, we conclude that » € . This proves the claim.

By the preceding paragrapl, the Cuntz-Krieger A-family 7' of Example 2.7 satisfies
1,1, =T,T;. Moreover, T, ¢ ker(ny) for all T. So it suffices to show that SuSy F 885,
We have ¢,sf # 0 by Remark 2.11. Siuce MCE(ys, ) # 0 and y # v, we Lave d(y) #

d{v). Hence there exists z € T* such that #4@-4) = 1 Now
(1= ) (s8], = $,8"1) = 25,8, # 0
and hience 8,87, # 5,87 as required. ]

Definition 3.5. We say that a locally convex row-finite k-graph A is cofinal if, for all
v,w € A®, there exists n. € N¥ such that wAs(A) # @ for all A € wA=

Proposition 3.6. Let A be a locally convex row-finite k-graph. The following are cquiv-
alent

(1) A is cofinal;

(2) each ideal I of C*(A) such that s, € I for some v € A® satisfies I = C*(A).
Proof. (1) == (2). Fix an ideal 7 and a vertex w such that s, € /. Fix v € A®. Since
A is cofinal, there exists n € N* and paths {11, 1 A € vAS*} such that € wAs(A) for
eaclh A € vAS" Hence

Sy = Z sx8y = Z 8387, SwSuas) € 1.
AzuASn AgpAsn
(2) == (1). We prove the contrapositive. Fix v, w € A® and suppose that for cach
n € N¥ there exits A € vAS" such that wAs{A) = . As before, we may inductively
choose paths p, € vAS" such that each fn €t for all m < n and such that for
infinitely many (and hence all) p > n there exists n & pnA VASP sucl that wAs(n) = 0.
The set = = {0 w, € nA for some n} is a filter. It is an ultrafilter hecause if B¢
then gy # 3, and then since 3, Hagm € ATd(8) we have MCE( fagas 4} = 0, and so
there s no filter containing 2 wlhich also contains 3. Let
X, ={zrelA,: whs{A) =@ forall A € x}.
Then £2{X,,)  #(A) is invariant for the Cuntz-Krieger A-family T of Example 2.7, so
Sy = Tilerx,y determines a Cuntz-Krieger A-family S with S, = 0 and 8, # 0. Hence
ker{rs} is a proper ideal containing a vertex projection. )
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The following corollary, as stated. is due to D. Robertson. In its most general form.
for finitely aligned k-graphs, it was first proved by Shotwell.

Corollary 3.7. Let A be a locally convex rowfinite k-graph. Then C*(A) is simple of
and only if A s aperiodic and cofinal.

Proof. Suppose that A is aperiodic and cofinal, and fix a noutrivial ideal / of C*{(A).
Then Corollary 3.4 implies that s, € 7 for some » € A® and then Proposition 3.6 implies
that 7 = C*(A). For the converse observe that if A is 1ot cofinal. then Proposition 3.6
vields a nontrivial proper ideal of C*(A), and if A is not cofinal, theu Corollary 3.4 does
the same job. 0

4. CONSTRUCTIONS OF k-GRAPHS

Coustructions of (k+1)-graphs from k-grapls Lave appeared in many contexts begin-
ning with the cartesian product construction of Kujian and Pask, and including many
authors since — we shan’t list them here, but we shall see a number of specific examples
later in these notes. The notion of a k-morph was introduced by Kumjian-Pask-S as a
unifying framework for these constructions.

Definition 4.1. A k-morph between k-graphs A and T (or a A T-morpls for short) is
a coulttable set X equipped with maps 7 X — A and s : X — A? and a bijection
0 X%, T = A%, X such that whenever #(z, ) = (A y) we have

(M1) d(X) = d(v);
(M2} r(A) =r{z);
(M3) s(7) = s(y);
and whenever, in addition, 0(y, ) = (i ), we have
(M4) 0{z,yn) = (A, 2).

A =T wecal X a A-endomorph.

Examples 4.2. (1) Fix k-graphs A, . T and coverings p: X — Aand g1 ¥ — I
that is, degree-preserving functors which restrict to bijections on eacl v and S,
Let X =, X, = {z,, : w € £%}, and define r{x,) = plaw} and s(x,) = qlr,).
Define 8 : Xl — Ax X by 8(x,15y. g{o}) = {p{o) 1. {To see that this makes
sense observe that since g is a coveriug, & can be recove

In the picture helow, A and I' are cycles of length 2 and 3 and % is the common

red from r{o) and ¢(o).)
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covering cycle of length 6.

