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Def: Expander Graphs
For 0 < ε ∈ R,

X =
(

V
|

vertices

, E
|

edges

)
a graph is ε− expander

if

∀Y ⊆ V , with |Y | ≤ |V |
2

|∂Y | ≥ ε|Y |

where ∂Y = boundry of Y = {x ∈ V |dist(x ,Y ) = 1}



not expander.

expander ⇒ �fat and round�
expander ⇒ logarithmic diameter



History

Barzdin & Kolmogorov (1967) (networks of nerve cells in the brain!)

Pinsker (1973) - communication networks

We want �families of expanders� (n, k , ε)-expanders, n = |V | → ∞
k-regular, k-�xed (as small as possible)
ε-�xed (as large as possible)

Fact. Fixed k ≥ 3, ∃ε > 0 s.t. �most� random k-regular graphs are
ε-expanders.

(Pick π1, . . . , πk ∈ Sym(n) at random).



Many applications in CS:

Communication networks

pseudorandomness/Monte-Carlo algorithms

derandomization

error-correcting codes

...

Over 4,000,000 sites with �expanders�



but many of them for dentists



Still over 400,000 are about expander graphs ... e.g.

V = {0, 1, . . . , p − 1} ∪ {∞}

x → x ± 1 & x → −1

x

For applications one wants explicit construction



Kazhdan property (T ) from representation theory

Def. (1967)
Let Γ be a �nitely generated group, Γ = 〈S〉 S = S−1.
Γ has (T ) if ∃ε > 0 s.t.

∀(H, ρ) H− Hilbert space
ρ:Γ→U(H)=unitary operators

irreducible (no closed invariant subspace) and non-trivial
(H, ρ) 6= (C, ρ0).

∀ 0 6= v ∈ H, ∃ s ∈ S s.t.

‖ρ(s)v − v‖ ≥ ε‖v‖

i.e., no almost-invariant vectors



Explicit construction (Margulis 1973)

Assume Γ = 〈S〉 has (T ),

L = {N / Γ|[Γ : N] <∞}.
Then {Cay(Γ/N; S)|N ∈ L}

is a family of expanders.

Remainder. G = 〈S〉 group, Cayley graph Cay(G ; S):

V = |G | and g1 ∼ g2 if ∃s ∈ S with sg1 = g2.



�Proof�

X = Cay(Γ/N; S), Y ⊆ V (X ) = Γ/N, |Y | ≤ |V |
2

need to prove |∂Y | ≥ ε′|Y |
Γ acts on Γ/N by left translations and hence on L2(Γ/N). Take

1Y = char. function of Y =

{
1 y ∈ Y

0 y /∈ Y

So some s ∈ S moves 1Y by ε,

ρ(s)(1Y ) = 1sY

so 1sY is �far� from 1Y , i.e. many vertices in sY are not in Y ;
but sY \ Y ⊂ ∂Y and we are done. �



An important observation

We use (T ) only for the rep's L2(Γ/N), in particular, �nite
dimensional!

Def: Γ = 〈S〉 �nitely generated groups. L = {Ni} family of �nite
index normal subgroups of Γ.
Γ has (τ ) w.r.t. L
if ∃ε > 0 s.t. ∀(H, ρ) non-trivial irr. rep.
with Ker ρ ⊃ Ni for some i , ∀ 0 6= v ∈ H
∃s ∈ S s.t. ‖ρ(s)v − v‖ > ε‖v‖.

Cor
(τ) w.r.t. L ⇒ Cay(Γ/Ni ; S) expanders!

This is i� !!!



Thm (Kazhdan)

SLn(Z) has (T ) for n ≥ 3
(n × n integral matrices, det = 1)

SL2(Z) does not have (T ) nor (τ) (has a free subgroup F of �nite
index and F � Z)
but:

Thm (Selberg)

SL2(Z) has (τ) w.r.t. congruence subgroups

{Γ(m) = Ker(SL2(Z)→ SL2(Z/mZ))}

Selberg's Thm is known as: λ1(Γ(m) \H) ≥ 3
16
.

H - upper half plane.



