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Def: Expander Graphs
For 0 < e € R,

X = Y , |E) a graph is ¢ — expander

vertices edges

%
VY C V, with |Y| < ‘2‘

Y] > €Y

where 9Y = boundry of Y = {x € V|dist(x, Y) =1}



not expander.

expander = “fat and round”
expander = logarithmic diameter



History

Barzdin & Kolmogorov (1967) (networks of nerve cells in the brain!)
Pinsker (1973) - communication networks

We want “families of expanders” (n, k, )-expanders, n = |V| — oo
k-regular, k-fixed (as small as possible)

e-fixed (as large as possible)

Fact. Fixed kK > 3, 3¢ > 0 s.t. "most” random k-regular graphs are
g-expanders.

(Pick 71, ..., m, € Sym(n) at random).




Many applications in CS:
Communication networks
pseudorandomness/Monte-Carlo algorithms
derandomization

error-correcting codes

Over 4,000,000 sites with “expanders”



but many of them for dentists




Still over 400,000 are about expander graphs ... e.g.

Figure: Inverse graph, level = 617

V={0,1,....p— 1} U{occ}

1
X—=>x+t1l & x = ——
X

For applications one wants explicit construction



Kazhdan property (T) from representation theory

Def. (1967)
Let I be a finitely generated group, I = (S) S =571
I has (T) if 3e > 0 s.t.

V(H,p) H — Hilbert space

p:T—=U(H)=unitary operators

irreducible (no closed invariant subspace) and non-trivial

(H> p) 7& ((Ca PO)-

VO#veH, JseSst
[o(s)v — vi[ = el[v]]

i.e., no almost-invariant vectors



Explicit construction (Margulis 1973)

Assume [ = (S) has (T),

L={N<T|[l:N] < oo}
Then {Cay(T'/N; S)|N € L}

is a family of expanders.
Remainder. G = (S) group, Cayley graph Cay(G;S):

V=|G| and g1 ~ g if 35 € S with sg1 = g.



“Proof”

4

X = Cay(T/N;$), Y C V(X) =T/N,|Y| < =

need to prove |0Y]| > ¢'|Y|
I acts on ['/N by left translations and hence on L2(/N). Take

1 yevY

1y = char. function of Y = {0 vy

So some s € S moves 1y by &,
p(s)(1y) = gy

so 1gy is “far” from 1y, i.e. many vertices in sY are not in Y;
but sY \ Y C 9Y and we are done. [J



An important observation

We use (T) only for the rep’s L2(T'/N), in particular, finite
dimensional!

Def: I = (S) finitely generated groups. £ = {N;} family of finite
index normal subgroups of I'.

I has (7) w.rt. £

if 3¢ > 0 s.t. V(H, p) non-trivial irr. rep.

with Ker p D N; for some i, V0 #veH

dse S st |p(s)v —v]| > elv].

Cor
(1) w.r.t. L= Cay(l'/N;;S) expanders!
This is iff 11!



Thm (Kazhdan)

SLn(Z) has (T) forn >3
(n x n integral matrices, det = 1)

SLy(Z) does not have (T) nor (7) (has a free subgroup F of finite
index and F — Z)
but:

Thm (Selberg)
SLy(Z) has (1) w.r.t. congruence subgroups

(F(m) = Ker(SLo(Z) — SLo(Z/mZ))}

Selberg’s Thm is known as: A (F(m) \ H) > Z.
H - upper half plane.



Eigenvalues & random walks
X finite k-regular graph, X = (V, E)
V| = n.
A = Ax - adjancency matrix, A; = # edges between j and j.

A symmetric matrix with eigenvalues

k=X>XA2>--> X1 > —k
- X > A1 iff X is connected
“An_1 = —k iff X is bi-partite.

Thm
X is e-expander iff
)\1 < k — E/



The non-trivial eigenvalues \ # +k control the rate of
convergence of the random walk on X to the uniform distribution;
so: Expanders “<" exponentially fast convergence to uniform
distribution.

