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Ansatze of codimension one

for the Navier—Stokes field and reduction
of the Navier—Stokes equation

W.I. FUSHCHYCH, R.O. POPOVYCH, G.V. POPOVYCH

BuikopucToBytoun MakcumasnbHy B ceHci Jli (HeckiHueHHOBMMIpHY) asireGpy iHBapiaHT-
HocTi piBHsAHb Har’e-Crokca, nmob6ynoBaHW{ TMOBHUE Habip HeeKBiBaJeHTHHX Ji€BCBKHUX
aH3auiB Kopo3MipHocTi oauH mis nois Hap’e—Crokca. 3 X 10MOMOroo NpoBeleHO pe-
nykuito piBHsiHb Har’e—Ctokca mo cuctem [IPUII 3 Tpboma HesasieXXHUMU 3MiHHHUMH.
BuBueHi cuMeTpifiHi BJIaCTHBOCTI peqyKOBaHHUX CHCTEM.

Finding exact solutions of the Navier—Stokes equations (NSEs) for an incompres-
sible viscous fluid is an actual problem of mathematical physics and hydrodynamics.
There are some ways to solve this problem. One of them is a usage of symmetry
analysis [1-8]. In this article we construct a complete set of inequivalent ansatze of
codimension one for the Navier—Stokes field. Using them, we reduce the NSEs to
systems of partial differential equations in three independent variables and study their
symmetry properties.

[t is known that the NSEs

i+ (@-V)i—Ad+Vp=0, divi=0 (1)
are invariant under the infinite dimensional algebra A(NS) with basic elements

0y =0/0t, D =2t0, + 2,0, — u*Oya — 2p0,,

Jap = a0y — 240 + uOpp — uPOya, a # b, (2)

R(mi(t)) = m®(t)0a + mi (t)Oue — mi(t)zalp,  Z(X(t)) = x(t)0p.
Here and from now on @ = (¢, &) = {u®} is the velocity field of a fluid, p = p(¢, &) is
the pressure, Z = {4}, 8 = 8/, 0y = 8/0x4, V = {8a}, A =V -V, m® = m®(t),
X = x(t) are arbitrary smooth functions of ¢ (for example, from C*((tg,%1),R)),
a,b=1,3, 4,5 = 1,2, repetition of an index signifies a sum.

The set of operators (2) determines the maximal, in the sense of Lie, invariance
algebra of the NSEs [9-11].

Theorem 1. A complete set of A(NS)-inequivalent one-dimensional subalgebras of
A(NS) is exhausted by such algebras:

1) Af() = (D +23J12), > 0;
2)  A(x) = (0; + »J12), € {0;1};
3)  Ai(n,x) = (Jiz + R(0,0,n(t)) + Z(x(1))),
where algebras AL(n, x) and AL(7, X) are equivalent if 3e,5 €R, IN€ C*((to,t1),R):
(7, R)(t) = (e, ¥ (x + A — i}\)) (te** + 3); ®3)
Jomnosini HAH Ykpaiuu, 1994, Ne 4, P. 37-44.
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4) A, x) = (R() + Z(x)), (1, x) # (0,0),

where algebras AL(m,x) and AL(m,x) are equivalent if 3,6 € R, 3¢ # 0, IB €
0(3), dl e Cm((to,tl),RB):

(T x)(8) = (ce B, ce®(x +1 -1 — - 1) (162 + 6). 4)

Theorem 1 is proved by the method described in [12, 13].
With the algebras A}-Al from theorem 1 and with the algebra A} (if some addi-
tional demands are satisfied) one can construct such a set of inequivalent ansétze of
codimension one for the Navier-Stokes field:
Looul = [t[7Y2(vtcosT —v2sinT) + $at7! — sewot ™,
u? = [t|7V2 (vl sinT +v2 cos T) + Eaat ™! + st
ud = [t 7208 4 gt

p=t"lg+ 2wz, + $557 202,

(®)

where
T=xnlt|, r=(@%+23)V2 y =t|V?(x1cosT + zy5sinT),

yo = |t|Y2(—xysinT + xacosT), w3 = [t|71/ 2as;

here and from now on v* = v*(y1,¥2,93), ¢ = q(y1,¥y2,ys), numeration of ansitze
corresponds to that of algebras in theorem 1.

