CATEGORICAL PERSPECTIVES IN
NONCOMMUTATIVE DUALITY

5. KALISZEWSKI AND JOHN QUIGG

ABsTRACT. Noncommutative duality for C*-dynamical systems
is a vast generalization of Pontryagin duality for locally compact
abelian groups. We give an introduction to the categorical aspects
of this duality.

1. Crassican LANDSTAD DUALITY

1. Motivation, Overview. The first crossed-product duality theo-
rews for C-algebras. due to Takai. savs that if @ @ ¢ — Aut A is an
action of an abelian locally compact group G on a C*-algebra A, then
there is a dual action action & of the Pontryagin dual group G on the
crossed product A x, & such that the double crossed product is stably
isomorphic to A:

(Ax, ) xzG2ARK,

where K denotes the compact operators on L*(G).

Thus, having the dual action & almost allows us to recover the orig-
inal ("-algebra A from A x, G. Not up to isomorphism, but it comes
closer A K has many of the samne properties as A, and in particu-
lar is Morita equivalent to A (so has the same primitive ideal space,
representation theory, and /€-theory, among other things).

Operator algebraists thought this crossed-product duality was such a
good thing that they immediately began searching for a generalization
to nonabelian groups, and thus the theory of coactions and their crossed
products was born: Imai and Takai proved that. roughly speaking, for
an action « ol any locally compact group G on A there is a coaction’
aoof Gon A x, G such that again
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Our main interest in these talks will be another type of duality for
crossed products, proved by Landstad. that allows us to recover A
from the crossed product up to isomorphism, not just up to Morita
equivalence. Landstad refers to it as a “duality theorem for 7 *oerossed
products”, and nowadays the rest of us call it “Landstad duality™.

[ this first talk we'll give cnough background to understand this
classical Landstad duality.

12 Goal of Classical Landstad Duality. The two basic questions
underlying Landstad duality, as originally posed (and answered) i (8],
are as follows:

Question 1.1. 1f A X, (s a reduced crossed product by an action
o of a given locally compact group G how do we recover A and o

Question 1.2. When is a C*-algebra B the reduced crossed product
of some C*-algebra by some action of a given locally compact group G

Of course, the most meaningful interpretation of “is” in both ques-
tions is “up to isomorphism”. Moreover, the best answer to Ques-
tion 1.1 should involve only the criteria used to answer Question 1.2,
not any intrinsic information about A or .

In order to answer these questions, we need to look more closely at
crossed products.

1.3. Crossed products and reduced crossed products by ac-
tions. For a more thorough exposition of the theory of actions. coac-
tions. and their crossed products, we recommend (3, Appendix A]. Here
we'll just give a “hand-wavy” introduction. Given an action (A.GLa).
there are many constructions of the crossed product A x, . but the
main thing is that it has a universal property:® it has the same rep-
resentation theory as the covariant representations of the action. A
covariant representation of an action (A.«) (note that we've dropped
the notation G — the group G will always be around, cven if not ex-
plicitly named) is a pair (7, u), where 7 and u are representations of A
and G, respectively, on a Hilbert space, such that moa, = Aduson for
s € (. More generally, instead of representations on Hilbert space. it’s
customary to use covariant homomorphisms, which take values in the
multiplier algebra M(B) of a C"-algebra B rather than the bounded
operators on Hilbert space. The crossed product comes with a universal
covariant homomorphism (i4, i) taking values in M(A %, G

We should immediately explain the universal property of crossed
products, since it's fundamental to everything we'll discuss: given a

3 . N . - § - . o .
2ehich is in fact the raison d'éire of the crossed product in the first place
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covariant homomorphism {7, «) of an action (A, «) in M(B), there is
4 unique homomorphism

mxur Ax, G — M(B),

called the integrated form of (7, u), making the diagram

A= M(Ax, G)<S— g
.

XU
w
EN

M

o

v
(B)
commure.

Ok, that’s great, but often the crossed product is too big - the
trade-off for having a nice universal property is that it’s hard to “see”
the elements of A x,, G. One particularly useful representation of the
crossed product is the regular representation, analogous to (and gener-

alizing) the regular representation of . The image of A x, G under
thie regular representation is the reduced crossed product A x .G, The
reduced crossed product doesn’t capture all the representation theory
of the action (although it does encapsulate a lot of it, and in fact all
of it when the group G is amenable®) but the elements of A x., G
are “easier to see” because they're (often quite familiar) operators on
Hilbert space. The canonical covariant homomorphism associated to
the regular representation is denoted (¢, i7;).

The reduced crossed product encodes exactly those representations
that factor through the regular representation. Consequently, there’s
asurjective homomorphism?

g"Ax,G— Ax,, G,
and in fact another definition of the reduced crossed product, more
useful for our purposes, is as the quotient of 4 x, GG by the kernel of
the regular representation. Then the above surjection ¢ is just the
quotient map.

If¢: A~ M(B)isan a — [ equivariant homomorphism, then there
is a homomorphism

@ X G o= z’iig; © {?ﬂ X iy A U G :UWB X3 (;j

it go into the precise delinition of amenability here. except to say
it equivalont wo (PG = 0G0 and is a good thing, enjoyved by, for example.
tan and compact groups, but not by the free group on two generators — which

f!f;ﬁ}
eads to the Banach-Tarski paradox. but that’s another story, as Kipling would say
Fand the reason for the superseript “n” will be given later
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This phenomenon persists for the reduced crossed product: there is a
unique homomorphism ¢ <, G making the diagram

ox (5

A scy G e M{B >y G
i K
' ‘ ¢
A Xar G-~ el e A[(]J’ X (;3
@w G E J

committe. i.e.. the kernel of ¢y © (¢ x G) contains the kernel of ¢y
The crossed product carries a dual coaction a of G. Being a coac-
tion®, & is a certain type of homomorphisim

G0 Ax, G M{(Ax, G) e ().

