
Anatoly GOLUB

GENERALIZED MOMENT REPRESENTATIONS AND PADÉ
APPROXIMANTS

Abstract. Using the method of generalized moment representations Padé
approximants of orders [N − 1/N ], N ≥ 1, are constructed for some elementary
functions.

1. Introduction. In the theory of Padé approximants for functions that are
not represented by Markov-Stieltjes integrals there are not unique approach
to construction and investigation of diagonal and quasi-diagonal Padé approxi-
mants, and appropriate problems are solved only for some individual functions
such as exp z, (1 + z)α, etc. (majority of known examples are cited in [1]).
Proposed by V.K.Dzyadyk method of generalized moment representations [2]
admitted to receive practically all known examples from unique positions as
well as to widen substantially the number of these examples.

Let us introduce necessary definitions.

Definition 1 ([3]). The rational function

[M/N ]f (z) =
PM (z)
QN (z)

,

where PM (z) and QN (z) are algebraic polynomials of degrees ≤ M and ≤
N recpectively, is called to be Padé approximant of order [M/N ] for analytic
function

f(z) =
∞∑
k=0

skz
k, (1)

if f(z)− [M/N ]f (z) = O(zM+N+1) for z → 0, i.e. power expansion of rational
function [M/N ]f (z) coinsides with expansion (1) up to the term, containing
zM+N .

Definition 2 ([2]). The generalized moment representation of the number se-
quence {sk}∞k=0 in Banach space X is defined as two-parametric set of equalities

sk+j = lj(xk), k, j = 0,∞, (2)

where xk ∈ X, k = 0,∞, lj ∈ X∗, j = 0,∞.

In the case when in X there exists linear continuous operator A : X → X
such that

Axk = xk+1, k = 0,∞,

the representation (2) is equivalent to the representation:

sk = l0(Akx0), k = 0,∞. (3)
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Then the function having power expansion of the form (1) with coefficients
represented in the form (3) will have the representation:

f(z) = l0(Rz(A)x0), (4)

where Rz(A) = (I − zA)−1 - the resolvent of the operator A (see [4]).

In this paper we construct Padé approximants of orders [N − 1/N ], n ≥ 1,
for functions:

f1(z) =
2(2 + z)
z
√

4− z2
arctan

z√
4− z2

,

f2(z) =
tan
√
z√

z
,

f3(z) =
sin z + 1− cos z

z cos z
.

2. Padé Approximants for Function f1(z).

Theorem 1. The Padé approximants of orders [N − 1/N ], N ≥ 1 for the
function

f1(z) =
2(2 + z)
z
√

4− z2
arctan

z√
4− z2

,

may be represented in the form

[N − 1/N ]f1(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
m=1

zN−m(−1)[m/2] 1
[(m− 1)/2]!

×

×
N∑
k=m

l
(N)
k

(k − [m/2]− 1)!
(k −m)!

m−1∑
j=0

[(j + 1)/2]![j/2]!
(j + 1)!

zj ,

QN (z) = l
(N)
0 zN +

N∑
m=1

(−1)[m/2] 1
[(m− 1)/2]!

N∑
k=m

l
(N)
k

(k − [m/2]− 1)!
(k −m)!

zN−m,

and l(N)
k , k = 0, N are the coefficients of shifted orthonormal on [0, 1] Legendre

polynomial

L∗N (t) =
N∑
k=0

l
(N)
k tk.

Here and further by [p] entire part of number p is denoted.

Proof. Let us consider in the space C[0, 1] of continuous on [0, 1] functions
linear bounded operator

(Aφ)(t) = tφ(1− t).
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It is easy seen that its second degree is representable in the form

(A2φ)(t) = t(1− t)φ(t). (5)

The resolvent of operator A2 has the form:

[Rz(A2)φ](t) =
∞∑
k=0

zk(A2kφ)(t) =
φ(t)

1− zt(1− t)
. (6)

Obviously:
Rz(A2) = R−

√
z(A)R√z(A),

and, consequently,
R√z(A) = (I +

√
zA)Rz(A2).

Thus, because of (6):

[Rz(A)φ](t) =
φ(t) + ztφ(1− t)

1− z2t(1− t)
.

Let us assume now:

x0(t) ≡ 1, l0(x) =

1∫
0

x(t)dt,

and construct the function of the form (4):

f1(z) =

1∫
0

1 + zt

1− z2t(1− t)
dt =

2(2 + z)
z
√

4− z2
arctan

z√
4− z2

.