2. ul =o' cos st — v?sin st — s,
u? = v' sin st + v? cos st + 2wy, (6)
1
’LL3 :U?’a p:q+§%27,,27
where y; = 21 cos st + x5 8in st, yo = —xq Sin st + T cOS xt, Y3 = X3.
3. ut =zr ol — zor 0?4 a2,

u? = zor ol 4z o? + zor 2,

u? = v3 +n(t)r~t? +7(t) arctg 2o /21,
p=q— git)(n(t)) a5 — 5772 + x(t) arctg za /71,

()

where y1 =t, yo =1, y3 = x3 — n(t) arctg xa /2.

Remark 1. The expression for the pressure p from the ansatz (7) is indeterminate in
points ¢ € {to,t1}, where n(t) = 0. If there are such points ¢, we will consider the
ansatz (7) in intervals (¢}, ¢7) that are contained by the interval (¢o,¢;) and for which
one from the conditions

a) Vte(tg,t): n(t) #0;
b) n(t)=0in (t5,t7)
is satisfied. In the last case we consider that 7j/n := 0.

4. With the algebra AL(m,x), an ansatz can be constructed only for such a t
wherefor mi(t) # 0. If this condition is satisfied, it follows from (2) that the algebra
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A} (m, x) is equivalent to the algebra A}(1,0). An ansatz constructed with the algebra
1 —
4\,

Az (m,0) is
T = vt + (17 - 1)~ o3 + (1T - B) (T - 7)o — yife
p=q— 500 m)~ (- ii)y:)? — (- m) (- ) (- T) + ®)
+ (- ) (- ) 2 (m - ©)2,
where y; = ' - T, y3 = t,
il =ait), A-m=q-a2=0, |@'=1 n'-A2=0. (9)

Remark 2. Vector-functions 7° satisfying conditions (9) exist. They can be construc-
ted in such a way: let us fix vector-functions k* = ki(¢) for which k% -m = k' - k? =
0,|k* =1 and set

it = Kl costp(t) — K2 sin(t), @2 =k sint(t) + k> cos(t). (10)

Then il -7 = k' - k2 — = 0if [(k'-k?)dt.

Substituting the ansétze (5), (6) to the NSEs (1), we obtain reduced systems of
PDEs that have the same general form

a

vl — ol 4+ q +m0? =0,

(11)

1
a
a, 2 2 1 __
v0E —vi, +q —v1v =0,
a,,3
a

v —vga—i—qg:(),

a __
Vg = 72,

v

where the constant ~;, takes the values

Lom==2x, y=-3 if t>0, =2, =3, if t<O0.
2. v =-2x% vy =0.
For the ansétze (7), (8) reduced equations have the form
3. ol + ool +0%0) — gy 0P — [ug, + (14 1?ys *)vds + 2ny5 03] + g2 = 0,
v} + 03 + %03 + gy ot? — [y + (1 + nyy P)vds — 20y vl +
+ 295 202 = myy tas + xys t =0,
v} + 003 + 020 — [v3y + (1 + 02y H)vis] — 2n?y; vl + 29y; '0? +
+ 2ny5  (y3 0?2 + (1 + 0Py 2)as —iin~tys — xmys 2 =0,
yy "ol ol + 3 = 0.

4. vi+ Uilvé' — vk + i+ p'(ys)v® =0,
vg + v]v?’ — v;’j =0, (13)

’U;- + ps(y3) = 07

P = pilys) = 200 ) (- i), 60 = pP(a) = (o) MO ). (14)
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Let us study symmetry properties of the systems (11)-(13). All following results
are obtained with the standard Lie algorithm [11, 12]. At first consider the sustem (11).

Theorem 2. The maximal, in the sense of Lie, invariance algebra of (11) is the
algebra

a) <aa’ 8617 J112> lf st 7é 0;
b) (0a 0y, Jay) if =0, 72 #0;
C) <8a’8q7Jz}baD1> if m1=mv=0.

Here
Jib = YaO0p — YpOq + V0pp — W00ya, D= YaOq — V" Oye — 2q0,.