The reduced crossed product carries its own version” &’ of the dual
coaction, making the diagram

Ax, G5 M{(A %, G) 0 CH(GY)

q" \}{ i g id
A Xr G = M((A X0 G) @ C*(G))

commute’.

So. the reduced crossed product A X, G is a C*-algebra which
comes equipped with certain other gadgets: a covariant homomorphism
(1.7} and a coaction o

1.4. Coactions, dual coactions, normal coactions. The theory
of coactions is parallel to that for actions: the crossed product of a
conction (A.8) is a C*-algebra A x5 G whose representations are the
same as the covariant representations of (A 0), and more generally
for the covariant homomorphisms. To explain further we'll resort to
a little bit of hand-waving (and again, for more complete details, we
recommend [3, Appendix AJ):

When G is abelian, a coaction of G corresponds to an action of the
dual group G. When G is nonabelian, a coaction of (G is to be regarded
as an action of the nonexistent. dual group. Now. an action (A« of
(; corresponds to a certain type of comodule structure

G A— M{A®CGY).
“precise definition coming later
Sand again the reason for the superseript “n” will come later
Tand to express this more compactly we say ¢7 is “h - o equivariant”
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which, after A® Cy(G) has b(*on identified with Cy(G. A) and the mul-
tiplier algebra with Cy(G, M?(A)) (the superscript “F” means M(A)

has the strict ropology), is given by

ala)(s) = a,la) for ae Ased.

Of course the same is true for actions of G they correspond to cer-
tain comodule structures A — M(A® Cg(é;)} The Fourier transform
on G takes C*((G) isomorphically onto C’U(@) Thus, an action of &
corresponds to a certain comodule structure

A— M({A®C(G)),
and abstracting this structure so that all mention of G has been ex-
punged gives rise to the definition of a coaction:
Definition 1.3. A coaction of (G on a C*-algebra A is an injective
nondegenerate ho111011’101’1)1118111
A= M(AsCH(G))
satisfying
(1) spa{o(A)(1 @ C*(G))} = A C*(G);
(2) (0®id)od = (id@de)od, where o« CH(G) — M(CH(GY@C*(G))
is the homomorphism corresponding to the strictly (‘ontmuous
unitary homomorphism of G into M (C*(G) ® C* () given by®

Sk S8,

[tem (1) is a technical condition that makes crossed-product dual-
ity work”. and (2) is a kind of “co-associativity” corresponding to the
property that, when G is abelian, an action of G on A is a homomor-
phism from G to the automorphism group Aut A. [t’s important to
observe that d¢ itself is a coaction of G on C*(G), called the canonical
coaclion.

xample 1.4. The dual coaction &' on the reduced crossed produ
E le 1.4. The dual t " the reduced ¢ d product
A %, G of an action (A, «) is the homomorphisin

G = (1) % (i @1d) - A X, G M((A X0y G) & CH(G)).
Thus on the generators we have
(113 for ae A
(e

| L(s)&s for se .

e

W habitually identify s € ¢ with its canonical image in M{C{(G)).
Tand nsed 1o be ealled nondegencracy of the coaction
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In the next lecture it’ll be important to note that (1.2) implies that
the homotmorphism iy, : C7(G) — M{A %, G) s dg — A" equivariant.

sy to describe the covariant homomorphisims of a coac-

It's not so cas;
tion. and again we'll resort to hand-waving. As a warn-up. let's
rephrase covariance for actions: a covariant homomorphism (7.7) ina
multiplier algebra M(B) of an action (A G.a) can be regarded as a
homomorphism 7 : A — AM(B) that is o« — Adu cquivariant:

mlog(a)) = wgm(au, = (Adu)(m(a)).

where Adw @ G — Aut B is the inner action implemented by the
nnitary homomorphism w : G- — M(B).
If (¢ is abelian and « is an action of G on A, then a covariant ho-

o~

momorphism involves a homomorphism u : G — M (B). and by the
nniversal property of the group C”-algebra. this corresponds to a ho-
momorphism'” (7*(@‘) — M(B). Fourier transforming. we get a
homomorphism g @ Co(G) = M(B). which implements (what must
be) an inner coaction Adyuof G on BB Generalizing to (possibly) non-
abelian groups G, a covariant homomorphism in a multiplier algebra
M(B) of a coaction (A,G,d) can be defined as a pair (7, ). where
112 Co(G) — M(B) is a homomorphism and 7 : A— M(B)isd—Adp
cquivariant:
(r @id)(8(a)) = (Ad p)(7(a)).

There is a universal covariant homomorphism (j4.jc) of the coaction
(A8) in M(A xs G).

The universal property for crossed products of coactions is parallel to
that for actions: given a covariant homomorphism (7. i) ol a coaction
(A.6) in M(B). there is a unique integrated form

7o A G — M(D)
making the diagram
A M (A x5 G) <= Co(G)
. |
SN TR -
7 \\ ;} %/ 1

commnnte.

It turns out that coactions cowme in various Havors, and here we
want the normal oues. which means that the canonical homomorphism
Ja A= M{A x5 G) is injective; this not only makes life significantly

0. 1 1 ; . . .
and here we've made a choice to abuse notation by using « for two different
maps: it's a fairly connmon trade-off.
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3t

easier, but is necessary for the (imminent) statement of the “original
Landstad duality,

[.5. Classical Landstad Duality. We have seen that every reduced
crossed product A %, G comes with a certain unitary homomorphism
g of G into M({A %, G) and a dual coaction @™ of . Landstad’s
answer to Question 1.2 is that having these two extra bits of structure
entirely characterizes the reduced crossed products by G. (Landstad’s
answer to Question 1.1 was a technical tour de force by which an action
isomorphic to (A, o) was explicitly constructed from A x,, G using i,
and a™.)

