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PROBLEMS OF APPROXIMATION THEORY IN LINEAR SPACES

A. I. Stepanets UDC 517.5

We present a survey of results related to the approximation characteristics of the spaces Sp
ϕ and their

generalizations. The proposed approach enables one to obtain solutions of problems of classical approxi-
mation theory in abstract linear spaces in explicit form. The results obtained yield statements that are new
even in the case of approximations in the functional Hilbert spaces L2.

In the present paper, we give a survey of results related to the approximation characteristics of the spaces Sp
ϕ

and their generalizations. This work is a result of investigations aimed at finding new approaches to problems of
the theory of approximation of functions of many variables and, in particular, periodic functions. There are many
problems in this theory, and the most important of them are, probably, the following: the choice of approximating
aggregates and the choice of classes of functions and approximation characteristics. In the one-dimensional case,
the form of the simplest aggregate is determined by the natural order of a natural series, whereas in the multidi-
mensional case, i.e., in the case where one deals with a set X (a Banach space of functions f(t) = f(tn, . . . , tm),
t ∈ Rm, of m variables), the choice of the simplest aggregates becomes problematic. The first difficulties here
begin with the problem of the choice of an analog of a partial sum for the multiple series∑

k∈Zm

ck, k = (k1, . . . , km), (0.1)

where Zm is the integer lattice in Rm.

It seems quite natural to introduce “rectangular” sums; the corresponding approximating aggregates in the
periodic case are trigonometric polynomials of the form

n1∑
k1=−n1

. . .

nm∑
km=−nm

ck1,...,kmei(k1t1+...+kmtm). (0.2)

However, partial sums of a multiple series can be introduced in many ways, e.g., as follows:
Let {Gα} be a family of bounded domains in Rm that depend on the numerical parameter α and are such

that any vector n ∈ Zm belongs to all domains Gα for sufficiently large values of α. Then the expression∑
k∈ Gα

ck

is called a partial sum of series (0.1) corresponding to the domain Gα. By analogy, one introduces the correspond-
ing partial sums of the trigonometric series:∑

k∈ Gα

cke
ikx =

∑
k∈ Gα

ck1,...,kmei(k1x1+...+kmxm). (0.3)
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It turned out quite soon that, in the case of approximation of functions from the Sobolev classes W r
p (Rm),

instead of the rectangular sums (2) it is “more productive” to use sums of the form (3) constructed on the basis
of domains formed by certain hyperbolas. These domains, first introduced by Babenko in [1, 2], were called
hyperbolic crosses.

The appearance of the notion of hyperbolic cross had a considerable impact on the development of the theory
of approximation of functions of many variables. Many important and interesting results were obtained in this
direction (for details, see, e.g., [3–13]).

However, hyperbolic crosses turned out to be of little use in the approximation of functions of classes different
from Sobolev classes. In this connection, there naturally arise assumptions that, for every individual class N (or
any family of these classes), it is necessary to select “its own” family of domains Gα defined by the parameters of
this class.

It should also be noted that the quality of many results obtained for Sobolev classes with the use of hyperbolic
crosses cannot be regarded as perfect. As a rule, results of approximation in the spaces Lp(Rm) are of order
character, whereas exact results are obtained only in Hilbert spaces for p = 2. Time will show whether this
situation is caused by inadequate analysis or by a disharmony between original data and problems posed. At least,
one may assume that, parallel with a successful choice of approximating aggregates, another factor that complicates
finding exact results on the basis of approximations in the multidimensional case (and in the one-dimensional case
as well) is the long-established practice of considering problems exactly in the spaces Lp(Rm). In the periodic
case, the norm in these spaces

‖f‖Lp(Rm) =

⎛⎜⎝ ∫
Qm

|f(t)|pdt

⎞⎟⎠
1
p

, Qm = {t ∈ Rm, 0 ≤ ti ≤ 2π, i = 1, m },

characterizes only the mean value of the p th power of the modulus of the function considered, and, possibly, this
information is insufficient for the derivation of the required results in the general case.

For p = 2, the following equality is well known:

‖f‖L2(Rm) =

⎛⎝ ∑
|k|≥0

|ck|2
⎞⎠1

2

,

where ck = ck1...km are the Fourier coefficients of the function f. Hence, in this case, the norm of the function
f completely characterizes the entire set {ck}k∈Zm (for other values of p, similar equalities are possible only
in trivial cases). Therefore, it seems reasonable to introduce norms of functions using quantities related to their
Fourier coefficients. This approach was considered in a series of works of the author and his followers (see [14–
32]). In particular, this approach enables one to generalize ideas and methods of approximation theory to abstract
linear spaces, which, in turn, enables one to consider functions from general positions of analysis and to obtain
fairly informative results, some of which are presented in this paper.

1. Spaces Sp
Φ

Let us define the spaces in which problems of approximation theory will be posed and solved.
Let X and Y be linear spaces of vectors x and y, respectively. Assume that a linear operator Φ acting in

Y is defined on X, and a functional f is defined on a certain subset Y ′ ⊂ Y. Further, let E(Φ) be the range of
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values of the operator Φ and let X′ be the preimage of the set Y ′E(Φ) under the mapping Φ. In this case, we
can define a functional f ′ on X′ by setting

f ′(x) = f(Φ(x)), x ∈ X
′. (1.1)

Choosing a functional that defines a norm (or a quasinorm) on Y ′ as f, we establish that equality (1.1) defines
an analogous quantity on X′. These arguments form a basis for further constructions.

Let (Rm, dμ), m ≥ 1, be an m-dimensional Euclidean space of points t = (t1, . . . , tm) equipped with a
certain σ-finite measure dμ and let A be a μ-measurable subset of (Rm, dμ) whose μ-measure is equal to a,

where either a is finite or a = ∞ :

mesμ A = |A|μ = a, a ∈ (0,∞].

