A COLLECTION OF DEFINITIONS AND NOTATION

K. R. Goodearl

This summary of definitions and notation is to accompany my lectures at the
XV ELAM in Cordoba, 23-27 May 2011. These are not all assumed to be familiar;
the majority will be introduced in the lectures.

1. RINGS

All rings are assumed to be associative but not necessarily commutative or unital.

The standard unitification of a ring R is the unital ring R based on the abelian
group Z @ R, with multiplication rule (m, a)(n,b) = (mn, mb + na + ab).

An idempotent in a ring is any element e = 2.

A ring R has local units iff for each finite set X C R, there exists an idempotent

e € R such that X C eRe. Note: eRe is a unital ring with identity element e.

M, (R) denotes the ring of all n x n matrices over a ring R. For all n, identify
M, (R) with the non-unital subring of M,,;1(R) consisting of those matrices whose
(n+ 1)st row and (n + 1)st column are zero, and set My (R) = |y, M,,(R). This
is a ring with local units.

A ring R is (von Neumann) regular iff for all z € R, there exists y € R such
that zyx = x. Further, R is unit-reqular iff for all x € R, there exists a unit (=
invertible element) u € R such that zuz = z.

Idempotents e and f in a ring R are orthogonal iff ef = fe = 0. The idempotent
e is dominated by f, written e < f, iff e = ef = fe. Next, e and f are (Murray-von
Neumann) equivalent, denoted e ~ f, iff there exist x,y € R such that zy = e and
yx = f. Lemma: ~ is an equivalence relation. Finally, e is subequivalent to f,
written e < f, iff there exists an idempotent g € R such that e ~ g < f. Lemma:
e < f iff there exist x,y € R such that xfy = e.

An idempotent e € R is infinite iff e = e; + e for some orthogonal idempotents
e1; and es such that e; ~ e and ey # 0; otherwise, e is called finite (or Murray-
von Neumann finite). It is common to call e properly infinite (respectively, purely
infinite) iff there exist orthogonal idempotents ej,es € R such that each e; ~ e
and ep,es < e (respectively, e; + ea = e). Warning: In some literature, “properly
infinite” is defined by the second set of conditions.

A unital ring R is directly finite (or von Neumann finite, or Dedekind finite) iff
all one-sided inverses in R are two-sided: zy = 1 implies yz = 1. Observation: R is
directly finite iff the idempotent 1y is finite. The ring R is stably finite iff all the
matrix rings M, (R) are directly finite.

An element z in a ring R is a zero-divisor iff there is some nonzero element a € R
such that za = 0 or az = 0. Thus, z is a non-zero-divisor in Riff (za =0 = a =
0) and (az=0 = a=0) for all a € R.

A classical right ring of fractions (or classical right quotient ring) for a ring R
is a unital ring S such that
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(1) R is a subring of S.

(2) Every non-zero-divisor in R is invertible in S.

(3) Every element of S can be written in the form ab~! with a,b € R and b a
non-zero-divisor.

If S exists, it is unique up to isomorphism. A classical ring of fractions for R is a
ring which is both a right and a left classical ring of fractions.

A ring R is right self-injective iff the right R-module Rp is injective.

The right singular ideal of a ring R is Z,.(R) = Z(Rpg) (the singular submodule
of the module Rpg); it is a two-sided ideal of R. The ring R is a right nonsingular
ring iff Z.(R) = 0.

Suppose R is a right nonsingular ring. A mazximal right quotient ring of R is a
ring @ such that

(1) R is a subring of Q.

(2) R is an essential right R-submodule of @, that is, Ry is essential in Qg.

(3) Whenever R is a subring of a ring S such that Rp is essential in Sg, the
identity map on R extends to a ring homomorphism S — Q.

Theorem: Every unital right nonsingular ring has a maximal right quotient ring,
and it is unique up to isomorphism.