Eigenvalues & random walks

X �nite k-regular graph, X = (V ,E )

|V | = n.

A = AX - adjancency matrix, Aij = # edges between i and j .

A symmetric matrix with eigenvalues

k = λ0 ≥ λ1 ≥ · · · ≥ λn−1 ≥ −k
· λ0 > λ1 i� X is connected

· λn−1 = −k i� X is bi-partite.

Thm
X is ε-expander i�

λ1 ≤ k − ε′



The non-trivial eigenvalues λ 6= ±k control the rate of

convergence of the random walk on X to the uniform distribution;
so: Expanders �⇔� exponentially fast convergence to uniform
distribution.

Thm (Alon-Boppana)

For k �xed, λ1(Xn,k) = 2
√
k − 1 + o(1) when n→∞

Ramanujan graph λ(X ) ≤ 2
√
k − 1 (optimal)

∀k = pα + 1, p prime

∃ ∞ many k-regular Ramanujan graphs.

Open problem for other k 's, e.g. k=7.



Expanders & Riemannian manifolds

M n-dim connected closed Riemannian manifold
∆ = −div(grad) = laplacian = Laplace − Beltrami operator .
e.ν. 0 = λ0 < λ1 ≤ λ1 ≤ . . . ≤ λi ≤ . . .

Fact

λ1(M) = inf
{∫

M
‖df ‖2∫

M
|f |2

∣∣f ∈ C∞(M),

∫
f = 0

}
Def. The Cheeger constant h(M)

h(M) = inf
Y

Area(∂Y )
Volume(Y )

Y - Open in M with Vol(Y ) ≤ 1
2
Vol(M)



Cheeger Inequality (1970)

λ1(M) ≥ 1

4
h2(M)

Buser proved a converse: bounding h(M) by λ1(M).



In summary

Thm
Γ = 〈S〉 �nitely generated group, L = {Ni} �nite index normal

subgroups.

TFAE:
Representation (i) Γ has (τ) w.r.t. L i.e. ∃ε1 s.t. ∀(H, ρ) · · ·

Combinatorics (ii) ∃ε2 > 0 s.t. Cay(Γ/Ni ; S) are ε2-expanders

Random walks (iii) ∃ε3 > 0 s.t.

λ1(Cay(Γ/Ni ; S)) ≤ k − ε3 where k = |S |



Measure theoretic (iv) The Haar measure on Γ̂L = lim
←

Γ/Ni is the

only Γ-invariant mean on L∞(Γ̂L)

If Γ = Π1(M), M-closed Riemannian manifold and {Mi} the
corresponding covers:

Geometric (v) ∃ε5 > 0, h(Mi ) ≥ ε5

Analytic (vi) ∃ε6 > 0, λ1(Mi ) ≥ ε6



Back to Selberg & Kazhdan

Selberg Thm λ1(Γ(M) \H) ≥ 3
16

Cor
Cay(SL2(Fp);

{
( 1 1
0 1 ) ,

(
0 1
−1 0

) }
) are expanders.

(Proof uses Weil's Riemann hypothesis for curves and Riemann
surfaces).

Cor(
1 p−1

2

0 1

) (
= ( 1 1

0 1 )
p−1

2

)
can be written as a word of length

O(log p) using ( 1 1
0 1 ) and

(
0 1
−1 0

)
.

Open problem How? Algorithm? (Partial; Larsen). (New proof by
Bourgain-Gamburd (Helfgott) but also without algorithm).

Thm
For a �xed n, Cay(SLn(Fp); {A,B}) are expanders (A,B generators

for SLn(Z)).



Can they all be made into a family of expanders together - all n all
p? and even all q = pe?

Conj (Babai-Kantor-Lubotzky (1989))

All non abelian �nite simple groups are expanders in a uniform way

(same k, same ε).

This was indeed proved as an accumulation of several works and
several methods
Kassabov - Lubotzky - Nikolov (2006): Groups of Lie type except
Suzuki.
Kassabov (2006): Aln(n) and Sym(n).
Breuillard - Green - Tao (2010): Suzuki Groups.



