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CONVERGENCE AND APPROXIMATION OF THE STURM–LIOUVILLE OPERATORS
WITH POTENTIALS-DISTRIBUTIONS

A. S. Horyunov UDC 517.984.5

We study the operators Lny = −(pny
0)0+qny, n 2 Z+, given on a finite interval with various boundary

conditions. It is assumed that the function qn is a derivative (in a sense of distributions) of Qn and 1/pn,
Qn/pn, and Q2

n/pn are integrable complex-valued functions. The sufficient conditions for the uniform
convergence of Green functions Gn of the operators Ln on the square as n ! 1 to G0 are established.
It is proved that every G0 is the limit of Green functions of the operators Ln with smooth coefficients.
If p0 > 0 and Q0(t) 2 R, then they can be chosen so that pn > 0 and qn are real-valued and have
compact supports.

1. Introduction

The theory of Sturm–Liouville operators is one of the most developed fields in the theory of ordinary differ-
ential equations (see, e.g., the monograph [1] and the references therein).

The main object of this theory is the expression

l(y) = −
�

p(t)y0(t)
�0
+ q(t)y(t) (1)

defined on a finite segment [a, b] and the operators connected with this expression. Usually, it is assumed that the
coefficients of (1) satisfy the following conditions:

1/p, q 2 L
1

�

[a, b];C
�

.

Physicists are interested in the case where the function q in the differential expression (1) is a measure or even
a more singular generalized function (see, e.g., the monographs [2, 3] and the references therein).

An approach proposed in [4, 5] (see also [6]) enables one to give a correct definition of the differential expres-
sion (1) under much more general conditions imposed on the coefficients

q = Q0, 1/p, Q/p, Q2/p 2 L
1

�

[a, b];C
�

, (2)

where the derivative Q0 is understood in a sense of generalized functions. This approach is based on the the-
ory of quasidifferential Shin–Zettl operators [7, 8] and enables one to investigate differential operators of higher
orders [5, 9]. A natural question arises concerning the possibility of representation of the differential operator
generated by expression (1) and homogeneous two-point boundary conditions in the form of the uniform resolvent
limit (see [10]) of similar operators with smooth coefficients. For p(t) ⌘ 1, the affirmative answer to this question
was given in [11, 12]. The case where p(t) > 0 almost everywhere on [a, b] and the function Q is real-valued
was studied in [13]. In the present paper, we generalize and strengthen this result and formulate it via the uniform
approximation of the Green function.
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2. Preliminary Results

We first present necessary results from [4]. For a function given on the segment [a, b], we introduce the
quasiderivatives

D[0]y = y,

D[1]y = py0 −Qy,

D[2]y = (D[1]y)0 +
Q

p
D[1]y +

Q2

p
y.

Denote

by(t) =
�

D[0]y(t), D[1]y(t)
�

2 C2.

Under assumptions (2), the quantities D[0]y(t), D[1]y(t), and D[2]y(t) are Shin–Zettl quasiderivatives (see [8],
Chap. 1). One can also easily show that, for sufficiently smooth functions p and Q (corresponding to the classical
Sturm–Liouville expression), the following equality is true:

l(y) = −D[2]y.

Hence, the formal expression (1) can be correctly defined as the quasidifferential Shin–Zettl expression

l[y] = −D[2]y.

The corresponding Shin–Zettl matrix has the form

A(t) =

0

B

B

@

Q

p

1

p

−Q2

p
−Q

p

1

C

C

A

2 L
1

�

[a, b];C2⇥2

�

. (3)

Consider a two-point quasidifferential boundary-value problem

l[y] = f(t) 2 L
1

�

[a, b],C
�

, (4)

↵by(a) + βby(b) = 0, (5)

where the matrices ↵,β 2 Cm⇥m.

The following statement connects the quasidifferential boundary-value problem (4), (5) with systems of first-
order differential equations:

Lemma 1. A function y(t) is a solution of the boundary-value problem (4), (5) if and only if the vector
function w(t) = by(t) is a solution of the boundary-value problem

w0
(t) = A(t)w(t) + '(t), (6)

↵w(a) + βw(b) = 0, (7)

where the square-matrix function A(t) is given by relation (3) and '(t) = (0,−f(t)) 2 L
1

�

[a, b];C2

�

.
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Assume that the homogeneous boundary-value problem

w0
(t) = A(t)w(t), ↵w(a) + βw(b) = 0

possesses only a trivial solution. It is known that, in this case, there exists a Green function of this problem

G(t, s) =

 

g
11

(t, s) g
12

(t, s)

g
21

(t, s) g
22

(t, s)

!