(2) Fix a k-graph A and an antomorphism o of A. Let X, = {z, : v € A"} with
r=a, s =id 0y, A) = (@A), 2sy). Then X, is a A-endomorph. In fact, X
is precisely ,Xiq from (1).

Theorem 4.3. Let A and T be k-graphs.

(1) Let X be a A-T-morph. There is a unigue (k + 1)-graph %, called fhe linking
graph for X admitting an isomorphism i = ix,ip : AUT — {0 € B : d(0)py = 0}
and a bijection ix : X — T such that r(ix(x)) = ix(r(z)) and s(ix(x)) =
ir(s{x)) for all x € X and ix(x)ir(y) = ia{N)ix(y) whenever 0(z,v) = (A, y).
Let Y be a A-endomorph. There is a unique (k+ 1)-graph A xy N admitting an
wsomorphism iy 1 A — {v € A Xy N: d(7v)i1 = 0} and a bijection iy : Y —
(Axy Nyt such that r(iy(y)) = ia(r(y) and s(iv(y)) = ials(y)) forally e Y,
and such that iv(y)ia(p) = ia(v)iv(2) whenever O(y, p) = (v, 2).

A

W
2

Proof. (1) Let E = Ejpr be the k-coloured graph with colour map ¢ associated to ALIT,
Define F by F® = E® aud F! == E' U {iy(x) 12 € X}, r,s: F! — FO inherited from
A, T and X, and colour map agreeing with ¢ on E' and with c(ix(x)) = k + 1 for all
z € X. Define a collection C of squares to consists of those oceurring in A U T together
with those of the form

G0+ o) = ix(x), @lep +v) =7 @0+u)=2X and @le; + o) = ix(y)

whenever #{x,v) = {A,y}. Then C is a complete collection of squares becanse 0 is a
bijection. and is associative by (M4). Let £ be the (k+1)-graph obtained from F, ¢ and
C as in Theorem 1.9. In particular, ASAY is a k-graph with the same coloured graph as
A. s0 the uniqueness assertion of Theorem 1.9 gives an isomorphism i, : A — APTDAY
and similarly for I'. The (k + 1)-graph ¥ satisfies the desired factorisation regime by
definition. Uniqueness of  follows from another application of the uniqueness assertion
of Theorem 1.9,

{2) The proof is basically the same as that of (1}, except that iy : A — ¥ maps outo
{z € £:d{o)rs1 = 0} rather than A®EAY 0

16 8iMS

Examples 4.4. (1) The common covering of the 2-cycle and the 3-cycle by the 6-cycle
above gives the following linking graph:

foke

L e

-
S_—1
£

#

<

(2) Let A be the complete directed binary tree described with the vertices at level
n indexed by Z/2"Z and an edge from the vertex ¢ at level n to the vertex j at level
n — 1 if 4 is congruent to j mod 271 There is a unique automorphisni o which acts
on the vertices at level n by addition of 1 modulo 2™, The resulting endomorph crossed
product A x x, N has the following coloured graph.

Theorem 4.5. Let A and T be locally conver row-finite k-graphs, end let X be ¢ A
U-morph in which both r (,md 5 are sufja:ti? . and r is finite-to-one. Let ¥ be the
linking graph. Then 3" _ A0 Sials) IS wert Siptwy CONErge to full projections Py awd
Proin the multiplier aégrbm M(’ T) The map 13 @ $x = $i,0n determines an injecti
homomorphism (CP{A) = PACHEYPy, and the map if @ sy 7 $i.; defermines an
isomorphism it 0 O = (T} = PrC*{E)YPr.
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Proof. Recall that C*(X) = span{s,s; : 0.7 € £}. For any finite linear combination
=3 pler the projection Pypy = Ever( Fy Sv satisfies PymaPup = oo It
is therefore straightforward that ng a9 Sinfey and ngr” Sirwy coOnverge i the strict
topology.

To see that they are full, fix o € £. Then

So= > sesalsh € CHDIRCY(E),

aes(o) NS4k

so Fr is full. Moreover since s : X — T is surjective, we may choose a surjective section
2: 1% — X for s, and then Pr = Znerﬂ s;‘x (x(vnPAsith,)). and it follows that Py is full
also.