Its Padé approximant of order [N−1/N ], N ≥ 1 according to [2] may be written
in the form:

[N − 1/N ]f1(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
m=1

c(N)
m zN−m

m−1∑
k=0

skz
k, (7)

QN (z) =
N∑
m=0

c(N)
m zN−m, (8)

and coefficients c(N)
m , m = 0, N are defined from bi-orthogonality relations for

generalized polynomial:

LN =
N∑
m=0

c(N)
m lm

of the form:
LN (xk) = 0, k = 0, N − 1,
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and sk, k = 0,∞ - Maclaurin coefficients of the function f1(z).
Let us determine the functions

xk(t) = (Akx0)(t), k = 0,∞.

From (5) it is seen that for even k = 2m:

x2m(t) = tm(1− t)m,m = 0,∞. (9)

Applying operator A to (9) we will obtain:

x2m+1(t) = tm+1(1− t)m,m = 0,∞.

Similarly we now determine linear functionals lk = A∗kl0, k = 0,∞:

lk(x) =

1∫
0

x(t)yk(t)dt,

where

yk(t) =
{
tm(1− t)m for k = 2m
tm(1− t)m+1 for k = 2m+ 1.

Thus, the construction of bi-orthogonal polynomial LN is reduced to bi-orthogo-
nalization of systems of functions {xk(t)}Nk=0 and {yk(t)}Nk=0 on interval [0, 1].
Because xk(t) and yk(t) are algebraic polynomials of degree equal exactly to
k, then such bi-orthogonalization inevitably will lead us to construction up to
constant multiplyer which is unessential in our reasoning of shifted orthonormal
on [0, 1] Legendre polynomials L∗N (t) (see, for example, [5]):

XN (t) =
N∑
m=0

c(N)
m xm(t) = L∗N (t). (10)

In order to calculate coefficients c(N)
m it is necessary to represent functions tk, k =

0,∞ by means of functions xk(t), k = 0,∞. Let us write required representation
with indeterminate coefficients:

t2k =
k∑

m=0

α(k)
m x2m(t) +

k−1∑
m=0

β(k)
m x2m+1(t), k = 0,∞, (11)

t2k+1 =
k∑

m=1

γ(k)
m x2m(t) +

k∑
m=0

δ(k)
m x2m+1(t), k = 0,∞, (12)

and consider generating functions:

A(z, w) =
∞∑
k=0

zk
k∑

m=0

α(k)
m wm,
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B(z, w) =
∞∑
k=1

zk
k−1∑
m=0

β(k)
m wm,

Γ(z, w) =
∞∑
k=1

zk
k∑

m=1

γ(k)
m wm,

∆(z, w) =
∞∑
k=0

zk
k∑

m=0

δ(k)
m wm.

Multiplying equality (11) by t we will obtain:

t2k+1 =
k∑

m=0

α(k)
m x2m+1(t) +

k−1∑
m=0

β(k)
m x2m+1(t)−

k−1∑
m=0

β(k)
m x2m+2(t) =

=
k∑

m=0

α(k)
m x2m+1(t) +

k−1∑
m=0

β(k)
m x2m+1(t)−

k∑
m=1

β
(k)
m−1x2m(t). (13)

Since functions xk(t) are linearly independent, and right sides of (12) and (13)
coinside, then their equality will not be broken if we instead of functions x2m(t)
substitute wm, and instead of functions x2m+1(t) substitute zeros. We will
receive:

k∑
m=1

γ(k)
m wm = −

k∑
m=1

β
(k)
m−1w

m. (14)

Let us multiply (14) by zk, and sum by k from 1 to ∞. We will obtain:

Γ(z, w) = −wB(z, w). (15)

Similarly we will establish the relations:

A(z, w) = 1− zw∆(z, w), (16)

B(z, w) = z∆(z, w) + zΓ(z, w), (17)

∆(z, w) = A(z, w) +B(z, w). (18)

Solving the system of linear algebraic equations (15)-(18) we will receive:

A(z, w) =
1 + zw − z

(1 + zw)2 − z
,

B(z, w) =
z

(1 + zw)2 − z
,

Γ(z, w) =
−wz

(1 + zw)2 − z
,

∆(z, w) =
1 + zw

(1 + zw)2 − z
.
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From this formulae we have:

A(z, w) =
1 + zw − z

(1 + zw)2 − z
=

(1−
√
z)/2

1 + zw −
√
z

+
(1 +

√
z)/2

1 + zw +
√
z

=

= 1/2
∞∑
k=0

(−1)k
zkwk

(1−
√
z)k

+ 1/2
∞∑
k=0

(−1)k
zkwk

(1 +
√
z)k

=

= 1/2
∞∑
k=0

(−1)kzkwk[
∞∑
m=0

(k +m− 1)!
(k − 1)!m!

zm/2 +
∞∑
m=0

(k +m− 1)!
(k − 1)!m!