By Y = Y (A, dμ) we denote the set of all functions y = y(t) defined on A and measurable with respect to
the measure dμ. For given p ∈ (0,∞], let Lp(A, dμ) denote subsets of functions from Y (A, dμ) for which the
following quantity is finite:

‖y‖
Lp(A,dμ)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
( ∫

A

|y(t)|p dt

)1/p

, p ∈ (0,∞),

ess sup
t∈A

| y(t)|, p = ∞.

(1.2)

It is known that, on Lp(A, dμ), this functional defines a norm for p ≥ 1 and a quasinorm for p ∈ (0, 1).
Now let X be a certain linear space of vectors x and let Φ be a linear operator acting from X into Y :

Φ: X → Y (A, dμ), Φ(x) df= x̂, x ∈ X, x̂ = Y (A, dμ).

We set

Sp
Φ = Sp

Φ(X;Y ) =
{
x ∈ X : ‖x̂‖Lp(A,dμ) < ∞

}
, p ∈ (0,∞]. (1.3)

Thus, the set Sp
Φ is the preimage of the set Lp(A, dμ) in X under the mapping Φ.

Elements x1, x2 ∈ Sp
Φ are assumed to be identical if x̂1(t) = x̂2(t) almost everywhere with respect to the

measure dμ.

For elements x1, x2 ∈ Sp
Φ, p ∈ (0,∞], we define the Φ-distance between them by the equality

ρΦ(x1;x2)p = ‖Φ(x1 − x2)‖Lp(A,dμ).

A zero element of the set Sp
Φ is an element θ for which θ̂(t) = 0 almost everywhere on A.

The distance ρΦ(θ;x)p, x ∈ Sp
Φ, is called the Φ-norm of the element and is denoted by ‖x‖p = ‖x‖p,Φ.

Thus, by definition,

‖x‖p = ‖x‖p,Φ = ρΦ(θ;x)p = ‖x̂‖Lp(A,dμ). (1.4)

In this case, Sp
Φ is a linear space: the operations of addition of elements and their multiplication by numbers

defined in X remain true for any pair x1, x2 ∈ Sp
Φ. In addition, for any numbers λ1 and λ2, the element
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x3 = λ1x1 + λ1x2 belongs to Sp
Φ. Indeed, since x3 ∈ X, we have x̂3(t) = λ1x̂1(t) + λ2x̂2(t). If p ≥ 1, then,

by virtue of the Minkowski inequality, we get

‖x3‖p = ‖x̂3(t)‖Lp(A,dμ) ≤ |λ1| ‖x̂1‖Lp(A,dμ) + |λ2| ‖x̂2‖Lp(A,dμ) = |λ1‖ ‖x1‖p + |λ2| ‖x2‖p.

For p ∈ (0, 1), using the inequality

|a + b|p ≤ |a|p + |b|p, 0 ≤ p < 1,

we obtain

‖x3‖p =

⎛⎝∫
A

|λ1x̂1(t) + λ2x̂2(t)|p dμ

⎞⎠1
p

≤ 21/p(|λ1| ‖x1‖p + |λ2| ‖x2‖p),

i.e., we always have x3 ∈ Sp
Φ.

It is clear that the functional ‖ · ‖p satisfies all axioms of a norm for p ≥ 1 and all axioms of a quasinorm for
p ∈ (0, 1). Therefore, Sp

Φ is a linear normed space for p ≥ 1 and a space with quasinorm for p ∈ (0, 1).
Consider several simplest realizations of the constructions described. We say that a certain space N is a special

case of the space Sp
Φ if it can be obtained by the proper choice of the space X, measure dμ, and operator Φ.

1.1. Space Sp
ϕ . Let X be a linear complex space and let ϕ = {ϕk}∞k=1 be a fixed countable system in

it. Assume that, for any pair x, y ∈ X in which at least one vector belongs to ϕ, a certain number
(
the “scalar

product” (x, y)
)

that satisfies the following conditions is defined:

(i) (x, y) = (y, x), where z̄ is the complex conjugate of the number z;

(ii) (λx1 + μx2, y) = λ(x1, y) + μ(x2, y), where λ and μ are arbitrary numbers;

(iii) (ϕk, ϕl) =

⎧⎨⎩0, k 	= l,

1, k = l.

We associate every element x ∈ X with a system of numbers x̂(k) by the equalities

x̂(k) = x̂ϕ(k) = (x, ϕk), k = 1, 2, . . . (k ∈ N), (1.5)

and, for fixed p ∈ (0,∞), we set

Sp
ϕ = Sp

ϕ(X) =

{
x ∈ X :

∞∑
k=1

∣∣∣f̂ϕ(k)
∣∣∣p < ∞

}
. (1.6)

Elements x, y ∈ Sp
ϕ are assumed to be identical if x̂ϕ(k) = ŷϕ(k) for all k ∈ N.

For vectors x, y ∈ X, the ϕ-distance between them is defined as follows:

ρϕ(x, y)p =

( ∞∑
k=1

|x̂ϕ(k) − ŷϕ(k)|p
)1

p

.
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A vector θ such that θ̂ϕ(k) = 0 for all k ∈ N is called a zero element of the space Sp
ϕ. The distance ρϕ(θ, x)p,

x ∈ Sp
ϕ, is called the ϕ-norm of the element x and is denoted by ‖x‖p,ϕ. Thus,

‖x‖p,ϕ = ρϕ(θ, x)p =

( ∞∑
k=1

|x̂ϕ(k)|p
)1

p

. (1.7)

The spaces Sp
ϕ are special cases of the spaces Sp

Φ. Indeed, in the space X we define an operator Φ that
associates every x ∈ X with a sequence y = {x̂k}∞k=1 . As the set (Rm, dμ), we take the space R1 with a
measure dμ whose support is the set Z1 of integer-valued points k at which μ(k) ≡ 1. We set A =

{
k ∈ Z1,

k ≥ 1
}
. In this case, Y (A, dμ) is the set of all sequences y, and functional (1.2) has the form

‖y‖Lp(A,dμ) =

( ∞∑
k=1

|yk|p
)1

p

, p ∈ (0,∞).