Thm (Alon-Boppana)

For k fixed, A\1(Xpx) = 2Vk —14 o(1) when n — oo

Ramanujan graph A(X) < 2vk — 1 (optimal)

Vk =p*+1, p prime

3 oo many k-regular Ramanujan graphs.

Open problem for other k's, e.g. k=T.



Expanders & Riemannian manifolds

M n-dim connected closed Riemannian manifold
A = —div(grad) = laplacian = Laplace — Beltrami operator.
e.V.OZ/\0<)\1S)\lﬁ...g/\,'g...

Fact

2
M (M) = /nf{Wyf € C”(M),/f - o}

Def. The Cheeger constant h(M)

Area(0Y
h(M) f Vo?i?r(re(Y))

Y - Open in M with Vol(Y) < 3 Vol(M)



Cheeger Inequality (1970)

M(M) > —h? (M)

Buser proved a converse: bounding h(M) by \;(M).



In summary

Thm
I = (S) finitely generated group, L = {N;} finite index normal
subgroups.

TFAE:
(i) T has (1) w.rt. Lie Jer st Y(H,p)---
Combinatorics (i) Jea > 0 s.t. Cay(I'/N;; S) are ep-expanders

Random walks (iii) Je3 >0 s.t.

M (Cay(F/Ni; S)) < k — e3 where k = |S]



Measure theoretic (iv) The Haar measure on {2 = lim[/N; is the
e

only T-invariant mean on L*({'z)

If ' =MNi(M), M-closed Riemannian manifold and {M;} the
corresponding covers:

Geometric (v) Jes >0, h(M;) > s

Analytic (vi) Jeg >0, M (M;) > g6



Back to Selberg & Kazhdan

Selberg Thm A (F(M) \ H) > &

Cor

Cay(SLa(Fp); { (51), (2 8) }) are expanders.

(Proof uses Weil's Riemann hypothesis for curves and Riemann
surfaces).

_ -1
(1 PTI) ( =(}1 )PT) can be written as a word of length

01
O(log p) using (§1) and (% §).

Open problem How? Algorithm? (Partial; Larsen). (New proof by
Bourgain-Gamburd (Helfgott) but also without algorithm).

Thm
For a fixed n, Cay(SLn(Fp); {A, B}) are expanders (A, B generators
for SLn(Z)).



Can they all be made into a family of expanders together - all n all
p? and even all g = p¢?

Conj (Babai-Kantor-Lubotzky (1989))

All non abelian finite simple groups are expanders in a uniform way
(same k, same ¢).

This was indeed proved as an accumulation of several works and
several methods

Kassabov - Lubotzky - Nikolov (2006): Groups of Lie type except
Suzuki.

Kassabov (2006): Aln(n) and Sym(n).

Breuillard - Green - Tao (2010): Suzuki Groups.



Other generators

What happened if we slightly change the set of generators?
Ex 1 Cay(SLo(Fp); {(§31). (}9)} are expanders (Selberg)

Ex 2 Cay(SLa(Fp); {(§2), (39)} are expanders (Pf:
((32), (39)) is of finite index in SL>(Z) and use Selberg.)

What about Ex 3 Cay(SLy; {(13), (19)})?
((33), (39)) is of infinite index in SL5(Z) (but Zariski dense?)
“Lubotzky 1-2-3 problem”.



Answer:

Yes! (Bourgain-Gamburd/Helfgott)
with Far reaching generalizations; Breuillard-Green-Tao,
Pyber-Szabo, Salehi-Golsefidy-Varju.

These generalizations have dramatic number theoretic applications.
This will be the topic of lecture II.



Thm

doo many primes

Proof.

Put a topology on Z by declaring the arithmetic progressions
Yad = {a+ dn/n € Z} to be a basis for the topology (d # 0)
For every p € Z, pZ = Y, p is open and closed.

Z\ U, prime PZ = {+£1} is not open so Joo-many primes.

Homework: Let Z = completion of Z w.r.t. this topology.
Then

1. Z=T12p (Z, — p-adic integers).
P

2. The invertible elements of 7 is equal to P \ P (where
P = {p € Z|p prime}
3. (2) is exactly Dirichlet primes on arithmetic progressions.
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Thm (Dirichlet)
b,q € Z with (b,q) =1, 3 co many primes in b+ qZ

or: x € Z, v(x) = # prime factors of x, then for every
b, g€ Z, 300 x's in b+ qZ withv(x) <1+ v((b,q)).