(−1)mzm/2] =

=
∞∑
k=0

(−1)kwk
∞∑
m=k

(2m− k − 1)!
(k − 1)!(2m− 2k)!

zm =
∞∑
m=0

zm
m∑
k=0

(−1)kwk
(2m− k − 1)!

(k − 1)!(2m− 2k)!
,

whence

α(k)
m = (−1)m

(2k −m− 1)!
(m− 1)!(2k − 2m)!

. (19)

Similarly we will obtain:

β(k)
m = (−1)m

(2k −m− 1)!
m!(2k − 2m− 1)!

, (20)

γ(k)
m = (−1)m

(2k −m)!
(m− 1)!(2k − 2m+ 1)!

, (21)

δ(k)
m = (−1)m

(2k −m)!
m!(2k − 2m)!

. (22)

Substituting (19)-(22) in (11)-(12), and combining these equalities, we will re-
ceive:

tk =
k∑

m=1

(−1)[m/2] (k − [m/2]− 1)!
[(m− 1)/2]!(k −m)!

xm(t) for k ≥ 1 (23)

and t0 = 1 = x0(t). From (10) and (23) we will obtain:

c(N)
m = (−1)[m/2] 1

[(m− 1)/2]!

N∑
k=m

l
(N)
k

(k − [m/2]− 1)!
(k −m)!

for m = 1, N (24)

and c
(N)
0 = l

(N)
0 .

Substituting (24) in (7) and (8) we will receive the statement of the Theorem
1.

Remark. Similarly it is possible to construct Padé approximants for function:

f(x) =
2

z
√

1− α2

√
2 + (1− α)z
2− (1 + α)z

arctan
z
√

1− α2√
(2− (α+ 1)z)(2− (α− 1)z)
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for α 6= ±1 (for α = 0 we will obtain function f1(z)). For this it is necessary to
consider in space C[0, 1] operator

(Aφ)(t) = αtφ(t) + tφ(1− t).

3. PadéApproximants for function f2(z).
Theorem 2. Padé approximants of orders [N −1/N ], N ≥ 1 for the function:

f2(z) =
tan
√
z√

z

are representable in the form:

[N − 1/N ]f2(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
k=1

(−1)k
N∑
m=k

κ(N)
m

(2m)!
(2m− 2k)!

zN−k
k−1∑
j=0

22j+2(22j+2 − 1)Bj+1

(2j + 2)!
zj ,

QN (z) =
N∑
k=0

(−1)k
N∑
m=k

κ(N)
m

(2m)!
(2m− 2k)!

zN−k,

and by κ
(N)
m the coefficients of shifted orthonormal on [0, 1] with weight t−1/2

Jacobi polynomial

R
(0,−1/2)
N (t) =

N∑
m=0

κ(N)
m tm

are denoted, and Bj - Bernoulli numbers, defined by formulae:

Bj =
(2j)!

π2j22j−1
[1 +

1
22j

+
1

32j
+

1
42j

+ ...]. (25)

Proof. Let us consider in space C[0, 1] linear bounded operator

(Aφ)(t) =

1−t∫
0

φ(τ)dτ.

Its second degree may be represented in the form:

(A2φ)(t) = (1− t)
t∫

0

φ(τ)dτ +

1∫
t

φ(τ)(1− τ)dτ.

Let us assume x0(t) ≡ 1 and find [Rz(A2)x0](t) from operator equation:

[(I − zA2)φ](t) = φ(z)− z(1− t)
t∫

0

φ(τ)dτ − z
1∫
t

φ(τ)(1− τ)dτ = 1. (26)
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Successive double differentiation of the equality (26) gives:

φ′(t) + z

∫ t

0

φ(τ)dτ = 0, (27)

φ′′(t) + zφ(t) = 0. (28)

General solution of equation (28) is representable in the form:

φ(t) = C1 cos
√
zt+ C2 sin

√
zt. (29)

From (26) and (27) we will obtain boundary conditions:

φ(1) = 1, φ′(0) = 0. (30)

Taking into account (29) and (30), we will receive:

[Rz(A2)x0](t) =
cos
√
zt

cos
√
z
.

