
A COLLECTION OF DEFINITIONS AND NOTATION

K. R. Goodearl

This summary of definitions and notation is to accompany my lectures at the
XV ELAM in Cordoba, 23-27 May 2011. These are not all assumed to be familiar;
the majority will be introduced in the lectures.

1. Rings

All rings are assumed to be associative but not necessarily commutative or unital.

The standard unitification of a ring R is the unital ring R̃ based on the abelian
group Z⊕R, with multiplication rule (m, a)(n, b) = (mn,mb+ na+ ab).

An idempotent in a ring is any element e = e2.
A ring R has local units iff for each finite set X ⊆ R, there exists an idempotent

e ∈ R such that X ⊆ eRe. Note: eRe is a unital ring with identity element e.

Mn(R) denotes the ring of all n × n matrices over a ring R. For all n, identify
Mn(R) with the non-unital subring of Mn+1(R) consisting of those matrices whose
(n+ 1)st row and (n+ 1)st column are zero, and set M∞(R) =

⋃∞
n=1Mn(R). This

is a ring with local units.

A ring R is (von Neumann) regular iff for all x ∈ R, there exists y ∈ R such
that xyx = x. Further, R is unit-regular iff for all x ∈ R, there exists a unit (=
invertible element) u ∈ R such that xux = x.

Idempotents e and f in a ring R are orthogonal iff ef = fe = 0. The idempotent
e is dominated by f , written e ≤ f , iff e = ef = fe. Next, e and f are (Murray-von
Neumann) equivalent, denoted e ∼ f , iff there exist x, y ∈ R such that xy = e and
yx = f . Lemma: ∼ is an equivalence relation. Finally, e is subequivalent to f ,
written e . f , iff there exists an idempotent g ∈ R such that e ∼ g ≤ f . Lemma:
e . f iff there exist x, y ∈ R such that xfy = e.

An idempotent e ∈ R is infinite iff e = e1 + e2 for some orthogonal idempotents
e1 and e2 such that e1 ∼ e and e2 6= 0; otherwise, e is called finite (or Murray-
von Neumann finite). It is common to call e properly infinite (respectively, purely
infinite) iff there exist orthogonal idempotents e1, e2 ∈ R such that each ei ∼ e
and e1, e2 ≤ e (respectively, e1 + e2 = e). Warning: In some literature, “properly
infinite” is defined by the second set of conditions.

A unital ring R is directly finite (or von Neumann finite, or Dedekind finite) iff
all one-sided inverses in R are two-sided: xy = 1 implies yx = 1. Observation: R is
directly finite iff the idempotent 1R is finite. The ring R is stably finite iff all the
matrix rings Mn(R) are directly finite.

An element z in a ring R is a zero-divisor iff there is some nonzero element a ∈ R
such that za = 0 or az = 0. Thus, z is a non-zero-divisor in R iff (za = 0 =⇒ a =
0) and (az = 0 =⇒ a = 0) for all a ∈ R.

A classical right ring of fractions (or classical right quotient ring) for a ring R
is a unital ring S such that
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(1) R is a subring of S.
(2) Every non-zero-divisor in R is invertible in S.
(3) Every element of S can be written in the form ab−1 with a, b ∈ R and b a

non-zero-divisor.

If S exists, it is unique up to isomorphism. A classical ring of fractions for R is a
ring which is both a right and a left classical ring of fractions.

A ring R is right self-injective iff the right R-module RR is injective.

The right singular ideal of a ring R is Zr(R) = Z(RR) (the singular submodule
of the module RR); it is a two-sided ideal of R. The ring R is a right nonsingular
ring iff Zr(R) = 0.

Suppose R is a right nonsingular ring. A maximal right quotient ring of R is a
ring Q such that

(1) R is a subring of Q.
(2) R is an essential right R-submodule of Q, that is, RR is essential in QR.
(3) Whenever R is a subring of a ring S such that RR is essential in SR, the

identity map on R extends to a ring homomorphism S → Q.

Theorem: Every unital right nonsingular ring has a maximal right quotient ring,
and it is unique up to isomorphism.