2 L1
�

[a, b];C2⇥2

�

,

which has the form

G(t, s) =

8

<

:

−Y (t)(↵+ βY (b))−1βY (b)Y −1

(s), a  t < s,

Y (t)
⇥

I
2

− (↵+ βY (b))−1βY (b)
⇤

Y −1

(s), s < t  b,
(8)

where I
2

is the (2⇥ 2) identity matrix and Y (t) is a matricant, i.e., the solution of the matrix Cauchy problem

Y 0
(t) = A(t)Y (t), Y (a) = I

2

.

A unique solution of the boundary-value problem (6), (7) can be expressed via the Green matrix as follows:

w(t) =

b
Z

a

G(t, s)'(s)ds, t 2 [a, b]. (9)

We introduce a similar object for the quasidifferential boundary-value problem (4), (5).

Definition 1. A Green function of the semihomogeneous boundary-value problem (4), (5) is defined as a con-
tinuous function Γ(t, s) 2 C

�

[a, b]⇥ [a, b],C
�

with the help of which the solution of the indicated problem can be
represented in the form

y(t) =

b
Z

a

Γ(t, s)f(s)ds.

Theorem 1. Assume that the homogeneous boundary-value problem

D[2]y(t) = 0, ↵by(a) + βby(b) = 0

has only the trivial solution.
Then there exists a unique Green function Γ(t, s) of the boundary-value problem (4), (5) and

Γ(t, s) = −g
12

(t, s).

Proof. By Lemma 1, the assumption of the theorem implies that the homogeneous boundary-value problem

w0
(t) = A(t)w(t), ↵w(a) + βw(b) = 0
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also has solely the trivial solution and, hence, the Green function G(t, s) exists for problem (6), (7) and equality (9)
is true.

We apply Lemma 1 once again and rewrite relation (9) in the form

D[0]y(t) = −
b
Z

a

g
12

(t, s)f(s)ds,

D[1]y(t) = −
b
Z

a

g
22

(t, s)f(s)ds,

where y(t) is a unique solution of problem (4), (5).
According to relation (8), all off-diagonal elements of the matrix G(t, s) are continuous functions in view of

the continuity of the matricant Y (t) and Y −1

(t).

This yields the existence of the Green function.
Now let Γ0

(t, s) be a different Green function of the boundary-value problem (4), (5).
Then, for any function f 2 L

1

([a, b],C), we can represent the unique solution of this problem in the form

y(t) =

b
Z

a

Γ(t, s)f(s)ds =

b
Z

a

Γ

0
(t, s)f(s)ds,

i.e.,

b
Z

a

�

Γ

0
(t, s)− Γ(t, s)

�

f(s)ds = 0.

Hence, the bounded kernel Γ0
(t, s)− Γ(t, s) generates a zero integral operator.

In this case, it is known that Γ0
(t, s) − Γ(t, s) = 0 almost everywhere on [a, b]. In view of the continuity of

the functions Γ(t, s) and Γ

0
(t, s), this yields the uniqueness of the Green function.

Theorem 1 is proved.

3. Convergence of Green Functions

Parallel with l(y), we consider a family of Sturm–Liouville expressions ln(y) of the form (1) with coefficients

pn, qn = Q0
n, n 2 N,

satisfying conditions (2). We denote the quasiderivatives corresponding to these expressions by D
[0]

n y, D
[1]

n y,

and D
[2]

n y and the corresponding vector of quasiderivatives by

byn(t) :=
�

D[0]

n y(t), D[1]

n y(t)
�

2 C2

;

the corresponding Shin–Zettl matrices are denoted by An(t) and the quasidifferential expressions by ln[y].

Parallel with problem (4), (5), for each n, we consider the following boundary-value problems:

ln[y](t) = fn(t) 2 L
2

([a, b];C), (10)

↵nbyn(a) + βnbyn(b) = 0. (11)
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By Lemma 1, they are equivalent to the boundary-value problems

w0
(t) = An(t)w(t) + 'n(t), (12)

↵nw(a) + βnw(b) = 0, (13)

where w(t) = byn(t) and 'n(t) =
�

0,−fn(t)
�

2 L
1

�

[a, b];C2

�

.