Let S be the set of all sequences of complex numbers

S = {x = (x1, x2, . . .), xk ∈ C},

in which the operations of addition and multiplication are defined in the standard way:

(x1, x2, . . .) + (y1, y2, . . .) = (x1 + y1, x2 + y2, . . .),

λ(x1, x2, . . .) = (λx1, λx2, . . .), λ ∈ C.

In this case, S is a linear space. As X, we choose the set S. As ϕ, we choose the system e = {ek}∞k=1 , where
ek = (ε1, ε2, . . .) and

εi =

⎧⎨⎩1, i = k,

0, i 	= k.

We define a “scalar product” by setting

(x, ek) = x̂e(k) = xk, (ek, x) = x̄k (x = (x1, . . . , xk, . . .)).

For this operation, conditions (ii) and (iii) are automatically satisfied. We associate every element x ∈ X with a
system of numbers x̂(k),

x̂(k) = xk, k = 1, 2, . . . ,

and, for fixed p ∈ (0,∞), according to (1.6), we define spaces Sp
e :

Sp
e = Sp

e (X) =

{
x ∈ X :

∞∑
k=1

|xk|p < ∞
}

.
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In this case, by virtue of (1.7), the ϕ-norm of an element x ∈ Sp
e has the form

‖x‖p,e =

( ∞∑
k=1

|xk|p
)1

p

.

We see that Sp
e coincide with the known spaces lp.

As above, we take the space S as X. As ϕ, we take the system e′ obtained from e by removing some
elements eij , j = 1, 2, . . . , from it. Using the scheme considered above, we construct spaces Sp

e′ .

It is clear that the ϕ-norm in Sp
e′ constructed according to (1.7) satisfies the inequality

‖x‖p,e′ ≤ ‖x‖p,e,

and, hence, Sp
e ⊂ Sp

e′ . It is also clear that the set Sp
e′ \ Sp

e can be nonempty, i.e., the set Sp
e′ can be broader than

the set lp.

1.1′. Spaces Sp,μ
ϕ . These spaces are introduced by analogy with the spaces Sp

ϕ, but the functionals

( ∞∑
k=1

| · |p
)1

p

in the equalities corresponding to (1.5) – (1.7) are replaced by the functionals

( ∞∑
k=1

| · |pμp
k

)1
p

,

where μ = {μk}∞k=1 is a given system of nonnegative numbers, μk ≥ 0, k ∈ N ; in particular, if μk ≡ 1, then
Sp,μ

ϕ = Sp
ϕ.

It is clear that these spaces are special cases of the spaces Sp
Φ. Here, as in the case of the spaces Sp

ϕ, as the
set (Rm, dμ) we take the space R1 with a measure dμ concentrated on the set Z1 of integer-valued points k at
which μ(k) = μk. We also set A = {k ∈ Z1, k ≥ 1}.

For more information on these spaces, see Sec. 4 of the present paper.

1.2. Space Sp
F(L). As before, let Rm, m ≥ 1, be the m-dimensional Euclidean space, let X =

(X1, . . . ,Xm) be its elements, let Zm be the integer lattice in Rm, and let xy = x1y1+ . . .+xmym, x, y ∈ Rm.

Further, let L = L(Rm, 2π) denote the set of all functions f(x) = f(x1, . . . , xm) 2π-periodic in each variable
and summable with respect to the ordinary Lebesgue measure on the cube of periods Qm, where

Qm = {x : x ∈ Rm, −π ≤ xk ≤ π, k = 1, 2, . . . , m} .

As X, we take the space L(Rm, 2π). On this space, we define an operator Φ (denoted below by F) by setting

F(f) = (2π)−m/2

∫
Qm

f(x) e−ikxdx = f̂(k), k ∈ Zm.
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This operator maps the space L(Rm, 2π) into the set Y of functions y(t) defined on the integer lattice Zm. Let
dμ be a measure in the space Rm whose support is the set Zm, where it is equal to 1. In this case, functional
(1.2) takes the form

‖y‖Lp(Rm,dμ)Lp(Rm, dμ) =
( ∫

Rm

|y(t)|pdμ

)1
p

=

( ∑
k∈Zm

∣∣∣f̂(k)
∣∣∣p)1

p

, p ∈ (0,∞),

and the space Sp
Φ

(
denote it by Sp

F(L)
)

is defined by the relation

Sp
F(L) =

⎧⎨⎩f ∈ L :

( ∑
k∈Zm

∣∣∣f̂(k)
∣∣∣p)1

p

≤ ∞

⎫⎬⎭ .

Note that the spaces Sp
F(L) coincide with the above-considered spaces Sp

ϕ(L) generated by the set L and the
system ϕ = {τs}∞s=1 , where

τs = (2π)−m/2eiksx, ks ∈ Zm, s = 1, 2, . . . ,

which is obtained from the system

(2π)−m/2eikx, k ∈ Zm,

by an arbitrary fixed enumeration of its terms.

1.3. Consider an example where the spaces Sp
Φ can be nonseparable.

We choose the space of functions L2(Rm) as X and the space L2(Rm) with ordinary Lebesgue norm as A

and define the operator Φ by the Fourier transformation

Φ(f) = f̂(t) = F(f ; t) = (2π)−m/2

∫
Rm

f(x) e−itxdx, f ∈ L2(Rm).

It is known (see, e.g., [33], Chap. I) that the operator F is unitary with respect to L2(Rm). Therefore, the
Φ-norm ‖f‖2,Φ of an element f coincides with its norm in the space L2(Rm) :

‖f‖2,F = ‖f‖L2(Rm). (1.8)

In this case, by virtue of relation (1.3), the space S2
Φ(L2(Rm), Rm, dx) has the form S2

Φ = {f : f ∈ L2(Rm)},
i.e., S2

Φ = X = L2(Rm).

