A COLLECTION OF DEFINITIONS AND NOTATION

K. R. Goodearl

This summary of definitions and notation is to accompany my lectures at the XV ELAM in Cordoba, 23-27 May 2011. These are not all assumed to be familiar; the majority will be introduced in the lectures.

1. Rings

All rings are assumed to be associative but not necessarily commutative or unital. The standard *unitification* of a ring R is the unital ring \widetilde{R} based on the abelian

group $\mathbb{Z} \oplus R$, with multiplication rule (m, a)(n, b) = (mn, mb + na + ab).

An *idempotent* in a ring is any element $e = e^2$.

A ring R has local units iff for each finite set $X \subseteq R$, there exists an idempotent $e \in R$ such that $X \subseteq eRe$. Note: eRe is a unital ring with identity element e.

 $M_n(R)$ denotes the ring of all $n \times n$ matrices over a ring R. For all n, identify $M_n(R)$ with the non-unital subring of $M_{n+1}(R)$ consisting of those matrices whose (n+1)st row and (n+1)st column are zero, and set $M_{\infty}(R) = \bigcup_{n=1}^{\infty} M_n(R)$. This is a ring with local units.

A ring R is (von Neumann) regular iff for all $x \in R$, there exists $y \in R$ such that xyx = x. Further, R is unit-regular iff for all $x \in R$, there exists a unit (= invertible element) $u \in R$ such that xux = x.

Idempotents e and f in a ring R are *orthogonal* iff ef = fe = 0. The idempotent e is *dominated by* f, written $e \leq f$, iff e = ef = fe. Next, e and f are (*Murray-von* Neumann) equivalent, denoted $e \sim f$, iff there exist $x, y \in R$ such that xy = e and yx = f. Lemma: \sim is an equivalence relation. Finally, e is subequivalent to f, written $e \leq f$, iff there exists an idempotent $g \in R$ such that $e \sim g \leq f$. Lemma: $e \leq f$ iff there exist $x, y \in R$ such that $e \sim g \leq f$. Lemma:

An idempotent $e \in R$ is *infinite* iff $e = e_1 + e_2$ for some orthogonal idempotents e_1 and e_2 such that $e_1 \sim e$ and $e_2 \neq 0$; otherwise, e is called *finite* (or *Murray-von Neumann finite*). It is common to call e properly infinite (respectively, purely infinite) iff there exist orthogonal idempotents $e_1, e_2 \in R$ such that each $e_i \sim e$ and $e_1, e_2 \leq e$ (respectively, $e_1 + e_2 = e$). Warning: In some literature, "properly infinite" is defined by the second set of conditions.

A unital ring R is directly finite (or von Neumann finite, or Dedekind finite) iff all one-sided inverses in R are two-sided: xy = 1 implies yx = 1. Observation: R is directly finite iff the idempotent 1_R is finite. The ring R is stably finite iff all the matrix rings $M_n(R)$ are directly finite.

An element z in a ring R is a zero-divisor iff there is some nonzero element $a \in R$ such that za = 0 or az = 0. Thus, z is a non-zero-divisor in R iff $(za = 0 \implies a = 0)$ and $(az = 0 \implies a = 0)$ for all $a \in R$.

A classical right ring of fractions (or classical right quotient ring) for a ring R is a unital ring S such that

- (1) R is a subring of S.
- (2) Every non-zero-divisor in R is invertible in S.
- (3) Every element of S can be written in the form ab^{-1} with $a, b \in R$ and b a non-zero-divisor.

If S exists, it is unique up to isomorphism. A *classical ring of fractions* for R is a ring which is both a right and a left classical ring of fractions.

A ring R is right self-injective iff the right R-module R_R is injective.

The right singular ideal of a ring R is $Z_r(R) = Z(R_R)$ (the singular submodule of the module R_R); it is a two-sided ideal of R. The ring R is a right nonsingular ring iff $Z_r(R) = 0$.