This theorem, originally proven by Landstad in [8, Theorem 3], has
become one of the standard results in C*-dynamical systems, espe-
cially regarding “noncommutative duality”. The version we state here
appeared in [5] as a stepping stone to Landstad duality for full crossed
products' it’s a significant restructuring of Landstad’s version. and
we needed to work a bit to prove it.

Theorem 1.5 ([5, Theorem 3.1]). Let B be a C*-algebra and let G be
a locally compact group. Then
(1) There exist an action (A, «) of G and an isomorphism 0. B —
A X, G if and only if there is a strictly continuous unitary
homomorphism v : G — M(B) and a normal coaction 6 of GG
on I3 such that
Oluy) =u,&s forallse .

vz

Morcover, we can choose A, «, and 6 such that 6 is § — &
equivariant and 0 o u = ip,.

If (C,73) is another action and o : B — C x5, G is a 6 — g
equivariant isomorphism such that o o u = iy, then there is an
isomorphism ¢ : (A, a) — (C, ) such that (¢ x, G) ol = 0.

/m
RN
e

Ok. that was a mouthful: the “morcover” and the uniqueness clause
(2) are particularly cumbersome. In the next talk we’ll restate Land-
stad’s theorem in categorical language. and one benefit will be a much
more cconomical formulation of the uniqueness.

P, R . . . . . , .
Hhut that s another story, as Kipling would say, which we will tell in a later
PR
LK.
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9 CATEGORICAL LANDSTAD DUALITY FOR REDUCED CROSSED
PRODUCTS

Here is the categorical version of Landstad’s theorem:

Theorem 2.1 ([6. Theorem 1. 1]). The functor

oo
N f(:}

(A ) = (A xpp G

b0 x, G

is an equivalence fron the category of actions (of () to the comma
category of normal coactions (of G) under the canonical coaction O
on C(G).

Questions 2.2.

(1) What does that all mean?
(2) Why is categorical langnage appropriate here?

We'll answer the above two questions out of order. For the sec-
ond question, recall that Landstad duality tells us that we can recover
(A.a) up to isomorphism from the data (A X, G,a" ;). Now. it
transpires that often it’s quite cumbersome to make precise what “up
to isomorphism” means (e.g.. have a look at the uniqueness clause in
Landstad’s theorem). Here is where category theory can help: it turns
out that there’s a category of actions and a category of normal coac-
tions, and we can angment the latter category so that the above data
gives an equivalence between these categories. and morcover from this
we can recover Landstad dualitv, plis more.

But what does it mean to say that the crossed-product functor CP
from actions to the comma category is an equivalence? It would be
an isomorphism of categories if there were a functor F in the opposite
direction'? such that each composition CPoF and FoCP is the identity
fnctor. But it turns ont that this notion is not very useful'”; it’s much
better to ask. for each action (A, @). not that F'o CP(A, ) and (A, o)
coincide. but rather that they be isomorphic, and similarly for the
composition CP o F. However'?. this is not quite enough: the crucial
thing is that we want these isomorphisms to be “natural”. This means

12,0d we won't need to contemplate what F'might be

130 the sense that, although some categories arising in nature are actually iso-
morphic. this doesn’t happen often enough to be very interesting

HMand here's the categorical perspective
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that we want isomorphisins 6 making the diagrams

@

(A ) (B, 7)
i
g2 =y
' |
FoCP(A, «) — [0 CP(D, [7)
7 FoCP() ) ’

commute, for every morphism ¢ of actions. Then we say F o CP is
naturally isomorphic to the identity functor. And we similarly want
CPo /7= id. When such a functor Fexists, we say that CP is an
cquwivalence of categories.

What are the categories of interest to us here? We start with
Definition 2.3. The basic C"-category C* has:

(1) objects: C"-algebras;
(2) morphisms: nondegenerate homomorphisins into multiplicr al-
gebras.

In more detail: if A and B are objects in C* (i.e.,, they are C*-
algebras), then a morphism ¢ : A — B in C* is a nondegenerate ho-
momorphism ¢ : A — M(B). Here nondegenerate means ¢(A)B = B.
It turns out that the naive idea of using ordinary homomorphisms be-
tween the C-algebras themselves is too restrictive for many purposes.
Of cowrse. one should check that C* really is a category, ie.. that it
has identity morphisms (obvious) and that morphisms can be composed
(1ot s0 obvious, but not deep).

A fundamental property of the basic category is that its isomor-
phisms are familiar:

Lemma 2.4. A morphism ¢ : A — B in the category C* is an iso-
morphism iof and only if ¢ maps A into B and is an isomorphism of
C"-algebras in the usual sensc.

We need equivariant versions of the basic category: here is the ap-

propriate version for actions:

Definition 2.5. The category A{G) has:
(1} objects: actions of G
(2) morphisms: equivariant morphisms in C*.

In more detail: if (A, o) and (B, 7) are actions of G, then a morphism
¢ (Aa) — (B,7) in A(G) is a morphism ¢ : A — B in C* that is
= 3 equivariant in the sense that

voay, =Jyo¢ forall sedG.

Dually. the appropriate equivariant category for coactions is:
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Definition 2.6. The category C{(G) has:

{1} objects: coactions of G-
{23 mmp}mm‘: equivariant morp shisms in C7.