Other generators

What happened if we slightly change the set of generators?

Ex 1 Cay(SL2(Fp); {( 1 1
0 1 ) , ( 1 0

1 1 )} are expanders (Selberg)

Ex 2 Cay(SL2(Fp); {( 1 2
0 1 ) , ( 1 0

2 1 )} are expanders (Pf:〈
( 1 2
0 1 ) , ( 1 0

2 1 )
〉
is of �nite index in SL2(Z) and use Selberg.)

What about Ex 3 Cay(SL2; {( 1 3
0 1 ) , ( 1 0

3 1 )})?〈
( 1 3
0 1 ) , ( 1 0

3 1 )
〉
is of in�nite index in SL2(Z) (but Zariski dense?)

�Lubotzky 1-2-3 problem�.



Answer:

Yes! (Bourgain-Gamburd/Helfgott)
with Far reaching generalizations; Breuillard-Green-Tao,
Pyber-Szabo, Salehi-Golse�dy-Varju.

These generalizations have dramatic number theoretic applications.
This will be the topic of lecture II.



Thm
∃∞ many primes

Proof.
Put a topology on Z by declaring the arithmetic progressions
Ya,d = {a + dn/n ∈ Z} to be a basis for the topology (d 6= 0)
For every p ∈ Z, pZ = Yo,p is open and closed.
Z \

⋃
p prime pZ = {±1} is not open so ∃∞-many primes.

Homework: Let Ẑ = completion of Z w.r.t. this topology.
Then

1. Ẑ =
∏
p

Ẑp (Ẑp − p-adic integers).

2. The invertible elements of Ẑ is equal to P \ P (where
P = {p ∈ Z|p prime}

3. (2) is exactly Dirichlet primes on arithmetic progressions.
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Thm (Dirichlet)

b, q ∈ Z with (b, q) = 1, ∃ ∞ many primes in b + qZ

or: x ∈ Z, ν(x) = # prime factors of x, then for every

b, q ∈ Z, ∃ ∞ x ′s in b + qZ with ν(x) ≤ 1 + ν ((b, q)).

Twin Prime Conjecture

∃ ∞ many p with p + 2 also a prime,

or: ∃∞ many x ∈ Z with ν (x(x + 2)) ≤ 2.

a stronger version TPC on arithmetic progressions.



A far reaching generalization (Schinzel):

• {0} 6= Λ ≤ Z a subgroup, i.e. Λ = qZ, q 6= 0 and b ∈ Z
• θ = orbit of b under Λ = b + qZ
• f (x) ∈ Q[x ] a poly, integral on θ

Say: (θ, f ) primitive if ∀ 2 ≤ k ∈ Z,

∃x ∈ θ s.t. (f (x), k) = 1.

Conjecture

If f (x) ∈ Q[x ] is a product of t irreducible factors & (θ, f )
primitive then ∃∞ x ∈ θ with ν(f (x)) ≤ t



Higher dimensional generalization

Conjecture (Hardy-Littlewood)

• Λ ≤ Zn

• ∀j , the j-th coordinate is non-constant on Λ

• b ∈ Zn, θ = b + Λ

• f (x) = x1 · . . . · xn, (θ, f )-primitive.

Then ∃ ∞ many x ∈ θ with ν(f (x)) ≤ n

Moreover, this set is Zariski dense.



Note: H-L conj ⇒ TPC:
take b = (1, 3) ∈ Z2 and Λ = Z(1, 1).

A famous special case:

Thm (Green-Tao (2008))

∀k ∈ N, the set of primes contains an arithmetic progression of

length k.

Indeed: Look at Zk and

Λ = Z · (1, 1, . . . , 1) + Z · (0, 1, 2, 3, . . . , k − 1)

Then the orbit of (1, 1, 1, . . . , 1) is the set

{(m,m + n,m + 2n, . . . ,m + (k − 1)n |m, n ∈ Z}.

H-L Conj says it has ∞ many vectors with prime coordinates.