1.4. Following the scheme presented in the previous example, one constructs spaces S2
Φ by taking any

operator unitary on the set L2(A, dμ), where A is a certain manifold in Rm and dμ is a certain σ-finite measure
in Rm, instead of the Fourier transformation. For example, let L2(A, dμ) be the set L2(R1

+) of functions f(t)
square summable in the Lebesgue sense on the semiaxis (0,∞) and let Φ be the Hankel transformation

Hvf = Hv(f ;x) = f̂(x) = f̂v(x) = x−(v+1/2) d

dx

∞∫
0

xv+1Jv+1(xt)
f(t)√

t
dt, (1.9)
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where v is a certain number, v ≥ −1, and Jα(z) is the Bessel function of the first kind of order α.

It is known that the Hankel transformation is generated by the operator Hv, which is unitary on L2(R1
+) and

coincides with its inverse (see, e.g., [34], Chap. III). Therefore, the following analog of equality (1.15) is true:

‖f‖2,Hv = ‖f‖L2(R1
+).

Hence, S2
Hv

= {f : L2(R1
+)}, i.e., in this case, we have

S2
Hv

= X = L2(R1
+).

1.5. Consider the special case of the spaces Sp
Φ generated by the identity operator, i.e, the case where Φ ≡ I.

It is clear then that X = Y (A, dμ), x̂ = x, and, by virtue of (1.3),

Sp
L = {x ∈ X : ‖x‖Lp(A,dμ) < ∞} = Lp(A, dμ), p ∈ (0,∞).

2. Multiplicators. Approximating aggregates and Objects of Approximation

As approximating aggregates for elements x ∈ Sp
Φ, one uses elements from Sp

Φ whose images have supports
γσ of a given measure σ. It is clear that, in the classical case, this principle is used in the construction of, e.g.,
trigonometric polynomials for the approximation of a given periodic function if the operator Φ is understood as
a mapping of functions into the set of their Fourier coefficients. In the general case, there arise certain difficulties
caused by the fact that the spaces Sp

Φ may be incomplete. In this connection, we introduce the following definitions:
Let ω = ω(t) be a certain function from Y (A, dμ). By Mω

Φ we denote an operator that acts from X into
X and associates x ∈ X with an element xω ∈ X such that if Φ(x) = x̂(t), then x̂ω(t) = Φ(xω) = ω(t)x̂(t)
almost everywhere. The operator Mω

Φ is called the multiplicator of the operator Φ generated by the function ω.

Let ΩΦ(X) = ΩΦ(X, Y ) denote the subset of functions ω from Y (A, dμ) for which the multiplicators Mω
Φ

exist.
If N and N′ are certain subsets of X, ω ∈ ΩΦ(X), and the operator Mω

Φ maps N into N′, then we say that
Mω

Φ has the type (N,N′). In particular, if Mω
Φ maps Sp

Φ into Sp
Φ, then the operator Mω

Φ has the type (Sp
Φ, Sp

Φ)
or, briefly, the type (p, p). Let Ωp

Φ denote the set of functions ω generating operators of the type (p, p).
Thus, if ω ∈ Ωp

Φ and the operator Mω
Φ acts from Sp

Φ, then it also acts in Sp
Φ; moreover, every x ∈ Sp

Φ is
associated with an element xω = Mω

Φ(x) for which the following equality holds almost everywhere on A :

x̂ω(t) = Φ(xω) = ω(t)x̂(t), x̂ω ∈ Lp(A, dμ). (2.1)

Assume that, for a given σ > 0, γσ is a μ-measurable set in A,

mesμγσ
df= |γσ| = σ, σ ≤ a,

and λ = λ(t) is a measurable function with support γσ. Also assume that, for a given p ∈ (0,∞), we have

λ ∈ Ωp
Φ and Uγσ(x;λ) df= xλ = Mλ

Φ(x), so that, by virtue of (2.1),

Ûγσ(x;λ) = Φ(Uγσ(x;λ)) =

⎧⎨⎩λ(t)x̂(t), t ∈ γσ,

0, t∈̄γσ, x ∈ Sp
Φ.

(2.2)
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The elements Uγσ(x;λ) are exactly the elements considered as approximating aggregates for x ∈ Sp
Φ. If λ(t) ≡ 1

on γσ, i.e., λ(t) coincides with the characteristic function χγσ(t) of γσ, then we set Uγσ(x;χγσ) = Uγσ(x).
Let Γσ = Γσ(A) be the set of all measurable subsets from A whose measures are equal to σ. We say that,

for a given p > 0, the operator Φ satisfies condition (Ap) if, for all sets γσ ∈ Γσ, the functions χγσ(t) belong
to Ωp

Φ for any σ ∈ [0, a). Thus, if Φ satisfies condition (Ap), then all elements Uγσ(x) are defined for any
x ∈ Sp

Φ and belong to Sp
Φ. The element Uγσ(x) is called the restriction of an element x of rank σ. The element

Uγσ(x;λ) is called the λ-restriction of x of rank σ.

Let p be an arbitrary positive number and let x ∈ Sp
Φ. Then, by virtue of (1.4) and (2.2), we get

‖x − Uγσ(x;λ)‖p
p = ‖x̂(t) − Ûγσ(x;λ; t)‖p

Lp(A,dμ) =
∫
γσ

|1 − λ(t)|p|x̂(t)|p dμ +
∫

A/γσ

|x̂(t)|pdμ.

This yields the following statement:

Proposition 2.1. Suppose that p ∈ (0,∞), x ∈ Sp
Φ = Sp

Φ(X;Y ), γσ ∈ Γσ, and the operator Φ satisfies
condition (Ap). Then

Eγσ(x)p
df= inf

λ∈Ωp
Φ

‖x − Uγσ(x;λ)‖p = ‖x − Uγσ(x)‖p.