Twin Prime Conjecture

d oo many p with p+ 2 also a prime,
or: Joo many x € Z with v (x(x +2)) < 2.

a stronger version TPC on arithmetic progressions.



A far reaching generalization (Schinzel):
e {0} # A\ <Z asubgroup,ie. N\=qgZ, g#0and beZ
e = orbit of bunder A = b+ gqZ
e f(x) € Q[x] a poly, integral on 0

Say: (0,f) primitive if V 2 < k € Z,
dx e s.t. (f(x),k)=1.

Conjecture

If f(x) € Q[x] is a product of t irreducible factors & (0, f)
primitive then Joo x € 0 with v(f(x)) <t



Higher dimensional generalization

Conjecture (Hardy-Littlewood)
e AN 7"

e Y, the j-th coordinate is non-constant on N\
e beZ" O6=b+A
o f(X)=x1-...-xn, (0,f)-primitive.

Then 3 0o many x € 6 with v(f(x)) <n
Moreover, this set is Zariski dense.



Note: H-L conj = TPC:
take b = (1,3) € Z? and A = 7Z(1,1).

A famous special case:

Thm (Green-Tao (2008))

Vk € N, the set of primes contains an arithmetic progression of
length k.

Indeed: Look at Z* and
AN=27-(1,1,...,1)+Z-(0,1,2,3,... .k —1)
Then the orbit of (1,1,1,...,1) is the set
{(mim+n,m+2n,....m+(k—1)n|m,neZ}.

H-L Conj says it has co many vectors with prime coordinates.



H-L conj suggests a similar result for the orbit A.b where
N < GL,(Z). But never been asked maybe because of examples like
this:

Ex: Let A= ((§8))&b= ().

The orbit A.b is in = {(;) € Z2|4x2 —3y% = 1}
so: 3y? =4x% — 1= (2x —1)(2x + 1)
SO y never a prime.

But there are extensions of H-L conj (and even results) and they
came from expanders!



Sieve
For x € R, let

P(x) = {p < x|p prime}

P(x)= n
pEP(x)
m(x) = [P(x)].

Prime Number Theorem

X
m(x) ~ ——
log x
R.H. is about the error term

An explicit formula for 7T(X)Z
7(x) —m(v/x) = -1+ Z
SCP(v/x)

Proof: Inclusion exclusion.
But useless! Too many terms

|5\

HpeS P



Brun's Sieve
Let f(x) = x(x + 2)
Let

= #{n < x| all prime divisors of f(n) are >z}

(so if z is “large”, say x° then n has few prime divisors).
n=1

1
Recall ,u(n) = { (—=1)" n=py-...-p, distinct

0 otherwise



Then:

n<x

(f(m),P(2))=1

=Y. > ud)=

n<x d|(f(n),P(z))

=X (X

d|P n<x
IP(z) f(n)=0(d)



Let 5(d) = #{m mod d| f(m)=0(d)}

Running over all n’s up to x, we cover approximately % times the
residues mod d, and approx %3(d) of them give zeroes for f
mod d.

So:
S(f,z)= > u(d)(ﬁ(chI)x+r(d))

d|P(2)
r(d) = error term.
@ = multiplicative function of d.
Brun developed a method to analyze such sums and deduced
5(7(,2) > CW
Thm
Jdoo many n, with v(n(n+2)) <18

World record toward TPC:
v(n(n+2)) < 3 (Chen).



His “combinatorial sieve” proved an “almost version” of H-L conj:

b+ A has oo many vectors of “almost” primes (# prime factors is

bounded by r = r(n)).

Key observation for us: (Sarnak 2005) Brun’s method works for
A.b, N < GLp(Z) provided A has (7) w.r.t. congruence subgroups
N(q) = Ker(N — GL,(Z/qZ)) for q square-free!