The map A = s;,0y is a Cuntz-Krieger A-family in C*() because the relations
in C*(X) include all those from C*(A); so the universal property of C*(A) gives a
homomorphism 7} : $x = 8;,a). The gauge action on C*{I) restricts to an action 4 of
T* on PyC*(5) Py such that B3 (s0)) = 2745 (sy) for all . Hence the gauge-invariant
uniqueness theorem implies that 73 is injective. The same argument applies to .

We clearly have i} : C*(A) C PAC*(E)Py and # : C % (T) © PrC*(2)Pr. Moreover,
for each o, 7 € X2, we have
PrsystP, = sp8r  if ‘7“((7%"1”(7) € ir(IT)

0 otherwise.

Since r(0) € ip(T'") implies o & ip(T), it follows that PrC*(Z)Pr C i O (D). 0

Corollary 4.6. Under the hypotheses of Theorem 4.5 the vector space Hy = PyC*(S)Pr

is a O*(A) -C*(T')-correspondence with linking algebra C*(S). IFA =T so that X is a
A-endomorph, then Hx is a C*(A)-C*(A)-correspondence, and C*(A xx N) = Ouy -

Proof sketch. The first statement follows fron general nonsense - the C*-identity ensures
that the norm on the linking algebra is the same as the norm on Hx which is the same
as the restriction of the norm on C*(T).

For the second statement, recall that O, is generated by a copy ja(C*(A)) of C*(A)
and a copy jy(Hx) of Hx. Setting

Loy == Jafsy) for A e A and Lixte) = Ju(s:) for z e X,

and extending this to a map & : A xx N — Oy, by (CK2) gives a Cuntz-Kricger
(A xx N)-family which generates Oy. The universal property of Oy, implies that it
carries an action 3 of T**! which matches up with the gauge action on Ja{C*(A}) and
satisfies A{ti, 2)) = 2n41ls for all © € X, so the gauge-mvariant uniquetess tlieorem
implies that 7, : C*(A xx N} — Op, is injective. 0

Remark 4.7. 1t follows from the above construction that if A is a locally convex row-
finite k-graph, then C*(A) is an iterated Cuntz-Pimsuer algebra in the sense of Deaconu:
given a k-graph T, the set X, »= I'* is au endomorph of the {(k — 1)-graph A : {Ae
Ap) = 0} whose endomorph erossed-product is I'. Hence C*(I') = @kax Iterating
onstruction k-times gives an iterated Cuntz-Pimsner algebra construetion of C* (')
with initial coefficient algebra o(T%).
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Corollary 4.8. Let & : A — A be an automorphism. Then there is an automorphism &
of C*(A) satisfying a{sa) = sany for all A, and CF(A xx, N) 2 C*(A) x4 Z.

Proof sketch. Let X = X,. Since o is bijective, Hy is isomorphic as a vector-space
to C*{A). This isomorphism carries the inner product on Hy to the standard right
inner-product {a.b) := ¢*b on C*(A), so Hy = C*{(A)ew(ay as a right Hilbert module.
By definition of # : X « A — A = X the left action on Hy is given by i - by = Ly 80
H is isomorphic as a right-Hilbert bimodule to C*(A). Pimsner’s theorem therefore
shows that Oy, = C*(A) x5 Z; combined with Corollary 4.6. this proves the result. [J

Hooptedoodle. In fact, the assignments X = Hy and A = C*(A) determine a con-
travariant functor from a category My whose objects are k-graphs and whose morplisms
are isomorphism classes of k-morhps (the fibred product of k-morphs determines a com-
position) to the category C with C*-algebras as objects and isomorphism classes of
S*-correspondences as morphisims. We can then construet graphs of k-morphs: these
are functors from l-graphs to M. Indeed, this can be made to work for I-graphs of
k-morphs, though in that instance more information is required than just the functor.
We won't go into all this as we are only interested in a special case.

Proposition 4.9. Let Ag, Ay, ... A, be locally conuer row-finite k-graphs, and let X,
be a Ay -As-morph with v, 5 surjective and v finite-to-one for each 1 <4 < n. There is
o unique (k + 1)-graph 5 admitting an isomorphism i 1 [ [ oA — {0 € £ d(0)is1
0}, bijections ix, :ia,_ (AL VI 4i, (A9) such that the factorisation property in X s
whevited from the A; and the dijections 0, © Xix Ay — Ay x X, The maps i, determane
injective homomorphisms iy C*(A;) — C*(Z), cach Py, = D ve ) i3 (8y) is full, and

PanCH B Pa, =13, (CH(An)).

