Ukrainian Mathematical Journdl, Vol. 45, No. 10, 1993

ON SEQUENCES THAT DO NOT INCREASE
THE NUMBER OF REAL ROOTS OF POLYNOMIALS

A. G. Bakan and A. P. Golub UDC 519.64

A complete description is given for the sequences {7«.,‘ }1: ¢ such that, for an arbitrary real polynomial
(o) = 2:=0ak * , anarbitrary A € (0,+e), and a fixed C & (0, +e), the number of roots of the

polynomial (Tf) ()= Z:= 0% AL #* on [0, C] does not exceed the number of roots of £(f) on [0, A].

The following problem was formulated in [1, p. 3821:

Karlin’s problem. Describe the sequences of factors {A} ;:: 0 that do not increase the number of real zeros of

polynomials, i.e., the sequences such that, for any real polynomial f(x) = 2; o %k x,
n . n
Zm( 2 akkk.xk) < Z]R( 2 ak.xk), {1)
k=0 k=0 '

where Zm( f) is the number of real zeros of f taking account of their multiplicities.
In [6], it was proved that the solution of this problem presented in [2-5] is not correct and, thus, Karlin’s prob-
lem remains open. '

In this paper, we describe the sequences of factors {kk};; o Such that, for an arbitrary real polynomial f(z) =
z:zo axt*, an arbitrary A € (0, ), and a fixed C e (0, =), the number of roots of the polynomial z:=0 ag Ayt

on [0, C] does not exceed the number of roots of f(z) on [0, Al
Denote by 7 the class of all sequences that do not increase the number of real zeros, i.e., sequences satisfying

property (1); the transformations determined by sequences of this type are denoted by T, i.e., if f(x)= 2; o % X,
then

(T)(x) = Y gl 2

k=0

Let us prove some auxiliary results.

Lemmal. [f{1,} ::: o € T thenthere exists a nondecreasing function W(t) on [0, +) and numbers 5

=%1 and &, = %1 such that

e = 8 [ (B0)dutr), k=T 3)
0
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Proof. We take an arbitrary algebraic polynomial
P(ty = Y &t
k=0
and construct the polynomial

f@) = [PO)F +e= Y EEM 1,

k,j=0

where €> 0. It is obvious that the polynomial f(z) is strictly positive on the entire real axis and, therefore, does not
have real roots. By applying to f(z) the linear transformation 7 determined by relation (2), we get

D0 = 3, B&*i,, + edg,

k,j=0
One can easily find that

(TH)©) = EFA, + €.

X {7‘/6};;0 € 1, then (Tf)(z) also has no real roots and, thus, it preserves its sign on the entire real axis. For
example,

sign(T)(1) = sign| > E&A,, . + edg | = sign(TF)(©0) = signky =: §,.
k,j=0 ’
= :

Since €> 0 is arbitrary, we conclude that the sequence { §; },k};;o is positive [7, p. 10]. Given an arbitrary
polynomial

n
P(t)= 3 &tk
k=0
we construct the following one:

0 = {[POF +€) = 3 E&* +er, 0.

k,j=0

Let us apply the transformation T to f(z),

(Tf)(t) = Z ékgj tb‘j+l}»k+j+1 + ﬁt;\,l.

k,j=0

e
Since f(¢) has exactly one root t=0 and (7f)(0) = 0, we conclude that O(t) := ;(T F)(¢) cannot have any

real roots. Obviously,
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2
o0 = gokl + 8}«1.

Therefore,

sign (1) = sign[ Y Gl + exl] = sign Q(0) = signk, =: &,/8,.
E,j=0

Consequently, in view of the arbitrariness of € > 0, the sequence {(8,/8;)Ay.;} :20 is also positive. This implies

that representation (3) holds [7, p. 93].
Without loss of generality, we assume in what follows that 8; = 8, = 1. The subclass of the class 1, deter-
mined by these conditions, is denoted by T+.

Assume that the sequence {Z,k}rzo € T* possesses the following additional property: There exists a positive
constant C such that

2o, calT) £ 2y 4(f) 4)

for any real polynomial f(z) and any A e (0, +), where, by analogy with the notation introduced above,
Zo, 4(f) denotes the number of zeros of the polynomial f(¢) on the interval [0,A] taking account of their multi-

plicities. Let 15 denote the subclass of the class T+ for which this condition is satisfied.