A wunital exchange ring is a unital ring R such that the module Rg has the finite
exchange property. Theorem: R is an exchange ring iff gk R has the finite exchange
property. Theorem: R is an exchange ring iff for all right (or left) ideals I and J of
R with I 4+ J = R, there exists an idempotent e € R such that e € T and 1 —¢e € J.
Theorem: If R is an exchange ring, then all finitely generated projective R-modules
have the finite exchange property.

A non-unital ring R is an exchange ring iff for each x € R, there exist an
idempotent e € R and elements r,s € R such that e=2r =z + s — zs.

A matricial algebra over a field F is any F-algebra isomorphic to @le M, (F),
for some n; € N. An ultramatricial F-algebra is any F-algebra A = J;~_, A, where
Ay C Ay C --- is a countable increasing sequence of matricial F-subalgebras;
equivalently, A is the direct limit of a countable sequence A; — As — --- of
matricial F-algebras and F-algebra homomorphisms.

A simple ring is a nonzero ring which has no proper nonzero ideals. A purely
infinite simple ring (in the algebraic sense) is a simple ring in which each nonzero
right (equivalently, left) ideal contains an infinite idempotent. Theorem: A unital
simple ring R is purely infinite (algebraically) iff R is not a division ring and for
each nonzero a € R, there exist x,y € R such that xay = 1. In general, a ring R is
purely infinite (algebraically) iff

(1) No quotient R/I is a division ring.
(2) Whenever a € R and b € RaR, there exist z,y € R such that zay = b.

2. *_ALGEBRAS

ko k

An involution on a ring R is an additive map * : R — R such that (ab)* = b*a
and (a*)* = a for all a,b € R. (If R is unital, automatically 1* = 1.) A *ring is a
ring equipped with a particular involution *. An element a in a *-ring is self-adjoint
iff a* = a.

A projection in a *-ring is any self-adjoint idempotent: p = p* = p2.
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A real *-algebra is a *-ring A which is also an R-algebra such that (aa)* = aa*
for all « € R and a € A. A complex *-algebra is a *-ring A which is also a C-
algebra such that (aa)* = @a* for all @« € C and a € A, where @ denotes the
complex conjugate of a.

When A is a (real or complex) *-algebra, it is usual to equip the matrix algebras
M,,(A) with the conjugate transpose involution, given by the rule (a;;)* = (aj;).

3. ALGEBRAS OF OPERATORS

Let H be a real or complex Hilbert space, with inner product (—, —). A linear
map T : H — H is bounded iff there exists a real number r > 0 such that | T(z)]] <
r||z| for all z € H. Lemma: There is a least such r. It is called the operator norm
of T, denoted ||T||. Lemma: A linear map on H is bounded iff it is continuous.
The set of all bounded linear maps on H is denoted B(H) (or L(H)); it is a real or
complex algebra, and a Banach space with respect to the operator norm. Lemma:
For any T € B(H), there is a unique T* € B(H) such that (T'(z),y) = (z,T*(y)) for
all z,y € H. Tt is called the adjoint of T'. The adjoint map * : B(H) — B(H) is an
involution, so B(H) is a real or complex *-algebra. The strong operator topology on
B(H) is the topology of pointwise convergence: a net (T,) converges to an operator
T in this topology iff T, (z) — T'(x) for all x € H.

A WH*-algebra (or von Neumann algebra) on H is any *-subalgebra of B(H ) which
is closed in the strong operator topology. A C*-algebra on H is any *-subalgebra
of B(H) which is closed in the norm topology. Observation: Every W*-algebra on
H is also a C*-algebra on H.

An (abstract) C*-algebra is any real or complex *-algebra A equipped with a
norm || - || such that

(1) A is complete with respect to || - || (i-e., A is a Banach space).
(2) [labl| < [lal - [[b]| for all a,b € A.
(3) |laa*|| = ||a||? for all a € A.

Gelfand-Naimark-Segal Theorem: Every C*-algebra is isomorphic (as a normed
*_algebra) to a C*-algebra on some Hilbert space.

