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S O M E  P R O P E R T I E S  O F  B I O R T H O G O N A L  P O L Y N O M I A L S  

A N D  T H E I R  A P P L I C A T I O N  T O  PADI~ A P P R O X I M A T I O N S  

A. P. Golub UDC 517.53 

Transformations of biorthogonal polynomials under certain transformations of biorthogonalizable se- 
quences are studied. The obtained result is used to construct Pad6 approximants of orders [ N -  1 / N ] ,  
N ~ I~I, for the functions 

M f(z) --Tin_ 1 [ f ;  z] 
m 

m=0 Z 

where f (z )  is a function with known Pad6 approximants of the indicated orders, Tj [f ;  z] are Taylor 

polynomials of degree j for the function f(z),  and am, m= 1, M, are constants. 

1. Introduction 

One of the methods for construction and investigation of Pad6 approximations is the method of generalized 
moment representations suggested by Dzyadyk in 1981 [ 1 ]. 

Definition 1. For  a numerical sequence { s k } ?= 0 or for  a function representable as a power series 

f ( z )  = ~ skz  k, 
k=0 

a two-parametric set o f  equalities 

sk+ j = l j(xk) ,  k , j  = 0,,:*,, (1) 

with X k e X ,  k = O, 0% a n d  l j e X , j = 0, 0% is called its generalized moment  representation in a Banach 

space X. ..... 

The application of the method of generalized moment representations to the problem of finding Pad6 approxi- 
mants encounters serious difficulty connected with the necessity to construct and investigate biorthogonal poly- 
nomials. 

Definition 2. Sequences of generalized polynomials 

M 

LM = Z c~M)lj ' M =  0, oo, 
j=O 

and 

N 
XN = Z c(N)xk' N = 0, oo, 

k=O 
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in the systems of functions that appear in equalities (1) are called biorthogonal if 

LM(XN) = 0 for M v N. (2) 

Some properties of biorthogonal polynomials were studied in [2-4]. 
However, the difficulty indicated above can be overcome in many cases where the role of biorthogonal poly- 

nomials is played by ordinary orthogonal polynomials, whose properties are well studied. Let us illustrate this by 
examples. 

Example 1 [5]. For the sequence sk= 1 / ( k +  1)! [or the function f ( z )  = ( e x p z -  1) /z ] ,  the following 
generalized moment representation is true: 

1 

sk+ j = f ak(t)bj(t)d~t(t); 
0 

(3) 

here, ak( t)= tk / k!, k= 0, ~ , bj(t)= ( 1 - t ) J [ j ! ,  j =  Oi oo, and d~t( t)= dt. Since degak(t)=- k and deg bj( t)- j ,  
the biorthogonalization of these sequences yields the classical Legendre polynomials shifted by the interval [0, 1 ] 
(se.e [6, p. 116]). 

Example 2 [5]. For the sequence sk= (~ :+V+ 1 ) J ( V +  1)k, k = 0, oo, where (c~)k :=  c t ( a +  1) . . .  

( a + k - 1 ) ,  k = l - ~ ,  ( a ) o - = l  [or for the function f ( z ) = 2 F l ( ~ : + v + l ,  1 ; v + 2 ; z ) / ( v + l )  with v > - l ,  

+ v + 1 ~ ~ - ,  and 1 - ~: ~ ~ - ] ,  a generalized moment representation of the form (3) is also true with 

ak(t ) = O r  k, k =  01o~, 
(V + 1)k 

(~:)j JX)  (1 - ~:)m 
bj(t) = (1-K)j  tJ + m~= 0 t m, j = O, oo 

jl  j!  m! ' 

d~t(t) = tVdt. 

In this case, the biorthogonalization leads to the shifted classical Jacobi polynomials, which are orthogonal on [ 0, 1] 

with the weight co(t)= t v (see [6, p. 268]). 

