GENERALIZED MOMENT REPRESENTATIONS AND PADE — CHEBYSHEV APPROXIMATIONS

A. P. Golub UDC 517.538.52

An approach to the application of Dzyadyk's generalized moment representations in
problems of construction and investigation of the Padé—Chebyshev approximants is
developed. With its help, certain properties of the Padé—Chebyshev approximants
of a class of functions that is a natural analog of the class of Markov functions
are studied. In particular, it is proved that the poles of the Padé—Chebyshev
approximants of these functions lie outside their domain of analyticity.

In the study of the Padé approximations on the first plan, as a rule, we introduce func-

tions of .the form
THETE W

r

where du(Z) is a measure on the compactum I' < {. This is connected with the classical ideas
of Chebyshev, concerning the moments problem for the numerical sequence {5}, (see, e.g.,

[17):

5= {Udu(@), k=0 cc. (2)
r

In the case of a nonnegative measure du{f) on a real set, many problems of rational
approximation of functions of form (1) are solved in terms of polynomials that are orthogonal
with respect to the measure du(t). TFor the extension of this class of functions, some in-
vestigators (see, e.g., [2, 3]) have studied the properties of sequences of orthogonal poly-
nomials, corresponding to variable-sign and complex-valued measures. Dzyadyk suggested in
1981 another method, included in the generalization of moments problem (2).

Definition 1 [4]. The set of equations

sivj= [ @b (hap(t), i,j=0cs, (3)
r
in which T is a Borel set (most often, a segment of the real axis), du(t) is a measure on
I, and {a;(}2, and {b;())}7r, are sequences of measurable functions on I', for which all the
integrals in (3) exist, is called a generalized moment representation of the sequence of
complex numbers {sk}§=0.

In some works, Dzyadyk and the author have indicated methods and examples of applica-
tions of the generalized moment representations to the problems of Padé approximationms,
many-point Padé approximations, joint Padé approximations, etc. Dzyadyk and Chyp have ob-
tained with the help of generalized moment representations integral representations for a
series of special functions [5, Chap. VI}. These applications are based on the transforma-

tion of Egq. (3) to the form

Q@) —Prna(d)= z”gA(z £) By (t) du (t), (4)

where

oo

fa =Y st AGf= Y@z, Byit)= V Mo; (),

i=0 1—0

8

&
o

Qn (2) = 2 MzN—i, Py_i(2) = Z cfMgN—i Z sp2t.

=0 j=1 k=0
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The present article is devoted to the application of generalized moment representations
to the Padé—Chebyshev approximation problem, which is realized in a manner somewhat different
from that given above.

Definition 2 [6]. Let a function f(x)€ Cl—1, !] be expanded in a uniformly convergent
Fourier —Chebyshev series of the form

= ¥ 5.Th (x), (5)

k=0
where Tk(x) = coskarccosx are Chebyshev polynomials of first kind. The rational polynomial
[Mwmﬂ=Pmm@Nﬂ€MMW]~hx)Mn—ﬂﬂmmdﬁpu)IMd%ﬂﬂ N} such that

o0

fRQ@—=Pux)= ¥ 7Ti(x) (6)

= MFN+!
is called the Padé—Chebyshev approximant of f£(x) of order [M/N].

The following theorem establishes a connection between the generalized moment represen-
tations and the Padé —Chebyshev approximations.

THEOREM 1. Let the function f(x) be expanded in a uniformly convergent Fourier --Cheby-
shev series of form (5) and a sequence {S)i, be such that a generalized moment representa-
tion of the form

Sipj = Sa,- (tb;)du(t), i=0, o0 (7)
£
holds. Moreover, let the determinant
AMINT = det || sy iy + Spyuprqie; 1Y 70 (8)
for certain integers M=NZ>=0.

