Expander Graphs in Pure and Applied Mathematics

Alex Lubotzky Einstein Institute of Mathematics, Hebrew University Jerusalem 91904, ISRAEL

- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. iii+192
- Shlomo Hoory, Nathan Linial and Avi Wigderson, Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561

(ロ) (型) (E) (E) (E) (O)

 http://www.ams.org/meetings/national/jmm/ 2011_colloquium_lecture_notes_lubotzky_expanders.pdf
$$X = \left(egin{array}{cc} V &, E \ & ert \end{array}
ight)$$
 a graph is $arepsilon - {
m expander}$ vertices edges

	~
1	+

$$egin{aligned} &orall Y \subseteq V, ext{ with } |Y| \leq rac{|V|}{2} \ &|\partial Y| \geq arepsilon |Y| \end{aligned}$$

where $\partial Y =$ boundry of $Y = \{x \in V | dist(x, Y) = 1\}$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

not expander.

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

expander \Rightarrow "fat and round" expander \Rightarrow logarithmic diameter

History

Barzdin & Kolmogorov (1967) (networks of nerve cells in the brain!)

Pinsker (1973) - communication networks

We want "families of expanders" (n, k, ε) -expanders, $n = |V| \rightarrow \infty$ k-regular, k-fixed (as small as possible) ε -fixed (as large as possible)

Fact. Fixed $k \ge 3$, $\exists \varepsilon > 0$ s.t. "most" random k-regular graphs are ε -expanders.

(Pick $\pi_1, \ldots, \pi_k \in Sym(n)$ at random).

(日) (四) (日) (日)

Many applications in CS:

Communication networks

pseudorandomness/Monte-Carlo algorithms

derandomization

÷

error-correcting codes

Over 4,000,000 sites with "expanders"

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

but many of them for dentists

Still over 400,000 are about expander graphs ... e.g.

Figure: Inverse graph, level = 617

$$V = \{0, 1, \dots, p-1\} \cup \{\infty\}$$
$$x \to x \pm 1 \quad \& \quad x \to -\frac{1}{x}$$

For applications one wants explicit construction

Kazhdan property (T) from representation theory

Def. (1967) Let Γ be a finitely generated group, $\Gamma = \langle S \rangle$ $S = S^{-1}$. Γ has (T) if $\exists \varepsilon > 0$ s.t.

 $\forall (\mathcal{H}, \rho) \underset{\rho: \Gamma \to U(\mathcal{H}) = \textit{unitary operators}}{\mathcal{H} - \mathsf{Hilbert space}}$

irreducible (no closed invariant subspace) and non-trivial $(\mathcal{H}, \rho) \neq (\mathbb{C}, \rho_0).$

$$\forall \ 0 \neq v \in \mathcal{H}, \quad \exists \ s \in S \text{ s.t.} \\ \|\rho(s)v - v\| \geq \varepsilon \|v\|$$

i.e., no almost-invariant vectors

Explicit construction (Margulis 1973)

Assume $\Gamma = \langle S \rangle$ has (T),

$$\mathcal{L} = \{ N \triangleleft \Gamma | [\Gamma : N] < \infty \}.$$

Then $\{ Cay(\Gamma/N; S) | N \in \mathcal{L} \}$

is a family of expanders.

Remainder. $G = \langle S \rangle$ group, Cayley graph Cay(G; S):

$$V = |G|$$
 and $g_1 \sim g_2$ if $\exists s \in S$ with $sg_1 = g_2$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

"Proof"

$$X = {\it Cay}(\Gamma/N;S), \; Y \subseteq V(X) = \Gamma/N, |Y| \leq rac{|V|}{2}$$

need to prove $|\partial Y| \ge \varepsilon' |Y|$ Γ acts on Γ/N by left translations and hence on $L^2(\Gamma/N)$. Take

$$\mathbf{1}_{Y} = \text{char. function}$$
 of $Y = \begin{cases} 1 & y \in Y \\ 0 & y \notin Y \end{cases}$

So some $s \in S$ moves $\mathbf{1}_Y$ by ε ,

$$ho(s)(\mathbf{1}_Y) = \mathbf{1}_{sY}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

so $\mathbf{1}_{sY}$ is "far" from $\mathbf{1}_Y$, i.e. many vertices in sY are not in Y; but $sY \setminus Y \subset \partial Y$ and we are done. \Box

An important observation

We use (T) only for the rep's $L^2(\Gamma/N)$, in particular, finite dimensional!

Def: $\Gamma = \langle S \rangle$ finitely generated groups. $\mathcal{L} = \{N_i\}$ family of finite index normal subgroups of Γ . Γ has (τ) w.r.t. \mathcal{L} if $\exists \varepsilon > 0$ s.t. $\forall (\mathcal{H}, \rho)$ non-trivial irr. rep. with Ker $\rho \supset N_i$ for some $i, \forall 0 \neq v \in \mathcal{H}$ $\exists s \in S$ s.t. $\|\rho(s)v - v\| > \varepsilon \|v\|$. Cor (τ) w.r.t. $\mathcal{L} \Rightarrow Cay(\Gamma/N_i; S)$ expanders!