A unital exchange ring is a unital ring R such that the module RR has the finite
exchange property. Theorem: R is an exchange ring iff RR has the finite exchange
property. Theorem: R is an exchange ring iff for all right (or left) ideals I and J of
R with I + J = R, there exists an idempotent e ∈ R such that e ∈ I and 1− e ∈ J .
Theorem: If R is an exchange ring, then all finitely generated projective R-modules
have the finite exchange property.

A non-unital ring R is an exchange ring iff for each x ∈ R, there exist an
idempotent e ∈ R and elements r, s ∈ R such that e = xr = x+ s− xs.

A matricial algebra over a field F is any F -algebra isomorphic to
⊕k

i=1Mni
(F ),

for some ni ∈ N. An ultramatricial F -algebra is any F -algebra A =
⋃∞
n=1An where

A1 ⊆ A2 ⊆ · · · is a countable increasing sequence of matricial F -subalgebras;
equivalently, A is the direct limit of a countable sequence A1 → A2 → · · · of
matricial F -algebras and F -algebra homomorphisms.

A simple ring is a nonzero ring which has no proper nonzero ideals. A purely
infinite simple ring (in the algebraic sense) is a simple ring in which each nonzero
right (equivalently, left) ideal contains an infinite idempotent. Theorem: A unital
simple ring R is purely infinite (algebraically) iff R is not a division ring and for
each nonzero a ∈ R, there exist x, y ∈ R such that xay = 1. In general, a ring R is
purely infinite (algebraically) iff

(1) No quotient R/I is a division ring.
(2) Whenever a ∈ R and b ∈ RaR, there exist x, y ∈ R such that xay = b.

2. *-algebras

An involution on a ring R is an additive map ∗ : R→ R such that (ab)∗ = b∗a∗

and (a∗)∗ = a for all a, b ∈ R. (If R is unital, automatically 1∗ = 1.) A *-ring is a
ring equipped with a particular involution *. An element a in a *-ring is self-adjoint
iff a∗ = a.

A projection in a *-ring is any self-adjoint idempotent: p = p∗ = p2.
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A real *-algebra is a *-ring A which is also an R-algebra such that (αa)∗ = αa∗

for all α ∈ R and a ∈ A. A complex *-algebra is a *-ring A which is also a C-
algebra such that (αa)∗ = αa∗ for all α ∈ C and a ∈ A, where α denotes the
complex conjugate of α.

When A is a (real or complex) *-algebra, it is usual to equip the matrix algebras
Mn(A) with the conjugate transpose involution, given by the rule (aij)

∗ = (a∗ji).

3. Algebras of operators

Let H be a real or complex Hilbert space, with inner product (−,−). A linear
map T : H → H is bounded iff there exists a real number r ≥ 0 such that ‖T (x)‖ ≤
r‖x‖ for all x ∈ H. Lemma: There is a least such r. It is called the operator norm
of T , denoted ‖T‖. Lemma: A linear map on H is bounded iff it is continuous.
The set of all bounded linear maps on H is denoted B(H) (or L(H)); it is a real or
complex algebra, and a Banach space with respect to the operator norm. Lemma:
For any T ∈ B(H), there is a unique T ∗ ∈ B(H) such that (T (x), y) = (x, T ∗(y)) for
all x, y ∈ H. It is called the adjoint of T . The adjoint map ∗ : B(H)→ B(H) is an
involution, so B(H) is a real or complex *-algebra. The strong operator topology on
B(H) is the topology of pointwise convergence: a net (Tα) converges to an operator
T in this topology iff Tα(x)→ T (x) for all x ∈ H.

A W*-algebra (or von Neumann algebra) on H is any *-subalgebra ofB(H) which
is closed in the strong operator topology. A C*-algebra on H is any *-subalgebra
of B(H) which is closed in the norm topology. Observation: Every W*-algebra on
H is also a C*-algebra on H.

An (abstract) C*-algebra is any real or complex *-algebra A equipped with a
norm ‖ · ‖ such that

(1) A is complete with respect to ‖ · ‖ (i.e., A is a Banach space).
(2) ‖ab‖ ≤ ‖a‖ · ‖b‖ for all a, b ∈ A.
(3) ‖aa∗‖ = ‖a‖2 for all a ∈ A.

Gelfand-Naimark-Segal Theorem: Every C*-algebra is isomorphic (as a normed
*-algebra) to a C*-algebra on some Hilbert space.