Then the Padé—Chebyshev approximant of f(z) of order [M/N] can be represented in the
form

[MINY} (x) = Pu(x)/Qn (x), (9)
where
Qu (x) = 2 ef"'Ty (x), (10)
N
Py (x) = —‘l?—s,, Z T (x)— Z Vs + = Z T, (x) x S‘ e (51 + Sl (1)
je=0 l=0

(N)

and the coefficients cy s j = 0, N, not all equal to zero, are determined from the conditions
of biorthogonality for the polynomial

N

By ()= E i st (O) + burr—i (),
=0 (12)
Sai(t)BN Bdu() =0, i=0,N—Ii.
r
The approximation error has the integral representation
1
1@ @~ Pu@ =4 [ ¥ Tesuss () ay () B () (1) (13)
T k=0

Proof. By virtue of (5) and (10), we have

N oo
&) Qv (1) = y_skn (x)Z &"T; (x) = 12 e N s [ Ths () +Tpep())=

j=0 j=0 k=0
N
= —-Z T, (x)Z e [serj + Ste—i}— 5~ Z &i"'siTo (%) %So ¥ e"'T 1{x)=
b=l j=0 =0 =0
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1 o0 N oo
=Pu()+5 2 Ty (x} 2 i ISkt + Se—t] = P (x) + —é—g 2 Tetm+1 (x) a, (£) By () dp (B)-

FYoyy RS} =0 by

ar
©

All assertions of the theorem follow from the last equation.

As an example, let us consider the class of the functions f(x) that can be represented
in the form

B
1 — xt
1= | =g 0 (14)
o
where du{t) is a positive measure on the segment [a, B} ¢ [-1, 1]. Since T is the

generating function of Chebyshev polynomials of first kind, the coefficients in the expansion

o

f(x)= 2 537w (x) (15)
Re=()
have the form
B
8y = Stkdu(t), k=0, co. (16)

Equations (16) can be rewritten in the form
5 PR w———
Sipj = Si’t’dp(t), iy j=0, o. an
&

In order to construct the Padé —Chebyshev approximant of f{(x) of order (M/NI, M>N2>0, ac-
cording to Theorem 1, it is necessary to construct the biorthogonal polynomial

N .
By (t) =" Y ot 4 1), (18)
je=0

satisfying the conditions

B
{Byydu(y=0, i=0N—T. (19)
a
It is easily seen that the polynomial By(t)/tMt! is an algebraic polynomial of degree N in
the variable t + 1/t. Let us denote it by Uy(x). Thus,
Bn (t i
_t%,)__—_-u,v<z+.t_). (20)
So, biorthogonalization (18), (19) reduces in obvious manner to the biorthogonalization of

the systems of functions {tﬁﬁzo and HM+1U—%l/ﬂ@ﬁw with respect to the measure du(t) on the
segment [a, BJ.

Since both the systems of functions are Chebyshev on {-1, 1], nondegenerate biorthogonal-
ization is possible in the present situation. Moreover, in this connection the polynomial
Ug(t + 1/t) has exactly N simple zeros in (o, B) [7]. Let us now consider

N N
Un ()= ¥ "= VZ=T + @+ VZ=T)1 =2Y "7z = 20n (. (21)
e j=0

Thus, the denominator for the Padé—Chebyshev approximant has the form
Qu () = - Un (22). (22)

Since UN(t + 1/t) has N zeros in (a, B), we conclude that all the zeros of the denominator
Qn(z) lie in the interval (B + 1/8, o + 1/a) if O<a<<B<C!, on the ray (B+1/8, +=) if
0=a<p<L], on the ray {(—, o + 1/a) if —I<a<B=0, and on the union of rays (—, a +
HayyB -+ 18, + o) if —Ia<< 0B,

Summing up all the above arguments, we formulate the following theorem.
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THEOREM 2. Let a function f(x) be represented in the form