ション ふゆ く 山 マ チャット しょうくしゃ

This is iff !!!

Thm (Kazhdan)

 $SL_n(\mathbb{Z})$ has (T) for $n \ge 3$ $(n \times n \text{ integral matrices, } det = 1)$ $SL_2(\mathbb{Z})$ does not have (T) nor (τ) (has a free subgroup F of finite index and $F \twoheadrightarrow \mathbb{Z}$) but:

Thm (Selberg)

 $SL_2(\mathbb{Z})$ has (au) w.r.t. congruence subgroups

$$\{\Gamma(m) = Ker(SL_2(\mathbb{Z}) \rightarrow SL_2(\mathbb{Z}/m\mathbb{Z}))\}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Selberg's Thm is known as: $\lambda_1(\Gamma(m) \setminus \mathbb{H}) \geq \frac{3}{16}$. \mathbb{H} - upper half plane.

Eigenvalues & random walks

X finite k-regular graph, X = (V, E)

$$|V| = n$$
.

 $A = A_X$ - adjancency matrix, $A_{ij} = \#$ edges between *i* and *j*.

A symmetric matrix with eigenvalues

$$egin{array}{ll} k = \lambda_0 \geq \lambda_1 \geq \cdots \geq \lambda_{n-1} \geq -k \ \cdot \lambda_0 > \lambda_1 & ext{iff } X ext{ is connected} \ \cdot \lambda_{n-1} = -k & ext{iff } X ext{ is bi-partite.} \end{array}$$

Thm X is ε -expander iff

$$\lambda_1 \le k - \varepsilon'$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The non-trivial eigenvalues $\lambda \neq \pm k$ control the rate of **convergence** of the random walk on X to the uniform distribution; so: Expanders " \Leftrightarrow " exponentially fast convergence to uniform distribution.

ション ふゆ く 山 マ チャット しょうくしゃ

Thm (Alon-Boppana) For k fixed, $\lambda_1(X_{n,k}) = 2\sqrt{k-1} + o(1)$ when $n \to \infty$ Ramanujan graph $\lambda(X) \le 2\sqrt{k-1}$ (optimal) $\forall k = p^{\alpha} + 1$, p prime $\exists \infty$ many k-regular Ramanujan graphs.

Open problem for other k's, e.g. k=7.

Expanders & Riemannian manifolds

 $\begin{array}{ll} M & n \text{-dim connected closed Riemannian manifold} \\ \Delta = -div(grad) = laplacian = Laplace - Beltrami operator. \\ e.\nu. \ 0 = \lambda_0 < \lambda_1 \leq \lambda_1 \leq \ldots \leq \lambda_i \leq \ldots \end{array}$

Fact

$$\lambda_1(M) = \inf\left\{\frac{\int_M \|df\|^2}{\int_M |f|^2} \middle| f \in C^\infty(M), \int f = 0\right\}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Def. The Cheeger constant h(M)

$$h(M) = \inf_{Y} \frac{Area(\partial Y)}{Volume(Y)}$$

Y - Open in M with $Vol(Y) \le \frac{1}{2} Vol(M)$

Cheeger Inequality (1970)

$$\lambda_1(M) \geq \frac{1}{4}h^2(M)$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Buser proved a converse: bounding h(M) by $\lambda_1(M)$.

In summary

Thm

 $\Gamma = \langle S \rangle$ finitely generated group, $\mathcal{L} = \{N_i\}$ finite index normal subgroups.

TFAE: Representation (i) Γ has (τ) w.r.t. \mathcal{L} i.e. $\exists \varepsilon_1$ s.t. $\forall (\mathcal{H}, \rho) \cdots$ Combinatorics (ii) $\exists \varepsilon_2 > 0$ s.t. $Cay(\Gamma/N_i; S)$ are ε_2 -expanders Random walks (iii) $\exists \varepsilon_3 > 0$ s.t.

$$\lambda_1(\mathit{Cay}({\sf \Gamma}/{\sf N}_i;S)) \leq k - arepsilon_3$$
 where $k = |S|$

Measure theoretic (iv) The Haar measure on $\hat{\Gamma}_{\mathcal{L}} = \lim_{\leftarrow} \Gamma/N_i$ is the only Γ -invariant mean on $L^{\infty}(\hat{\Gamma}_{\mathcal{L}})$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

If $\Gamma = \Pi_1(M)$, *M*-closed Riemannian manifold and $\{M_i\}$ the corresponding covers:

Geometric (v) $\exists \varepsilon_5 > 0, h(M_i) \geq \varepsilon_5$

Analytic (vi) $\exists \varepsilon_6 > 0, \lambda_1(M_i) \geq \varepsilon_6$

Back to Selberg & Kazhdan

Selberg Thm $\lambda_1(\Gamma(M) \setminus \mathbb{H}) \geq \frac{3}{16}$

Cor

 $Cay(SL_2(\mathbb{F}_p); \left\{ \left(\begin{smallmatrix} 1 & 1 \\ 0 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 0 & 1 \\ -1 & 0 \end{smallmatrix}\right) \right\} \right) \text{ are expanders.}$

(Proof uses Weil's Riemann hypothesis for curves and Riemann surfaces).