An AW*-algebra is a C*-algebra A such that for any subset X ⊆ A, there is a
projection p ∈ A with pA = {a ∈ A | xa = 0 for all x ∈ X}. Theorem: Every
W*-algebra is an AW*-algebra.

An AF (= approximately finite dimensional) C*-algebra is any C*-algebra A
containing finite dimensional *-subalgebras A1 ⊆ A2 ⊆ · · · such that

⋃∞
n=1An is

dense in A; equivalently, A is the C*-direct limit of a countable sequence A1 →
A2 → · · · of finite dimensional C*-algebras and C*-algebra homomorphisms.

A complex C*-algebra A has real rank zero iff the set of R-linear combinations
of orthogonal projections is dense in the set of self-adjoint elements of A.

The positive cone of a C*-algebra A is the set A+ = {aa∗ | a ∈ A}. Theorem:
A+ is closed under addition. Cuntz subequivalence for elements a, b ∈ A+ is defined
by b - a iff there exists a sequence (xn) in A such that xnax

∗
n → b. A complex

C*-algebra A is purely infinite (in the C* sense) iff

(1) There are no nonzero C*-algebra homomorphisms A→ C.
(2) b ∈ AaA implies b - a, for all a, b ∈ A+.

Theorem: A unital simple complex C*-algebra is purely infinite algebraically iff it
is purely infinite in the C* sense.
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4. Ordered sets

A pre-order on a set X is a relation ≤ on X which is

(1) reflexive: x ≤ x for all x ∈ X.
(2) transitive: x ≤ y ≤ z implies x ≤ z, for all x, y, z ∈ X.

It is a partial order if it is also

(3) antisymmetric: x ≤ y ≤ x implies x = y, for all x, y ∈ X.

A poset (= partially ordered set) is a set X equipped with a particular partial order.

An upper bound for a subset Y of a poset X is any element b ∈ X such that y ≤ b
for all y ∈ Y . A supremum for Y is a least upper bound : an upper bound s for Y
such that s ≤ b for all upper bounds b of Y . A supremum is unique if it exists, and
is then denoted

∨
Y or supY . The supremum of a two-element set {y, z} is written

y ∨ z. Lower bounds and infima (= greatest lower bounds) are defined dually, and
are denoted

∧
Y or inf Y or y ∧ z. A greatest element for X is

∨
X. If it exists, it

is denoted 1 or >. A least element for X is
∧
X. If it exists, it is denoted 0 or ⊥.

The poset X is bounded iff it has both a greatest element and a least element.
A lattice (in the context of ordered sets) is a poset in which every nonempty

finite subset has a supremum and an infimum. A complete lattice is a poset in
which every subset has a supremum and an infimum.

Suppose L is a bounded lattice with least element 0 and greatest element 1. A
complement for an element x ∈ L is any element y ∈ L such that x ∧ y = 0 and
x∨ y = 1. The lattice L is complemented iff every element of L has a complement.

A lattice L is modular iff a ∧ (b ∨ c) = (a ∧ b) ∨ c for all a, b, c ∈ L such that
a ≥ c.

5. Modules

The endomorphism ring of a module M , denoted End(M), is the set of all en-
domorphisms of M (= module homomorphisms M →M), with pointwise addition
and composition of functions as operations. We also write EndR(M) if M is an
R-module.

A submodule N of a module M is a direct summand of M provided there exists
a submodule N ′ of M such that M = N⊕N ′, that is, N+N ′ = M and N ∩N ′ = 0.
Such an N ′ is called a complement of N .

The left regular module over a ring R is just R itself, viewed as a left R-module
using the ring multiplication. This module is denoted RR. The right regular module
over R, denoted RR, is R viewed as a right R-module.

Over a unital ring R, a free left (respectively, right) R-module is any direct sum
of copies of RR (respectively, of RR). Proposition: An R-module is free iff it has a
basis. A projective R-module is any direct summand of a free R-module.

A module M is directly finite (or von Neumann finite, or Dedekind finite) iff M
is not isomorphic to any proper direct summand of itself; equivalently, M 6∼= M⊕N
for any nonzero module N . Lemma: M is a directly finite module iff End(M) is a
directly finite ring.

A submodule N of a module M is essential in M iff N ∩K 6= 0 for all nonzero
submodules K ⊆M .