H-L conj suggests a similar result for the orbit Λ.b where
Λ ≤ GLn(Z). But never been asked maybe because of examples like
this:

Ex: Let Λ =
〈

( 7 6
8 7 )

〉
& b =

(
1
1

)
.

The orbit Λ.b is in =
{(

x
y

)
∈ Z2|4x2 − 3y2 = 1

}
so: 3y2 = 4x2 − 1 = (2x − 1)(2x + 1)
so y never a prime.

But there are extensions of H-L conj (and even results) and they
came from expanders!



Sieve
For x ∈ R, let

P(x) = {p ≤ x |p prime}
P(x) = Π

p∈P(x)
p

π(x) = |P(x)|.

Prime Number Theorem

π(x) ∼ x

log x

R.H. is about the error term

An explicit formula for π(x):

π(x)− π(
√
x) = −1 +

∑
S⊆P(

√
x)

(−1)|S |
⌊ x∏

p∈S p

⌋
Proof: Inclusion exclusion.
But useless! Too many terms



Brun's Sieve
Let f (x) = x(x + 2)
Let

S(f , z) :=
∑
n≤x

(f (n),P(z))=1

1 =

= #{n ≤ x | all prime divisors of f (n) are > z}

(so if z is �large�, say xδ then n has few prime divisors).

Recall µ(n) =

{
1 n=1

(−1)r n=p1·...·pr distinct
0 otherwise

then
∑
d |n

µ(d) =

{
1 n=1
0 n>1



Then:

S(f , z) =
∑
n≤x

(f (n),P(z))=1

1

=
∑
n≤x

∑
d |(f (n),P(z))

µ(d) =

=
∑

d |P(z)

( ∑
n≤x

f (n)≡0(d)

1
)



Let β(d) = #{m mod d | f (m) ≡ 0(d)}
Running over all n's up to x , we cover approximately x

d
times the

residues mod d , and approx x
d
β(d) of them give zeroes for f

mod d .
So:

S(f , z) =
∑

d |P(z)

µ(d)
(β(d)

d
x + r(d)

)
r(d) = error term.
β(d)
d

= multiplicative function of d .
Brun developed a method to analyze such sums and deduced
S(f , z) ≥ C x

log(x)2

Thm
∃∞ many n, with v(n(n + 2)) ≤ 18

World record toward TPC:
ν(n(n + 2)) ≤ 3 (Chen).



His �combinatorial sieve� proved an �almost version� of H-L conj:

b + Λ has ∞ many vectors of �almost� primes (# prime factors is
bounded by r = r(n)).

Key observation for us: (Sarnak 2005) Brun's method works for
Λ.b, Λ ≤ GLn(Z) provided Λ has (τ) w.r.t. congruence subgroups
Λ(q) = Ker(Λ→ GLn(Z/qZ)) for q square-free!



The orbit Λ.b is �counted/graded� by the balls of radius at most `
w.r.t. a �xed set of generators Σ of Λ.

B(`) = {γ ∈ Λ| lengthΣ(γ) ≤ `} acts on b ∈ Zn and reduced mod
q ∈ Z.
Because of (τ), B(`).b( mod q) distributes almost uniformly over
the vectors Λ.b( mod q)

This is exactly the expander property!! So what we really need is
�τ for Λ ≤ GLn(Z) w.r.t. congruence subgroups Λ(q), q
square-free.�



Let's take a little break from number theory to see what we have
about
�τ w.r.t. congruence subgroups for subgroups Λ of GLn(Z)�.

Kazhdan property (T ), Selberg Theorem, Ramanujan Conjecture,
Jacquet-Langlands correspondence gave it for �most� arithmetic
groups. General conj was formulated by Lubotzky-Weiss.
Solved (at least in char 0) by Burger-Sarnak and �nally Clozel
(2003).

All this for arithmetic groups Γ = G (Z).



What about Λ ≤ G (Z) Zariski dense but of in�nite index?
Zariski dense ⇒ Λ is mapped onto G (Z/mZ) for most m's.
(Strong approximation for linear groups).
So: If Λ = 〈S〉 then Cay(G (Z/mZ); S) is connected.
Are these expanders?