Proof. The proof is almost identical to those of Theorems 4.3 and 4.5. [

Il

Remark 4.10. If n = 5c iu Proposition 4.9, it is still straightforward to establish the
existence of the enveloping (£ + 1)-graph ¥ and that that P4, are full, but in general
Pr CHE)Py, # 43, (C*(Ay,)) for any n.

5. RANK-2 BRATTELI DIAGRAMS AND AT-ALGEBRAS.

The results in this section are due to Pask-Raeburn-Rerdam-S, though we have proved
them in a very different manner to streamline arguments and highlight dentonstrate how
the k-morpli construction can be used.

We will write ¢, for the 1-graph with vertices {v; 1 i € Z/nZ} and edges {e; : i €
ZinZy with s(e;) = v and r{e;)) = vy,

Ty

s
et L A
Jiao - Foreaclhin > 1. and each pair 4, j with i < pi,_y and j < m.,,

Fix. for the seetion. a sequence (A}, of I-graphs such that each A, =

where eachi A,
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fix 7, € N; we assume that for each i there exits j such that ¢7 ; # 0 aud that for each
i thm e exists 7 such that f; # 0.

Whenever ¢, # 0. let X7 == , X, be the k-morpli of Exaunple 4.2(1) for the canonical
coverings ’

S

A . N # ks
p: (w* ged(IAe 5 Ay and g (w;;fj sed{]AY_, LIA% 7 A

e 1,7 ‘ nat
For each n, X™ = UC?G o XDisa A, Ap-morpli.

As in Remark 4.10, there is a unique 2-graph I' such that T9 = [ JAS, = = | JAL
and I'? = | | X™ and where the factorisation rules are determined by the bijections
O X% Ay — Aoy X7y We call T a rank-2 Bratteli diagram.

To analyse C*(T"), we first study its building blocks.

Lemma 5.1. Forn > 1, C¥{C,) ¥ M, 2 C(T).

Proof. For i € Z/nZ\ {0}, define t,, := 01,91 € M, ®C(T), and define t,, ;= 0, ,® 2.
Now define t,, = t}t,, = 6;; ® 1 for each v; € C%. and for a = o <o Yy define
la = lay - Loy, Then L is a Cuntz-Krieger C,,-family which clearly generates M, ®C(T).
There is an action # of T on M, ® C{T) determined by 3.(0,; ® [) = 0,; @ f(£7),
and we have g, o m, = m 07, for all 2. Hence the gange-invariant uniqueness theoren
implies that 7 is an isomorphisim. [

Corollary 5.2. For cach N € N, let [\0. N = (Ug; . Ag)r(uz (A ) Then C*(I') =
P My, @ C(T) for some collection 1y, .. L., € N\ {0},

Proof. Proposition 4.9 and shows that
my
C(Tiany) ~ue PayC (Do) Pay & C*(AN) EB(" (Ans)
i=x]
Lemma 5.1 then implies that C*(Tio ) ~me €15 C(T). Since C*(Tye, N)) is unital (with
identity 3°, e 85, the result follows because of the deep result due to amongst separable
C*-algebras, Morita equivalence is the same as stable isomorphism. 0

Proposition 5.3. For cach N € N, let Py = S o Dveae Se € CHT). Then each
)N(;B(F)PN = (f*(l"om) and

(5.1) 0y = PvCr D) Py

N2zl
In particular, C*(T) is an AT-algebra.

Proof. Yet another application of the gauge-invariant uniqueness thmwm gives the iso-
worphism of C*(Tigaq) onto PyC*(T)Py. For v € T, we Lave s(y) € AY for some n,
and theu s, € fﬁ C*{ I‘;liv for all N > n. establishing (5.1). The last gtatement is by
definition of AT-algebras. ml

sAv £ B for allv € AL and
b= 1 whenever o, # 0.
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Then C*(T'} is simple and has real rank 0.

Proof. For simplicity, we just need to show that I' is cofinal and aperiodic - - Corol-
lary 3.7 does the rest.

