
4. Proof of Theorems 1 and 2. Necessity. The Esseen and Janson theorem implies that 
(4) yields the upper bound in (5) and conditions (2) and (3). We shall now determine the 
lower bound in (5). To do this, we utilize Lemma i and show that (8) is fulfilled. 

Set Yk = X2k - X2k-l, k = i, 2, ... We shall now verify that for this sequence (4) 
is fulfilled. The upper bound follows from the corresponding bound on {Xk} and the inequa- 
lity MIU + VJP ~ max{2P -l, i} (MJUJP + MIVIP) [2, p. 168]. 

If 0 < p < i, the lower bound follows from condition (6). For p e i, this bound fol- 
lows from (2) and the following well-known inequality [2, p. 277]. Let the r.v. U and V 
be independent, possess a finite absolute moment of the order p e i and MU = O. Then MIU + 
VlP e MIVIP. 

The r.v. possesses the c.f. If(t)l 2. By Lemma 4 the bounds (8) are fulfilled for If(t)l 2 
We have 

I - - 1 / ( 0 1  = = (1 - -  ; f ( O t ) O  § t f ( t )  l ) ~ <  2 0 - -  Re f (t)). 

This yields the required lower bound for 1 - Re f(t). The upper bound in (8) follows from 
the above-established upper bound in (5) and Lemma i. Theorems i and 2 are thus proved. 
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ONE TYPE OF GENERALIZED MOMENT REPRESENTATIONS 

A. P. Golub UDC 517.53 

In 1981, V. K. Dzyadyk [i] first investigated the problem of generalized moment repre- 
sentations of numerical sequences, a problem which has found useful applications in the study 
of rational approximations and integral representations of functions. 

Definition i. A generalized moment representation (GMR) of a sequence of complex num- 
bers {Sk}k=0 ~ is defined to be the set of equations 

s~+i = 5 a, (t) bj (t) d~ (t), i, ] = O, oo, ( 1 )  
X 

in which d~(t) is a measure on a set X (X is most often a segment of the real axis), and 
a{ai(t)}i=0 ~ and {bj(t)}j=0 ~ are sequences of measurable functions on X for which all inte- 
grals in (i) exist. 

In the present article an analogous construction is investigated based on the concept 
of q-integral introduced by Jackson [2]. 

Definition 2. For some fixed generally speaking complex number q, lql < i, the q-inte- 
gral of the function ~(x) defined on [0, i] is defined by the following formula: 

x 

CD(x)=~(p(u)dqu.=x(1--q) q~(xq'Z)q n, xC[O, 1], 
0 n=0 

(2) 
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provided the series on the right-hand side of (2) converges. 

Remark i. 
example [3]) 

then 

It is obvious that if we define the q-derivative by the formula (see, for 

dq (D(x)=q)(qx) - - (1 ) (x )  (3 )  
dqx ( q - -  1) x ' 

(u),dqu =-- ~ (u). 
dqx 0 

Thus, we introduce q-integral GMRs into consideration. 

Definition 3. A q-integral generalized moment representation of a sequence of complex 

numbers {Sk}k=0 ~ is defined to be the set of equations 

I 

st+i = ~ a, (t) bj (t) dqt, i, ] = O, oo, 
0 

(4) 

in which {ai(t)}i=0 ~ and {bj(t)}j=0 ~ are sequences of functions such that all q-integrals 

in (4) exist. 

It is known [4] that GMRs of type (i) under specific conditions can be represented in 
the form 

sh = ~ (A~ao) (t) b o (t) d~ (t), k = O, ~ ,  
X 

where A is a linear bounded operator on a Banach space. A similarity transformation is pos- 
sible also for q-integral GMIRs. In fact, we introduce two infinite-dimensional spaces of 
functions ~J~ and ~ defined on [0, i] such that M~E~ and M~E ~ the bilinear form 

! 

<%@ : =  ~ q~(u)~(u)dqu = (1 - -  q) ~" cp(q~)~(qn)q ~ 
0 n=O 

(s) 

is defined. We consider a bounded linear operator A :-:DI-+9~ and assume that there exists 
a unique linear bounded operator A*:~-+~ such that 

We shall say that operator A* is conjugate to A with respect to bilinear form (5). Now if 
we assume that a0(1)Eg~, b0(1)E~ and linear operator A has property (Aai)(t) = a i+1(t), i = 
0, =, where ai(t), i = 0, ~ are the functions appearing in Eqs. (4), then it is obvious as 
well that we will have 

(A'b j)(t) = bi+~ (t), ] = O, ~ ,  

and ,  c o n s e q u e n t l y ,  we o b t a i n  e x p r e s s i o n s  

1 

sh = I (A~ao) (t) b o (t) dqt, k = O, co,  (6) 

equivalent to (4). 