Let us assume now l0(x) =
1∫
0

x(τ)dτ , and construct function:

f2(x) = l0[Rz(A2)x0] =

1∫
0

cos
√
zt

cos
√
z
dt =

tan
√
z√

z
.

Let us assume:
x2k(t) = (A2kx0)(t).

Taking into account the equality:

[Rz(A2)x0](t) =
∞∑
k=0

zk(A2kx0)(t) =
∞∑
k=0

zkx2k(t),

as well as expansion:

cos
√
zt

cos
√
z

= cos
√
zt sec

√
z =

∞∑
k=0

(−1)kzkt2k

(2k)!

∞∑
k=0

Ekz
k

(2k)!
=

=
∞∑
k=0

zk
k∑

m=0

(−1)mt2mEk−m
(2m)!(2k − 2m)!

,

where Ek are Euler numbers defined by formulae:

Ek =
22k+2(2k)!
π2k+1

[1− 1
32k+1

+
1

52k+1
− 1

72k+1
+ ...], (31)

we will obtain:

x2k(t) =
k∑

m=0

(−1)mt2mEk−m
(2m)!(2k − 2m)!

,
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i.e. functions x2k(t) are even algebraic polynomials of degree equal exactly to
2k. Let us take into account also that

l2k(x) = A∗2kl0(x) = l0(A2kx) =

1∫
0

(A2kx)(t)dt =

1∫
0

1−t∫
0

(A2k−1x)(τ)dτdt =

=

1∫
0

t∫
0

(A2k−1x)(τ)dτdt =

1∫
0

(A2k−1x)(t)(1− t)dt = ... =

1∫
0

x(t)x2k(t)dt. (32)

According to [2] Padé approximant for function f2(z) of order [N−1/N ], N ≥ 1
may be written in the form:

[N − 1/N ]f2(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
m=1

c(N)
m zN−m

m−1∑
k=0

skz
k, (33)

QN (z) =
N∑
m=0

c(N)
m zN−m, (34)

and coefficients c(N)
m , m = 0, N are defined from bi-orthogonality relations for

generalized polynomial:

L2N =
N∑
m=0

c(N)
m l2m

of the form:
L2N (x2k) = 0, k = 0, N − 1,

and sk, k = 0,∞ - Maclaurin coefficients of the function f2(z).

Keeping in mind (32) we conclude that the construction of polynomial L2N

is equivalent to construction of polynomial

X2N (t) =
N∑
m=0

c(N)
m x2m(t),

having bi-orthogonality properties

1∫
0

x2k(t)X2N (t)dt = 0, k = 0, N − 1.

Taking into account that x2k(t) are even algebraic polynomials one can write:

X2N (t) = UN (t2),
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where UN (t) is algebraic polynomial of degree equal exactly to N such that

1∫
0

UN (t2)t2kdt = 0, k = 0, N − 1.

Fulfilling the substitution v = t2 in the last integral we see that UN (v) is shifted
orthonormal on [0, 1] with the weight v−1/2 Jacobi polynomial up to constant
multiplyer (see, for example [5])

UN (v) =
N∑
m=0

κ(N)
m vm = R

(0,−1/2)
N (v).

In order to determine coefficients c(N)
m of the polynomial X2N (t) we need, there-

fore, to find the expression of even degrees of variable by means of functions
x2k(t). We have:

cos
√
zt

cos
√
z

=
∞∑
k=0

zkx2k(t).

Hence

cos
√
zt = cos

√
z
∞∑
k=0

zkx2k(t)

or
∞∑
k=0

zk(−1)kt2k

(2k)!
=
∞∑
k=0

zk(−1)k

(2k)!

∞∑
k=0

zkx2k(t) =
∞∑
k=0

zk
k∑

m=0

x2m(t)
(−1)k−m

(2k − 2m)!
.

From here we obtain

t2k =
k∑

m=0

x2m(t)
(−1)m(2k)!
(2k − 2m)!

.

Thus,

X2N (t) = UN (t2) =
N∑
k=0

κ
(N)
k t2k =

N∑
k=0

κ
(N)
k

k∑
m=0

x2m(t)
(−1)m(2k)!
(2k − 2m)!

=

=
N∑
m=0

x2m(t)(−1)m
N∑
k=m

κ
(N)
k

(2k)!
(2k − 2m)!

,

whence

c(N)
m = (−1)m

N∑
k=m

κ
(N)
k

(2k)!
(2k − 2m)!