The orbit A.b is “counted/graded” by the balls of radius at most ¢
w.r.t. a fixed set of generators ¥ of A.

B(¢) = {~ € A| lengths () < ¢} acts on b € Z" and reduced mod
qg €Z.

Because of (7), B(¢).b( mod q) distributes almost uniformly over
the vectors A.b( mod q)

This is exactly the expander property!! So what we really need is
“7 for N < GL,(Z) w.r.t. congruence subgroups A(q), g
square-free.”



Let's take a little break from number theory to see what we have
about

“7 w.r.t. congruence subgroups for subgroups A of GL,(Z)".
Kazhdan property (T), Selberg Theorem, Ramanujan Conjecture,
Jacquet-Langlands correspondence gave it for “most” arithmetic
groups. General conj was formulated by Lubotzky-Weiss.

Solved (at least in char 0) by Burger-Sarnak and finally Clozel
(2003).

All this for arithmetic groups I' = G(Z).



What about A < G(Z) Zariski dense but of infinite index?
Zariski dense = A is mapped onto G(Z/mZ) for most m'’s.
(Strong approximation for linear groups).

So: If A =(S) then Cay(G(Z/mZ);S) is connected.

Are these expanders?

First challenge:
AN={(33),(39)); the 1 —2—3 problem.

Partial results by Gamburd & Shalom (90’s)



1st Breakthrough

Helfgott (2005 - 2008) If A C G = SLy(F)p)
(Fp = Z/pZ) a generating subset then,either

A-A-A=G or |A-A-Al > |AM
for some fixed € > 0 (independent of p).

(Helfgott result was slightly weaker, this is a polished form
“the product property”)

This implies poly-log diameter for all generating set (Babai
Conjecture)



Method “translating” via trace “sum-product results” from F, to
“product result” in SL>(F)p)

Thm (Bourgain-Katz-Tao)
If ACT, with p? < |A| < p'=°, then |A+ Al +|A- Al > c|A}*
where ¢ and € depend only on 0.



2nd Breakthrough

Bourgain-Gamburd (2006 — 2010)
V0 <6 eR, Je=¢(d) €R s.t. Vp,VS C SLy(Fp)
generating set:

if girth (Cay(SL2(Fp); S)) > 0 log p then Cay(SLy(Fp); S) is an
g-expander.

The theorem applies for

(a) random generators

(c) every set of gen’s of SLy(F,) coming from A < SL»(Z)
In particular solved the 1-2-3 problem!



This motivated Bourgain-Gamburd-Sarnak to

a. formulate “affine sieve” method for “almost prime” vectors on
orbits A.b when A < GL,(Z) provided A has 7 w.r.t. congruence
subgroups mod ¢, g-square free

b. proved “7 mod such ¢'s” if AZ2Miski ~ G,

Even the special case (b) had some beautiful applications.



But the series of breakthroughs has not slowed down ...

Thm (Breuillard-Green-Tao/Pyber-Szabo (2010))

The “product theorem” of Helfgott holds ¥V finite simple group of
Lie type of bounded Lie rank, i.e.,

VreN, Je=¢(r)
V G = G,(Fq) (e.g. SL(Fq)) ifACG

generating set then either

A-A-A=Gor |A-A-Al > AT



Thm (Salehi-Golsefidy - Varju (2011))

A < GL,(Z) If G® = AO-the connected component of the Zariski
closure of \ - is perfect (e.g. semisimple), then

A has (1) w.r.t. N(q) = Ker(N— GL,(Z/qZ))

for q square-free

Also: Bourgain-Varju; in some cases w.r.t. all g.



Thm (Salehi-Golsefidy - Sarnak (The Affine Sieve))

A < GL,(Z), G° = A%, if the reductive part of G° is semisimple,
b€ Z" and f(x) € Q[x] is integral on 6 = \.b

Then f(x) has infinitely many almost prime values on A.b.



Applications

(1) For integral right angle triangles x3 = x? + x2

6|52 = the area (ex!)
The solutions are on the orbit of A.b with

AN=Of(Z), F=x?+x3 —x3, b= (é)

.. 3 oo triangles with areas almost prime.
Green-Tao 6 primes !



see http://www.youtube.com/watch?v=DK5Z709J2e0
Apollonius Given three mutually tangents circles Gy, G, G3, 3
exactly two Cu, C; tangents to all three.