Moreover, the following equality is true:

Eγσ(x)p = ‖x‖p
p −

∫
γσ

|x̂(t)|pdμ. (2.3)

Thus, if χγσ ∈ Ωp
Φ, then, among all elements Uγσ(x;λ) generated by the multiplicators Mλ

Φ and satisfying
condition (2.2), the element Uγσ(x) deviates least from the element x with respect to the Φ-norm in the space
Sp

Φ, i.e., among all λ-restrictions of x of given rank σ, the restriction of exactly this element for λ(t) ≡ 1
is closest to x. It is clear that this property is an analog of the minimal property of Fourier sums in the Hilbert
spaces L2.

Let Γ = {γσ}σ>0, |γσ| = σ, be a family of measurable subsets of A that exhausts the entire set A as
σ → ∞, i.e., it possesses the property according to which any point t ∈ A belongs to all sets γσ for all
sufficiently large values of σ, so that

lim
σ→∞

∫
γσ∈Γ

|x̂(t)|p dμ =
∫
A

|x̂(t)|p dμ ∀x ∈ Sp
Φ. (2.4)

Combining relations (2.3) and (2.4), we obtain

lim
σ→∞
γσ∈Γ

Eγσ(x)p = 0 ∀x ∈ Sp
Φ.

We now define objects of approximation—the unions of elements x ∈ X corresponding to the notion of a
class of functions in approximation theory. These objects, as well as approximating aggregates, are introduced
with the use of multiplicators. However, in this case, it is more convenient to use a different terminology that is
closer to the traditional one. Let Ψ = Ψ(t) be an arbitrary function from ΩΦ(X) and let MΨ

Φ be the multiplicator
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of the operator Φ generated by this function. In this case, the image xΨ of an element x under the mapping MΨ
Φ

is called the Ψ-integral of the element x, and we write MΨ
Φ (x) = xΨ = jΨx. It is sometimes convenient to call

x the Ψ-derivative of xΨ and write x = DΨxΨ.

Thus, if xΨ is the Ψ-integral of x, then

x̂Ψ = Φ(jΨx) = Ψ(t)x̂(t) (2.5)

almost everywhere.
If N is a certain subset of X, then ΨN denotes the set of Ψ-integrals of all x ∈ N for which they exist. In

particular, if Up
Φ is the unit ball in a certain space Sp

Φ, i.e.,

Up
Φ = {x : x ∈ Sp

Φ, ‖x‖p,Φ ≤ 1},

then ΨUp
Φ is the set of Ψ-integrals of all x ∈ Up

Φ for which these integrals exist.
Comparing relations (2.5) and (2.1), we conclude that, as functions Ψ for which the Ψ-integral is well defined,

we can take any function from ΩΦ(Sp
Φ). In this case, we have ΨSp

Φ ⊂ Sp
Φ.

The sets ΨUp
Φ are exactly the objects for which traditional problems of approximation theory are considered

in the present paper.

3. Approximation Characteristics of the Sets ΨUp
Φ

Consider the following quantities: For any γσ ∈ Γ, we set

Eγσ(x)q = inf
λ∈Ωp

Φ

‖x − Uγσ(x;λ)‖q,Φ x ∈ Sp
Φ,

Eγσ(ΨUp
Φ)q = sup

x∈ΨUp
Φ

Eγσ(x)q,

and

Dσ(ΨUp
Φ)q = inf

γσ∈Γσ

Eγσ(ΨUp
Φ)q.

In the case of approximation of periodic functions by trigonometric polynomials, the quantity Eγσ(x)q corresponds
to the best approximation of the function x by polynomials of degree σ, the quantity Eγσ(ΨUp

Φ)q corresponds to
an upper bound on a given set of functions of these best approximations, and the quantity Dσ(ΨUp

Φ)q resembles
the trigonometric width of order σ of the set ΨUp

Φ.

We also consider the following characteristics, which, in the periodic case, correspond to quantities related to
the best σ-term approximation:

eσ(x)q = inf
γσ∈Γσ

Eγσ(x)q = inf
γσ∈Γσ

inf
λ∈Ωp

Φ

‖x − Uγσ(x;λ)‖ q,Φ x ∈ Sp
Φ (3.1)

and

eσ(ΨUp
Φ)q = sup

x∈ΨUp
Φ

eσ(x)q. (3.2)
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Below, we restrict ourselves to the case p = q. We also assume that the corresponding characteristic functions
χγσ(·) belong to Ωp

Φ, i.e., the operator Φ satisfies condition (Ap). In this case, according to Proposition 2.1,
quantities (3.1) and (3.2) with λ(t) = χγσ(t) are of prime interest. In this connection, we set

Eγσ(x)p = ‖x − Uγσ(x)‖p,Φ, x ∈ Sp
Φ, (3.3)

Eγσ(ΨUp
Φ)p = sup

x∈ΨUp
Φ

Eγσ(x)p, (3.4)

and

Dσ(ΨUp
Φ)p = inf

γσ∈Γσ

Eγσ(ΨUp
Φ)p. (3.5)

Analogously,

eσ(x)p = inf
γσ∈Γσ

‖x − Uγσ(x)‖p,Φ (3.6)

and

eσ(ΨUp
Φ)p = sup

x∈ΨUp
Φ

eσ(x)p.

3.1. Quantities Eγσ(ΨUp
Φ)p and Dσ(ΨUp

Φ)p . In what follows, we use the notion of a rearrangement of
a function in decreasing order. This notion was introduced, apparently for the first time, by Hardy and Littlewood
(see [35], Chap. X); later, it was successfully used by many authors. We present here necessary definitions from
Korneichuk’s monograph [36] (Chap. 6). In the monograph indicated, rearrangements of functions of one variable
are considered, but main definitions remain true in the general case.

Assume that a nonnegative μ-measurable function f(x) is defined on a μ-measurable set A ⊂ Rm, m ≥ 1,

mesμA = a, where a is finite or infinite, and its distribution function

mf (y) = mesμEy, Ey = {x : x ∈ A, f(x) ≥ y}, y ≥ 0,

takes only finite values for y > 0.