. (35)

Substituting (35) in (33)-(34) and taking account of well-known formula for
Maclaurin coefficients of function f2(z), we will obtain the statement of the
Theorem 2.
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Remark. Let us note that Padé approximants for f2(z) by another way were
constructed in [1].

4. Padé Approximants for function f3(z).
Theorem 3. Padé approximants of orders [N − 1/N ], N ≥ 1 for function

f3(z) =
sin z + 1− cos z

z cos z

are representable in the form:

[N − 1/N ]f2(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
k=1

(−1)[k/2]
N∑
m=k

l(N)
m

m!
(m− k)!

[εm + δk,m(1− εm)]zN−k
k−1∑
j=0

sjz
j ,

QN (z) =
N∑
k=0

(−1)[k/2]
N∑
m=k

l(N)
m

m!
(m− k)!

[εm + δk,m(1− εm)]zN−k,

and by l(N)
k , k = 0, N the coefficients of shifted orthonormal on [0, 1] Legendre

polynomial are denoted,

εm =
{

1, if m is even,
0, if m is odd,

Kronecker symbol δk,m is defined by formula:

δk,m =
{

1, if k = m,
0, if k 6= m,

and sj , j = 0,∞ are Maclaurin coefficients of function f3(z):

sj =

{
22k+2(22k+2−1)Bk+1

(2k+2)! , if j = 2k,
Ek+1

(2k+2)! , if j = 2k + 1

(Bernoulli numbers Bk and Euler numbers Ek are defined respectively by for-
mulae (25) and (31)).

Proof. Let us use the same operator A as in proof of the Theorem 2. We
have established that

[Rz(A2)x0](t) =
cos
√
zt

cos
√
z
.

Hence
[Rz(A)x0](t) = {(I + zA)Rz2(A2)x0}(t) =
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=
cos zt
cos z

+ z

1−t∫
0

cos zτ
cos z

dτ =
cos zt+ sin z(1− t)

cos z
.

Assuming l0(x) =
1∫
0

x(τ)dτ , we receive the function

f3(z) = l0[Rz(A)x0] =

1∫
0

cos zt+ sin z(1− t)
cos z

dt =
sin z + 1− cos z

z cos z
.

While proving the Theorem 2 we also have obtained that

x2k(t) = (A2kx0)(t) =
k∑

m=0

(−1)mt2mEk−m
(2m)!(2k − 2m)!

. (36)

Hence

x2k+1(t) = (Ax2k)(t) =
k∑

m=0

(−1)m(1− t)2m+1Ek−m
(2m+ 1)!(2k − 2m)!

. (37)

Formulae (36) and (37) ensure that xk(t) are algebraic polynomials of degrees
equal exactly to k.

According to [2] Padé approximant for function f3(z) of order [N − 1/N ],
N ≥ 1 may be written in the form:

[N − 1/N ]f1(z) =
PN−1(z)
QN (z)

,

where

PN−1(z) =
N∑
m=1

c(N)
m zN−m

m−1∑
k=0

skz
k, (38)

QN (z) =
N∑
m=0

c(N)
m zN−m, (39)

and coefficients c(N)
m , m = 0, N are defined from bi-orthogonality relations for

generalized polynomial:

LN =
N∑
m=0

c(N)
m lm

of the form:
LN (xk) = 0, k = 0, N − 1,

and sk, k = 0,∞ - Maclaurin coefficients of the function f3(z).
As before we conclude that construction of polynomials LN is equivalent to

construction of the polynomial

XN (t) =
N∑
m=0

c(N)
m xm(t),
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having bi-orthogonality properties

1∫
0

xk(t)XN (t)dt = 0, k = 0, N − 1,

but this construction taking into account stated above will give us as well as
in Theorem 1 shifted orthonormal on [0, 1] Legendre polynomials L∗N (t) (up to
constant mulriplyer). In order to obtain coefficients c(N)

m of polynomial XN (t)
let us first find expressions of functions tk, k = 0,∞ by means of functions xk(t),
k = 0,∞. For even degrees these expressions are received in the proof of the
Theorem 2:

t2k =
k∑

m=0

x2m(t)
(−1)m(2k)!
(2k − 2m)!

.