Suppose R is a right nonsingular ring. A maximal right quotient ring of R is a ring Q such that

- (1) R is a subring of Q.
- (2) R is an essential right R-submodule of Q, that is, R_R is essential in Q_R .
- (3) Whenever R is a subring of a ring S such that R_R is essential in S_R , the identity map on R extends to a ring homomorphism $S \to Q$.

<u>Theorem</u>: Every unital right nonsingular ring has a maximal right quotient ring, and it is unique up to isomorphism.

A unital exchange ring is a unital ring R such that the module R_R has the finite exchange property. <u>Theorem</u>: R is an exchange ring iff R R has the finite exchange property. <u>Theorem</u>: R is an exchange ring iff for all right (or left) ideals I and J of R with I + J = R, there exists an idempotent $e \in R$ such that $e \in I$ and $1 - e \in J$. <u>Theorem</u>: If R is an exchange ring, then all finitely generated projective R-modules have the finite exchange property.

A non-unital ring R is an exchange ring iff for each $x \in R$, there exist an idempotent $e \in R$ and elements $r, s \in R$ such that e = xr = x + s - xs.

A matricial algebra over a field F is any F-algebra isomorphic to $\bigoplus_{i=1}^{k} M_{n_i}(F)$, for some $n_i \in \mathbb{N}$. An ultramatricial F-algebra is any F-algebra $A = \bigcup_{n=1}^{\infty} A_n$ where $A_1 \subseteq A_2 \subseteq \cdots$ is a countable increasing sequence of matricial F-subalgebras; equivalently, A is the direct limit of a countable sequence $A_1 \to A_2 \to \cdots$ of matricial F-algebras and F-algebra homomorphisms.

A simple ring is a nonzero ring which has no proper nonzero ideals. A purely infinite simple ring (in the algebraic sense) is a simple ring in which each nonzero right (equivalently, left) ideal contains an infinite idempotent. <u>Theorem</u>: A unital simple ring R is purely infinite (algebraically) iff R is not a division ring and for each nonzero $a \in R$, there exist $x, y \in R$ such that xay = 1. In general, a ring R is purely infinite (algebraically) iff

- (1) No quotient R/I is a division ring.
- (2) Whenever $a \in R$ and $b \in RaR$, there exist $x, y \in R$ such that xay = b.

2. *-Algebras

An involution on a ring R is an additive map $*: R \to R$ such that $(ab)^* = b^*a^*$ and $(a^*)^* = a$ for all $a, b \in R$. (If R is unital, automatically $1^* = 1$.) A *-ring is a ring equipped with a particular involution *. An element a in a *-ring is self-adjoint iff $a^* = a$.

A projection in a *-ring is any self-adjoint idempotent: $p = p^* = p^2$.

A real *-algebra is a *-ring A which is also an \mathbb{R} -algebra such that $(\alpha a)^* = \alpha a^*$ for all $\alpha \in \mathbb{R}$ and $a \in A$. A complex *-algebra is a *-ring A which is also a \mathbb{C} algebra such that $(\alpha a)^* = \overline{\alpha} a^*$ for all $\alpha \in \mathbb{C}$ and $a \in A$, where $\overline{\alpha}$ denotes the complex conjugate of α .

When A is a (real or complex) *-algebra, it is usual to equip the matrix algebras $M_n(A)$ with the conjugate transpose involution, given by the rule $(a_{ij})^* = (a_{ji}^*)$.

3. Algebras of operators

Let H be a real or complex Hilbert space, with inner product (-, -). A linear map $T: H \to H$ is bounded iff there exists a real number $r \ge 0$ such that $||T(x)|| \le r||x||$ for all $x \in H$. Lemma: There is a least such r. It is called the operator norm of T, denoted ||T||. Lemma: A linear map on H is bounded iff it is continuous. The set of all bounded linear maps on H is denoted B(H) (or $\mathcal{L}(H)$); it is a real or complex algebra, and a Banach space with respect to the operator norm. Lemma: For any $T \in B(H)$, there is a unique $T^* \in B(H)$ such that $(T(x), y) = (x, T^*(y))$ for all $x, y \in H$. It is called the *adjoint* of T. The adjoint map $* : B(H) \to B(H)$ is an involution, so B(H) is a real or complex *-algebra. The strong operator topology on B(H) is the topology of pointwise convergence: a net (T_{α}) converges to an operator T in this topology iff $T_{\alpha}(x) \to T(x)$ for all $x \in H$.