The function t = mf (y) does not increase for all y ≥ 0, and, moreover, mf (0) = a. If the function mf (y)
is continuous and strictly decreasing, then a strictly decreasing function y = ϕ̄(t) inverse to it exists on the interval
t ∈ (0, a) ; this function is called the rearrangement of the function f(x) in decreasing order. In the general case,
depending on the function f(·), mf (y) may have intervals of constancy as well as discontinuities of the first kind
at finitely many (or countably many) points. To uniquely determine the function inverse to it, we correct the graph
of the function mf (y) as follows: At each discontinuity point yj of the function mf (y), we supplement its graph
by the segment y = yj , mf (yj + 0) ≤ t ≤ m(yj + 0). On each segment [α, β] where mf (y) is constant, we
preserve a single point in its graph, say, the point with coordinates y = (α+β)/2 and t = mf ((α+β)/2). In this
case, every t ∈ (0, a) is associated with the unique point with coordinates (t, m−1

f (t)). This mapping determines
the function y = ϕ̄(t), which is the rearrangement of the function ϕ(x) in the case considered.

For any y ≥ 0, the Lebesgue measure of the set of points t ∈ (0, a) on which ϕ̄(t) ≥ y is equal to mf (y).
Thus,

mes {t : t ∈ (0, a), ϕ̄(t) ≥ y} = mesμ{x : x ∈ A, f(x) ≥ y} = mf (y).
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In particular, this yields the equality

a∫
0

F (ϕ̄(t))dt =
∫
A

F (f(x))dμ

for any function F for which these integrals exist (see [35], Chap. X).
In the notation introduced, the following statement is true:

Theorem 3.1. Suppose that Ψ = Ψ(t) is an arbitrary function from Y (A, dμ) that is essentially bounded
on A, i.e.,

ess sup
t∈A

|Ψ(t)| = ‖Ψ‖M < ∞, (3.7)

and if the set A is not bounded, then

lim
|t|→∞

Ψ(t) = 0. (3.8)

Then, for arbitrary X, A ⊂ Rm, m ≥ 1, γσ ∈ Γσ, σ < a, and p ∈ (0,∞), the following estimates hold
for any operator Φ that satisfies condition (Ap) :

Ep
γσ

(ΨUp
Φ)p ≤ ϕ̄γσ(0 + 0), (3.9)

where ϕ̄γσ(v) is the rearrangement of the function

ϕσ(t) = ϕγσ(t) =

⎧⎨⎩|Ψ(t)|p, t ∈ A \ γσ,

0, t ∈ γσ,

in decreasing order,

Dσ(ΨUp
Φ)p ≤ Ψ̄(σ + 0), (3.10)

and Ψ̄(v) is the rearrangement of the function |Ψ(t)| in decreasing order.
Furthermore, if, for any γσ ∈ Γσ and σ ∈ (0, a), the functions χγσ(t) belong to the range of values

E(Φ) of the operator Φ and their preimages Uγσ have Ψ-integrals, then relations (3.9) and (3.10) are equalities.
Moreover, there is a set γ∗

σ in Γσ for which the following equalities are true:

Eγ∗
σ
(ΨUp

Φ)p = Dσ(ΨUp
Φ)p = Ψ̄(σ + 0).

This set is determined by the relation

γ∗
σ = {t ∈ A : |Ψ(t)| ≥ Ψ̄(σ + 0)}, mesμ γ∗

σ = σ.

This theorem was proved in [23]. We only note here that conditions (3.7) and (3.8) guarantee that, for any
y > 0, the distribution function m|Ψ|(y) of the function |Ψ(t)|, i.e.,

m|Ψ|(y) = mesμEy, Ey = {t ∈ A : |Ψ(t)| ≥ y}, y ≥ 0,
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takes only finite values from the segment [0, a]. Therefore, the quantities ϕ̄σ(0 + 0) and Ψ̄(σ + 0) are always
defined.

Also note that, in the case where E(Φ) = Lp(A, dμ), the operator Φ satisfies condition (Ap), and, by virtue
of conditions (3.7) and (3.8), the requirements that guarantee the realization of equalities in relations (3.9) and
(3.10) are also satisfied.

3.2. Quantities eσ(ΨUp
Φ)p . In the notation introduced, the following theorem is true:

Theorem 3.2. Let Ψ = Ψ(t) be an arbitrary function from Y (A, dμ) that is essentially bounded on A and
let it satisfy condition (3.8) if the set A is not bounded.

Then, for arbitrary X, A ⊂ Rm, m ≥ 1, σ ≤ a, and p ∈ (0,∞), the following relation holds for any
operator Φ that satisfies condition (Ap) :

ep
σ(ΨUp

Φ) ≤ sup
σ<q≤a

q − σ∫ q

0

dt

Ψ̄p(t)

, (3.11)

where Ψ̄(v) is the rearrangement of the function |Ψ(t)| in decreasing order. The value of the least upper bound
in (3.11) is attained for a certain finite value q = q∗.

Furthermore, if the range of values E(Φ) of the operator Φ coincides with the entire space Lp(A, dμ), then
relation (3.11) is, in fact, an equality.

Proof. The proof of this theorem is presented in [23]. Its essential part is Theorem 3.3 from [23]. Here, we
only outline the key points of the proof of Theorem 3.2.

By virtue of (3.6) and (1.2), for any x ∈ Sp
Φ we have

ep
σ(x)p = inf

γσ∈Γσ

‖Φ(x − Uγσ(x))‖p
Lp

= inf
γσ∈Γσ

‖x̂(t)(1 − χγσ(t))‖p
Lp

= inf
γσ∈Γσ

⎛⎝∫
A

|x̂(t)|p dμ −
∫
γσ

|x̂(t)|p dμ

⎞⎠

=
∫
A

|x̂(t)|p dμ − sup
γσ∈Γσ

∫
γσ

|x̂(t)|p dμ, Lp
df= Lp(A, dμ).