All Lie symmetry operators of (11) are induced by operators from A(NS). Namely,
the operators J%,, D! are induced by J,,, D and the operators ¢,d, (c, = const), 9,
is done by

R(|t|*?(c1 cosT — casinT, ¢ sinT + ey cosT,¢3)),  Z(|t|71)
for the anzatz (5) and by
R(cqy cos st — o sin et ¢q sin st + co cos xt, c3), Z(1)

for the anzatz (6) respectively. Therefore, Lie reduction of the system (11) gives only
solutions that can be obtained by reducing the NSEs with two- and three-dimensional
subalgebras of A(NS). Let us proceed to the system (12). Let A™#* be the maximal,
in the sense of Lie, invariance algebra of (12). Studying symmetry properties of (12),
one has to consider the following cases.

A.n,x =0. Then

AT = (01, Dy, Ri(d(y1)), 2" (A(y1))),

where D% = 2:1/161 + y262 + y383 — V%o — 26](9(1, Zl()\(yl)) =
03 + 1P10,2 — Y11Y30,; here and from now on ¢ = ¥(y1), A
smooth functions of y; = t.

B. 7 =0, x # 0. In this case expansion of A™# is for x = (Cyy; + Cs)~!, where
C1,Cy = const. Let Cy # 0. It can be done with the equivalence transformation (3)
so that the constant Cy will vanish, i.e. x = Cy~! where C' = const. Then

A =Dy, Ri($(y1)), 2 (Aw1)))-

Ii ¢, =0, y = C = const and
AR = (O, Ry (Y (y1)), 21 (A(1)))-

For other values of y, i.e. when x11x # x1X1,
AR = (R (Y (1)), ZH (A(11)))-

C. n # 0. With the equivalence transformation (3), we do x = 0. In this case
expansion of A™#* s for n = £|Ciy; + C’2|1/2, where C1,Cs = const. Let C; # 0.

1)0q, Ra(¥(y1)) =

Aly
= M(y1) are arbitrary
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It can be done with the equivalence transformation (3) so that the constant Cy will
vanish, i.e. = C|y;|'/?, where C' = const. Then

Amax _ <D%, Zl()\<y1));R2<‘y1|1/2)’R2<‘y1|1/2 1n|yl|)>7
where RQ('l/)(yl)) — 1/)83 +¢1av3. If Cl =0, i.e. n= C = const;
Amax - <817zl<)‘(y1))783ay183 + 8U3>

For other values of 7, i.e. when ()11 # 0,

Am (7Y (A (y1)), Ra(n(n), Ba <n(y1) / (n<y1>>2dm>>~

In all cases considered above, Lie symmetry operators of (12) are induced by
operators from A(NS). Namely, the operators 9y, D3, Z'(A\(y1)) are induced by o,
D, Z(\(t)) respectively. In case n = 0 the operator Ri(¥(y1)) and in case n # 0
the operator Ry (¢ (y1)) where vij — 17} = 0 are done by R(0,0,(t)). Therefore, Lie
reduction of the system (12) gives only solutions that can be obtained by reducing the
NSEs with two- and three-dimensional subalgebras of A(NS).

When n = x = 0 the system (12) describes axisymmetric motion of a fluid and can
be transformed into a system of two equations for a stream function ¥! and a function
U2 that are determined by

\Ilé = y2U1> \Ij% = _y2'U3, \112 = y2v2-

The transformed system has been studied by L.V. Kapitanskiy [8].
Consider the system (13). Let us introduce the notations

t=ys, p= /03(75)dt7 Ry(* (1), 97 (1)) = 9" 0; + ¥10pi — V11yi0y,
ZYA() = A(t)Dg, S = Dy — p'(t)yiOy,

. 1
E(x(t)) = 20 + xtyi0yi + (Xttyi — X40")Opi — (2th + §Xtttyjyj) 9,
J112 =y102 — Y201 + U18v2 — ’U28v1.