Cor

$$\begin{pmatrix} 1 & \frac{p-1}{2} \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}^{\frac{p-1}{2}}$$
 can be written as a word of length $O(\log p)$ using $\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ and $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$.

Open problem How? Algorithm? (Partial; Larsen). (New proof by Bourgain-Gamburd (Helfgott) but also without algorithm).

Thm

For a fixed n, $Cay(SL_n(\mathbb{F}_p); \{A, B\})$ are expanders $(A, B \text{ generators for } SL_n(\mathbb{Z}))$.

Can they all be made into a family of expanders together - all *n* all p? and even all $q = p^{e}$?

Conj (Babai-Kantor-Lubotzky (1989))

All non abelian finite simple groups are expanders in a uniform way (same k, same ε).

This was indeed proved as an accumulation of several works and several methods

```
Kassabov - Lubotzky - Nikolov (2006): Groups of Lie type except Suzuki.
```

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

```
Kassabov (2006): Aln(n) and Sym(n).
Breuillard - Green - Tao (2010): Suzuki Groups.
```

Other generators

What happened if we slightly change the set of generators?

Ex 1 $Cay(SL_2(\mathbb{F}_p); \{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}\}$ are expanders (Selberg)

Ex 2 $Cay(SL_2(\mathbb{F}_p); \{\begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 2 & 1 \end{pmatrix}\}$ are expanders (Pf: $\langle \begin{pmatrix} 1 & 2\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 2 & 1 \end{pmatrix} \rangle$ is of finite index in $SL_2(\mathbb{Z})$ and use Selberg.)

What about Ex 3 $Cay(SL_2; \{\begin{pmatrix} 1 & 3\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 3 & 1 \end{pmatrix}\})?$ $\langle \begin{pmatrix} 1 & 3\\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0\\ 3 & 1 \end{pmatrix} \rangle$ is of infinite index in $SL_2(\mathbb{Z})$ (but Zariski dense?) "Lubotzky 1-2-3 problem".

Answer:

Yes! (Bourgain-Gamburd/Helfgott) with Far reaching generalizations; Breuillard-Green-Tao, Pyber-Szabo, Salehi-Golsefidy-Varju.

These generalizations have dramatic number theoretic applications. This will be the topic of lecture II.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Thm $\exists \infty many primes$

Proof.

Put a topology on \mathbb{Z} by declaring the arithmetic progressions $Y_{a,d} = \{a + dn/n \in \mathbb{Z}\}$ to be a basis for the topology $(d \neq 0)$ For every $p \in \mathbb{Z}$, $p\mathbb{Z} = Y_{o,p}$ is open and closed. $\mathbb{Z} \setminus \bigcup_{p \text{ prime}} p\mathbb{Z} = \{\pm 1\}$ is **not** open so $\exists \infty$ -many primes.

Homework: Let $\hat{\mathbb{Z}}=$ completion of \mathbb{Z} w.r.t. this topology. Then

1.
$$\hat{\mathbb{Z}} = \prod_{p} \hat{\mathbb{Z}}_{p} \ (\hat{\mathbb{Z}}_{p} - p \text{-adic integers}).$$

- 2. The invertible elements of $\hat{\mathbb{Z}}$ is equal to $\overline{\mathcal{P}} \setminus \mathcal{P}$ (where $\mathcal{P} = \{ p \in \mathbb{Z} | p \text{ prime} \}$
- 3. (2) is exactly Dirichlet primes on arithmetic progressions.

ション ふゆ く 山 マ チャット しょうくしゃ

Expander Graphs in Number Theory

Alex Lubotzky Einstein Institute of Mathematics, Hebrew University Jerusalem 91904, ISRAEL

- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. iii+192
- Shlomo Hoory, Nathan Linial and Avi Wigderson, Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561

(ロ) (型) (E) (E) (E) (O)

 http://www.ams.org/meetings/national/jmm/ 2011_colloquium_lecture_notes_lubotzky_expanders.pdf

Thm (Dirichlet)

 $b,q\in\mathbb{Z}$ with (b,q)=1, $\exists \ \infty \ many \ primes \ in \ b+q\mathbb{Z}$

or: $x \in \mathbb{Z}$, $\nu(x) = \#$ prime factors of x, then for every $b, q \in \mathbb{Z}, \exists \infty x's \text{ in } b + q\mathbb{Z} \text{ with } \nu(x) \leq 1 + \nu((b,q)).$

Twin Prime Conjecture

 $\exists \infty \text{ many } p \text{ with } p+2 \text{ also a prime,}$ or: $\exists \infty \text{ many } x \in \mathbb{Z} \text{ with } \nu (x(x+2)) \leq 2.$

a stronger version TPC on arithmetic progressions.