For cofinality. fix v, € % By (1), there exists ng € N such that wlu £ @ for
al u e Agﬂ. Since the X, are k-morphs, so their source maps are surjective. we then
have wlu # @ for all w € {72, AV Let m € N be the integer such that v € AY,
and let N = max{ng,m}. Then s(uI'SN=mey AL and hence wls(\) # 0 for
all A ¢ pIstVemles  Fop apexiudicit} fix distinet paths p,v € T I d(p) = d(v), or

s(p) # s(v) or v{p} # r{v). then 7 = s{y) satisfies MCE(u7,v7) = §. Moreover,
if dipls # d(v)s, then elthm r{p) # r{v) or s(p) # s(v) since one pair or the other
nmst be in different levels of IV, So suppose that r(u) = r{). s(p) = s(v) € A® (and
hence d(pt)y = d{v)s) and that d(g) # d{v); so d{p); 74 d(v);. Factorige p = /'y’ and
v = V" where (i), = d(v')) = 0 = d()s = d(» }3, Using (2), fix m > n+ 1
such that | X7 > |d(u); — d(v)| for all 4,7 such that ¢, # 0. Let 7 be any clement
of s{y)rom= ")“, By definition of the X!, we may 1dent1fy cach with Z/iX‘ |Z. so we
can identify v with a sequence [pas1l{pniz] . .. [pm] where each [p] IZ for some
i.j. In particular, [pm] € Z/|X2|Z for some i,j and by choice of m 1t follows that
[P + A1} # [pon + d(v)1]. By definition of the X!, we have

W=l = s ()] e+ T and
vt = VT = W ppsy + dWh]. . e+ d(e)

For some g, /" In particular,
pr(d(p'r) = e, d(p')) = o + d{p)s] # [P + dW))] = vr(d(p'T) — ), d{ji 7)),
so MCE(pr.vr) = 0.

It remains to show that C*(I') has real rank 0. To do this we apply a powerful result
of Blackadar-Bratteli- Elliott-Kimjian which says that a simple AT algebra has real rank
0 if and ouly if projections separate tracial states. For this, fix a trace 7 on C*(I'). Fix
paths o, f € T with d{a); = d(8); = 0 and a path g such that d{p); = 0. and suppose
that 7(sas.85) # 0. Then 7(s3sqs,) # 0, forcing shea # 0. so r{a) = r(3). Since
d{ps)2 = 0, each of 7{1) and s(u) belong to the same Aﬂ and it follows that d{a) = d(3).
and then sgs, # 0 forces o = 4. and yu is a cycle. Choose m > n such that | X75] > |
whenever ¢, # 0. Then

0# 7(8asp85) = (85 808,) = Z T(8pu8q5y) = Z T (S 815}
nes(paltn—me nes{pyAltm—aley
where each pn = o/ it with d{p') = d{); and this forces of = 5 for all . By choice of m.,
this forces d(js) = 0. A similar argument applies to show that 7(s,8%s)not = 0 forces
o = [F and d(p) = 0. The factorisation property and the Cuntz-Krieger relations show
that 4T} is spanned by elements of the form ot by and t,f; 5. and it follows that if
traces 7y, 7 agree on all elements of the form f,¢7, then thc‘_v are equal. In particular,
projections separate tracial states ag required. [}

It now follows from Elliott’s classification theorem that C*(I'} is classified by its K-
theory.
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Theorem 5.5. Let Ey be the directed graph with one verter u, g for each A, and
[t Ftina1 sl = | XTI/IAS L, and let By be the directed graph with one vertex Wy for
each A, ; and [mm[:() it = I XIAD L Then Ko(C#(T)) is the dimension group

assoviated to the Bratteli diagram Ey, and K\ (C*{(T}) is group-isomorphic to the dimen-
ston group associated to the Bratieli diogram E,.

Proof sketch. Let A = {\ € I' 1 d(A); = 0} regarded as a l-graph. So A! = o X7
The map v; = ;41 is & bijection of each X iy and determines an automorphism of A.
It is straightforward to see that I = A x_x N so Corollary 4.8 implies that C*(I") =
Cx{A) x5 2.

A theorem of Drinen shows that C*(A4) is Morita equivalent to the AF algebra with
Bratteli diagram A. The Pimsner-Voiculescu exact sequence in K-theory then implies
that Ko{C*(T")) = coker(1 — &) and K{(C*(I')) = ker(1 — &)

To describe the K-theory of C*(A). recall that K.(M,) = (Z, {0}) with generator [p]
for any minimal projection p. Hence

K{(CHA) =0 and  Ky(C*(A)) = lim €P Zs,],
vEAY
with linking maps determined by
[ = 3 [sasil= D fsqml= . Jod'wlls.].
aevAl aEvAt wEA?H, f

The automorphism & pernwtes the s, for w in a given Aﬁ’m. So ker(1 — &,) consists
of functions which are constant on cycles. That is

[

ker(1 — alpha,) N GD Zls,) = @Z Pl

veAd
where P, = 37 10 8. Relation (CK4) gives

THan

Pad =30 Y lsww]

J=L aeAl ATAR

nilg
Fipt o

) Wfﬂmﬂ
~ i ’X,, 41 71

a4y i X»n +1
= T Rt LN
Z i &n{ 1 Ji !
Continuity of K-theory then en*stabhshes the formula for K;(C(I)).