The singular submodule of a right R-module M is the set
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Z(M) = {x ∈M | ∃ an essential right ideal I ⊆ R with xI = 0},
which is a submodule of M . The module M is nonsingular iff Z(M) = 0, and it is
singular iff Z(M) = M .

A module M has the finite exchange property iff for every module K and all
finite direct sum decompositions K = M ′ ⊕ N =

⊕n
i=1Ki with M ′ ∼= M , there

exist submodules K ′i ⊆ Ki such that K = M ′ ⊕
⊕n

i=1K
′
i.

6. Abelian monoids

A monoid is a semigroup (i.e., a set with an associative operation) which has
an identity element. A monoid is abelian iff its operation is commutative. Abelian
monoids will be written additively, with operation + and identity element 0.

The units of an abelian monoid M are those elements which have additive in-
verses. M is conical iff 0 is the only unit in M , that is, x+y = 0 implies x = y = 0,
for all x, y ∈M .

The algebraic pre-order on M is the pre-order ≤ given by the existence of sub-
traction: x, y ∈ M satisfy x ≤ y iff there exists x′ ∈ M such that x + x′ = y. An
ideal (or o-ideal) of M is any submonoid I which is hereditary with respect to ≤,
that is, x ≤ y ∈ I implies x ∈ I, for all x, y ∈M .

An order-unit in M is any element u ∈ M such that all elements of M are
bounded above by multiples of u: for each x ∈ M , there exists n ∈ N such that
x ≤ nu.
M has cancellation iff x + z = y + z implies x = y, for all x, y, z ∈ M . A

weaker property is that M is separative (or: M has separative cancellation) iff
2x = x+ y = 2y implies x = y, for all x, y ∈M .

An element x ∈M is infinite iff x+ y = x for some non-unit y ∈M ; otherwise,
x is finite. Observation: If M has cancellation, all elements of M are finite.
M has the Riesz decomposition property iff whenever x, y1, y2 ∈ M with x ≤

y1 + y2, there exist x1, x2 ∈M such that x = x1 + x2 and each xi ≤ yi.
M satisfies the Riesz refinement property iff whenever x1, x2, y1, y2 ∈ M with

x1+x2 = y1+y2, there exist elements zij ∈M , for i, j = 1, 2, such that xi = zi1+zi2
for i = 1, 2 and yj = z1j + z2j for j = 1, 2. A mnemonic for these equations is the

refinement matrix

( y1 y2

x1 z11 z12
x2 z21 z22

)
.

M is strongly periodic iff each x ∈M satisfies (m+ 1)x = x for some m ∈ N.
As a monoid, a semilattice is any abelian monoid in which 2x = x for all x. A

distributive semilattice is any semilattice which satisfies the Riesz decomposition
property. Lemma: A semilattice is distributive iff it satisfies the Riesz refinement
property.

If I is an ideal of an abelian monoid M , there is a congruence relation ∼I on M
defined by x ∼I y iff x+ a = y + b for some a, b ∈ I. The quotient M/∼I is called
the quotient of M modulo I, and is denoted M/I.

7. Pre-ordered abelian groups

A pre-ordered abelian group is an abelian group G equipped with a pre-order ≤
which is translation-invariant : x ≤ y implies x+ z ≤ y+ z, for all x, y, z ∈ G. If ≤
is antisymmetric, then G is called a partially ordered abelian group.
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The positive cone of a pre-ordered abelian group G is the set

G+ = {x ∈ G | x ≥ 0};

it is a submonoid of G.
G is directed iff each pair of elements of G has an upper bound in G. Lemma:

G is directed iff G is generated (as a group) by G+.
G is unperforated iff nx ≥ 0 implies x ≥ 0, for all n ∈ N and x ∈ G.
An order-unit in G is an element u ∈ G+ such that for each x ∈ G, there exists

n ∈ N with −nu ≤ x ≤ nu.
An interpolation group is a partially ordered abelian group G satisfying the Riesz

interpolation property : whenever x1, x2, y1, y2 ∈ G with xi ≤ yj for all i, j = 1, 2,
there exists z ∈ G such that xi ≤ z ≤ yj for all i, j = 1, 2. Lemma: A partially
ordered abelian group G has the Riesz interpolation property if and only if G+

has the Riesz decomposition property, if and only if G+ has the Riesz refinement
property.