Example3 [7]. Consider the sequence S k = l / ( k +  1)q!,  k =  0,0% where k q = ( 1 - q k ) / ( 1 - q ) ,  k= 1, g;, 
and 

k 
kq!:= H iq, k = 1, o~, 0q[ := 1. 

i=1 

The elements of this sequence are the coefficients of the power expansion of the function called a q-analog of the 
exponential [8]; this function is a special case of the basic hypergeometric series [9, pp. 195-196], 0 < q < 1. For 
the sequence considered, the following generalized moment representation is true: 

1 

Sk+ j = f ak(t)bj(t)dqt; (4) 
0 
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here, ak(t ) = tk/kq!, k = 0, oo, and 

J 
bj(t) = H ( 1 - t q n ) / j q ! ,  j = (j, oo. 

n = l  

The integral on the right-hand side of (4) is defined by the equality 

1 

(p(t)dqt := ( l - q )  ~ (p(qn)qn 
0 n = 0  

and called the Jackson q-integral [10]. 

In this case, by biorthogonalizing the sequences {ak(t)}~*=0 and {bj (t)}7= 0, we obtain orthogonal poly- 
nornials in a discrete variable, which are a generalization of the classical Legendre polynomials (see, e.g., [11]). 

Below, we show how the situations described above and similar ones can be used for constructing biorthogonal 
polynomials in more complicated cases. 

2. Principal Result 

First, we need a modification of representation (1) (see [12]). In a Banach space X, we consider a linear 

bounded operator A" X --->X such that Axk=xk+ l, k = 0,~o. It is easy to see that its adjoint operator A*: 

X~ "~ X acts so that A lj=lj+ 1, j =  O, oo. In this case, wecan rewrite (1) as 

Sk+ j = A *jlo(Akxo), k , j =  O, oo, 

or, equivalently, 

s k = lo(Akxo), k=O, oo. 

Under the assumption that the biorthogonalization is known for some fixed x o e X and l 0 e X ,  we construct 

biorthogonal polynomials for the case where the functional 10 is replaced by a functional l'0 representable in the 

form 

M M 

10 = H (1 + ~rnA*)lo = Z O~mA~nlO" (5) 
m=l  m=0 

The following assertion is true: 

Theorem 1. Assume that the sequence { X k } ~= 0 of generalized polynomials 

k 

Xk = Z c~k)A'xo = Pk(A)xo'  k = 0, - - ,  
i=0  

(6) 

possesses the biorthogonal properties in the sense that 

lj(X~) = 5k,j, j = o , k .  (6') 
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Then, for any N= O, o% a nontrivial polynomial f~N of the form 

N 
f~N = Z Cl u)aixO 

i=0 

1073 

with the biorthogonal properties 

~.(XN) = O, j =  O,N=I ,  

where lo is given by (5), can be represented as follows: 

M 
XN = H (1 + ~m a)-I  

m=l 

lj = AVl0, 

M+N 
~ ,  7kXk. 

k=N 

(7) 

Here, the coefficients 7k, k = N, M + N, are determined by the homogeneous system of linear algebraic equa- 

tions 

M+N p(n) ( 1 ) 
Z 7k - U  = O, n =  O, rm_ 1, m =  1, M* ,  

k=N 

where M* is the number of different numbers ~ m, m = 1, M, and r m is the multiplicity of ~ m, m = 1, M* . 

Proof. Properties (7) imply that 

lj H (1 + ~mA)f~N = 0, j = 0, N - 1 .  
m=l 

Clearly, the representation 

M M+N 
C N ' =  H (1 + ~mA)2N = 

m=l k=0 
2 'YkXk (8) 

is possible. Further, we have 

k=0 k=0 

Therefore, Tj = 0, j = 0, N - 1. Thus, 

Taking (8) into account, we obtain 

M+N 
r = ~ 7kXk . 

k=N 

M M+N 
I-[ (1 + )-X y_, 
m=l k=N 
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By virtue of the expansion 

A. P. CrOLUB 

(1 + ~A) -1 = ~ (-~)IAI, 
/=0 

we have 

M+N k . 
ffN = ~ (--~I)LI':"(--~M)IMAll+"'+IM Z Tk Z c} k)A'xO" (9) 

11 . . . . .  [M =0 k=N i=0 

Since the elements xk= Akxo, k = O, oo, are linearly independent [otherwise, the nondegenerate biortho- 

gonalization (6') is impossible], their coefficients on the both sides of (9) can be equated. In particular, the coeffi- 

cients of x i, i = N + 1, ~ ,  on the right-hand side of (9) must be zero. Assuming that M > 1 (the case of M = 0 is 

of no interest), we equate the coefficients of XN+M+j, j = O, M, on the right-hand side of (9) with zero. As a result, 

we get 

M+N k 
Z Yk Z C~ k) Z ( - ~ 1 )  l l . . . ( - ~ 3 M ) I M =  O, j = O,M.  (10) 

k=N i=0 ll+...+IM=N+M+j~i 

Denote 

ll y ~  �9 F(p M) (Yl . . . .  ,YM) := ~ Yl "" 
l 1 +...+l M =p 

(11) 

It is easy to see that 

F(M) F(pM)(yl ,YM) + F(M11) (Y2, ,YM)" p+l(Yl . . . . .  YM) = Yl . . . . . . .  