Similarly, for each n,4, the classes [s,] € C*(A) where v € \f,’u are all equivalent
modulo the image of (1 - a,‘) Hence coker(1 - &) N @B, 0 Zls.] = @ Zhsu,.] where
{m, 1} = wy ;s a fixed choice of xepw«enmme for each A ;. The Cuntz-Krieger relations
for A show that in coker(1 — &,},

o T 0
A dlu, ] = [Fud =D IAD, A

5
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Contimity of K-theory once again mmbhshes the formula for Kp(C*(I)). 0

Examples 5.6. (1) For the rank-2 Bratteli diagraw I' with coloured graph

e
-
the graphs By and F; are
Eli . - -

E()Z

0 we have K,(C*(T')) = (Z[}], Z) and hence C*(I") is stably isomorphic to the
2% Bunce-Deddens algebra.
(2) For the rank-2 Bratteli diagram I' with coloured graph

both Ep and By are isomorphic to the 1-grapli obtained by deleting the loops.
Hence results of Effros and Shen show that the Kggroup associated to this
diagram is Z 4+ 07 where 8 is the irrational number . Hence K, (C*{I)) =
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(£ + 02,27, and it follows that (I} is Morita equivalent to the irrational
rotation algebra for rotatiou 6.

6. C'OACTIONS, CROSSED-PRODUCTS AND COVERINGS

The connection between skew products and coaction crossed-products was first es-
tablished for graph C*-algebras by Kaliszewski-Quigg-Raehurn and was extended to
k-graphs by Pask-Quigg-Raeburn.

Definition 6.1. Let A be a k-graph. and let ¢ : A — G be a functor into a discrete
group . The skew-product k-graph A x. G is given hy (A x, G)* = A" x (I with
A gl = (rA) cMg) sfhg) = (s(0)0)  and (A e(w)g)m 9) = O g).

It is straightforward to see that (A x, G)5 = A% x (7.

Example 6.2. Let /7 be the 1-graph with a single vertex v and a single edge e. The
following are, from left to right. the skew-product graphs for the functors determined
by ei(e) =1 € Z. ez(e) = 2 € Z and e3(e) = [1] € Z/37.

Ex,T: Ex.,Z% E X, L/37

(v.2)8 (v.2)gfic 1 en
(v,1) o b i ;»1
fe by . H
(0.0) * (v 1) o2
fe. 13 . f
- g
A T /
{v.—2) {v.{0])

Theorem 6.3. Let A be a locally convex row-finite k-graph and let ¢+ A — € be a
functor into a discrete group. Then there s a coaction § of G on C*(A) determined
by 8(sx) = sx ® ¢(A) for each X € A. Moreover, C*{A x, Q) = C*(A) x5 G via an
isomorphism which carrics sgy gy 10 1(s3)q, where 1 : C*(A) — C*{A)Yx 40 is the canonical
inclusion, and the g, are the images of the indicator functions X{g} € ol().

Proof. Define 1 : A — C*[A) & C*(G) by 1y = 5, ® ¢(A). Since ¢ is a cocyele, we have
ty = 5, @ 1 for each v € A® aud it follows that ¢ satisfies (CK1). If s 1) = r(h).
then g = ¢{v)h, and

tule = (3, ® c(p))s, @ (1)) = spsuclpielv) = 1,
since s satisfies {(CK2) and ¢ is a cocycle. So ¢ satisties (CK2). For A € A. we have

f;f«g = 8386, B ({A?’f"//\} = G @ 1= ts{)\;.
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because s satisfies (CK3) and the ¢(g) are unitaries. Similarly, for v € A” and n & N¥,