ション ふゆ く 山 マ ふ し マ うくの

A far reaching generalization (Schinzel):

- $\{0\}
 eq \Lambda \leq \mathbb{Z}$ a subgroup, i.e. $\Lambda = q\mathbb{Z}, \ q
 eq 0$ and $b \in \mathbb{Z}$
- θ = orbit of *b* under Λ = $b + q\mathbb{Z}$
- $f(x) \in \mathbb{Q}[x]$ a poly, integral on heta

Say: (θ, f) primitive if $\forall 2 \leq k \in \mathbb{Z}$,

$$\exists x \in \theta \text{ s.t. } (f(x), k) = 1.$$

Conjecture

If $f(x) \in \mathbb{Q}[x]$ is a product of t irreducible factors & (θ, f) primitive then $\exists \infty \ x \in \theta$ with $\nu(f(x)) \leq t$

Higher dimensional generalization

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Conjecture (Hardy-Littlewood)

- $\Lambda \leq \mathbb{Z}^n$
- $\forall j$, the j-th coordinate is non-constant on Λ

•
$$b \in \mathbb{Z}^n$$
, $\theta = b + \Lambda$

• $f(\mathbf{x}) = x_1 \cdot \ldots \cdot x_n$, (θ, f) -primitive.

Then $\exists \infty$ many $x \in \theta$ with $\nu(f(x)) \le n$ Moreover, this set is Zariski dense. Note: H-L conj \Rightarrow TPC: take $b = (1,3) \in \mathbb{Z}^2$ and $\Lambda = \mathbb{Z}(1,1)$.

A famous special case:

Thm (Green-Tao (2008))

 $\forall k \in \mathbb{N}$, the set of primes contains an arithmetic progression of length k.

Indeed: Look at \mathbb{Z}^k and

$$\Lambda = \mathbb{Z} \cdot (1, 1, \ldots, 1) + \mathbb{Z} \cdot (0, 1, 2, 3, \ldots, k-1)$$

Then the orbit of $(1, 1, 1, \ldots, 1)$ is the set

$$\{(m, m+n, m+2n, \ldots, m+(k-1)n \mid m, n \in \mathbb{Z}\}.$$

H-L Conj says it has ∞ many vectors with prime coordinates.

H-L conj suggests a similar result for the orbit $\Lambda.b$ where $\Lambda \leq GL_n(\mathbb{Z})$. But never been asked maybe because of examples like this:

Ex: Let
$$\Lambda = \left\langle \left(\begin{smallmatrix} 7 & 6 \\ 8 & 7 \end{smallmatrix}\right) \right\rangle$$
 & $b = \left(\begin{smallmatrix} 1 \\ 1 \end{smallmatrix}\right)$.

The orbit
$$\Lambda$$
.*b* is in = $\left\{\binom{x}{y} \in \mathbb{Z}^2 | 4x^2 - 3y^2 = 1\right\}$
so: $3y^2 = 4x^2 - 1 = (2x - 1)(2x + 1)$
so *y* never a prime.

But there are extensions of H-L conj (and even results) and they came from expanders!

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Sieve

For $x \in \mathbb{R}$, let

$$\mathbb{P}(x) = \{p \le x | p \text{ prime}\}$$
$$P(x) = \prod_{p \in \mathbb{P}(x)} p$$
$$\pi(x) = |\mathbb{P}(x)|.$$

Prime Number Theorem

$$\pi(x) \sim \frac{x}{\log x}$$

R.H. is about the error term An explicit formula for $\pi(x)$:

$$\pi(x)-\pi(\sqrt{x})=-1+\sum_{S\subseteq \mathbb{P}(\sqrt{x})}(-1)^{|S|}ig\lfloorrac{x}{\prod_{p\in S}p}ig
floor$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Proof: Inclusion exclusion. But useless! Too many terms

Brun's Sieve

Let f(x) = x(x+2)Let

$$S(f,z) := \sum_{\substack{n \le x \\ (f(n),P(z))=1}} 1 =$$

 $= \#\{n \le x | \text{ all prime divisors of } f(n) \text{ are } > z\}$ (so if z is "large", say x^{δ} then n has few prime divisors).

Recall
$$\mu(n) = \begin{cases} 1 & n=1\\ (-1)^r & n=p_1\cdots p_r & \text{distinct} \\ 0 & \text{otherwise} \end{cases}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

then
$$\sum_{d|n} \mu(d) = \begin{cases} 1 & n=1 \\ 0 & n>1 \end{cases}$$

Then:

$$S(f, z) = \sum_{\substack{n \le x \\ (f(n), P(z)) = 1}} 1$$

= $\sum_{n \le x} \sum_{\substack{d \mid (f(n), P(z)) \\ d \mid P(z)}} \mu(d) =$
= $\sum_{\substack{d \mid P(z) \\ f(n) \equiv 0(d)}} (\sum_{\substack{n \le x \\ f(n) \equiv 0(d)}} 1)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\beta(d) = \#\{m \mod d | f(m) \equiv 0(d)\}$ Running over all *n*'s up to *x*, we cover approximately $\frac{x}{d}$ times the residues mod *d*, and approx $\frac{x}{d}\beta(d)$ of them give zeroes for *f* mod *d*.