Descartes

1

The curvatures (radii

) of G4 and Cj are solutions of

F(al) az, as, 34) =

2(af+a§+a§+aﬁ) — (a1 +az+a3+a4)2

aﬁl =2a; + 2ay + 2a3 — aa



So, start with 4 circles (e.g. (18, 27, 23, 146)) and apply:

1998
_[ o100 _ -

51 = 0010 |° 5 = 0010 )
0001 0001
1988 189

Ss=|22-12 ) and Sa= {0510 |
00 0 1 2272-1

N = (51,52, 53, S4)
The affine sieve gives results like: oo many almost prime circles.
Many questions: oo-many primes? How many?

oo-many “twin primes” (="kissing primes’)? etc.
See notes for references.



Expander Graphs in Geometry

Alex Lubotzky
Einstein Institute of Mathematics, Hebrew University
Jerusalem 91904, ISRAEL

e Alexander Lubotzky, Discrete groups, expanding graphs and
invariant measures. Reprint of the 1994 edition. Modern Birkh3user
Classics. Birkhduser Verlag, Basel, 2010. iii+192

e Shlomo Hoory, Nathan Linial and Avi Wigderson, Expander graphs
and their applications. Bull. Amer. Math. Soc. (N.S.) 43 (2006),
no. 4, 439-561

e http://www.ams.org/meetings/national /jmm/
2011 colloquium _lecture notes lubotzky expanders.pdf



M = orientable n-dimensional closed hyperbolic manifold
(closed = compact without boundary,
hyperbolic = constant curvature —1).

Equivalently:

V=R
F(Xty ey Xmy Xnp1) = X + -+ X2 — X244
G =SO(f) ={A € SLp11(R)|f(AX) = f(X)} = SO(n, 1)
K = maximal compact subgroup = SO(n)
H" = G/K = n - dim Hyperbolic space

M=T\G/K=T\H"
= m (M), T- torsion free cocompact lattice in G

geometry of M « group theory of T



Conj (Thurston-Waldhausen)
M has a finite cover My with 31(Mp) = dim Hi (Mo, R) > 0.

Eq: T has a finite index subgroup g with [y — Z.

Conj (Lubotzky-Sarnak)

I does not have (1), i.e. if [ = (S)
{Cay(I'/N; S)IN<T,[l: N] < oo} is not a family of expanders.

Remark: I does not have (T).
Conj (Serre)

For I arithmetic, I does not have the congruence subgroup
property (CSP).



(T-W) = (L-S) = (Se)

Why?
(T-W) = (L-S)
since infinite abelian quotient implies no (7).

(L-S)= (Se) as we said: arithmetic groups have (7) w.r.t.
congruence subgroups (Selberg, ... , Clozel).



The most important case is n = 3, here we also have:
Conj (Virtual Haken)
M = M?3 has a finite cover which is Haken.

eq: [ has finite index 'y such that either [y — Z or
lo=AxB(C 5 AB).

Haken = contains an incompressable surface i.e. a properly
embedded orientable surface S(# S?) with m1(S) < m(M).

Most important open conj left for 3-manifolds (after Perelman).



First use of expanders in geometry (Lubotzky (1997))
Thm

Thurston-Waldhausen conj is true for arithmetic lattices in

SO(n,1), #3.,7.

Main pt: (The Sandwich Lemma)
G1 < Gy < Gz — simple Lie gps
I < Ty < T3 — arithmetic lattices
M=GNM,MH=6GNT
Then: (a) If I'1 has the Selberg property (i.e. 7 w.r.t. congruence
subgroups) and '3 does not have (7) then ', does not have the
C.S.P.

(b) If T'1 has Selberg and '3 has congruence 'y — Z, then ' also
has [y — Z.