Lemma 2. Ifa sequence {A, }:;0 belongs to ¢, then it can be represented in the form
C
M = [ (D), k=0, | (5)
0

where [(2) is a nondecreasing function on the segment [0, C 1

Proof. One can easily see that it suffices to consider the case where C = 1. Consider the algebraic polynomial

k=0

where m and n are nonnegative integers and € > 0. This polynomial is strictly positive on [0, A] and, hence, it

have no zeros on this segment. Let us apply the transformation T determined by the sequence { 'kk}; o € 1, to
this polynomial,

THh( = 3 (% )0 esmny,, a7 4 e,
k=0

Taking into account the assumptions concerning the sequence {kk}:;o, we conclude that (T£)(z) is strictly
positive on [0, A] and, in particular,
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n

(TN(A) = A" "% () D hen + €1 > 0.
k=0

Letting € tend to zero, we obtain the Hausdorff condition [7, p. 97], which implies the possibility of represen-
tation (5). Note that in our proof we only have used the validity of condition (4) for a single fixed number A > 0.

Representation (5) allows one to define the transformation 7' not only on algebraic polynomials but also on
arbitrary functions continuous on the semiaxis [0, +=). Consider the polynomial in powers of a logarithm

m
g(t) = A™™"Y ¢, (log ). (6)
k=0
Since the function g(z) can take arbitrarily large values at the point 7= 0, it is impossible to define the trans-

formation T directly on it. Therefore, we define the transformation T that corresponds to the sequence {lk}:;o €

17 on the function

gp(2) = tPg(r), p>0, (7
by the relation |
1 i .
(Tgp) () = [ gplxn)din(r) = xP [ 1Pg(xt)dp (). @®
0 0

Let us prove the following lemma:

Lemma 3. Assume that the sequences {A; };; o belong o 7. Then, for an arbitrary polynomial

m

g(t) = Y c(logn)*

k=0

m
with real coefficients c;, k = 0, m, 2 c,% > 0, for any p> 0 and A € (0, +20), the following inequality
k=0

holds:
20, A T8p) S 2o, a)(8p)- )
Proof. Assume that the polynomial g(z) has r roots (taking account of their multiplicities) #;, 5, ... , ¢, on
(0, A]. Consider an auxiliary function ‘
8
o) = L

t~1)@-1)...(~1,)

The function @(z) is continuous on [0, A] and preserves its sign on (0, A]. Without loss of generality, we assume
that it is strictly positive on (0, A]. According to the Weierstrass theorem, the function \Jo(#) can be approximated
on [0, A] by an algebraic polynomial P(z) so that
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| Vo) —P()licpo, 4 < €

for an arbitrary given & > 0.
Consider the algebraic polynomial

Q1) = ([P +e)(1-1,) ... (1-1,).

Obviously, Q(z) has exactly as many zeros on (0, A] as g(t). Let us estimate on [0, A] the difference

|(Tgp)(x) = (TQ)(x)|

1
| [ [xP1Pger) ~Q(xn)] (o)
0

1
| [ loGexxr—1) ... (xt-1,) = (PGr)? + €2)
0
1
X (xt=17) ... (xt—1,)] du(t)! < j [xt-2] ... Ixt—z,l! o (xt)
! .
1
- [PGxt)? Idu(z) + s2j [xt =] ... xt =1, |du(s)
0

1
< A’j [ Jo(xr) —P(xn)] | Jo(xz) + P(xt)|du(z) + AT
0

< Al ol) = P(W)llcro, g ll VOO + P(t)llepo, 47 + A€ .

< Ae( 21O licro, a1 + €) Ag + A'€2 (10)
Thus, the value
”(Tgp)(x)—(TQ)(x)"cw,A}

can be made as small as desired by the proper choice of the polynomial P(t). We complete the proof by contradic-
tion. Let (Tgp) (x) have g>r zeros on (0,A] Without loss of generality, we can assume that these roots are dis-
tinct; otherwise, we can make these roots distinct by changing insignificantly the coefficients of the polynomial g(r)
so that the number of its zeros remains unchanged. In exactly the same way, we can arrange that none of these roots
would coincide with the point x = A. We order the roots of (Tgp)(x) so that 0< X1 <X<...<x,<A and denote
%p:= 0 and x,,;:= A. Let us introduce the value

Ki=mn  sup [Tg)(x)] > 0.
j=0.q

xXe xj’xj+1

Taking the previous reasoning into account, we get

Il (Tgp) ()~ (TQ))llego, a1 < .
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It is now easy to show that the algebraic polynomial (7Q)(x) has at least as many zeros on (0, A] as
(Tgp)(x). Thus,

2, a(TQ)2 2 a(T8p) = g > r= 2 a8) = 2, af2D)-
This contradicts our assumption that {Xk};; o€ 1. Lemma 3 is proved.