A W^* -algebra (or von Neumann algebra) on H is any *-subalgebra of B(H) which is closed in the strong operator topology. A C^* -algebra on H is any *-subalgebra of B(H) which is closed in the norm topology. <u>Observation</u>: Every W*-algebra on H is also a C*-algebra on H.

An (abstract) C^* -algebra is any real or complex *-algebra A equipped with a norm $\|\cdot\|$ such that

(1) A is complete with respect to $\|\cdot\|$ (i.e., A is a Banach space).

(2) $||ab|| \leq ||a|| \cdot ||b||$ for all $a, b \in A$.

(3) $||aa^*|| = ||a||^2$ for all $a \in A$.

<u>Gelfand-Naimark-Segal Theorem</u>: Every C*-algebra is isomorphic (as a normed *-algebra) to a C*-algebra on some Hilbert space.

An AW^* -algebra is a C*-algebra A such that for any subset $X \subseteq A$, there is a projection $p \in A$ with $pA = \{a \in A \mid xa = 0 \text{ for all } x \in X\}$. Theorem: Every W*-algebra is an AW*-algebra.

An AF (= approximately finite dimensional) C*-algebra is any C*-algebra A containing finite dimensional *-subalgebras $A_1 \subseteq A_2 \subseteq \cdots$ such that $\bigcup_{n=1}^{\infty} A_n$ is dense in A; equivalently, A is the C*-direct limit of a countable sequence $A_1 \rightarrow A_2 \rightarrow \cdots$ of finite dimensional C*-algebra and C*-algebra homomorphisms.

A complex C*-algebra A has *real rank zero* iff the set of \mathbb{R} -linear combinations of orthogonal projections is dense in the set of self-adjoint elements of A.

The positive cone of a C*-algebra A is the set $A_+ = \{aa^* \mid a \in A\}$. <u>Theorem</u>: A_+ is closed under addition. Cuntz subequivalence for elements $a, b \in A_+$ is defined by $b \preceq a$ iff there exists a sequence (x_n) in A such that $x_n a x_n^* \to b$. A complex C*-algebra A is purely infinite (in the C* sense) iff

(1) There are no nonzero C*-algebra homomorphisms $A \to \mathbb{C}$.

(2) $b \in AaA$ implies $b \preceq a$, for all $a, b \in A_+$.

<u>Theorem</u>: A unital simple complex C^* -algebra is purely infinite algebraically iff it is purely infinite in the C^* sense.

4. Ordered sets

A *pre-order* on a set X is a relation \leq on X which is

(1) reflexive: $x \leq x$ for all $x \in X$.

(2) transitive: $x \le y \le z$ implies $x \le z$, for all $x, y, z \in X$.

It is a *partial order* if it is also

(3) antisymmetric: $x \leq y \leq x$ implies x = y, for all $x, y \in X$.

A poset (= partially ordered set) is a set X equipped with a particular partial order.

An upper bound for a subset Y of a poset X is any element $b \in X$ such that $y \leq b$ for all $y \in Y$. A supremum for Y is a least upper bound: an upper bound s for Y such that $s \leq b$ for all upper bounds b of Y. A supremum is unique if it exists, and is then denoted $\bigvee Y$ or sup Y. The supremum of a two-element set $\{y, z\}$ is written $y \lor z$. Lower bounds and infima (= greatest lower bounds) are defined dually, and are denoted $\bigwedge Y$ or inf Y or $y \land z$. A greatest element for X is $\bigvee X$. If it exists, it is denoted 1 or \top . A least element for X is $\bigwedge X$. If it exists, it is denoted 0 or \bot . The poset X is bounded iff it has both a greatest element and a least element.