Soous= Y ssi@cAen) = ( b s;\sf\) Ql=s,®1=t
AsvAET AewASn AgvALr

The nuiversal property of C*{A) yields a homowmorphisin § : C*(A} — C*(A) ® C7(0)

such that §(s5} = £y = 5, ® (7). This 4§ is nondegenerate hecause increasing finite sums

of the form Pp =3~ s, form an approximate identity for C*{A) with 8(Fr) = Pr® 1

for all . For the coaction identity, we calculate

(@ 1)odlsy) =8 @A) = (@A) @e(A) = 5, @6%(c(A) = (1 @8 0 8(s,)

for all A.
To see that C*(A x, ) 2 C*(A) x5 G, define u: A x, G — C*(A) x5 G by up g =

1(52)q,- Since the g, are mutually orthogonal, and siuce the ¢(s,) are also. and since the
¢, comumnute with the 1(s,), the map « satisfies'(CK1). For (CK2) we calculate

W(psev)g) Hvg) = ’*{Sﬂ)qa(!f)g”(gu)qq = L(‘S/ILSV}QL‘(V)“]c(v)c(]g = /»(5“"39)(}9 = Upgy
so u satisfies (CK2). Also,
Ui ) = 9et(3350 )00 = Gat(8500 )0 = 1{80(3) )0 = Maprg)

because 6(s,n) = s ® ¢. Hence w satisfies (CK3). Finally, for (v.g) € (A x, G)° and
n & NF,

> oyt = D )Gy t(s3) = D dls)ush)gy = g,
(Ah)s{v.g{Ax LS AguASn AguA SN
s0 u satisfies (CK4). Thus there is a homomorphism 7, : C*(A x, G) — C*(A) x5 G.
The universal property of C*(A) x4 (7 ensures that the gauge action v on C*{A) induces
an action 4 of T* on C*(A) x5 G such that 8,04 = 10, and B2qy) = g, for all 2, 4.
In particular, B{upgy) = 2y g for all g. Since the s, go to ¢, ® 1 under 4, the
U(e,gy are all nouzero, and the gauge-invariant uniqueness theorem implies that 7, is an
isomorphisi. [

Corollary 6.4. Let A be a locally conver rou-finite k-graph. Then C*(A) x, T¢ &
(A %y ZF).

Proof. We have TF = @ and the action v of T# on C*(A) corresponds to the coaction
e of Z* given by =(s3) = s, ® d()). The result therefore follows from Theorem 6.3 (]

Lemma 8.5. Let A be a locally convex rowfinste k-graph. Then C*(A x4 ZF) is AF.

Proof sketch. Fix a finite subset F of A xg ZF. Let Dp = {m & N* . (\,m) ¢
Florsome A € A} Let N ==V Dp € N and let F = Uy e {0V 0} m <
p < NN € s{AAP™ ] Tt is straightforward to check that for (e, m), {v.n) € A x4 ZF,
if (A.p) € MCE{{(j1, m). (1, n)) then p = mvn. Using this and (2.2} it is straightforward
to check that span{s siinCe F} is closed under multiplication, and hence a finite-
dimensional subalgebra of C*{A x,; Z%) which contains C*({s,87 : g, v € F'}). Since
CHA %2 ZF) is the increasing union of the subalgebras span{s,s: n.( € FY. the result

follows. [

e

«
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Corollary 6.6. Let A be a locally convex rou-finite k-graph.  Then C*(A) 4s stably
isomorphic to a crossed product of an AF algebra by ZF.

Proof. Let £ he the dual action of Z¥ on ("*(A\ % Z* given by £,(2(53)0m) = 1{82)Gnin-
By Takai duality, C*(A) ~pe C7(A) X, Z" %z ZF. C‘omlhm 6.4 and Lemma 6.5 combiue
to show that C*(A) x. Z¥ & C*(A x4 ZF) is AF. and the result follows. |

We finish with a third take on the Bunce-Deddens algebva of type 2%, We have seen
it as an AT-algebra and as a crossed product of an AF-algebra by Z. Now we will see
it as a coaction crossed product by the profinite group of 2-adic nuimbers.

Fix a discrete group (7 and a sequence G = Hyt> Hyt> Hyt> - -+ of finite-index normal
subgroups of (. For each . let G, = G/H,,. We obtain a projective system

{e} =Gy &y &Gy

of finite groups. Fix a locally convex row-finite &-graph A, and a sequence of cocycles
ot A — Gyosuch that g{ea{A)) = e, (3) for all A\, n. We for g € G, we will write [g],
for the class of g in G,,.