So:

$$S(f,z) = \sum_{d|P(z)} \mu(d) \left(\frac{\beta(d)}{d}x + r(d)\right)$$

 $\begin{array}{l} r(d) = \mbox{error term.} \\ \frac{\beta(d)}{d} = \mbox{multiplicative function of } d. \\ \mbox{Brun developed a method to analyze such sums and deduced} \\ S(f,z) \geq C \frac{x}{\log(x)^2} \end{array}$

Thm

 $\exists \infty \text{ many } n, \text{ with } v(n(n+2)) \leq 18$ World record toward TPC: $v(n(n+2)) \leq 3$ (Chen). His "combinatorial sieve" proved an "almost version" of H-L conj:

 $b + \Lambda$ has ∞ many vectors of "almost" primes (# prime factors is bounded by r = r(n)).

Key observation for us: (Sarnak 2005) Brun's method works for $\Lambda.b$, $\Lambda \leq GL_n(\mathbb{Z})$ provided Λ has (τ) w.r.t. congruence subgroups $\Lambda(q) = Ker(\Lambda \rightarrow GL_n(\mathbb{Z}/q\mathbb{Z}))$ for q square-free!

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

The orbit $\Lambda.b$ is "counted/graded" by the balls of radius at most ℓ w.r.t. a fixed set of generators Σ of Λ .

 $B(\ell) = \{\gamma \in \Lambda | \text{ length}_{\Sigma}(\gamma) \leq \ell\}$ acts on $b \in \mathbb{Z}^n$ and reduced mod $q \in \mathbb{Z}$. Because of (τ) , $B(\ell).b(\mod q)$ distributes almost uniformly over the vectors $\Lambda.b(\mod q)$

This is exactly the expander property!! So what we really need is " τ for $\Lambda \leq GL_n(\mathbb{Z})$ w.r.t. congruence subgroups $\Lambda(q), q$ square-free."

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Let's take a little break from number theory to see what we have about

" τ w.r.t. congruence subgroups for subgroups Λ of $GL_n(\mathbb{Z})$ ".

Kazhdan property (*T*), Selberg Theorem, Ramanujan Conjecture, Jacquet-Langlands correspondence gave it for "most" arithmetic groups. General conj was formulated by Lubotzky-Weiss. Solved (at least in char 0) by Burger-Sarnak and finally Clozel (2003).

All this for arithmetic groups $\Gamma = G(\mathbb{Z})$.

What about $\Lambda \leq G(\mathbb{Z})$ Zariski dense but of infinite index? Zariski dense $\Rightarrow \Lambda$ is mapped onto $G(\mathbb{Z}/m\mathbb{Z})$ for most *m*'s. (Strong approximation for linear groups). So: If $\Lambda = \langle S \rangle$ then $Cay(G(\mathbb{Z}/m\mathbb{Z}); S)$ is connected. Are these expanders?

First challenge:

$$\Lambda = \left\langle \left(\begin{smallmatrix} 1 & 3 \\ 0 & 1 \end{smallmatrix}\right), \left(\begin{smallmatrix} 1 & 0 \\ 3 & 1 \end{smallmatrix}\right) \right\rangle; \text{ the } 1 - 2 - 3 \text{ problem.}$$

ション ふゆ く 山 マ チャット しょうくしゃ

Partial results by Gamburd & Shalom (90's)

1st Breakthrough

Helfgott (2005 - 2008) If $A \subseteq G = SL_2(\mathbb{F}_p)$ $(\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z})$ a generating subset then, either

 $A \cdot A \cdot A = G$ or $|A \cdot A \cdot A| \ge |A|^{1+\varepsilon}$

for some fixed $\varepsilon > 0$ (independent of p).

(Helfgott result was slightly weaker, this is a polished form "the product property")

This implies poly-log diameter for all generating set (Babai Conjecture)

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Method "translating" via trace "sum-product results" from \mathbb{F}_p to "product result" in $SL_2(\mathbb{F}_p)$

Thm (Bourgain-Katz-Tao) If $A \subseteq \mathbb{F}_p$ with $p^{\delta} \leq |A| \leq p^{1-\delta}$, then $|A + A| + |A \cdot A| \geq c|A|^{1+\varepsilon}$ where c and ε depend only on δ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

2nd Breakthrough

Bourgain-Gamburd (2006 - 2010)

 $\forall 0 < \delta \in \mathbb{R}, \ \exists \varepsilon = \varepsilon(\delta) \in \mathbb{R} \ \text{s.t.} \ \forall p, \forall S \subseteq SL_2(\mathbb{F}_p)$

generating set:

if girth $(Cay(SL_2(\mathbb{F}_p); S)) \ge \delta \log p$ then $Cay(SL_2(\mathbb{F}_p); S)$ is an ε -expander.