First challenge:

Λ =
〈

( 1 3
0 1 ) , ( 1 0

3 1 )
〉
; the 1− 2− 3 problem.

Partial results by Gamburd & Shalom (90's)



1st Breakthrough

Helfgott (2005 - 2008) If A ⊆ G = SL2(Fp)
(Fp = Z/pZ) a generating subset then,either

A · A · A = G or |A · A · A| ≥ |A|1+ε

for some �xed ε > 0 (independent of p).

(Helfgott result was slightly weaker, this is a polished form
�the product property�)

This implies poly-log diameter for all generating set (Babai
Conjecture)



Method �translating� via trace �sum-product results� from Fp to
�product result� in SL2(Fp)

Thm (Bourgain-Katz-Tao)

If A ⊆ Fp with pδ ≤ |A| ≤ p1−δ, then |A + A|+ |A · A| ≥ c|A|1+ε

where c and ε depend only on δ.



2nd Breakthrough

Bourgain-Gamburd (2006 � 2010)

∀0 < δ ∈ R, ∃ε = ε(δ) ∈ R s.t. ∀p, ∀S ⊆ SL2(Fp)

generating set:

if girth (Cay(SL2(Fp); S)) ≥ δ log p then Cay(SL2(Fp); S) is an
ε-expander.

The theorem applies for
(a) random generators
(c) every set of gen's of SL2(Fp) coming from Λ ≤ SL2(Z)
In particular solved the 1-2-3 problem!



This motivated Bourgain-Gamburd-Sarnak to

a. formulate �a�ne sieve� method for �almost prime� vectors on
orbits Λ.b when Λ ≤ GLn(Z) provided Λ has τ w.r.t. congruence
subgroups mod q, q-square free

b. proved �τ mod such q's� if Λ̄Zariski ' SL2.

Even the special case (b) had some beautiful applications.



But the series of breakthroughs has not slowed down ...

Thm (Breuillard-Green-Tao/Pyber-Szabo (2010))

The �product theorem� of Helfgott holds ∀ �nite simple group of

Lie type of bounded Lie rank, i.e.,

∀r ∈ N, ∃ ε = ε(r)

∀ G = Gr (Fq) (e.g. SLr (Fq)) if A ⊆ G

generating set then either

A · A · A = G or |A · A · A| > |A|1+ε



Thm (Salehi-Golse�dy - Varju (2011))

Λ ≤ GLn(Z) If G 0 = Λ̄0-the connected component of the Zariski

closure of Λ - is perfect (e.g. semisimple), then

Λ has (τ) w.r.t. Λ(q) = Ker(Λ→ GLn(Z/qZ))

for q square-free

Also: Bourgain-Varju; in some cases w.r.t. all q.



Thm (Salehi-Golse�dy - Sarnak (The A�ne Sieve))

Λ ≤ GLn(Z), G 0 = Λ̄0, if the reductive part of G 0 is semisimple,

b ∈ Zn and f (x) ∈ Q[x] is integral on θ = Λ.b
Then f (x) has in�nitely many almost prime values on Λ.b.



Applications

(I) For integral right angle triangles x23 = x21 + x22

6| x1x2
2

= the area (ex!)
The solutions are on the orbit of Λ.b with

Λ = OF (Z), F = x21 + x22 − x23 , b =
(

3
4
5

)
∴ ∃ ∞ triangles with areas almost prime.
Green-Tao 6 primes !



Integral Apollonian packing

see http://www.youtube.com/watch?v=DK5Z709J2eo

Apollonius Given three mutually tangents circles C1,C2,C3, ∃
exactly two C4,C

′
4 tangents to all three.