An AW*-algebra is a C*-algebra A such that for any subset X C A, there is a
projection p € A with pA = {a € A | za = 0 for all x € X}. Theorem: Every
WH-algebra is an AW*-algebra.

An AF (= approximately finite dimensional) C*-algebra is any C*-algebra A
containing finite dimensional *-subalgebras A; C A, C --- such that Ufbozl A, is
dense in A; equivalently, A is the C*-direct limit of a countable sequence A; —
Ag — -+ of finite dimensional C*-algebras and C*-algebra homomorphisms.

A complex C*-algebra A has real rank zero iff the set of R-linear combinations
of orthogonal projections is dense in the set of self-adjoint elements of A.

The positive cone of a C*-algebra A is the set AL = {aa* | a € A}. Theorem:
A, is closed under addition. Cuntz subequivalence for elements a,b € A, is defined
by b = a iff there exists a sequence (z,) in A such that z,ax} — b. A complex
C*-algebra A is purely infinite (in the C* sense) iff

(1) There are no nonzero C*-algebra homomorphisms A — C.
(2) b e AaA implies b X a, for all a,b € Ay.

Theorem: A unital simple complex C*-algebra is purely infinite algebraically iff it
is purely infinite in the C* sense.
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4. ORDERED SETS

A pre-order on a set X is a relation < on X which is
(1) reflexive: x < x for all x € X.
(2) transitive: <y < z implies « < z, for all z,y,z € X.
It is a partial order if it is also
(3) antisymmetric: ¢ < y < z implies z =y, for all x,y € X.
A poset (= partially ordered set) is a set X equipped with a particular partial order.

An upper bound for a subset Y of a poset X is any element b € X such that y < b
for all y € Y. A supremum for Y is a least upper bound: an upper bound s for Y
such that s < b for all upper bounds b of Y. A supremum is unique if it exists, and
is then denoted \/ Y or sup Y. The supremum of a two-element set {y, z} is written
y V z. Lower bounds and infima (= greatest lower bounds) are defined dually, and
are denoted AY or infY or y A z. A greatest element for X is \/ X. If it exists, it
is denoted 1 or T. A least element for X is A X. If it exists, it is denoted 0 or L.
The poset X is bounded iff it has both a greatest element and a least element.

A lattice (in the context of ordered sets) is a poset in which every nonempty
finite subset has a supremum and an infimum. A complete lattice is a poset in
which every subset has a supremum and an infimum.

Suppose L is a bounded lattice with least element 0 and greatest element 1. A
complement for an element x € L is any element y € L such that z Ay = 0 and
xVy = 1. The lattice L is complemented iff every element of L has a complement.

A lattice L is modular iff a A (bV ¢) = (a Ab) V¢ for all a,b,¢ € L such that
a > c.

5. MODULES

The endomorphism ring of a module M, denoted End(M), is the set of all en-
domorphisms of M (= module homomorphisms M — M), with pointwise addition
and composition of functions as operations. We also write Endg(M) if M is an
R-module.

A submodule N of a module M is a direct summand of M provided there exists
a submodule N’ of M such that M = N@N’, that is, N+ N' = M and NNN' = 0.
Such an N’ is called a complement of N.

The left regular module over a ring R is just R itself, viewed as a left R-module
using the ring multiplication. This module is denoted r R. The right reqular module
over R, denoted Rpg, is R viewed as a right R-module.

Over a unital ring R, a free left (respectively, right) R-module is any direct sum
of copies of rR (respectively, of Rr). Proposition: An R-module is free iff it has a
basis. A projective R-module is any direct summand of a free R-module.

A module M is directly finite (or von Neumann finite, or Dedekind finite) iff M
is not isomorphic to any proper direct summand of itself; equivalently, M 2 M & N
for any nonzero module N. Lemma: M is a directly finite module iff End(M) is a
directly finite ring.