The theorem applies for (a) random generators (c) every set of gen's of $SL_2(\mathbb{F}_p)$ coming from $\Lambda \leq SL_2(\mathbb{Z})$ In particular solved the 1-2-3 problem!

・ロト ・ 日 ・ ・ ヨ ・ ・ 日 ・ ・ の へ ()・

This motivated Bourgain-Gamburd-Sarnak to

a. formulate "affine sieve" method for "almost prime" vectors on orbits $\Lambda.b$ when $\Lambda \leq GL_n(\mathbb{Z})$ provided Λ has τ w.r.t. congruence subgroups mod q, q-square free

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

b. proved " τ mod such q's" if $\bar{\Lambda}^{\text{Zariski}} \simeq SL_2$.

Even the special case (b) had some beautiful applications.

But the series of breakthroughs has not slowed down ...

Thm (Breuillard-Green-Tao/Pyber-Szabo (2010)) The "product theorem" of Helfgott holds \forall finite simple group of Lie type of bounded Lie rank, i.e.,

$$\forall r \in \mathbb{N}, \exists \varepsilon = \varepsilon(r)$$

$$\forall G = G_r(\mathbb{F}_q) (e.g. SL_r(\mathbb{F}_q)) \text{ if } A \subseteq G$$

generating set then either

$$A \cdot A \cdot A = G$$
 or $|A \cdot A \cdot A| > |A|^{1+\varepsilon}$

ション ふゆ く 山 マ チャット しょうくしゃ

Thm (Salehi-Golsefidy - Varju (2011)) $\Lambda \leq GL_n(\mathbb{Z})$ If $G^0 = \overline{\Lambda}^0$ -the connected component of the Zariski closure of Λ - is perfect (e.g. semisimple), then

$$\land$$
 has (τ) w.r.t. $\land(q) = Ker(\land \rightarrow GL_n(\mathbb{Z}/q\mathbb{Z}))$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

for q square-free

Also: Bourgain-Varju; in some cases w.r.t. all q.

Thm (Salehi-Golsefidy - Sarnak (The Affine Sieve)) $\Lambda \leq GL_n(\mathbb{Z}), \quad G^0 = \overline{\Lambda}^0, \text{ if the reductive part of } G^0 \text{ is semisimple,}$ $b \in \mathbb{Z}^n \text{ and } f(\mathbf{x}) \in \mathbb{Q}[\mathbf{x}] \text{ is integral on } \theta = \Lambda.b$ Then $f(\mathbf{x})$ has infinitely many almost prime values on $\Lambda.b$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Applications

(I) For integral right angle triangles $x_3^2 = x_1^2 + x_2^2$

 $6|\frac{x_1x_2}{2} =$ the area (ex!) The solutions are on the orbit of Λ .*b* with

$$\Lambda = O_F(\mathbb{Z}), \ F = x_1^2 + x_2^2 - x_3^2, \ b = \begin{pmatrix} 3\\ 4\\ 5 \end{pmatrix}$$

ション ふゆ く 山 マ チャット しょうくしゃ

 $\therefore \exists \infty$ triangles with areas almost prime. Green-Tao 6 primes !

Integral Apollonian packing

see http://www.youtube.com/watch?v=DK5Z709J2eo

Apollonius Given three mutually tangents circles C_1, C_2, C_3, \exists exactly two C_4, C'_4 tangents to all three.

Descartes

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ● < ① へ ○</p>

The curvatures
$$(\frac{1}{radii})$$
 of C_4 and C'_4 are solutions of
 $F(a_1, a_2, a_3, a_4) =$
 $2(a_1^2 + a_2^2 + a_3^2 + a_4^2) - (a_1 + a_2 + a_3 + a_4)^2$
 $\therefore a'_4 = 2a_1 + 2a_2 + 2a_3 - a_4$

So, start with 4 circles (e.g. (18, 27, 23, 146)) and apply:

$$\begin{split} S_1 = & \begin{pmatrix} -1 & 2 & 2 & 2 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \qquad S_2 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 2 - 1 & 2 & 2 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, \\ S_3 = & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 - 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix} \text{ and } S_4 = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 2 & 2 & 2 - 1 \end{pmatrix}, \end{split}$$

$$\Lambda = \langle S_1, S_2, S_3, S_4 \rangle$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

The affine sieve gives results like: ∞ many almost prime circles.

Many questions: ∞ -many primes? How many? ∞ -many "twin primes" (="kissing primes")? etc. See notes for references.