A *lattice* (in the context of ordered sets) is a poset in which every nonempty finite subset has a supremum and an infimum. A *complete lattice* is a poset in which every subset has a supremum and an infimum.

Suppose L is a bounded lattice with least element 0 and greatest element 1. A complement for an element $x \in L$ is any element $y \in L$ such that $x \wedge y = 0$ and $x \vee y = 1$. The lattice L is complemented iff every element of L has a complement.

A lattice L is modular iff $a \land (b \lor c) = (a \land b) \lor c$ for all $a, b, c \in L$ such that $a \ge c$.

5. Modules

The endomorphism ring of a module M, denoted $\operatorname{End}(M)$, is the set of all endomorphisms of M (= module homomorphisms $M \to M$), with pointwise addition and composition of functions as operations. We also write $\operatorname{End}_R(M)$ if M is an R-module.

A submodule N of a module M is a direct summand of M provided there exists a submodule N' of M such that $M = N \oplus N'$, that is, N + N' = M and $N \cap N' = 0$. Such an N' is called a *complement of* N.

The left regular module over a ring R is just R itself, viewed as a left R-module using the ring multiplication. This module is denoted $_RR$. The right regular module over R, denoted R_R , is R viewed as a right R-module.

Over a unital ring R, a *free* left (respectively, right) R-module is any direct sum of copies of $_{R}R$ (respectively, of R_{R}). <u>Proposition</u>: An R-module is free iff it has a basis. A *projective* R-module is any direct summand of a free R-module.

A module M is directly finite (or von Neumann finite, or Dedekind finite) iff M is not isomorphic to any proper direct summand of itself; equivalently, $M \not\cong M \oplus N$ for any nonzero module N. Lemma: M is a directly finite module iff End(M) is a directly finite ring.

A submodule N of a module M is essential in M iff $N \cap K \neq 0$ for all nonzero submodules $K \subseteq M$.

The singular submodule of a right R-module M is the set

 $Z(M) = \{ x \in M \mid \exists \text{ an essential right ideal } I \subseteq R \text{ with } xI = 0 \},\$

which is a submodule of M. The module M is nonsingular iff Z(M) = 0, and it is singular iff Z(M) = M.

A module M has the finite exchange property iff for every module K and all finite direct sum decompositions $K = M' \oplus N = \bigoplus_{i=1}^{n} K_i$ with $M' \cong M$, there exist submodules $K'_i \subseteq K_i$ such that $K = M' \oplus \bigoplus_{i=1}^{n} K'_i$.

6. Abelian monoids

A monoid is a semigroup (i.e., a set with an associative operation) which has an identity element. A monoid is *abelian* iff its operation is commutative. Abelian monoids will be written additively, with operation + and identity element 0.

The units of an abelian monoid M are those elements which have additive inverses. M is conical iff 0 is the only unit in M, that is, x + y = 0 implies x = y = 0, for all $x, y \in M$.

The algebraic pre-order on M is the pre-order \leq given by the existence of subtraction: $x, y \in M$ satisfy $x \leq y$ iff there exists $x' \in M$ such that x + x' = y. An *ideal* (or *o-ideal*) of M is any submonoid I which is *hereditary* with respect to \leq , that is, $x \leq y \in I$ implies $x \in I$, for all $x, y \in M$.

An order-unit in M is any element $u \in M$ such that all elements of M are bounded above by multiples of u: for each $x \in M$, there exists $n \in \mathbb{N}$ such that $x \leq nu$.

M has cancellation iff x + z = y + z implies x = y, for all $x, y, z \in M$. A weaker property is that *M* is separative (or: *M* has separative cancellation) iff 2x = x + y = 2y implies x = y, for all $x, y \in M$.

An element $x \in M$ is *infinite* iff x + y = x for some non-unit $y \in M$; otherwise, x is *finite*. Observation: If M has cancellation, all elements of M are finite.