In view of (11), we can rewrite equalities (10) as follows: 

(12) 

M+N k 
(k) F(M) t 

Z "~k E Ci N + M + j - i k - ~ l  . . . . .  --~M) = O, 
k=N i=O 

j = O, M .  (13) 

By multiplying each j t h  equality in (13) by - 131, J = 01~'~ -- 1, subtracting it from the (j + 1)th one, and taking 
(12) into account, we obtain 

M+N k 

F N + M + j - i ( - ~ 2 , ' " , - - ~ M )  = O, 
k=N i--0 

j = 0, M - 1 .  

By continuing this procedure, we arrive at the equality 

M+N k 
Z = o ci ~' N+M- i  

k=N i - 0  

which, in view of (11), can be rewritten in the form 



S OME PROPERTIES OF BIORTHOGONAL POLYNOMIALS AND THEIR APPLICATIONS TO PADE APPROXIMANTS 1075 

M+N k 

Z Z o 
k=N i - 0  

or  

M+N 
1 

k=N 

Since conditions (13) are symmetric with respect to [31 . . . . .  ~M, we have 

M+N (1) 
7kPk - = O, m = 1, M.  

k= N ~m 
(14) 

We now assume that the multiplicity of some numbers 13 m, m = 1, M, is greater than one. For example, as- 

sume that a number 13 has multiplicity r. In this case, we consider a perturbed problem with r different values I~, 

[3/( 1 - ~h)  . . . . .  13/[ 1 - ( r -  1 )l]h] instead of multiple [3; moreover, we assume that h > 0 is so small that no 
one of these values coincides with the other numbers [3 m. As a result, we obtain conditions of the form (14), 

namely, 

(1 ) 
~_~ TkPk --~ + jh  = 0 ,  j = O , r  1. 

k=N 

This implies that the divided differences are also equal to zero and, hence, the corresponding derivatives satisfy the 

relation 

M+N 

k=N - ~  = 0, j =  0, r - l ,  

as h --~ 0. Theorem 1 is proved. 

3. Application to Pad~ Approximations 

Recall the following definition [ 13, p. 31 ]: 

Definition 3. A rational polynomial [ M/N] f (Z )  = PM(Z)/ QN(Z), where PM(Z) and Q N(Z) are alge- 

braic polynomials of degrees M and N, respectively, is called the Padd approximant of order [M/N],  

M, N ~ ~ +, for a function f (z) analytic in a neighborhood of the point z = 0 if 

f ( z )  - [M/N]f(Z) = O(zM+N+I), Z "'> O. 

Theorem 1 enables one to construct Pad6 approximants of orders I N -  1 / N ] ,  N ~. I~I, for functions of  the 
form 

M f(Z) - rm_l[f;z ] 
? (z) = z"  ' 

m=0 
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where f ( z )  is a function for which the Pad6 approximants of indicated orders are known, and 

polynomials of degree j for the function f ( z ) .  In particular, the following assertion is true: 

A. P. GOLUB 

Tj [f; z ] are Taylor 

Theorem 2. Assume that the Padd approximants of orders [ N + m - 1 / N  + m ], m = 1, M, are known for a 
function f (z ) and let 

M* M 
trttM(t)  = H (1 + ~Jmt) r'n = E O~mtm 

m = l  m=O 

be .a polynomial of  degree 

for the function 

M. Then the denominator ON(z) of the Padd approximant of order [ N -  1/N] 

M f(z)  -- Tm_1 [ f ;  Z] 
~?(z) = ~ % 

m=0 Z m 

can be represented in the form 

M 
where the matrix UM(Z ) = Ilu  j ~=~ 

k = 1, M - l ,  

~)N (z) = 
C 

z M krttM ( 1 /  Z ) 
det UM(Z ), (15) 

4 .  

is composed of the elements 

d i 
= ~ w t 

Uk' j  d w  i { QN+j(W)} w=-~m (16) 

{/1 } 
j = 1, M ,  m = max l: ~ rp <_ k , i = k - r p ,  

p = l  p = l  

UM, j = zJQs+j(z), j = i lM .  