Bach Iy, := A x,, G, is a k-graph, and the map ¢, : I, — T,y given by 0., [gl.) =

& (A gnllgn])) ()\ [ In—1) is a covering. Let ¥ be the infinite (k + 1)-graph of Re-

mark 4.10 obfa,mod from the tower of k-morphs X, . For each n. let P, := E%rg 8y =

va\“ lglneGin S(ulgla) € Cr(Z).
Lemma 6.7. We have PC*(E)P, & & lim C*(T,) under inclusions satisfying soug.) —
an“(wn el SOUBnEn)

#
Proof. For each n € NF, let V), = cheX x, Sa Since the source map on cach X is a
bijection. the V,, are all partial isometries with Vv, = B, and V,V* = F,. The map
a = VaaVy is an injective homomorphism from C*({s, : & € +(D)}) to BCHD) Py
(gauge-invariant uniqueness theorem again). Every spanning element of FC*(¥)P,
belongs to V,,C*({sq : @ € o(Tn) DV for large enough 7, so it follows that PyC*{($)F, E
4
e
limy C(T).
To caleulate the connecting maps, note that
. i . . X
ViaVasonVaiVan = 3 1500005
2yeEX
= Z S ’“)u})"’{h [ P
a1 }-=a((f)n g 132 lgn]
= Z SOk 1)
qUhina 1}=lgn]
as required. I
« Corollary 6.8. For cachn, let 8, be the coaction of G, on C*{A) determined by 8,(s,) =

8y @ (N}, Then
FoCH (S Py = lllug(/ (A) =, Ga)

G A, D

.5 8t 2ot (Pl

under inelusic

[EPEEV

0

» Proof. Combine Lemma 6.7 aud Theorem 6.3.
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For the following theorem. lot G = h'm Gy.and let ¢2° - G — G, be the canonical
surjection for each . We (,x identify with the set of sequences ([g,1.)22, € [102, G,
such that g1 {lgniila 1) = [gnhs for all . Observe that the ¢, : A — G, determine a
cocyele ¢ 1 A~ G by (och = {ca{ M),

Theorem 6.9. Therc is a coaction S of Gog on C*(A) SALISFYING Goo(5y) = 53 D Coo{A)
for all A, Morcover,

CHA) X Go = 1 C7(A) X, G,

and in particular is Morita equivalent to C*(%).

Pmaf More or less the szuno argument as in Theorems 6.3 shows that there is a coaction

CCMA) = CHA) @ CM{(Goo) satistying du(sy) = $x ® col(N) nondegeneracy
as a coaction follows from nondo generacy as a homomorphism by a result of Landstad
because (/o is amenable. Since Co(Gy) = lim co(G), for each n the map §g,
XheCo g (h)=lgl, determines a homomorphisin of (O(G,,) into Co(Go). Thus Theorem 6.3
implies that e‘(A ey = 183006 (X heCgz (h)=(n)n) determines a Cuntz-Krieger T',-family
in C*(A) %4, Gao, and hence a homomorphism m, : C*(T,,) — C*A) x5, Goo, for each
n € N. The universal property of C*(A) x5 G implies that there is an action 4 of
T* on C*(A) x5, Guo which fixes the copy of Cp{(7s) and satisfies . 0 ¢+ = 10 7,. and
it follows that 3, o m, = m, o 7, for cach n. The gauge-invariant uniqueness theorem
therefore implies that the 7, are iujective.

The universal property of lim C*(A) x4, G then gives 7y i C*(A) x5, Gy —
C™(A) x4, Goo. and 7, is injective because the 7, are all iujective. It is surjective
because the Xpeo.zehy=igl. span a deuse subalgehra of Co(Gs) so the image of 7o
contains all the generators of C*(A) x4, (7. Remark 4.10 implies that Py is full. so the
Morita equivalence of C*{A) x4, G with C*(T) follows fron1 Corollary 6.8. [

Remark 6.10. In fact the continuity of coaction crossed products by projective systems
of finite discrete groups is a geueral phenomenon. hut the proof is more involved.

Example 6.11. Let A be the 1-graph with one edge e and one vertex ». Let (G := Z
and I, = 2°Z for all n. so G, = G/H, is the finite cyclic group of order 2 for all n.

INot MOHG) becanse the projective lanit is compact
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Hence (oo = Zg the group of 2-adic numbers. Then the 2-graph © is

wlich is precisely the rank-2 Bratteli diagram corresponding to the 2% Bunce-Deddens
algebra as described in Example 5.6(1). By Theorem 6.9 aud Lenuna 5.1, we have
FoCH* ()P = C(T) x4, Zs.
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