In more detail: if %J; and (3.2) are coactions of G then a mor-

phasm ¢ (AL0) — ) in C((G) is a morphism @+ 4 — B in C* that
isd—¢ (f:gzz.u;(z:rwm, in tho sense that the diagram

A —»éf% A &0 C*(G>

& f") id

B —— B & ( (G
commutes in C*. which makes sense hecause
y@id: A CH(G) — B® C7(G)

is a morphism in C*.

As mentioned in the first lecture, some coactions are normal,
the sense that the canonical morphism ja : A— Ax;Gin C s a
monomorphisi, and these form a category:

Definition 2.7. The category C™(G) is the full subcategory of C{G)
whose objects are the normal coactions of G.
What are the “crossed-product functors™?
Definition 2.8. The functor
CP: A(G) — C(G)

takes each action (A, a) to the dual coaction (A X, G. o). and each
morphisim & : (A, a) — (B.7) n A(G) to the morphism

0% G (ipoo) xia: (Ax,G.a) = (BxyG.75)
m C(G).
For Landstad’s theorem, we need to use reduced crossed products:
Definition 2.9. The functor
RCP : A(G) — C"(G)

takes cach action (A.a) to the dual coaction (A X, . G a™). and cach
morphism ¢ : (A, o) — (B.7) in A(G) to the morphism

b3, G o= (150 6) X il (A xa, GG == (B xg, G.3")

in C"(G).
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But in Theorem 2.1 we need this functor to take values in an “en-
hanced” category, not just C*(G) - namely, we need our functor
to keep track of 4. Well, the unitary homomorphism ¢, : ¢ —
M(A x, ) corresponds to a morphism

it CG) — Ax,, G In C",
which turns out to have a special property: it follows from the definition
of the dual coaction that if, is 0 —a™ equivariant. i.e., gives a morphisin
i (C7(G) ) — (A Xy, Goa™)
in C(4.

Anyway, we now have a category, namely C(G), and a specific ob-
ject in that category, namely (C*(G), é¢), and we are considering mor-
phisms, of the form ¢, from that object into a particular subcategory,
namely C*(G). This turnus out to be an example of something category
theorists call a comma category.

In our case the comma category is

(C'(G).66) | €"(G),
with
(1) objects: morphisms in C(G) from (C*((), 6¢) to objects in the
subcategory C™(G);
(2) morphisins: morphisuis o in C(G) making a diagram of the form
(C*(G), )
@ Y
¢ // \\
/’-/ &
(A.90) e (B,¢)

commute.

We'll write an object in the comma category (C*(G), dq) | CH(G) as
atriple (A, 9. 0), where ¢ (C*(G), 6¢;) — (A, 0).

Thus, we now sce that, given an action (A, «), the triple (A X,
GLoam, 7)) is an object in (C*(G),d¢) | CM(G), and so finally we can
understand the functor in Theorem 2.1, and the assertion is that it is
a category cqmv dence. Here is a re-statement of Theorem 2.1 in the
notation we've introduced:

Theorem 2.10. The functor
RCP (A o) = (A %, G, a" )
[oR==1 (f) X Cr
is an equivalence from A(G) to the comma category (C(G),0¢) |
CHGh.
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3. Proors oF CLDA. axp CLDC

CLDA. At the end of the last talk, we saw the statemoent of
CLDA (Categorical Landstad Duality for Actions). Now we'll indicate
the idea of the proof, after which we'll see the “dual” version CLDC
(Categorical Landstad Duality for Coactions).

Theorem 3.1. The functor
RCP : (A, ) = (A x,, G, a" i)
O, G

is an equivalence from A(G) to the comma category (C(GY. o)
MG, ,

Outline of proof. We have to begin by choosing a strategy for proving
that a functor is an equivalence. The definition would require us to
find a quasi-inverse functor going the other way, and verify that both
compositions are naturally isomorphic to the identity functor. This
adds up to a lot of work, and fortunately we can choose among various
short-cuts. This time we apply a standard result from category theory
(and for all this we recommend [9]): it suffices 1o show that RCT i
full. faithful, and essentially surjective.

Essential surjectivity means that every object in (C(GY. 6y L CMG
is isomorphic to one in the image of RCP, and this is part of the content
of classical Landstad duality, which we stated at the end of the first
lecture.

Fullness means that for all actions (A, a) and (B, /), the functor
RCP maps the set of morphisms Mor((A, ), (B.3)) onto the sct of
morphisms Mor(RCP(A. a), RCP(B. 3)). and faithfulness means that
the same map is injective. Together, fullness and faithfulness prov ide
a generalization of the uniqueness ()Lmsc in classical Landstad duality.

Thus, we need to show that if (A, «) and (B, ) arc actions and

T \

(A Xy GLE™ST) = (B xg, G35
Is a 11101“[)hi5111 in (C*(G),8¢) | C"(G), then there exists a unigue mor-
phism ¢ : (4. a) — (B, 3) in A(G) such that o = ¢ x, G.
Consider the diagram

4
A ,
A L M(A %o G)
@l Lo
v

¥
M(B) ——= M(B x4, G).

Our strategy in [6] comprised the following steps:
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(1) Show that there is a unique homomorphism ¢ making the dia-
gram commute. For this we observed that, since i} is faithful,
it sufficed to show that

ogoi(A) T iy (M(B)),

and for this we made heavy use of Landstad’s techniques from
R - j‘

(2) Show that ¢ is «v — 7 equivariant and nondegenerate;

(3} Observe that by construction we have ¢ x,. (¢ = o.

o

Deducing classical Landstad duality from CLDA. (1) First suppose we
have an isomorphism ¢ : B — A x,, (. Then the diagrams

and

B~ = M(B®CG))

{31‘3 %J(G(X)id

Aoy G M((A o, G)® C7(G)).

where 0 M(B) — M(A X, G) is the canonical extension of 6 to mul-
tipliers'®, and similarly for # @ id, can obviously be completed, giving
the maps w and ¢ with the required properties {and the coaction § is
normal becanse it's isomorphic to the normal coaction a™).