After that Put I < SO(n,1) as 'z in such a Sandwich (use Galois
cohomology,Selberg, J-L, Kazhdan-Borel-Wallach)



A second use (Lackenby 2005)

n=23
An attack on the virtual Haken conjecture using (7)

Heegaard splitting M = M3 then M = H; U H, where H; and
Hy are two handle bodies glued along their boundaries OH; ~ 0H,
- genus g surface.

Every M has such decomposition!
g&(M) = Heegaard genus of M = the minimal g.



Thm (Lackenby)
= Br(g(M) — 1)
emig\M) — 1)
= ey

Cheeger Constant

So a first connection between expansion and g(M).

Idea of Proof One can arrange Heegaard decomposition
with approx. equal sizes (by volume). Area OH is given by
Gauss-Bonnet.



Easy to see: My — M finite cover

g(Mo) < [Mo : M]g(M)

Define: for I = 71 (M)
L = {N;} finite index normal subgroups of I', Mj-the covers

M,
Heegaard genus gradient = xz(M) = ir}f [l@f ; ;\)ﬂ]

Ex: If M fibres over a circle (i.e., [ — Z with fin. gen. kernel)
then x-(M) =0

Conj (Heegaard gradient conj)
If xc(M) = 0 then 3 finite sheeted cover which fibres over a circle.



Thm (Lackenby)

M = M3, L = {N;} finite index normal subgroups of I = (M),
with corresponding covers {M;}. If:

(1) xz(M) >0, and

(2) T does not have (1) w.r.t. L.

Then M is virtually Haken.

Cor

Lubotzky-Sarnak conj (no (1) for I') and Heegaard gradient conj
(xc(M) = 0 = fibres over S*) imply the virtual Haken conj.

Several unconditional results
Lackenby
Lackenby-Long-Reid
Long-Lubotzky-Reid



Sieve Method in Group Theory

We used the sieve method to sieve over the orbit of A < GL,(Z)
acting on Z".

But we can also use it for the action of A on itself!

It provides a way “to measure” subsets Z of A (a countable set)

wy= the random k-step on Cay(A;S).
Say Z of A is “exponentially small” if Prob(wy € Z) < Ce™% for
some constants C,d > 0.



Group Sieve Method

Thm

o [ = (S) finitely generated group.

o L={N;}ic;, | CN, finite index normal subgroups.
e Z CT asubset.

Assume: 3d e Nt 0< B eRst.
(1) T has (1) w.r.t. {N;NN;}

(2) F/N;| < i

(3) T/(NiN;) ~T/N; x T/N;

(4) |ZNi/Ni| < (1= B)|T/Ni]

Then Z is exponentially small



Applications

I. Linear Groups

Thm (Lubotzky-Meiri (2010))

o [ < GL,(C) not virtually-solvable.
e 2<meN, Z(m)={g"|geTl}
e Z= |J Z(m)= proper powers

2<meN
Then Z is exponentially small in T.

History: -Malcev

- Hrushovski-Kropholler-Lubotzky-Shalev



[l. The mapping class group

Fix g > 1, MCG(g) = the mapping class group of a closed surface
S of genus g = homeomorphisms modulo isotopic to the identity
= Aut(m1(S))/Inn(71(S)) = Out(m1(S5)).

This is a finitely generated group.

Thm (Rivin (2008))
The set of non pseudo-Anosov elements in the mapping class group
MCG(g) of a genus g surface is exponentially small.

History -Thurston
-Maher, Rivin
-Kowalski, Lubotzky-Meiri



Random 3-manifolds

The Dunfield-Thurston model:
Every ¢ € MCG(g) gives rise to a 3-mainfold M obtained by gluing
2 handle bodies H; and H, along OH; £ OH>.

Every 3-mfd is obtained like that!



Remember
MCG(g) is a finitely generated group!

Fix a set of generators S. A random walk on Cay(MCG(g); S)
gives “random 3-mfd’s" (with g(M) < g).

How does random 3-mfd behave?

Some results by Dunfield & Thurston.

Some by Kowalski.

A great potential for Sieve methods. Use MCG(g) — Sp(2g,Z).
(Work of Grunewald-Lubotzky gives many additional
representations with arithmetic quotients which have property (7)
so one can apply sieve).
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