It is particularly simple to carry Dzyadyk's theorem [5] on construction of diagonal 
Pade approximants over to the case of q-integral GMRs. We shall state a more general asser- 
tion here that is true for arbitrary bilinear forms. 

THEOREM i. Let an analytic function f(z) be representable in a neighborhood of z = 
0 by the power series 

1247 



f (z) = f (0) + ,V s :  ~+~, ( 7 )  
k=O 

and for sequence {Sk}k=0 ~ let 

s~+: = <a~, hi ) ,  i, / = 0,  ~ ,  

where "i e ~' i = O, 0% bj e 9, , j = O, o% ~ and 9~ are infinite-dimensional linear spaces, 
and <', "> is a bilinear form defined on the Cartesian product of these spaces. Further, 

A ~ B let there exist nondegenerate biorthogonal sequences { M}M=0 , { N}N=0 : 

M N 

ci  a i ,  CM --r ~ ,  M = 0,  c o ;  B N  = _c,V c (N)I~i ~J, 
i=0 i~O 

7V ~--- 0, 007 

for which 

<A~I, BN) = 6~hN, M, N = 0, oo. 

Then the diagonal Pade polynomials [N/N]f(z), N = 0, = of function f(z) can be repre- 
sented in the form 

A r 

V clA'~z'~-:T: (:; z) 

[N/NI/(z)  -- :=o ~v , 

Z c}N)zN--] 
/ = 0  

where Tj(f; z) are partial sums of series (7) of order j. 

Now we construct q-integral GMRs for certain functions. 

Example. Consider the following function, sometimes called the exponent q-analog [6] 

o0 oo 

'+' 2 '% 
k=O k=O 

1 -- qk k 
where kq= ~ ,  kq!=~i v, 0qI:=l. 

i=I 

In order to construct the q-integral GMR for {Sk}k=0 ~ we use the definitions and pro- 
perties of q-gamma and q-beta functions (see, for example, [7]). The q-gamma function is 
defined by formula 

where (a; q)~ = fi (1 -- aqn). 
tZ~0 

rq ( x ) -  (q; q)-------~= (l - - q / - 5  
(qX; q)~ 

It is obvious that 

rq(n-{-1)---- (1 --q) (I(l_q)n-q=)'''(1-q n) .=nq!. 

The q-beta function is defined by means of q-integral 

i ~ (qn+1; q)oo 
Bq (x, y) ---- t x-I (tq; q)~o dqt ----- (1 - -  q) qnX (qn+y; q)oo e 

(tq~'; q)oo n = o  

(8) 

and can be expressed by means of the q-gamma function by the formula 
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rq (x) Fq (y) 
B q ( x , y ) =  F q ( x + y )  ' 

From (8) and (9) we get 

l 

1 f t x-1 (lq; q)oo dqt. 
l'q [x-i-y) -- Fq (x) Fq (y) (tqV; q)o~ 

0 

Setting x = i + i, i = 0, ~, y = j + i, j = 0, = we arrive at the q-integral GMR 

1 

s~'+i --  (f "v- i -+- l)q! - -  iq! 
0 

i--I 
I--] (1 -- tq n+l) 
r ~  O 

iql 
dqt. 

Thus, the upper part of the Pade table for Eq(z) can be constructed in terms of poly- 
nomials Qn(t), n = 0, ~ that are q-orthogonal on [0, i], i.e., that satisfy the equations 

| oo 

( Qn (t) Qm (0 dot = (I -- q) ~ Qn (q~) Qm (ql) qi____ 0 
r'=0 

for m = n. Such polynomials have been rather well studied up to the present time (see, for 
example, [3; 8, p. 92]). 

Generalizing the arguments given above, we get the following result. 

THEOREM 2. For a sequence {Sk}k=0 ~ of the coefficients of the power expansion of func- 
tion 

oo oo 

__r v f (z) = s~zk = __, r,.~ (~le + v) ' 

k=O k=O 

~,~>0, (i0) 

a q-integral GMR of the form 

l 

sL+i - -  rq (,ui + ~ / +  ~) = 
t ~ ' + v ' - '  (tq; q)~ 

Fq (~, -+- vl) F~ ( l a / +  v2) (tq~J+~'; q)oo 
d$, (ii) 

occurs where vi, ~2 > O, v z + ~2 = v. 