Conversely. if such u and ¢ exist. then (B,4.u) is an object in
(C(G).0¢) | CH(GY. and s0 s isomorphic to one in the image of RCP,
and in particular I is isomorphic to a reduced crossed product.

(2) Given the existence of w and 4. by essential surjectivity of RCP
we have an isomorphism

O (B.0,u)— (Ax,, G a% i) in (C(G),dq) | CHG),

> isomorphisin 8 0 B — A x,,. G is 0 — &" equivariant and
s o u = ip,. Moreover, if we also have (C. ) and o. then the

Byhose existence is vonchsafed by nondegeneracy
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commmtative (by construction!) diagram

BN 0 . PR
(B.6.u) ——o—> (A Xy GOm0

| )
- [ ol ™!
o T ¢

(C %y, G.3".00)

in (C*(G).6¢) | CM(G) implies. by fullness. that thiere is a morphism

o (A a) — (C.7) in A(G) such that

g0t =0x. G,

so that

(p x,G)oll =0,
and moreover ¢ is an isomorphism because ¢ X, G is, since RCP is an
0

equivalence.

3.9 CLDC. What about a dual version of Landstad ality, starting
with coactions? First, just as every crossed product by an action of an

abelian group G carries a dual action of the Pontryagin dual group (.
overy coaction crossed product A x; (¢ carries a dual action 5 G
Aut(A x5 ) defined by

o~

b0, = jax (joorty) forsel,
where rt is the action of G on Cy(G) by right translation:

rto(f)(t) = f(is).

The noncategorical version of Landstad duality for coactions should
give a characterization (up to isomorphism) of crossed products by
coactions, together with a uniqueness clanse. The following theorem
originally appearced in [10. Theorem 3.3 We've modified the original
statement considerably, using modern notation and terminology, and
stricturing it to be parallel to classical Landstad duality for actions.

Theorem 3.2. Let B be a C*-algebra and G a locally compact group.

Then
(1) B is isomorphic to a crossed product A >, G by a normal coac-
tion & of G on a C*-algebra A if and only of fhfff are an action
a of G on B and avt—c equivariant morphism fi : ColGy — B,

(2) Moreover, if the above conditions hold z‘hrfn an 1somorphism 6
B — A x5 G can be chosen to be o — 5 equivariant and to
satisfy B o= jo. and if (C.2) is another normal cooction an d
g B — C x.Gis an o — € equivariant isomorphism such that



CATEGORICAL PERSPECTIVES IN NONCOMMUTATIVE DUALITY 15

gop = j&, then there is an isomorphism ¢ : (A.d) — (C e
such that (¢ x Gyof =g,
And now we’ll state the categorical version (CLDC). First, the rele-
vant functor:
Definition 3.3. The functor
CP:C(G)y — A(G)

takes each coaction (A,d) to the dual action (A x5 G,d), and each
morphism ¢ : (A.0) — (B.2) in C(G) to the morphism
oxGi=(jpoo) X jo (Ax;G0)— (B x.G,8)
m A(G).
Theorem 3.4 ([7. Theoremn 4.2]). The functor
CP:(A0) = (A xsG.9, je)
o0 x G
is an equivalence from C*(G) to the comma category (Co(G),rt) |
A(G).

Actually, [7. Theorem 4.2] is phrased in terms of reduced coactions,
which are just like (full) coactions but use C7(G) rather than C*(().
[t turns out that this causes no confusion or ditficulty, because there is
complete freedom of choice between reduced and full coactions [11], so
the preceding theorem follows more-or-less immediately from the one
appearing in [7].

The proot of CLDC is not parallel to that of CLDA: in [7] we con-
struct a quasi-inverse functor Fix : (Cy(G),rt) | A(G) — C*(G). But
again, we appeal to a short-cut to avoid the drudgery of showing that
both compositions are naturally isomorphic to the identity: standard
category theory tells us that it suffices to show that Fix is full and
faithful. and that CPoFix % id. and this is what we did. This strategy
llas the advantage of displayving a quasi-inverse - an explicit functor
which “undoes” the crossed-product tunctor up to isomorphism - and
moreover it does so without explicitly computing that FixoCP 22 id.
We would like to do this for CLDA, although it would be much more
cumbersome. (In CLDC, we could construct Fix by carefully “averag-
ing” over the dual action, whereas it is difficult to even formulate what

averaging over a coaction would entail.)
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4 CATEGORICAL LANDSTAD DUALITY FOR FULL CROSSED
PRODUCTS

4.1. Crossed-product duality for coactions. Crossed-product du-
ality for actions was used to motivate Landstad duality for actions.
and it will behoove us. not just for motivation but also for future use
in these lectures. to deseribe the analogous crossed-product duality for
coactions. The original version is due to Katayama'®., To state it in
modern terms, and again to help us in future lectures, we start with an
arbitrary (i.e., not necessarily normal) coaction (A4,9). Nilsen showed

that there is a canonical surjection
d:Axs G XEG — Ao K.

We can give an equivalent, albeit nonstandard. statement of Katayama
duality:

Theorem 4.1 (sce [2. Proposition 2.2]). The coaction o s normal if

and only if the canonical surjection d descends to an isomorphism

Thus, paralleling the situation for actions, Katavama duality allows
1s to recover A up to Morita equivalence from the crossed product
A x5 G, whereas Landstad duality for coactions allows recovery up to

isomorphisim.