Theorem 2. Let the following conditions be satisfied:

(i) the homogeneous boundary-value problem

D[2]y(t) = 0, ↵by(a) + βby(b) = 0

possesses solely the trivial solution;

(ii) the coefficients of expressions satisfy the following limit relations as n ! 1:

(a) k1/pnk1 = O(1), kQn/pnk1 = O(1), and kQ2

n/pnk1 = O(1),

(b)
�

�

�

�

Z t

a
(1/pn − 1/p)ds

�

�

�

�

1
! 0,

(c)
�

�

�

�

Z t

a
(Qn/pn −Q/p)ds

�

�

�

�

1
! 0,

(d)
�

�

�

�

Z t

a
(Q2

n/pn −Q2/p)ds

�

�

�

�

1
! 0;

(iii) the matrices specifying the boundary conditions satisfy the limit relations ↵n!↵ and βn!β as n!1.

Then, for sufficiently large n, there exist Green functions Γn(t, s) of the semihomogeneous boundary-value
problems (10), (11) and the limit relation

�

�

Γn(t, s)− Γ(t, s)
�

�

1 ! 0, n ! 1, (14)

is true.

Here and in what follows, k · k1 is the sup-norm and k · kp is the norm in the Lebesgue space Lp, p ≥ 1.

Remark 1. It is obvious that conditions (ii) are satisfied if, as n ! 1,

k1/pn − 1/pk
1

! 0, kQn/pn −Q/pk
1

! 0, kQ2

n/pn −Q2/pk
1

! 0.

The proof of the theorem is based on the auxiliary result from [15]. Note that this result was later generalized
in [14] (see also the references therein).

By Yn(·) we denote the matricants corresponding to problems (12), (13), i.e., the solutions of the matrix
Cauchy problems

Y 0
n(t) = An(t)Yn(t), Yn(a) =

 

1 0

0 1

!

.
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Lemma 2. If one of the following four (nonequivalent) conditions is satisfied as n ! 1:

(↵) kAn −Ak
1

= O(1),

(β )
�

�

�

�

Z t

a

�

An(s)−A(s)
�

ds ·
�

An(t)−A(t)
�

�

�

�

�

1

! 0,

(γ )
�

�

�

�

�

An(t)−A(t)
�

·
Z t

a

�

An(s)−A(s)
�

ds

�

�

�

�

1

! 0,

(δ )
�

�

�

�

Z t

a

�

An(s)−A(s)
�

ds
�

An(t)−A(t)
�

−
�

An(t)−A(t)
�

Z t

a

�

An(s)−A(s)
�

ds

�

�

�

�

1

! 0,

then the condition
�

�

�

�

�

�

t
Z

a

�

An(s)−A(s)
�

ds

�

�

�

�

�

�

1

! 0

is equivalent to the convergence

kYn − Y k1 ! 0, kY −1

n − Y −1k1 ! 0 (15)

as n ! 1.

Proof of Theorem 2. By Lemma 1, it follows from the assumption (i) of Theorem 2 that the homogeneous
boundary-value problems

w0
(t) = An(t)w(t), ↵nw(a) + βnw(b) = 0

also have only trivial solutions for sufficiently large n. By Theorem 1, the Green functions of problems (10), (11)
exist.

We now prove relation (14).
It is easy to see that condition (i) of Theorem 2 implies condition (↵) of Lemma 2 and condition (ii) yields

the condition
�

�

�

�

�

�

t
Z

a

�

An(s)−A(s)
�

ds

�

�

�

�

�

�

1

! 0.

Hence, by Lemma 2, the limit relation (15) is true. In view of relation (8), this implies that the limit equal-
ity (14) holds.

Theorem 2 is proved.

4. Approximation of Green Functions

We now proceed to the problem of approximation. We again consider an expression l(y) of the form (1)
whose coefficients satisfy conditions (ii) and the boundary-value problem (4), (5) generated by this expression.