A dimension group is any directed, unperforated, interpolation group.
An ideal of a pre-ordered abelian group G is any subgroup H which is directed

(with respect to the pre-order inherited from G) and convex : for any x, z ∈ H and
y ∈ G, the relation x ≤ y ≤ z implies y ∈ H.

8. V and K0

Let R be any ring, and write Idem∞(R) for the set of all idempotent matrices
over R, that is, the set of all idempotents in M∞(R). The orthogonal sum of
e, f ∈ Idem∞(R) is the block matrix e⊕ f =

[
e 0
0 f

]
. Write [e] for the ∼-equivalence

class of any e ∈ Idem∞(R), set

V (R) = Idem∞(R)/∼ = {[e] | e ∈ Idem∞(R)},

and define an addition operation in V (R) by the rule [e]+[f ] = [e⊕f ]. Observation:
This operation is well-defined, and V (R) is a conical abelian monoid. It is called
the V -monoid of R. Observation: If R is unital, [1R] is an order-unit in V (R).

If R is unital, there is the following projective module picture of V (R). Let
FP(R) denote the class of all finitely generated projective right R-modules, and
write [P ] for the isomorphism class of any P ∈ FP(R). The set FP(R)/∼=, that is,
{[P ] | P ∈ FP(R)}, is an abelian monoid with respect to the addition operation
induced from direct sum: [P ] + [Q] = [P ⊕ Q]. Proposition: There is a natural
monoid isomorphism V (R)→ FP(R)/∼= such that [e] 7→ [eRn] for any idempotent
matrix e ∈Mn(R).

Continue to assume R is unital. Idempotents e, f ∈ Idem∞(R) are stably equiv-
alent, written e ≈ f , iff there is some g ∈ Idem∞(R) such that e⊕ g ∼ f ⊕ g. Write
[e]0 for the stable equivalence class of e ∈ Idem∞(R). Then the set

K0(R)+ = Idem∞(R)/≈ = {[e]0 | e ∈ Idem∞(R)}

is an abelian monoid with respect to the addition operation induced from orthogonal
sum, and this monoid has cancellation. Now define K0(R) to be the group of
differences of K0(R)+:

(1) As a set, K0(R) = {[e]0 − [f ]0 | e, f ∈ Idem∞(R)}.
(2) Equality in K0(R) is given by [e]0 − [f ]0 = [e′]0 − [f ′]0 in K0(R) iff

[e]0 + [f ′]0 = [e′]0 + [f ]0 in K0(R)+, iff e⊕ f ′ ≈ e′ ⊕ f .
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(3) Addition in K0(R) is given by

([e]0 − [f ]0) + ([e′]0 − [f ′]0) = [e⊕ e′]0 − [f ⊕ f ′]0 .
(4) K0(R)+ is embedded as a submonoid of K0(R) by identifying [e]0 with

[e0]− [0]0 for all e ∈ Idem∞(R).

Further, define a relation ≤ on K0(R) by the rule x ≤ y iff y−x ∈ K0(R)+. Lemma:
(K0(R),≤) is a pre-ordered abelian group with positive cone K0(R)+, and [1R] is
an order-unit in K0(R).

Any unital ring homomorphism φ : R → S induces a ring homomorphism
φ : M∞(R) → M∞(S), which in turn induces an order-preserving group homo-
morphism K0(φ) : K0(R)→ K0(S) by the rule

K0(φ)
(
[e]0 − [f ]0

)
= [φ(e)]0 − [φ(f)]0 .

In this way, K0 becomes a functor from the category of unital rings to the category
of pre-ordered abelian groups with order-unit.

For a non-unital ring R, the natural projection map φ : R̃ → Z, given by
φ(m, a) = m, is a unital ring homomorphism, and K0(R) is defined as the abelian
group

K0(R) = kerK0(φ) ⊆ K0(R̃),

equipped with the pre-order inherited from K0(R̃). The scale of K0(R) is the set
{[e]0 | e = e2 ∈ R}. Theorem: If R has local units, K0(R) is the group of differences
of K0(R)+, and K0(R)+ is naturally isomorphic to Idem∞(R)/≈.