We note that GMR (ii) admits an operator formulation of type (6) with operator 

and initial functions 

1 

x ~ ~ (tq; q).._______~ 
(Q~q~) (x) - -  F,~(~O (t@~; q)~ ,p(xt) d~t 

t v'-l (lq: q)~ 
a o ( l ) =  Fq(v  0 , b o ( / ) =  F~(v~)(tq~;q)~ ( 1 2 )  

More complicated q-integral GMRs can be constructed if instead of operator Q~ we con- 
sider operator 

(Q~) (x) = x ~  (x) + ~ (Q~) (x) 

w i t h  t h e  s a m e  i n i t i a l  f u n c t i o n s  ( 1 2 ) .  I n  t h e  p a r t i c u l a r  c a s e  u = 1 ,  v 2 = 1 ,  v l  = v we g e t  
t h e  f o l l o w i n g  r e s u l t .  

THEOREM 3 .  F o r  a s e q u e n c e  { S k } k = 0  ~ o f  t h e  c o e f f i c i e n t s  o f  t h e  p o w e r  e x p a n s i o n  o f  f u n c t i o n  
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#--I 

nlq- ] 
- - -  F~(v+k+ l) 

I , ' =0  ~ =0 

Z ~ , 

we get a q-integral generalized moment representation of form 

v > O ,  

(+i--1 
l--q + e  

m=O - - - - - -  f a~ (l) bj (t) d,,t, s~+i= p.(~ + i +  i + 1) i , ] =  0 , ~ ,  

where polynomials ai(t), i = O, ~, bj(t), j = O, ~ can be expressed by formulas 

f--; 

a i ( t ) =  p .~(v+i)  1 - - q  

I 

bj(O=l  ---F.' ij ( i -  
at 

(13) 

(14) 

(15) 

in which 

Proof. 

eo 

(z) = ~-~ (• - -  q/~) (• - -  q~.-T) .., (• _ 1) 
(1 - -  qk)(l __qk-~)... (1 - -q )  

le=O 

Consider the operator 

(QoqD) (x) = xCp (x) + ~ (Qq~) (x). 

z ,  •  (16) 

(17) 

Construct its conjugate with respect to bilinear form (5) 

I 

S (O.~) (x) = x ~  (X) + ~ ~ (u) d~u. 
qx 

(18) 

It is rather simple to establish the fact that successive application of operator (17) 
to initial function a0(t) = t/F (v) reduces to formulas (14); moreover, the corresponding 
generalized moments will equalqthe coefficients of the power expansion (13). In order to 
obtain formula (15), first we construct the resolvent of operator (17). For this it is neces- 
sary to solve the q-integral equation 

(x) -- zx~ (x ) - -  z~ i ~ (u) dqu = ~ (x), 
0 

which by an application of operator (3) reduces to the following q-differential equation: 

dq 
(1 - -  zqx) ~ ~ (x) - -  z (1 -;- ~) ~ (x) 

(o) = ~p (o) .  

= ~ ~ (x), 

(19) 

After applying the power series method, we shall establish that function ~(x) = ~(zx) defined 
by formula (16) satisfies the homogeneous equation. For solution of the inhomogeneous equa- 
tion we apply the method of variation of the constants 
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( x )  = C (x) ~ (x). 

S u b s t i t u t i n g  e x p r e s s i o n  (20) i n t o  Eq. (19) ,  we ge t  

(20) 

d,? 

do C (x) = d,F ~p (x) 
d j  (1 - -  zqx) X (qx) ' 

and, therefore, 

d o 

C (x) = C o -F i d,;u r (u) ,j (1--zqu))~(qu) dqu. 
0 

As a result we get the formula for the resolvent 

(x) q~ (zx) 
�9 q: ( . r )  = (R~Qocp) ( x )  = (1  - -  zqx) �9 (zqx) 

QX 

--e(zx) ~(u) dqu 

0 

(i -- zu)tD(zu) dqu. (2l) 

It is obvious that the resolvent of operator (18) will be conjugate to operator (21). Carry- 
ing out the necessary calculations, we get 

�9 ~ (x) 
(R~Qo~)  ( x )  - 1 - -  xz  

1 

i ~ (u) q) (zu) dqu dq ( 1 ] 
,~, dqx L (1 --xz) (]:~(zx) t '  
qx 

from which formula (15) follows immediately. Theorem 3 is proved. 

Remark 2. Generalized moment representations of basis hypergeometric series of type 
(i0) or (13) with continuous measures are constructed in [4]. In the same place, formulas 
are obtained for their Pade approximant in terms of special biorthogonal systems. 
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