Theorem 3. Let the conditions of Theorem 1 be satisfied. Then there exist pn, Qn, n 2 N, such that
pn 2 C1�

[a, b],C
�

, Qn 2 C1
0

�

[a, b],C
�

, and condition (ii) of Theorem 2 is satisfied, i.e., for problem (4), (5),
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one can construct a sequence of Sturm–Liouville problems with smooth coefficients pn and qn such that the limit
relation (14) is true.

Furthermore, if the functions p and Q are real-valued and p > 0 almost everywhere on [a, b], then the
smooth functions pn and Qn (and, hence, qn ) can be chosen in the same way.

Proof. Since
1

p
2 L

1

�

[a, b],C
�

, we conclude that p(t) 6= 0 almost everywhere on [a, b]. By p̃n we denote

the Sobolev average of the function
1

p
p
2 L

2

�

[a, b],C
�

and define pn :=

1

p̃2n
.

Then

pn 2 C1�
[a, b],C

�

,

�

�

�

�

1

p
pn

− 1

p
p

�

�

�

�

2

! 0, n ! 1.

The condition of the theorem also implies that
Q
p
p
2 L

2

�

[a, b],C
�

. Since the set C1
0

�

[a, b],C
�

is dense in

the space L
2

�

[a, b],C
�

, we can choose eQn 2 C1
0

�

[a, b],C
�

such that

�

�

�

�

eQn − Q
p
p

�

�

�

�

2

! 0 n ! 1.

Setting Qn :=

eQn
p
pn, we get

Qn 2 C1
0

�

[a, b],C
�

,

�

�

�

�

Qnp
pn

− Q
p
p

�

�

�

�

2

! 0, n ! 1.

Further, we obtain

�

�

�

�

Qn

pn
− Q

p

�

�

�

�

1

=

�

�

�

�

Qn

pn
− Q

p
pn

p
p
+

Q
p
pn

p
p
− Q

p

�

�

�

�

1


�

�

�

�

1

p
pn

�

�

�

�

2

�

�

�

�

Qnp
pn

− Q
p
p

�

�

�

�

2

+

�

�

�

�

Q
p
p

�

�

�

�

2

�

�

�

�

1

p
pn

− 1

p
p

�

�

�

�

2

,

�

�

�

�

1

pn
− 1

p

�

�

�

�

1

=

�

�

�

�

✓

1

p
pn

− 1

p
p

◆✓

1

p
pn

+

1

p
p

◆

�

�

�

�

1


�

�

�

�

1

p
pn

− 1

p
p

�

�

�

�

2

�

�

�

�

1

p
pn

+

1

p
p

�

�

�

�

2

,

�

�

�

�

Q2

n

pn
− Q2

p

�

�

�

�

1

=

�

�

�

�

✓

Qnp
pn

− Q
p
p

◆✓

Qnp
pn

+

Q
p
p

◆

�

�

�

�

1


�

�

�

�

Qnp
pn

− Q
p
p

�

�

�

�

2

�

�

�

�

Qnp
pn

+

Q
p
p

�

�

�

�

2

,

and, hence, the conditions of Remark 1 are satisfied.
Theorem 3 is proved.
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5. Convergence and Approximation of Operators

Here, we also present some necessary results from [4].
In the Hilbert space L

2

�

[a, b];C
�

(see [7, 8]), a quasidifferential expression l[y] generates a maximal quasi-
differential operator

L
max

: y ! l[y],

Dom(L
max

) =

n

y
�

�

�

D[k]y 2 AC
�

[a, b];C
�

, k = 0,m− 1, D[m]y 2 L
2

�

[a, b];C
�

o

.

A minimal quasidifferential operator is defined as the restriction of the operator L
max

to a linear manifold

Dom(L
min

) :=

�

y 2 Dom(L
max

)

�

�

by(a) = by(b) = 0

 

.

Remark 2. It is clear that the quasiderivatives D[1]y and D[2]y depend on the choice of the primitive Q

(to within a constant). It is easy to see that the operators L
min

and L
max

remain unchanged.

Parallel with (1), we consider the formally adjoint differential expression

l+(y) = (−p(t)y0(t))0 + q(t)y(t),

where the bar stands for the complex conjugation. By L+

max

and L+

min

we denote, respectively, the maximum
and minimum quasidifferential operators in the space L

2

�

[a, b];C
�

. By using the results presented in [8] for the
general quasidifferential Shin–Zettl expressions and the facts established above, we conclude that the operators
L
min

, L+

min

, L
max

, and L+

max

are densely defined and closed in the space L
2

�

[a, b];C
�

,

L⇤
min

= L+

max

, and L⇤
max

= L+

min

.