M has the Riesz decomposition property iff whenever $x, y_1, y_2 \in M$ with $x \leq y_1 + y_2$, there exist $x_1, x_2 \in M$ such that $x = x_1 + x_2$ and each $x_i \leq y_i$.

M satisfies the Riesz refinement property iff whenever $x_1, x_2, y_1, y_2 \in M$ with $x_1+x_2 = y_1+y_2$, there exist elements $z_{ij} \in M$, for i, j = 1, 2, such that $x_i = z_{i1}+z_{i2}$ for i = 1, 2 and $y_j = z_{1j} + z_{2j}$ for j = 1, 2. A mnemonic for these equations is the

refinement matrix $\begin{array}{cc} y_1 & y_2 \\ x_1 & \begin{pmatrix} z_{11} & z_{12} \\ z_{21} & z_{22} \end{pmatrix}.$

M is strongly periodic iff each $x \in M$ satisfies (m+1)x = x for some $m \in \mathbb{N}$.

As a monoid, a *semilattice* is any abelian monoid in which 2x = x for all x. A *distributive semilattice* is any semilattice which satisfies the Riesz decomposition property. Lemma: A semilattice is distributive iff it satisfies the Riesz refinement property.

If I is an ideal of an abelian monoid M, there is a congruence relation \sim_I on M defined by $x \sim_I y$ iff x + a = y + b for some $a, b \in I$. The quotient M/\sim_I is called the *quotient of* M modulo I, and is denoted M/I.

7. Pre-ordered Abelian groups

A pre-ordered abelian group is an abelian group G equipped with a pre-order \leq which is translation-invariant: $x \leq y$ implies $x + z \leq y + z$, for all $x, y, z \in G$. If \leq is antisymmetric, then G is called a partially ordered abelian group.

The *positive cone* of a pre-ordered abelian group G is the set

$$G^{+} = \{ x \in G \mid x \ge 0 \};$$

it is a submonoid of G.

G is directed iff each pair of elements of G has an upper bound in G. Lemma: G is directed iff G is generated (as a group) by G^+ .

G is unperforated iff $nx \ge 0$ implies $x \ge 0$, for all $n \in \mathbb{N}$ and $x \in G$.

An order-unit in G is an element $u \in G^+$ such that for each $x \in G$, there exists $n \in \mathbb{N}$ with $-nu \leq x \leq nu$.

An interpolation group is a partially ordered abelian group G satisfying the Riesz interpolation property: whenever $x_1, x_2, y_1, y_2 \in G$ with $x_i \leq y_j$ for all i, j = 1, 2, there exists $z \in G$ such that $x_i \leq z \leq y_j$ for all i, j = 1, 2. Lemma: A partially ordered abelian group G has the Riesz interpolation property if and only if G^+ has the Riesz decomposition property, if and only if G^+ has the Riesz refinement property.

A dimension group is any directed, unperforated, interpolation group.

An *ideal* of a pre-ordered abelian group G is any subgroup H which is directed (with respect to the pre-order inherited from G) and *convex*: for any $x, z \in H$ and $y \in G$, the relation $x \leq y \leq z$ implies $y \in H$.

8. V AND
$$K_0$$

Let R be any ring, and write $\operatorname{Idem}_{\infty}(R)$ for the set of all idempotent matrices over R, that is, the set of all idempotents in $M_{\infty}(R)$. The orthogonal sum of $e, f \in \operatorname{Idem}_{\infty}(R)$ is the block matrix $e \oplus f = \begin{bmatrix} e & 0 \\ 0 & f \end{bmatrix}$. Write [e] for the \sim -equivalence class of any $e \in \operatorname{Idem}_{\infty}(R)$, set

$$V(R) = \operatorname{Idem}_{\infty}(R) / \sim = \{ [e] \mid e \in \operatorname{Idem}_{\infty}(R) \},\$$

and define an addition operation in V(R) by the rule $[e]+[f] = [e \oplus f]$. <u>Observation</u>: This operation is well-defined, and V(R) is a conical abelian monoid. It is called the *V*-monoid of *R*. <u>Observation</u>: If *R* is unital, $[1_R]$ is an order-unit in V(R).