4.2. Full CLDA. Landstad duality for reduced crossed products shows
Low to recover an action up to isomorphism from the reduced crossed
product, plus some additional information. What about a version for

the full crossed product? Here is the categorical version:

Theorem 4.2 ([6. Theorem 5.1]). The functor

CP: (Aa) = (A x, G 0uig)

G x G

is an equivalence from the category A(G) of actions (of G) to the

comma category (C7(G),d¢) | C™(G) of marimal coactions (of G} un-
der the canonical coaction 8 on C(G).

To explain this theorem, we need to introdice maximal coactions.

Definition 4.3. A coaction (A,4d) is marimal if the canonical surjec-
tion @ is an isomorphism.

T - N ; : . :
fine print: Katayama used reduced coactions. but subsequently we've worked

ot an equivalent version using normal ones
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We'll explain more fully later, but roughly speaking the reason for
the name “maximal” is that every coaction (A, §) sits in a diagram of
the following form:

(A 87) s (A,8) = (A", 5",

where the coactions on the left and right ends are maximal and normal.
respectively, the arrows are surjections, and all three crossed products
are isomorphic.!7

Implicit in the statement of Theorem 4.2 is the information that the
dual coaction & on the full crossed product A x, G by an action is
automatically maximal - this was proved in [2, Proposition 3.4].

In particular. the canonical coaction (C*(G).d¢) is maximal, since
0¢; 15 the dual coaction on the crossed product

C"(G) = C Xy G

of the trivial action on C.

We gather the maximal coactions into a category:
Definition 4.4. C"*(() is the full subcategory of C(G) whose objects
are the maximal coactions of G.

Thus (C*(G), 6¢) is an object in C"™(G), and Theorem 4.2 says that
the crossed-product functor

CP+ A(G) — ((C*(G), ) | C™(G))

is an cquivalence of categories. As such, CP is full. faithful, and cs-
sentially surjective. As we've seen in the carlier versions of Landstad
duality. the essential surjectivity gives a characterization of full crossed
products:
locally compact group. Then B is isomorphic to a full crossed product
AxLG by an action if and only if there are a strictly continuous unitary
homomorphism G — M(B) and a mazvimal coaction § of G on B

Corollary 4.5 ([5, Theorem 3.2]). Let B be a C*-algebra and G a

such that

Oluy) = uy & s,

We could include a uniqueness clause in the above characterization,
but it would be awkward, and is captured much more cleanly by the
fullness and faithfulness properties of CP.

The versions of categorical Landstad duality for full and reduced
crossed products are obviously parallel, but they aren’t proven using
parallel techniques. More precisely, we don’t just adapt the proof of

“"Thus, normal conctions can boe thought of as “minimal

o
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rediced Landstad duality to prove Theorem 4.2 rather. we deduce
it from reduced Landstad duality. with the help of another category
equivalence:
C"(G) ~ CMG).

which we will discuss in the next lecture. But to give some idea of
what's going on, let’s informally introduce this equivalence here.

The key is the concept of a normalization of a coaction (A,d). com-
prising a normal coaction (A", 6™) together with a morphism ¢"
(A.8) — (A™,6") in C(G) such that

G x G AXs G —— AT X G

is an isomorphism.

It transpires that normalizations always exist, and are auntomatically
surjective (see [1. Proposition 4.5]. or [11. Propositions 2.3 and 2.6}).
Morcover, as Steve will discuss in the next lecture, normalization is a
functor

Nor : C(G) — CM{(G).
and in fact restricts to an equivalence from C™(G) to C*(G).

Anyway, the strategy for proving full Landstad duality (Theorem 4.2)

is to show that the diagram

A(G) —F s (C*(6).06) L C™(G)
~ |

RCP
\ i Nor

- v

(CH(G). b) | CHG)

commnites in the sense that the composition Nor oCP is naturally iso-
morphic to RCP (in fact, with an appropriate choice of conventions
they are equal).

1.3. Enchilada categories. Time permitting. we take a break to
give here an outline of the categorical approach to “classical” crossed-
product duality. In [3] we used a different category of ("-algebras,
in which the morphisms are isomorphism classes of correspondences.
and in which the isomorphisms are Morita equivalences. Part of what
we showed was that a crossed-product functor for actions of a fixed
oronp (7 is quasi-inverse to a crossed-product functor for coactions
of &
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5. MAXIMAL-NORMAL EQUIVALENCE

Recall from the preceding lecture that every coaction (A,0) has a
normalization, i.c.. a normal coaction (A" 0") together with a mor-
phisu ¢" : (A, 0) — (A", 07) in C(G) such that

= , ,
q” X G N 14 X§ G iy _,4” X(Sﬁ C;

is an isomorphism. Similarly, a mazimalization of (A.4) is a maximal
coaction (A™, §) together with a morphism ¢™ : (A™, ™) — (A,d) in
C((G) such that

r - =
q”L X G . ‘4”1 XO‘H: C; I ,4 X() C;

is an isomorphism. Maximalizations always exist [2, Theorem 3.3], and
are antomatically surjective.

The original idea was that any coaction could be replaced with a
maximal one or a normal one with the same crossed product: but Fis-
cher [4] has subsequently shown that more is true. Maximalizations and
normalizations have the following universal properties (for maximaliza-
tions see [4, Lemma 6.2], and for normalizations see [4, Lemma 4.2 and
also [2, Lemma 2.1] -~ the requirement in [2] that the homomorphisms
are into the C*-algebras themselves rather than into multipliers is not
used in the proof of [2, Lemma 2.1]):

(1) If (B.z.0) is a maximalization of (A,4§), (C,v) is a maximal

coaction, and 7 : (C,7y) — (A,d) is a morphism in C(G), then
there is a unique morphisim ¢ making the diagram

commute in C(G).