Here, Q N+j(z), J = 1, M, are the denominators of the Padd approximants of orders 

the function f(z) ,  and C = const. 

[ N + j -  1 / N + j ]  for 

Proof. Consider the case whereall [3 m, m= 1, M*, are different, i.e., rm=  1, m =  1, M*, and M*=M.  It 

is known [1] that the denominator of the Pad6 approximant of order [ N -  1 /N]  for the function f ( z )  can be rep- 
resented as follows: 

N 

ON(z) = 5 :  z 
k=O 

here, 5 (g) , k= 0, N,  are the coefficients of the biorthogonal polynomial 

N 

=- C i I t  x O. 
i=0 
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It follows from Theorem 1 that these coefficients satisfy the relations 

M+N k 
~(N) = E ~fm E C~ m) 

m=N i=0 
~, ( _ ~ ) z i  ... (_~M)IM, 

ll +... + lm =k-i 

where Tin, m = N, M + N,  are determined by the system of linear algebraic equations 

M+N ( 1 ) 
E TkPk -~-Tm = O, m = 1, M.  

k=N 
(17) 

Thus, 

N M+N k 
aN(Z) = Z zN-k Z "~m E c~m) 

k=0 rn=N i=0 
E (--~1)ll  "'" (--~M)lM 

l 1 +...+l M =k-1 

M+N N N 
E 'Ym Z c!m) s zN-k 

m=N- i=0 k=i 
~2 ( - ~ 1 )  ~' ... (-13M) l~ 

11 +...+l M =k-i 

M+N N N-i  
Z "~m Z ~(m).N-i ~i~ Z Z 

m=N i=0 p=O ll+...+lM-, p - z ,  " " , - z ,  " 
(18) 

It follows from (17) that 

M+N 
7k~:k = C 

k=N 

QN+M(--~Jl) (--~I)QN+M-I(--~I) (--~1) M Q N ( - ~ I )  
. . ,  

QN+M(-~M) ( - ~ ) o ~ + ~ _ ~ ( - ~ )  { - ~ ) % ~ ( - ~ )  

KN+M KN+M-1 ... K N 

for any numbers ~:k, 
form 

k = N, M + N.  Therefore, the polynomial determined by (15) and (16) can be rewritten in the 

1 M + N  

Q(z) = zM~M(1/Z ) m E''-N ~mZN+M-mQm(Z)" (19) 

Let us prove that equalities (18) and (19) define the same polynomial. For this purpose, it suffices to show that the 
difference between the fight-hand sides of (18) and (19) is equal to zero. We have 

M+N >i  ( ( 
~=NTm ~, cl m)a N-' Z Z - p , - T ,  "'" - T ,  zMVM(1/Z) Z Qm(z) 

m i=O p=O l 1+...+l m- m=N 

M+N 

E~m{ 
m=N 

N N - i 11 

i=0 p=O ll+...--'~'lm=p \ - T j  
(- \ T '  H (Z + ~m) -1 Z N+M-mQm(z) } (20) 
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The expression in braces can be transformed as follows: 

Z clm) zN-i Z Z ( - - T '  "'" ( - - T  ! -- I - I  (Z 
m=l i=0 p=0 ll+...+IM=P 

+ 
~ ) - 1  m 

zN-m Z ci~(ra)~.-m-i 
i=0 

N 
= -- Z clm) zN-i Z Z 

i=0 p=N-i+l ll+...+lm= p 
( . . .  --7, (--7-, 

Z ,-T, , -T ,  -- ~ C'i 
i=N+I p=0 ll+...+lm= p 

(21) 

The right-hand side of (21) contains only negative powers of z. Therefore, since the initial difference (20) is a 

polynomial of degree not higher than N, it is equal to zero. 
This proves representation (15) in the case where all lira are different. As in Theorem 1, the obtained result 

can easily be extended to the case of multiple 13 m" Thus, Theorem 2 is proved. 
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