Theorem 3. The maximal, in the sense of Lie, invariance algebra of (13) is the
algebra

1) (Rs(¥'(t), ¥2(1), Z1 (A1), S, E(x' (1)), E(X* (1)), v* 0y, i),
where x' = e P [ePMat, x2 = =71 if pt = p? =0,

2) (Rs(dt(t), ¥2(1)), ZH (A1), S, E(x()) + 2a10°0ps + 2a2J1,),
where ay, as, as are fixed constants, x = e ?® ([ e’Ddt + a3) if

pl = ef’i(t)(ﬂ(t))_f_al (C1 cos(az In p(t)) — Czsin(az In p(t))), (15)

p? = 390 (1)) =3 (O sin(as In 5(1)) + Cs cos(as In p(1))),
where p(t) = | [ e’ Ddt + as

3) (Rs(¥'(t),¥2()), Z' (A1), S, E(x(t)) + 2a10°0ys + 2a2.J1y),

, 01,02 = COIlSt, (01702) 75 (0,0),’
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where ay, ay are fixed constants, y = e Pt jf

pl = e3PO=0P(0)(Cy cos(azp(t)) — Casin(azp(t))),
p? = e2P=ar0(Cy sin(azp(t)) + Ca cos(azp(t))),

where p(t) = [ePDdt, Cy,Cy = const, (C1,Ca) # (0,0);
4)  (Rs((t), ¥2(t)), Z1(A(t)), S) in all other cases.

Here 1* = 9%(t), A\ = \(t) are arbitrary smooth [unctions of t = yg.

Remark 3. If functions p® = pb(t) are determined by (14), ) = Clm(t)|, where
C = const and it follows from the condition p' = p? = 0 that m = |i(t)|e, where
|€] =1, €= counst.

Remark 4. Vector-functions 7’ from remark 2 are determined up to the transforma-
tion

it =it cos§ — A%sind, 72 =il sind + A2 cosd,

where § = const. Therefore, choosing J, we can do so that Cy = 0 (then Cy # 0).

The operators R3(¢',9?) + a8, ZY(\) are induced by R(I )+ Z(x), Z()\) respec-
tively, where [ = 7t + 31, wt (17 - 1) + 200 (7 - m) = o, x — 2( - m) T (Y (-
i'))? — 3t (Mg - 77) + 30 (Ztt i) = 0,

If m = |mi(t)|€, where &= const, |€] = 1, the operator Ji, is induced by elJaz +
€J31 + 63J12. For

m = ﬁ?}eat(ﬁQ COS T, ﬂQ SiHT, ﬂl)Ta ﬂ% + ﬂ% = 17 T=nt+ 67

the operator 0; + s¢J12 induces the operator 0y, — Bi12Ji2 + ov30,2 if such vector-
functions 7’ are chosen:

it =

k' cos BT + k2 sin T, W= — k' sin 61T + k2 cos 0617, (16)
where k! = (—sint, cos7,0)T, k2 = (8 cos T, By sinT, —3;)7. For

1M = falt + Ba|TH2(By cos T, By sinT, 1), 67+ 65 =1,

T=snl|t+ B4 +56,
the operator D + 28340; + 2s¢J12 induces the operator

D3 + 2840, — 283¢J12 + 20030,s

if vector-functions 7’ are chosen in the form (15). In all other cases the basis elements
of the maximal, in the sense of Lie, invariance algebra of (13) are not induced by
operators from A(NS).

Remark 5. The invariance algebra of a system of the form (13) with a parameter-
function p* = p3(¢) is like one with a different parameter-function 5 = p?(¢). It
suggest an idea that there is a local transformation of variables with which one can
make p? to vanish. Indeed, let us transform variables in the way

_ _ . 1 _
Ji = yie®™V, g = / e”Mdt, f»iz(vwi%p‘”’(t))e%’)“% 7 =7,

- s 1 . 5
q=qe " + gyiyi[(PS(t))Z —2p3(t)]e 7).



246

W.I. Fushchych, R.O. Popovych, G.V. Popovych

As a result, we obtain the system

for functions #* = (41, %2, ¥3), ¢ = G(U1, T2, U3), wWhere p'(73) = p'(t)e™

T+ W+ @+ 7 ()57 = 0,
3+ 958 — 58, =0,
=0,

35(t) sub-

scripts 1, 2, 3 mean differentiation with respect to ¢, g2, 93 accordingly.
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