If R is unital, there is the following projective module picture of V(R). Let FP(R) denote the class of all finitely generated projective right R-modules, and write [P] for the isomorphism class of any $P \in FP(R)$. The set $FP(R)/\cong$, that is, $\{[P] \mid P \in FP(R)\}$, is an abelian monoid with respect to the addition operation induced from direct sum: $[P] + [Q] = [P \oplus Q]$. Proposition: There is a natural monoid isomorphism $V(R) \to FP(R)/\cong$ such that $[e] \mapsto [eR^n]$ for any idempotent matrix $e \in M_n(R)$.

Continue to assume R is unital. Idempotents $e, f \in \operatorname{Idem}_{\infty}(R)$ are stably equivalent, written $e \approx f$, iff there is some $g \in \operatorname{Idem}_{\infty}(R)$ such that $e \oplus g \sim f \oplus g$. Write $[e]_0$ for the stable equivalence class of $e \in \operatorname{Idem}_{\infty}(R)$. Then the set

$$K_0(R)^+ = \operatorname{Idem}_{\infty}(R) \approx = \{ [e]_0 \mid e \in \operatorname{Idem}_{\infty}(R) \}$$

is an abelian monoid with respect to the addition operation induced from orthogonal sum, and this monoid has cancellation. Now define $K_0(R)$ to be the group of differences of $K_0(R)^+$:

(1) As a set, $K_0(R) = \{ [e]_0 - [f]_0 \mid e, f \in \operatorname{Idem}_{\infty}(R) \}.$

(2) Equality in $K_0(R)$ is given by $[e]_0 - [f]_0 = [e']_0 - [f']_0$ in $K_0(R)$ iff $[e]_0 + [f']_0 = [e']_0 + [f]_0$ in $K_0(R)^+$, iff $e \oplus f' \approx e' \oplus f$.

(3) Addition in $K_0(R)$ is given by

 $([e]_0 - [f]_0) + ([e']_0 - [f']_0) = [e \oplus e']_0 - [f \oplus f']_0.$

(4) $K_0(R)^+$ is embedded as a submonoid of $K_0(R)$ by identifying $[e]_0$ with $[e_0] - [0]_0$ for all $e \in \text{Idem}_{\infty}(R)$.

Further, define a relation \leq on $K_0(R)$ by the rule $x \leq y$ iff $y - x \in K_0(R)^+$. Lemma: $(K_0(R), \leq)$ is a pre-ordered abelian group with positive cone $K_0(R)^+$, and $[1_R]$ is an order-unit in $K_0(R)$.

Any unital ring homomorphism $\phi : R \to S$ induces a ring homomorphism $\phi : M_{\infty}(R) \to M_{\infty}(S)$, which in turn induces an order-preserving group homomorphism $K_0(\phi) : K_0(R) \to K_0(S)$ by the rule

$$K_0(\phi)([e]_0 - [f]_0) = [\phi(e)]_0 - [\phi(f)]_0.$$

In this way, K_0 becomes a functor from the category of unital rings to the category of pre-ordered abelian groups with order-unit.

For a non-unital ring R, the natural projection map $\phi : \widetilde{R} \to \mathbb{Z}$, given by $\phi(m, a) = m$, is a unital ring homomorphism, and $K_0(R)$ is defined as the abelian group

$$K_0(R) = \ker K_0(\phi) \subseteq K_0(R),$$

equipped with the pre-order inherited from $K_0(\widetilde{R})$. The scale of $K_0(R)$ is the set $\{[e]_0 \mid e = e^2 \in R\}$. <u>Theorem</u>: If R has local units, $K_0(R)$ is the group of differences of $K_0(R)^+$, and $K_0(R)^+$ is naturally isomorphic to $\operatorname{Idem}_{\infty}(R)/\approx$.