“ ] — xt
f(x)==3 “r:j§;7;j§“du(ﬂs (23)

where u(t) is a function that is nondecreasing and has infinite number of growth points on
la, B] © [-1, 1]. Then the Padé—Chebyshev approximant of f(x) of order [M/N, M>N>0,
is a function that is analytic in the real domain of analyticity of f(x) and can be repre-
sented in the form

where

(MINJF (x) = Pu (x)/Qn (x), (24)
Qv () = = Un (22) (25)
8
I—x 2xy— Uy (¢ 4 11 M
Put = | |* e e = X AT U+ 1] (26)
o E=0

and the algebraic polynomials Uy(t) are defined by the biorthogonality relations

b .
(TN ¢+ Utdut) =0, i=0,1,...,N—1. (27
Proof. Using Eqs. (23) and (25), we write
8 B
F@) Qv ()= Qv ) \ g7 N zxz + T—2oxt + 8
a a
X c L 1—xt
/ -—X
— 2 Ty {x)) dp (x) + _S_: ST w} =7 j (T:?W -
k=0 k=0 a

M M
— YV FT, (x)) Uy @)+ Qu () ¥ 575 (9 = = X

R=={)
M

(“grl%}t;}'z"“ Z £Ts (x)> [Un (2x) — Uy (¢ + 1) dpp (8) +-

k=0

X

Ry

B M
+ 5 : §(1~2xt+t2 ZféT;;(x)>UN(Z'+I/'i)dpt{i’)»}»-QN(x)x

&=

o
f M
Y Z skTh (x) — __;_S‘{ (1 ""xt)IUN (2x) ‘—UN (Z + 1/1)1 — y {ka {x) UN (t + I/t):’dp\o(t) + RM+N+1 (x)‘

1 —2x £

k=0 k=0

Hence the theorem follows.
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DIFFERENTIAL INVARIANTS OF A EUCLIDEAN ALGEBRA

I. A. Egorchenko UDC 517.944:519,46

Functional bases of second-order differential invariants of a Buclidean algebra and
a conformal algebra are found for a set of scalar functions depending on n vari-
ables.

1. INTRODUCTION AND BASIC RESULTS

In the present article we construct explicitly the functional bases of second-order
differential invariants of Euclidean algebra AE(n) with basis operators

@a = 5/5)60, Jab = Xaab“"‘xbaa (}.)

for a set of m scalar functions. (Here and in the following, the letters a, b, c, and d used
as indices take values from 1 to n, where n is a collection of spatial variables, n>=3.)

Algebra AE(n) (1) is an algebra of invariance of a wide class of multidimensional equa-
tions of mathematical physics [1].

Definition 1 {2, 3], The function

Fx, u, t, ..., 1), (2)
1

!

where x = (x,, ..., Xy), # == (u, ..., ™), F is the set of all partial derivatives of the functions of

2-th order, is called a differential invariant of a Lie algebra with basis operators X; if
it is an invariant of the &-the extension of this algbera

i
Xf(x,u,lf,...,f:):li(x,u,u,...,u)F, (3)
1 1
where if A; = 0, F is called an absolute differential invariant, and if A # 0, F is called a
relative differential invariant.

In the following, we shall call absclute invariants simply invariants.

Definition 2, The set of functionally independent invariants of order r =/ of Lie alge-
bra {X;} through which it is possible to express any of its invariants of order r < ¢ is
called a functional basis of order & of algebra {¥;}.

We shall use the following notation:

B, = Oullx,, Ug, = 0%u/0x,0xy,

Si(Uap) = Uaalaya, - Uay_yoHagas

S (Uapr Vap) = Uaya, - Ua;_yaVajajyy - Vagas
Ry (ugs tigy) = Ua Uaylio o Haa, - Uay_jap
Here and in the following, the repeated indices will signify summation from 1 to n.
Everywhere in lists of invariants, k will take values from 1 to n, j from 0 to k.

We shall state the basic results of the article in the form of theorems.

THEOREM 1. A functional basis of second-order differential invariants of Euclidean
AE(n) with basis operators (2) for a scalar function u = u(x,,...,%,) consists of 2n + 1
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