Similarly, for each n, the expressions ln[y] generate the operators Ln
min

and Ln
max

in the Hilbert space
L
2

�

[a, b];C
�

.

In [5], one can find the description of some classes of extensions of the minimal quasidifferential operator L
min

under condition of its symmetry. Here, we consider an arbitrary extension of a minimal (generally speaking,
nonsymmetric) operator specified by the two-point boundary conditions. Namely, we consider the operator

Ly = l[y],

Dom(L) =
�

y 2 Dom(L
max

)

�

� ↵by(a) + βby(b) = 0

 

,

corresponding to problem (4), (5) and the operators

Lny = ln[y],

Dom(Ln) =
�

y 2 Dom(Ln
max

)

�

� ↵nbyn(a) + βnbyn(b) = 0

 

,

corresponding to boundary-value problems (10), (11).
It is clear that L

min

⇢ L ⇢ L
max

and Ln
min

⇢ Ln ⇢ Ln
max

.
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Theorem 4. Assume that the resolvent set of a boundary operator ⇢(L) is nonempty and that conditions (ii)
and (iii) of Theorem 2 are satisfied as n ! 1.

Then, for any λ 2 ⇢(L), λ 2 ⇢(Ln) for sufficiently large n and
�

�

(Ln − λ)−1 − (L− λ)−1

�

�

HS
! 0, n ! 1, (16)

where k · kHS is the Hilbert–Schmidt norm.

Proof. We first assume that 0 2 ⇢(L). This implies that the operator L is invertible, i.e., the problem Ly = f

is equivalent to problem (4), (5) and, for any f 2 L
2

�

[a, b],C
�

, has a unique solution, which is equivalent to
condition (i) of Theorem 2.

This solution y(t) can be represented in the form

y(t) =

b
Z

a

Γ(t, s)f(s) ds.

By Theorem 2, the operators Ln are also invertible, there exist Green functions of the corresponding boundary-
value problems (10), (11), and their solutions have the form

yn(t) =

b
Z

a

Γn(t, s)f(s) ds.

Hence,

�

�L−1

n − L−1

�

�

HS
=

0

@

b
Z

a

b
Z

a

|Γn(t, s)− Γ(t, s)|2 dtds

1

A

1/2

 kΓn(t, s)− Γ(t, s)k1 · (b− a) ! 0, n ! 1.

We now consider the general case. Thus, there exists some λ 2 ⇢(L). Then it is clear that 0 2 ⇢(L− λ).

We consider the operator L− λ. The problem (L− λ)y = f is equivalent to the boundary-value problem

l[y]− λy = f(t) 2 L
1

�

[a, b],C
�

,

↵by(a) + βby(b) = 0.

Note that Lemma 1 with the matrix A = Aλ is true for this problem. It is easy to see that the matrices A

and An, together with the matrices Aλ and Anλ, satisfy the conditions of Theorem 2.
Repeating the reasoning presented above, we conclude that 0 2 ⇢(Ln−λ) for sufficiently large n, there exist

Green functions of the corresponding boundary-value problems, and the limit relation (16) is true.

Remark 3. Theorem 4 yields the uniform resolvent convergence of the operators Ln to L, which was estab-
lished in [4].

Remark 4. By analogy with Remark 1, the following conditions for the coefficients of the expression
as n ! 1 are sufficient for the convergence of resolvents of operators (16):

k1/pn − 1/pk
1

! 0, kQn/pn −Q/pk
1

! 0, kQ2

n/pn −Q2/pk
1

! 0.
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Theorems 3 and 4 lead to the following result:

Theorem 5. Assume that the quasidifferential operator L corresponding to the formal Sturm–Liouville ex-
pression l(y) and satisfying conditions (2) has a nonempty resolvent set ⇢(L).

Then there exists a sequence of classical Sturm–Liouville operators with smooth coefficients such that their
resolvents approximate the resolvent of the operator L in the Hilbert–Schmidt norm, i.e., relation (16) is true.
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