Therefore,

ep
σ(ΨUp

Φ)p = sup
x∈ΨUp

Φ

( ∫
A

|x̂(t)|p dμ − sup
γσ∈Γσ

∫
γσ

|x̂(t)|p dμ

)
. (3.12)

If x ∈ ΨUp
Φ, then x̂(t) = Ψ(t)ŷ(t), where y is a certain element of Up. Hence, the following relation is

true:



PROBLEMS OF APPROXIMATION THEORY IN LINEAR SPACES 67

sup
x∈ΨUp

Φ

⎛⎝∫
A

|x̂(t)|p dμ − sup
γσ∈Γσ

∫
γσ

|x̂(t)|p dμ

⎞⎠

≤ sup
ν∈Up

⎛⎝∫
A

|Ψ(t)|p|y(t)|p dμ − sup
γσ∈Γσ

∫
γσ

|Ψ(t)|p|y(t)|p dμ

⎞⎠

= sup
h∈U+

1

⎛⎝∫
A

|Ψ(t)|p|h(t)| dμ − sup
γσ∈Γσ

∫
γσ

|Ψ(t)|p|h(t)| dμ

⎞⎠ , (3.13)

where U+
1 is the subset of nonnegative functions from U1.

To determine the value of the right-hand side of (3.13), we use the statement presented below. Since this
statement is of independent interest, we formulate it in the form of a theorem.

Theorem 3.3. Suppose that A is an arbitrary μ-measurable set from Rm, m ≥ 1, mesμA = a, where a

is finite or infinite, ϕ(x) is a nonnegative function essentially bounded on A, and if the set A is not bounded,
then

lim
|x|→∞

ϕ(x) = 0.

Then, for any σ < a, the following equality is true:

Eσ(ϕ) = sup
h∈U+

1

inf
γσ∈Γσ

⎛⎜⎝∫
A

ϕ(x)h(x) dμ −
∫

γσ∈Γσ

ϕ(x)h(x) dμ

⎞⎟⎠ = sup
σ<q≤a

q − σ∫ q

0

dt

ϕ̄(t)

, (3.14)

where Γσ = Γσ(A) is the set of all μ-measurable subsets γσ of A whose measure is equal to σ, and ϕ̄(t) is
the decreasing rearrangement of the function ϕ(x).

The least upper bound on the right-hand side of (3.14) is attained for a certain finite value q = q∗.

Setting ϕ(x) = |Ψ(x)|p and combining relations (3.12) – (3.14), we obtain (3.11).
Note that inequality (3.11) is strict, provided that inequality (3.13) is also strict. The strict inequality in (3.11)

is possible only due to the fact that not every function y ∈ Up has its preimage in Up
Φ that, moreover, has the

Ψ-integral. However, in the case where E(Φ) = Lp(A), this is impossible: every y ∈ Up has its preimage and,
by virtue of the boundedness of Ψ, the product Ψ(t)y(t) belongs to Lp(A, dμ) and, hence, also has its preimage
in Sp

Φ

(
more exactly, in ΨUp

Φ

)
. Thus, in this case, relation (3.11) is an equality.

4. Extremal Problems in the Spaces Sp,μ
ϕ

By now, the most complete and final results have been obtained for the spaces Sp,μ
ϕ . Here, we give a brief

survey of the obtained results related to the best approximations and widths for the sets ΨUp
Φ and establish new

statements for these quantities in several cases not considered earlier. The spaces Sp,μ
ϕ have already been men-

tioned in Sec. 1. However, for the sake of completeness and rigor, we present all definitions necessary for what
follows.
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4.1. Spaces Sp,μ
ϕ . Let X be a certain linear complex space and let ϕ = {ϕk}∞k=1 be a fixed countable

system in it. Assume that any pair of elements x, y ∈ X for which at least one vector belongs to ϕ is associated
with a number (x, y) (a “scalar product”) so that the following conditions are satisfied:

(i) (x, y) = (y, x), where z̄ is the complex conjugate of the number z;

(ii) (λx1 + νx2, y) = λ(x1, y) + ν(x2, y), where λ and ν are arbitrary numbers;

(iii) (ϕk, ϕl) =

⎧⎨⎩0, k 	= l,

1, k = l.

Further, let μ = {μk}∞k=1 be a certain system of nonnegative numbers, i.e., μk ≥ 0, k ∈ N = {1, 2, . . .}.
We associate every element x ∈ X with a system of numbers x̂(k) = x̂ϕ(k) by the equalities

x̂(k) = x̂ϕ(k) = (x, ϕk), k ∈ N,

and, for fixed p ∈ (0,∞), we set

Sp,μ
ϕ = Sp,μ

ϕ (X) =

{
x ∈ X :

∞∑
k=1

|μkx̂ϕ(k)|p < ∞
}

.

Elements x, y ∈ Sp,μ
ϕ are assumed to be identical if x̂ϕ(k) = ŷϕ(k) for all k ∈ N. Thus, the set Sp,μ

ϕ is
generated by the space X, systems ϕ and μ, operation (·, ·), and number p.

For μk ≡ 1, k ∈ N, as mentioned above, the sets Sp,μ
ϕ coincide with the sets Sp

ϕ introduced and studied in
[14–23]. In the general case, they were considered for the first time in [20].

For arbitrary vectors x, y ∈ X, we define the ϕ, μ-distance between them by the equality

ρ(x, y)p,μ
df= ‖x − y‖p,μ = ‖x − y‖p,μ,ϕ =

( ∞∑
k=1

|x̂ϕ(k) − ŷϕ(k)|p μp
k

)1
p

.