(2) If (B.=2.¢) s a normalization of (A,4d), (C,7) is a normal coac-
tion. and 7 : (A, 9) — (C.~) is a morphism in C(G), then there
is o unique morphism o making the diagram

comimaute.
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Thus. a maximalization of (A.d) is a final object in the comma cat-
egory C"(G) | {A.8), and a normalization is an initial object in the
comma category (A.4) [ C"(G).

The above universal properties allow us to tirn mm\'inm}imt'ion and
normalization into functors from C(G) into C7(G) and CM{G). respec-
tively. To wit: suppose that a particular maximalization gA’“ )
has been chosen for every coaction (A.d). Then for cach mmphlxm
o1 (A.8) — (B,e) in C(G) there exists a unicue morphism ¢ making

the diagram

(5.1)

commute. Uniqueness of ¢™ then ensures that this assignment is funce-
torial: thus there is a mique functor Max : C(G) — C™(G) given by

Max(A4,6) = (A™,§™) and  Max(é) = o™,

such that (5.1) commutes; equivalently, such that the assignment A +
q't is a natural transformation from the composition Inco Max to the
identity functor on C(G), where Inc : C™(G) = C(G) is the inclusion

functor.
Similarly, once a normalization (A7, 8" ¢%y) has been chosen for every
coaction (A, §). there is a unique functor Nor : C(G) — C"(G) given by
Nor(A.8) = (A" 6" and  Nor(o) = ¢"

such that for every morphism ¢ : (A,8) — (B,¢) in C(G) the diagram

(A,8) —2— (B,¢)

4 i !v}';
¥ ¥

(‘471? (Sn‘) e ([)7“ 5,} }
] prs ) /

commutes. equivalently. A = ¢ is a natwal transformation from the
identity functor on C(G) to the composition IncoMax. where Inc
C*(G) — C(G) is the inclusion functor.

Getting back to the universal properties: they imply that for cach
coaction (A, d) and each maximal coaction (C. ), the assignment

g o
is a bijection:
\101( LY :{: C\' MF}‘ {‘4”:7 (5'?}; - )‘\EUI(”("\}{{C" ﬁ?':}: {\"4% (S}}
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Moreover, the resulting collection of bijections is natural in (A,d) and
(C.7): forany morphisms 7: (D, n) — (C,v) in C™(G) and ¢: (A, ) —
(B,=)y in C(G), we have

P ooT g o(@gToor)=¢o(¢]

(™ o 1»,) or

by (5.1).

In categorical terms. what this all means is that Max is a right adjoint
for the inclusion functor Inc : C"(G) — C(G): i.e., the pair (Inc. Max)
15 an adjunction.

Similarly. for cach coaction (A,d) and each normal coaction (C. ),
the assignment

v oq)
is a bijection:
E\{()I'C“((f;)((an} (5”% ((Y ’})) - i\’IOFg((;){(A, (3) s (CY ’}})
which is natural in (A.0) and (C.~). so that Nov is a left adjoint of the
mclusion functor Ine : C(G) — C(G), and (Nor. Inc) is an adjunction.

Restricting Nor to C"(G) and Max to C*(G), by generalized abstract
nonsense' ™. thus makes the restrictions (Nor | Max ) an adjoint pair of
functors between C"(G) and C"(G).

If we knew slightly more, namely that Nor| and Max| were quasi-
inverses, so that

Nor|oMax| = Iden(ey and  Max| o Nor| 22 Idem (g,
we would have proved the mazimal-normal equivalence:

Theorem 5.1 ([6, Corollary 3.4]). The restriction
NOI? . Cm< "v> e C”(C;)

woan equivalence of categories.

We'lll accomplish this in the next lecture.

Lo, category theory
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6. PROOFS OF MAXIMAL-NORMAL EQUIVALENCE, AND OF FuLL
CLDA

6.1. Maximal-normal equivalence. In the last lecture, you heard
about the equivalence between maximal and normal coactions. Now
we'll give the proof of that, and also show how the maximal-normal
equivalence is used to prove categorical Landstad duality for full crossed

products by actions.
Recall all the bits involved in the maximal-normal equivalence: We

have, loosely spesking, a commutative diagram of adjunctions
9 &Y & .

\or‘

C?! (C;\)

i

Max |

and we want to know that not only are the functors Nor | and
loft, and right adjoints of each other {(because adjunctions arc preserved

under composition), but also:

Theorem 6.1. With the above notation, Nor| and Max| are quasi-
inverse equivalences.

Proof. This depends upon a certain symietry built into the definitions
of maximalization and normalization: If ( A, 6) is normal then g™
(A §™) — (A, d) is not only a maximalization of (A.§), but also a
normalization of (A™. 8™}, becanse ¢ x G0 AT X G — Axs;Gis
an isomorphisny. and similarly if (A.9) is maximal then ¢* : (A.0) —
(7.8} is not only a normalization of (A.4). but also a maximalization
of (A", ™). We thus have universal properties on both sides:

(B.g) (I3.2)
i ‘\\ .
H . H
¥ \\\-i ¥ \‘\\;
{ 47?; gnq " / § Iy / SN i AT
(A", 87) —— (A.0) (A.0) —— (A", 0")
~ 3 .
~. ~
\\*& ¥ T \4
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Ok, to start the proof of the theorem, we take advantage of some
abstract nonsense: it transpires that, since Max | is a right adjoint of
Norl. it suffices to show that

i ; CT}’I(GF) —p CTl(C;)

15

(1) full and faithful, and
(2) essentially surjective.

For (1), if (A, 0) and (5, ¢) are maximal, then any diagram of the form

(4 (51 MM} (An n)

@1 lmmw“
\
(B.=) ‘:{3{:" (37, &™)

can be uniquely completed connmutingly, because fivst of all ¢ exists
uniquely to make the diagram connnute since ¢ is final in C"(G) |
(B "), and then we must have ¢ = ¢ because #" is the unique
morphism such that ¢ o g™ = ¢" o ¢.