Descartes

The curvatures ( 1
radii

) of C4 and C ′4 are solutions of

F (a1, a2, a3, a4) =

2(a21 + a22 + a23 + a24)− (a1 + a2 + a3 + a4)2

∴ a′4 = 2a1 + 2a2 + 2a3 − a4



So, start with 4 circles (e.g. (18, 27, 23, 146)) and apply:

S1 =

(
−1 2 2 2
0 1 0 0
0 0 1 0
0 0 0 1

)
, S2 =

(
1 0 0 0
2−1 2 2
0 0 1 0
0 0 0 1

)
,

S3 =

(
1 0 0 0
0 1 0 0
2 2−1 2
0 0 0 1

)
and S4 =

(
1 0 0 0
0 1 0 0
0 0 1 0
2 2 2−1

)
,

Λ = 〈S1, S2, S3, S4〉

The a�ne sieve gives results like: ∞ many almost prime circles.

Many questions: ∞-many primes? How many?
∞-many �twin primes� (=�kissing primes�)? etc.
See notes for references.
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M = orientable n-dimensional closed hyperbolic manifold

(closed ≡ compact without boundary,

hyperbolic ≡ constant curvature −1).

Equivalently:

V = Rn+1

f (x1, . . . , xn, xn+1) = x21 + · · ·+ x2n − x2n+1

G = SO(f ) = {A ∈ SLn+1(R)|f (Ax) = f (x)} = SO(n, 1)

K = maximal compact subgroup = SO(n)
Hn = G/K = n - dim Hyperbolic space

M = Γ \ G/K = Γ \Hn

Γ = π1(M), Γ- torsion free cocompact lattice in G

geometry of M! group theory of Γ



Conj (Thurston-Waldhausen)

M has a �nite cover M0 with β1(M0) = dimH1(M0,R) > 0.

Eq: Γ has a �nite index subgroup Γ0 with Γ0 � Z.

Conj (Lubotzky-Sarnak)

Γ does not have (τ), i.e. if Γ = 〈S〉
{Cay(Γ/N; S)|N / Γ, [Γ : N] <∞} is not a family of expanders.

Remark: Γ does not have (T ).

Conj (Serre)

For Γ arithmetic, Γ does not have the congruence subgroup

property (CSP).



(T-W) ⇒ (L-S) ⇒ (Se)

Why?

(T-W) ⇒ (L-S)

since in�nite abelian quotient implies no (τ).

(L-S)⇒ (Se) as we said: arithmetic groups have (τ) w.r.t.

congruence subgroups (Selberg, ... , Clozel).



The most important case is n = 3, here we also have:

Conj (Virtual Haken)

M = M3 has a �nite cover which is Haken.

eq: Γ has �nite index Γ0 such that either Γ0 � Z or

Γ0 = A ∗
C
B(C � A,B).

Haken ≡ contains an incompressable surface i.e. a properly

embedded orientable surface S(6= S2) with π1(S) ↪→ π1(M).

Most important open conj left for 3-manifolds (after Perelman).



First use of expanders in geometry (Lubotzky (1997))

Thm
Thurston-Waldhausen conj is true for arithmetic lattices in

SO(n, 1), 6= 3, 7.

Main pt: (The Sandwich Lemma)

G1 ≤ G2 ≤ G3 − simple Lie gps

Γ1 ≤ Γ2 ≤ Γ3 − arithmetic lattices

Γ2 = G2 ∩ Γ3, Γ1 = G1 ∩ Γ2

Then: (a) If Γ1 has the Selberg property (i.e. τ w.r.t. congruence

subgroups) and Γ3 does not have (τ) then Γ2 does not have the

C.S.P.

(b) If Γ1 has Selberg and Γ3 has congruence Γ0 � Z, then Γ2 also

has Γ′
0
� Z.

After that Put Γ ≤ SO(n, 1) as Γ2 in such a Sandwich (use Galois

cohomology,Selberg, J-L, Kazhdan-Borel-Wallach)



A second use (Lackenby 2005)

n = 3

An attack on the virtual Haken conjecture using (τ)

Heegaard splitting M = M3 then M = H1 ∪ H2 where H1 and

H2 are two handle bodies glued along their boundaries ∂H1 ' ∂H2

- genus g surface.

Every M has such decomposition!

g(M) = Heegaard genus of M = the minimal g .



Thm (Lackenby)

M = M3

h(M)
‖

Cheeger Constant

≤ 8π(g(M)− 1)

Vol(M)
.

So a �rst connection between expansion and g(M).