Expander Graphs in Geometry

Alex Lubotzky Einstein Institute of Mathematics, Hebrew University Jerusalem 91904, ISRAEL

- Alexander Lubotzky, Discrete groups, expanding graphs and invariant measures. Reprint of the 1994 edition. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel, 2010. iii+192
- Shlomo Hoory, Nathan Linial and Avi Wigderson, Expander graphs and their applications. Bull. Amer. Math. Soc. (N.S.) 43 (2006), no. 4, 439–561

(ロ) (型) (E) (E) (E) (O)

 http://www.ams.org/meetings/national/jmm/ 2011_colloquium_lecture_notes_lubotzky_expanders.pdf M = orientable *n*-dimensional closed hyperbolic manifold (closed \equiv compact without boundary, hyperbolic \equiv constant curvature -1).

Equivalently:

$$V = \mathbb{R}^{n+1}$$

$$f(x_1, \dots, x_n, x_{n+1}) = x_1^2 + \dots + x_n^2 - x_{n+1}^2$$

$$G = SO(f) = \{A \in SL_{n+1}(\mathbb{R}) | f(A\overline{x}) = f(\overline{x})\} = SO(n, 1)$$

ション ふゆ く 山 マ チャット しょうくしゃ

$$\begin{split} & \mathcal{K} = \text{maximal compact subgroup} = SO(n) \\ & \mathbb{H}^n = G/\mathcal{K} = n \text{ - dim Hyperbolic space} \\ & \mathcal{M} = \Gamma \setminus G/\mathcal{K} = \Gamma \setminus \mathbb{H}^n \\ & \Gamma = \pi_1(\mathcal{M}), \ \Gamma \text{- torsion free cocompact lattice in G} \end{split}$$

geometry of $M \leftrightarrow group$ theory of Γ

Conj (Thurston-Waldhausen)

M has a finite cover M_0 with $\beta_1(M_0) = \dim H_1(M_0, \mathbb{R}) > 0$.

Eq: Γ has a finite index subgroup Γ_0 with $\Gamma_0 \twoheadrightarrow \mathbb{Z}$.

Conj (Lubotzky-Sarnak)

 $\[Gamma] \Gamma \] does not have (\tau), i.e. if \[Gamma] = \langle S \rangle \\ \{Cay(\Gamma/N; S) | N \lhd \Gamma, [\Gamma : N] < \infty \} \] is not a family of expanders. \]$

Remark: Γ does not have (T).

Conj (Serre)

For Γ arithmetic, Γ does **not** have the congruence subgroup property (CSP).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

$$(\mathsf{T}\text{-}\mathsf{W}) \Rightarrow (\mathsf{L}\text{-}\mathsf{S}) \Rightarrow (\mathsf{Se})$$

Why? (T-W) \Rightarrow (L-S) since infinite abelian quotient implies no (τ).

 $(L-S) \Rightarrow$ (Se) as we said: arithmetic groups have (τ) w.r.t. congruence subgroups (Selberg, ..., Clozel).

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

The most important case is n = 3, here we also have:

Conj (Virtual Haken)

 $M = M^3$ has a finite cover which is Haken.

eq: Γ has finite index Γ_0 such that either $\Gamma_0 \twoheadrightarrow \mathbb{Z}$ or $\Gamma_0 = A \underset{C}{*} B(C \lneq A, B).$

Haken \equiv contains an incompressable surface i.e. a properly embedded orientable surface $S(\neq S^2)$ with $\pi_1(S) \hookrightarrow \pi_1(M)$.

Most important open conj left for 3-manifolds (after Perelman).

First use of expanders in geometry (Lubotzky (1997)) Thm

Thurston-Waldhausen conj is true for arithmetic lattices in $SO(n, 1), \neq 3, 7$.

Main pt: (The Sandwich Lemma) $G_1 < G_2 < G_3 - \text{simple Lie gps}$ $\Gamma_1 < \Gamma_2 < \Gamma_3 - \text{arithmetic lattices}$ $\Gamma_2 = G_2 \cap \Gamma_3, \Gamma_1 = G_1 \cap \Gamma_2$ Then: (a) If Γ_1 has the Selberg property (i.e. τ w.r.t. congruence subgroups) and Γ_3 does not have (τ) then Γ_2 does **not** have the C.S.P. (b) If Γ_1 has Selberg and Γ_3 has congruence $\Gamma_0 \twoheadrightarrow \mathbb{Z}$, then Γ_2 also has $\Gamma'_0 \twoheadrightarrow \mathbb{Z}$.

After that Put $\Gamma \leq SO(n, 1)$ as Γ_2 in such a Sandwich (use Galois cohomology, Selberg, J-L, Kazhdan-Borel-Wallach) $\xrightarrow{}$

A second use (Lackenby 2005)

n=3 An attack on the virtual Haken conjecture using (au)

Heegaard splitting $M = M^3$ then $M = H_1 \cup H_2$ where H_1 and H_2 are two handle bodies glued along their boundaries $\partial H_1 \simeq \partial H_2$ - genus g surface.

ション ふゆ く 山 マ チャット しょうくしゃ

Every M has such decomposition! g(M) = Heegaard genus of M = the minimal g.

So a first connection between expansion and g(M).