A submodule N of a module M is essential in M iff N N K # 0 for all nonzero
submodules K C M.
The singular submodule of a right R-module M is the set



A COLLECTION OF DEFINITIONS AND NOTATION 5

Z(M) = {x € M | 3 an essential right ideal I C R with «I = 0},

which is a submodule of M. The module M is nonsingular iff Z(M) = 0, and it is
singular ift Z(M) = M.

A module M has the finite exchange property iff for every module K and all
finite direct sum decompositions K = M’ & N = @, K; with M’ = M, there
exist submodules K/ C K; such that K = M' & @, K.

6. ABELIAN MONOIDS

A monoid is a semigroup (i.e., a set with an associative operation) which has
an identity element. A monoid is abelian iff its operation is commutative. Abelian
monoids will be written additively, with operation + and identity element O.

The units of an abelian monoid M are those elements which have additive in-
verses. M is conical iff 0 is the only unit in M, that is, x +y = 0 implies z = y = 0,
for all z,y € M.

The algebraic pre-order on M is the pre-order < given by the existence of sub-
traction: x,y € M satisfy x < y iff there exists ' € M such that z + 2’ = y. An
ideal (or o-ideal) of M is any submonoid I which is hereditary with respect to <,
that is, x <y € I implies z € I, for all z,y € M.

An order-unit in M is any element u € M such that all elements of M are
bounded above by multiples of u: for each x € M, there exists n € N such that
r < nu.

M has cancellation iff © 4+ z = y + 2z implies x = y, for all z,y,z € M. A
weaker property is that M is separative (or: M has separative cancellation) iff
2¢ =z +y = 2y implies z =y, for all z,y € M.

An element x € M is infinite iff x + y = = for some non-unit y € M; otherwise,
x is finite. Observation: If M has cancellation, all elements of M are finite.

M has the Riesz decomposition property iff whenever x,y;,y, € M with z <
Y1 + Yo, there exist x1, 29 € M such that x = 1 + x5 and each x; < y;.

M satisfies the Riesz refinement property iff whenever x1,x9,y1,y2 € M with
T1+T2 = y1+Y2, there exist elements z;; € M, for 7,5 = 1,2, such that x; = 2;1 +2;2
for i =1,2 and y; = 215 + 225 for j = 1,2. A mnemonic for these equations is the

Yy Y2
. x [z z

refinement matriz "~ sz
T2 \ 21 <22

M is strongly periodic iff each © € M satisfies (m + 1)z = x for some m € N.

As a monoid, a semilattice is any abelian monoid in which 2x = x for all z. A
distributive semilattice is any semilattice which satisfies the Riesz decomposition
property. Lemma: A semilattice is distributive iff it satisfies the Riesz refinement
property.

If I is an ideal of an abelian monoid M, there is a congruence relation ~; on M
defined by = ~ y iff  + a = y + b for some a,b € I. The quotient M/~ is called
the quotient of M modulo I, and is denoted M/I.

7. PRE-ORDERED ABELIAN GROUPS

A pre-ordered abelian group is an abelian group G equipped with a pre-order <
which is translation-invariant: * <y impliesx+2z <y+z, forall z,y,z € G. If <
is antisymmetric, then G is called a partially ordered abelian group.
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The positive cone of a pre-ordered abelian group G is the set
Gt ={reG|z>0}

it is a submonoid of G.

G is directed iff each pair of elements of G has an upper bound in G. Lemma:
G is directed iff G is generated (as a group) by G¥.

G is unperforated iff nx > 0 implies x > 0, for all n € N and = € G.

An order-unit in G is an element u € GT such that for each z € G, there exists
n € N with —nu < z < nu.

An interpolation group is a partially ordered abelian group G satisfying the Riesz
interpolation property: whenever x1,2,y1,y2 € G with z; < y; for all 4,5 = 1,2,
there exists z € G such that x; < 2z < y; for all 4,5 = 1,2. Lemma: A partially
ordered abelian group G has the Riesz interpolation property if and only if G+
has the Riesz decomposition property, if and only if G* has the Riesz refinement
property.