Idea of Proof One can arrange Heegaard decomposition

with approx. equal sizes (by volume). Area ∂H is given by

Gauss-Bonnet.



Easy to see: M0 � M �nite cover

g(M0) ≤ [M0 : M]g(M)

De�ne: for Γ = π1(M)
L = {Ni} �nite index normal subgroups of Γ, Mi -the covers

Heegaard genus gradient = χL(M) = inf
i

g(Mi )

[Mi : M]
.

Ex: If M �bres over a circle (i.e., Γ� Z with �n. gen. kernel)

then χL(M) = 0

Conj (Heegaard gradient conj)

If χL(M) = 0 then ∃ �nite sheeted cover which �bres over a circle.



Thm (Lackenby)

M = M3,L = {Ni} �nite index normal subgroups of Γ = π1(M),
with corresponding covers {Mi}. If:

(1) χL(M) > 0, and

(2) Γ does not have (τ) w.r.t. L.

Then M is virtually Haken.

Cor
Lubotzky-Sarnak conj (no (τ) for Γ) and Heegaard gradient conj

(χL(M) = 0⇒ �bres over S1) imply the virtual Haken conj.

Several unconditional results

Lackenby

Lackenby-Long-Reid

Long-Lubotzky-Reid



Sieve Method in Group Theory

We used the sieve method to sieve over the orbit of Λ ≤ GLn(Z)
acting on Zn.

But we can also use it for the action of Λ on itself!

It provides a way �to measure� subsets Z of Λ (a countable set)

wk= the random k-step on Cay(Λ; S).
Say Z of Λ is �exponentially small� if Prob(wk ∈ Z ) < Ce−δk for

some constants C , δ > 0.



Group Sieve Method

Thm
• Γ = 〈S〉 �nitely generated group.

• L = {Ni}i∈I , I ⊆ N, �nite index normal subgroups.

• Z ⊆ Γ a subset.

Assume: ∃ d ∈ N+, 0 < β ∈ R s.t.

(1) Γ has (τ) w.r.t. {Ni ∩ Nj}
(2) |Γ/Ni | ≤ id

(3) Γ/(Ni ∩ Nj) ' Γ/Ni × Γ/Nj

(4)
∣∣ZNi/Ni

∣∣ ≤ (1− β)|Γ/Ni |
Then Z is exponentially small



Applications

I. Linear Groups

Thm (Lubotzky-Meiri (2010))

• Γ ≤ GLn(C) not virtually-solvable.

• 2 ≤ m ∈ N, Z (m) = {gm|g ∈ Γ}
• Z =

⋃
2≤m∈N

Z (m) = proper powers

Then Z is exponentially small in Γ.

History: -Malcev

- Hrushovski-Kropholler-Lubotzky-Shalev



II. The mapping class group

Fix g ≥ 1, MCG (g) = the mapping class group of a closed surface

S of genus g = homeomorphisms modulo isotopic to the identity
∼= Aut(π1(S))/Inn(π1(S)) = Out(π1(S)).
This is a �nitely generated group.

Thm (Rivin (2008))

The set of non pseudo-Anosov elements in the mapping class group

MCG (g) of a genus g surface is exponentially small.

History -Thurston

-Maher, Rivin

-Kowalski, Lubotzky-Meiri



Random 3-manifolds

The Dun�eld-Thurston model:

Every ϕ ∈ MCG (g) gives rise to a 3-mainfold M obtained by gluing

2 handle bodies H1 and H2 along ∂H1

ϕ
' ∂H2.

Every 3-mfd is obtained like that!



Remember
MCG (g) is a �nitely generated group!

Fix a set of generators S . A random walk on Cay(MCG (g); S)
gives �random 3-mfd's" (with g(M) ≤ g).

How does random 3-mfd behave?

Some results by Dun�eld & Thurston.

Some by Kowalski.

A great potential for Sieve methods. Use MCG (g)→ Sp(2g ,Z).
(Work of Grunewald-Lubotzky gives many additional

representations with arithmetic quotients which have property (τ)
so one can apply sieve).
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