Idea of Proof One can arrange Heegaard decomposition with approx. equal sizes (by volume). Area ∂H is given by Gauss-Bonnet.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Easy to see: $M_0 \rightarrow M$ finite cover

 $g(M_0) \leq [M_0:M]g(M)$

Define: for $\Gamma = \pi_1(M)$ $\mathcal{L} = \{N_i\}$ finite index normal subgroups of Γ , M_i -the covers

Heegaard genus gradient =
$$\chi_{\mathcal{L}}(M) = \inf_{i} \frac{g(M_i)}{[M_i:M]}$$
.

Ex: If *M* fibres over a circle (i.e., $\Gamma \twoheadrightarrow \mathbb{Z}$ with fin. gen. kernel) then $\chi_{\mathcal{L}}(M) = 0$

Conj (Heegaard gradient conj) If $\chi_{\mathcal{L}}(M) = 0$ then \exists finite sheeted cover which fibres over a circle.

Thm (Lackenby)

 $M = M^3, \mathcal{L} = \{N_i\}$ finite index normal subgroups of $\Gamma = \pi_1(M)$, with corresponding covers $\{M_i\}$. If:

- (1) $\chi_{\mathcal{L}}(M) > 0$, and
- (2) Γ does not have (τ) w.r.t. \mathcal{L} .

Then M is virtually Haken.

Cor

Lubotzky-Sarnak conj (no (τ) for Γ) and Heegaard gradient conj ($\chi_{\mathcal{L}}(M) = 0 \Rightarrow$ fibres over S^1) imply the virtual Haken conj.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Several unconditional results Lackenby Lackenby-Long-Reid Long-Lubotzky-Reid

Sieve Method in Group Theory

We used the sieve method to sieve over the orbit of $\Lambda \leq GL_n(\mathbb{Z})$ acting on \mathbb{Z}^n . But we can also use it for the action of Λ on itself! It provides a way "to measure" subsets Z of Λ (a countable set)

 w_k = the random k-step on $Cay(\Lambda; S)$. Say Z of Λ is "exponentially small" if $Prob(w_k \in Z) < Ce^{-\delta k}$ for some constants $C, \delta > 0$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Group Sieve Method

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Thm

- $\Gamma = \langle S \rangle$ finitely generated group.
- $\mathcal{L} = \{N_i\}_{i \in I}, I \subseteq \mathbb{N}$, finite index normal subgroups.
- $Z \subseteq \Gamma$ a subset.

Assume: $\exists d \in \mathbb{N}^+$, $0 < \beta \in \mathbb{R}$ s.t. (1) Γ has (τ) w.r.t. $\{N_i \cap N_j\}$ (2) $|\Gamma/N_i| \leq i^d$ (3) $\Gamma/(N_i \cap N_j) \simeq \Gamma/N_i \times \Gamma/N_j$ (4) $|ZN_i/N_i| \leq (1 - \beta)|\Gamma/N_i|$ Then Z is exponentially small

Applications

ション ふゆ く 山 マ チャット しょうくしゃ

I. Linear Groups

Thm (Lubotzky-Meiri (2010))

• $\Gamma \leq GL_n(\mathbb{C})$ not virtually-solvable.

•
$$2 \leq m \in \mathbb{N}, \ Z(m) = \{g^m | g \in \Gamma\}$$

•
$$Z = \bigcup_{2 \le m \in \mathbb{N}} Z(m) = proper powers$$

Then Z is exponentially small in Γ .

History: -Malcev

- Hrushovski-Kropholler-Lubotzky-Shalev

II. The mapping class group Fix $g \ge 1$, MCG(g) = the mapping class group of a closed surface S of genus g = homeomorphisms modulo isotopic to the identity $\cong Aut(\pi_1(S))/Inn(\pi_1(S)) = Out(\pi_1(S))$. This is a finitely generated group.

Thm (Rivin (2008))

The set of non pseudo-Anosov elements in the mapping class group MCG(g) of a genus g surface is exponentially small.

ション ふゆ く 山 マ チャット しょうくしゃ

History -Thurston

- -Maher, Rivin
- -Kowalski, Lubotzky-Meiri

Random 3-manifolds

The Dunfield-Thurston model:

Every $\varphi \in MCG(g)$ gives rise to a 3-mainfold M obtained by gluing 2 handle bodies H_1 and H_2 along $\partial H_1 \stackrel{\varphi}{\simeq} \partial H_2$.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Every 3-mfd is obtained like that!

```
Remember

MCG(g) is a finitely generated group!

Fix a set of generators S. A random walk on Cay(MCG(g); S)

gives "random 3-mfd's" (with g(M) \le g).
```

How does random 3-mfd behave?

Some results by Dunfield & Thurston. Some by Kowalski. A great potential for Sieve methods. Use $MCG(g) \rightarrow Sp(2g, \mathbb{Z})$. (Work of Grunewald-Lubotzky gives many additional representations with arithmetic quotients which have property (τ) so one can apply sieve).