A dimension group is any directed, unperforated, interpolation group.

An ideal of a pre-ordered abelian group G is any subgroup H which is directed
(with respect to the pre-order inherited from G) and convez: for any z,z € H and
y € G, the relation z <y < z implies y € H.

8. V AND K|

Let R be any ring, and write Idemy, (R) for the set of all idempotent matrices
over R, that is, the set of all idempotents in My (R). The orthogonal sum of
e, f € Idemy (R) is the block matrix e® f = [§ ?c] Write [e] for the ~-equivalence
class of any e € Idemq (R), set

V(R) = Idemq (R)/~ = {[e] | e € Idem(R)},

and define an addition operation in V(R) by the rule [e]+[f] = [e® f]. Observation:
This operation is well-defined, and V(R) is a conical abelian monoid. It is called
the V-monoid of R. Observation: If R is unital, [1g] is an order-unit in V(R).

If R is unital, there is the following projective module picture of V(R). Let
FP(R) denote the class of all finitely generated projective right R-modules, and
write [P] for the isomorphism class of any P € FP(R). The set FP(R)/=, that is,
{[P] | P € FP(R)}, is an abelian monoid with respect to the addition operation
induced from direct sum: [P]+ [@] = [P & Q]. Proposition: There is a natural
monoid isomorphism V(R) — FP(R)/2 such that [e] — [eR"] for any idempotent
matrix e € M, (R).

Continue to assume R is unital. Idempotents e, f € Idem.(R) are stably equiv-
alent, written e & f, iff there is some g € Idemq,(R) such that e® g ~ f @ g. Write
[e]o for the stable equivalence class of e € Idemq (R). Then the set

Ko(R)T =Idemy (R)/~ = {[e]o | e € Idem.(R)}

is an abelian monoid with respect to the addition operation induced from orthogonal
sum, and this monoid has cancellation. Now define Ky(R) to be the group of
differences of Ko(R)™:
(1) As aset, Ko(R) = {[e]lo — [flo | &, f € Idems (R)}.
(2) Equality in Ko(R) is given by [e]o — [f]o = [¢/Jo — [f']o in Ko(R) iff
[6]0 + [f/]o = [6/]0 -+ [f]() in Ko(R)Jr, iffe® fl ~e & f
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(3) Addition in Ky(R) is given by

([elo = [flo) + (['lo = [flo) = [e ® €lo = [f & fo-
(4) Ko(R)' is embedded as a submonoid of Ky(R) by identifying [e]y with
[eo] — [0]o for all e € Idemq,(R).
Further, define a relation < on Ky(R) by the rule z < y iff y—2z € Ko(R)". Lemma:
(Ko(R), <) is a pre-ordered abelian group with positive cone Ko(R)", and [1g] is
an order-unit in Ko(R).
Any unital ring homomorphism ¢ : R — S induces a ring homomorphism

¢ : Mo(R) — Moo(S), which in turn induces an order-preserving group homo-
morphism Ky(¢) : Ko(R) — Ko(S) by the rule

Ko(¢)(lelo = [flo) = [¢(e)lo = [¢(f)]o-
In this way, Ko becomes a functor from the category of unital rings to the category
of pre-ordered abelian groups with order-unit.

For a non-unital ring R, the natural projection map ¢ : R = Z, given by
¢(m,a) = m, is a unital ring homomorphism, and Ky(R) is defined as the abelian
group N

K()(R) = kerK0(¢) Q Ko(R),

equipped with the pre-order inherited from Ky(R). The scale of Ko(R) is the set
{[e]o | e = €? € R}. Theorem: If R has local units, Ko(R) is the group of differences
of Ko(R)™, and Ko(R)™ is naturally isomorphic to Idemy,(R)/=.