We can now prove the principal result of this paper.

Theorem. In order that a sequence {Kk}:::o belong to the class 15, 0 < C < +oo, it is necessary and

sufficient that the following conditions be satisfied:

(i) The sequence {A; }:= o can berepresented in the form

C
M = [ tFdu(), k=0,
0

where W(t) is-a nondecreasing function on [0, C],

(ii) The function

C
D(z) = [ r*du(r)
0

is analytic in ©\(—eo, ) and can be represented in the form

&z
o(z) = 0 a1

[Ha+a2)
1=1

where a;20, i = 0,00, Y a; < %, § < logC.
=0

Proof. First, we prove the necessity of conditions (i) and (ii). We again restrict ourselves to the case where
C =1, since the proof can be easily generalized for arbitrary C € (0, + =) (for this purpose, it suffices to consider

the sequence {A;/ Ck}:= 0 ). 1t follows from Lemma 3 that

1 m m .
Z(O,A](jxptpz ck(logxtfdu(t)) < Z(O,A](tpz ck(logt)k) (12)
0 k=0 k=0
for all real ¢, &k = 0,m, that are not equal to zero simultaneously. Let us make the change u = —log? in the

integral on the left-hand side of (12) and set w = logx. We get
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Zwiogai = [ €Y, cw—wfdu(e)) € 2o o™ Y, et ).
0 k=0 k=0 .
Since A € (0, + o), this yields
Zewn(-[ ™Y ctw—wfdp(@) < 2o X at). (13)
0 k=0 k=0

The proof can be completed by an argument analogous to that used in the proof of Theorem 3.2 in [1, p. 342].
Denote

fw) = Y ok, | (14)
k=0
Fw) = — [ ePfow —u) du (e, (15)
0
se = = [utePidu(e™)), k= 0. (16)
0
Thus, by setting D = d/dw and
m S Dk
UnD) = 3 (-1 E—, (17)
=0 k!
we can rewrite equality (15) in the form
Fw) = U, (D) fw). (18)

By applying the Laplace transform to the density —e Pdu(e™), 0< u <+ o0, we obtain

oo

m k
®() = - [ e ePae™) = ¥ (-1)"5%;:'—, (19)
0 £=0 )

Series (19) converges in a disk whose radius is nonzero. Since ®(0) = so = Ag # 0, the series

1 —
= ¥ = k& .
5 (z) k§=0 K (20)

also converges in a certain neighborhood V|, of the point z = 0.
Further, since f(w) and F(w) are polynomials, equality (15) can be converted, and we get

fow) = ¥(DYFw) = (Y %Dk)F(w). @1
k=0 "
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It follows from equality (13) that
Z . ofF) <2, 00

Consequently, if F(w) = w™, then Z_,, ¢;(f) = m. In this case, equality (21) yields

) m_ -y h_m
fow) = ¥(D)w™ = A, w) Eo"! E—

m—k

Hence, the polynomial

) = S (7)o = A0

k=0

WA

1
w

has only nonpositive zeros. Moreover, A,':,( s ) converges uniformly to ¥(w) inside any compact subregion K|,
m

C Vp. Indeed, for given € >0, we choose N =N(g) such that
|r"llwlk< e VweKk,.
r=Ne) k!

Then, for any n > N, we obtain the following estimate:

N
|An(%)—\}'(w)l Slgf— ((n k;'n B )l kgvlrkl k,

which implies the convergence. Thus, the function W(z) is a uniform limit of a sequence of polynomials having
only real nonpositive zeros. It is known [1, p. 336] that this function admits the following representation:

¥(z) = (xzkeszﬁ (1+az),
=1

where e R, 820, ¢;20, i=0,, and 0< Y a;<e, ke N U {0}.

i=0
Hence,
-3z
®(2) = q,t - —s
7 wtJaran)
i=1
On the other hand,

D(z) = ~ [ P Dap(e™) = [P du).
0 0

Since p >0 is arbitrary, we have the representation
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e-—ﬁz

1
D(z) = Oo(z) = [ () = —F—. (22)
0 azkH(l+a,-z)
=1

Since the function ®(z) is equal to A, at the point z =0, we have k=0 and 1 /o = kg in (22). Note that
the condition )~ @; > O may be not satisfied after passing to the limit as p —> 0. Thus, the necessity of condi-
tions (i) and (ii) is proved. Sufficiency follows from the Laguerre theorem [2, p. 544] and Theorem 2.1 in [1, p.336].
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