Ou the other hand, for (2), if (B, ¢) is normal, then both morphisis

[7”, : (an . gr?)) — (B. f) éilld q??, : <B7TL, 5771,) s ( B?I”l Ul?))

are initial in (B, ™) | C"(G), aud hence are isomorphic, and con-

sequently (B, £) is isomorphic to the normalization (B ™) of the
maximal coaction (B ™). U

Question 6.2. What are other examples of subcategories satisfving all
the relationships we needed for Theorem 6.17 We have been frustrated
by our inability to find examples of this phenomenon in the literature.
We have only been able to construct a couple of rather unsatisfying
and somewhat artificial examples. where the subcategories are in fact
isomorypshic,

Full CLDA. We can now indicate how to prove the categorical
Landstad duality for full crossed products. Recall from Lecture 4 that
we liave an equivalence

Nor : (C*(G).6¢) | C™G) — (CT(G), 6¢) | CHG),

s
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and the idea is to show that the diagram

/

=%

(C*(G).b¢) L CH(G)

commutes in the seuse that the composition NoroCP is naturally iso-
morphic to RCP.
But notice: we haven't vet said anything about why we in fact have

an equivalence
Nor : (C(G). 6¢:) | C(G) ~ (C7(G), 6¢:) L C(G).

Well, this can’t really make sense, because Nor is a functor from C"(G)
to C*(G) (and in fact we've already abused the notation: it really
should be the restriction Norl|). So, more precisely, we must actually
mean that we can produce an equivalence

Nor : (C™(G).d¢) | C™(G) — (C*(G).d6) | C"(G)
that somehow “extends” Nor. Here's the justification of that!?:

Proposition 6.3. If ¢ : (C*(G).d0¢) — (A.0) n C"™(G), so that
(A.8,¢) is an object in (C*(G), d¢) L CM(G). de 7.0

Nor(A.6.0) = (A".6".q" 0 &),

an object in (C*1G).0¢) | CHG).
Ifo:(Ad.0)— (B.e )

W) in (CH(G).80) | C™(G). define

fi';;r(cr) = " Nor(A4,8.0) — \\m(Bw )

m (C* (CLL?() L CMG.

Then Nor is an equivalence.

Note that we can regard Nor as extending Nor in the sense that
Nor(A,d) = (A".6").

19nd we mention here that the following result, as is the case with some others
in these talks, is really just a special case of some abstract category theory: so. we
could clean up the notation for the time being by stating and proving this abstract
rosult. and then applving it to what we want, but the trade-off is that the audienee
would then be obliged to make all the connections between the general and the

particular cases
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Proof. We must show that Nor is full, faithful, and essentially surjec-
tive. For the frst two properties. let

p: Nor(A, 4, ¢) — Nor(B, ez, ).
Consider the diagram

(C*(G),0)

. i P
& i ¥
/ g 4 Cl?

e i =Y
(A,8) - - - |

N

|
»

(CrG). 02)
L’)V h ?,/}”

(‘472,‘ (Sn) 5 (B)n~ En).

p:(fn

We want a unique o for which the top triangle commutes and p =
Noro = o™, Since Nor : C™(G) — C"(G) s full and faithful. there is a
unique o such that p = ¢ and then it suffices to show that the top
triangle commutes. For this. since Nor is faithful. it suffices to show
that the bottom triangle commutes. We have

{) o (;;)TL o (]71, — /) o (.l’n, o (Z) — qil o (j)

(because p is a morphism in the comma category), and since ¢ is the
unique morphism such that ¢ o ¢™ = ¢"* o ¥, we must have

pogt =Y.

For the essential surjectivity, let ¢ @ (C*(G), 6q) — (A, 6) in C(G)
with ¢ normal, and consider the diagram

I L

\\\ ? . \ (;7},

~. { i \
o \\ ]: \\\
(A,8) = = = (A7 g,
AN /7 } 3 ; E

{va{\/(;) 5(\ . f’/ - ("‘417:" (}‘1]3}

I A

") s final in G L (ALG), there exists ¢ making

Sinee (A"6 |
the left triangle commute. Since both (A, d.¢™) and (A", 8™ ¢} are
putial i (A" 0" | CHGL there exists an isomorphism § making the

right triangle connnure. Then

0

0. (A 0. 0)
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OK. that gives the equivalence
(C(G).6g) L CMG) ~ (C*(G). ) | CMG).

Bt we still need to see how this allows us to deduce categorical Land-
stad duality for full crossed products from the version for reduced
crossed products. Well, it turns out that we can cheat: we need to
see that RCP is naturally isomorphic to Nor oCP, but in fact we can
choose our conventions so that they coincide, and that does it. How
By taking the normalization A7 of Lo be

can we make those choice
the quotient of .4 by ker j4. and the reduced crossed product A >, (s
to be the quotient of the full crossed product A x, G by the kernel of
the regular representatlon.

Remark 6.4. The categorical perspective we have described in thesc
lectures serves several purposes: first of all, it allows for better results.
More precisely, there are some places where we were only able to prove
the full extent of what we wanted ouce we took the categorical ap-
proach. For example, in the Landstad duality for full erossed products.
we were only able to prove the unigueness clanse as we stated it m
Lecture 4 by using the universal propertics in 4],

Taking a wider view, however, we want to suggest that what we
have presented here is a method that can be profitably used in other
ciretmstances. For example, in the context of classical crossed-product
duality, the categorical perspective taken in [3] highlighted various la-
cunae in the existing theory which we were subsequently able to fill.
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