For odd degrees let us write expression with indeterminate coefficients:

t2k+1 =
k∑

m=0

α(k)
m x2m(t) +

k∑
m=0

β(k)
m x2m+1(t). (40)

Let us apply operator A2 to (40). We will obtain:

1− t2k+3

(2k + 2)(2k + 3)
=

k∑
m=0

α(k)
m x2m+2(t) +

k∑
m=0

β(k)
m x2m+3(t). (41)

From other hand

1− t2k+3

(2k + 2)(2k + 3)
=

1
(2k + 2)(2k + 3)

[x0(t)−
k+1∑
m=0

α(k+1)
m x2m(t)−

−
k+1∑
m=0

β(k+1)
m x2m+1(t)]. (42)

Comparing right sides of (41) and (42) and taking into account linear indepen-
dence of functions xk(t), k = 0,∞, we will receive

α
(k+1)
0 = 1,

α(k+1)
m = −(2k + 2)(2k + 3)α(k)

m−1 = ... = (−1)m
(2k + 3)!

(2k − 2m+ 3)!
α

(k−m+1)
0 ,

whence

α(k)
m = (−1)m

(2k + 1)!
(2k − 2m+ 1)!

,

and also
β

(k+1)
0 = 0,
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β(k+1)
m = −(2k + 2)(2k + 3)β(k)

m−1 = ... = (−1)m
(2k + 3)!

(2k − 2m+ 3)!
β

(k−m+1)
0 ,

whence
β(k)
m = 0, if m < k,

β
(k)
k = (−1)k(2k + 1)!β(0)

0 = −(−1)k(2k + 1)!.

We obtain the representation:

t2k+1 =
k∑

m=0

(−1)k
(2k + 1)!

(2k − 2m+ 1)!
x2m(t)− (−1)k(2k + 1)!x2k+1(t). (43)

Combining formulae (40) and (43) we will receive:

tk =
[k/2]∑
m=0

(−1)m
k!

(k − 2m)!
x2m(t)− (1− εk)(−1)(k−1)/2k!xk(t), (44)

where

εm =
{

1, if m is even,
0, if m is odd.

From (44) we have:

XN (t) =
N∑
k=0

c
(N)
k xk(t) = L∗N (t) =

N∑
k=0

l
(N)
k tk =

=
N∑
k=o

l
(N)
k [

[k/2]∑
m=0

(−1)m
k!

(k − 2m)!
x2m(t)− εk(−1)(k−1)/2k!xk(t)] =

=
[N/2]∑
m=0

(−1)mx2m(t)
[N/2]∑
k=m

l
(N)
2k

(2k)!
(2k − 2m)!

+

+
[(N−1)/2]∑
m=0

(−1)mx2m(t)
[(N−1)/2]∑
k=m

l
(N)
2k+1

(2k + 1)!
(2k − 2m+ 1)!

−

−
[(N−1)/2]∑

k=0

(−1)kx2k+1(t)l(N)
2k+1(2k + 1)!.

Thus for N = 2M being even we will obtain

c2M(2m) = (−1)m[
M∑
k=m

l
(2M)
2k

(2k)!
(2k − 2m)!

+ (1− δm,M )
M−1∑
k=m

l
(2M)
2k+1

(2k + 1)!
(2k − 2m+ 1)!

,

c
(2M)
2m+1 = (−1)ml(2M)

2m+1(2m+ 1)!. (45)
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For N = 2M + 1 being odd

c
(2M+1)
2m = (−1)m[

M∑
k=m

l
(2M+1)
2k

(2k)!
(2k − 2m)!

+
M∑
k=m

l
(2M+1)
2k+1

(2k + 1)!
(2k − 2m+ 1)!

],

c
(2M+1)
2m+1 = (−1)ml(2M+1)

2m+1 (2m+ 1)!. (46)

Substituting ((45)-(46) to (38)-(39) we will receive the statement of the Theo-
rem 3.

Remark. Continuing the reasoning used in proofs of the Theorem 2 and
Theorem 3 it is possible to construct also Padé approximants of orders [N −
1/N ], N ≥ 1 for function f(z) = (sec

√
z − 1)/z, which is representable in

the form f(z) = l1(Rz(A2)x0), where A0, x0 and l1 are just the same as in
mentioned theorems. This result is equivalent to construction of diagonal Padé
approximants for function cos z carried out in [6]. Besides that if in the proof of

the Theorem 3 instead of operator (Aφ)(t) =
1−t∫
0

φ(τ)dτ one consider operator

(Aφ)(t) = α

t∫
0

φ(τ)dτ +

1−t∫
0

φ(τ)dτ

(for α 6= 1) it is possible to construct Padé approximants for function

f(z) =
(1− α) sin z

√
1−α2√

1−α2 − cos z
√

1− α2 + 1

z[cos z
√

1− α2 − α]
.
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