A vector θ for which θ̂ϕ(k) = 0 for all k ∈ N is called a zero element of the space Sp,μ
ϕ . The distance ρ(θ, x)p,μ,

x ∈ Sp,μ
ϕ , is called the ϕ, μ-norm of the element x and is defined by ‖x‖p,μ. Thus, by definition,

‖x‖p,μ = ‖x‖p,μ,ϕ = ρ(θ, x)p,μ =

( ∞∑
k=1

|μkx̂ϕ(k)|p
)1

p

. (4.1)

It was shown in [20] that the set Sp,μ
ϕ is a linear space with the same operations of addition of vectors and their

multiplication by numbers as those defined in the entire space X.

If all numbers μk in the system μ differ from zero, then the equality ‖x‖p,μ = 0 is possible only for x = θ.

This implies that, for μk > 0, k ∈ N, the functional ‖ · ‖p,μ defined by equality (4.1) satisfies all axioms of a
norm for p ≥ 1 and all axioms of a quasinorm for p ∈ (0, 1). Therefore, if μk > 0, k ∈ N, then Sp,μ

ϕ is a
linear normed space for p ≥ 1 and a space with quasinorm for p ∈ (0, 1); furthermore, it contains an orthogonal
system ϕ = {ϕk}∞k=1 and, moreover, ‖ϕk‖p,μ = μk.
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Now let f be an arbitrary element of the space Sp,μ
ϕ and let

S[ f ]ϕ =
∞∑

k=1

f̂ϕ(k)ϕk (4.2)

be its formal series in the system ϕ.

The spaces Sp,μ
ϕ inherit the most important properties of separable Hilbert spaces, namely the Parseval equality

in the form (4.1) and the minimal property of partial Fourier sums formulated as follows:

Proposition 4.1. Let {gα} be a family of bounded subsets of the set N that depend on the parameter α and
are such that any number n ∈ N belongs to all sets {gα} for sufficiently large α.

Further, let f ∈ Sp,μ
ϕ , let p ∈ (0,∞), and let

Sα(f) = Sgα(f) =
∑
k∈gα

f̂(k)ϕk

be the partial sum of the Fourier series S[f ]ϕ of the element f that corresponds to the set {gα}. Then, among
all sums of the form

Φα =
∑
k∈gα

ckϕk,

the partial sum Sα(f) deviates least from f in the space Sp,μ
ϕ , i.e.,

inf
ck

‖f − Φα‖p,μ = ‖f − Sα(f)‖p,μ.

Moreover,

‖f − Sα(f)‖p
p,μ = ‖f‖p

p,μ −
∑
k∈gα

∣∣∣μkf̂(k)
∣∣∣p

and

lim
α→∞

‖f − Sα(f)‖p,μ = 0.

It is clear that this statement is a reformulation of Proposition 2.1. This yields the following statement:

Proposition 4.1′. Suppose that f ∈ Sp,μ
ϕ , p ∈ (0,∞), and

Sn(f) = Sn(f)ϕ =
n∑

k=1

f̂(k) ϕk, n ∈ N,

is a partial sum of series (4.2). Then, among all sums of the form

Φn =
n∑

k=1

ck ϕk
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for given n ∈ N, the partial sum Sn(f) deviates least from f in the space Sp,μ
ϕ , i.e.,

inf
ck

‖f − Φn‖p,μ = ‖f − Sn(f)‖p,μ.

Moreover,

‖f − Sn(f)‖p
p,μ = ‖f‖p

p,μ −
n∑

k=1

∣∣∣μkf̂(k)
∣∣∣p

and

lim
n→∞

‖f − Sn(f)‖p,μ = 0. (4.3)

It follows from (4.3) that, for any element f ∈ Sp,μ
ϕ , its Fourier series (4.2) in the system ϕ converges to f

in the norm of the space Sp,μ
ϕ , i.e., the system ϕ is complete in Sp,μ

ϕ , and Sp,μ
ϕ is separable.

4.2. ψ-Integrals. In the spaces Sp,μ
ϕ , we select objects of approximation—the unions of elements f ∈ X

associated with the notion of a class of functions in approximation theory and corresponding to the sets ΨUp
Φ.

Let ψ = {ψk}∞k=1 be an arbitrary system of complex numbers. If, for a given element f ∈ X with Fourier
series (4.2), there exists an element F ∈ X for which

S[ f ]ϕ =
∞∑

k=1

ψk f̂(k)ϕk, (4.4)

i.e.,

F̂ϕ(k) = ψk f̂(k), k ∈ N, (4.5)

then the vector F is called the ψ-integral of the vector f. In this case, we write F = J ψf. If N is a certain
subset of X, then ψN denotes the set of ψ-integrals of all elements from N. In particular, ψSp,μ

ϕ is the set of
ψ-integrals of all vectors belonging to the space Sp,μ

ϕ .

If f and F are connected by relation (4.4) or (4.5), then it is sometimes convenient to call f the ψ-derivative
of the element F and write f = D ψF = F ψ.

In what follows, we assume that the system ϕ satisfies the condition

lim
k→∞

|ψk| = 0. (4.6)

It is clear that this condition guarantees the inclusion ψSp,μ
ϕ ⊂ Sp,μ

ϕ , and the condition of the boundedness of the
set of numbers |ψk|, k ∈ N, is necessary and sufficient for this inclusion.

Let

Up,μ
ϕ =

{
f ∈ Sp,μ

ϕ : ‖f‖p,μ ≤ 1
}

(4.7)

be the unit ball in the space Sp,μ
ϕ and let ψ Up,μ

ϕ be the set of ψ-integrals of all elements from Up,μ
ϕ . The sets

ψ Up,μ
ϕ are the main objects whose approximation properties are studied in the present paper. If

ψk 	= 0 ∀k ∈ N,
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then, by virtue of (4.6) and (4.7), we have

ψ Up,μ
ϕ =

{
f ∈ Sp,μ

ϕ :
∞∑

k=1

∣∣∣∣μk
f̂(k)
ψk

∣∣∣∣p ≤ 1

}
, (4.7′)

i.e., the set ψ Up,μ
ϕ is a p-ellipsoid in the space Sp,μ

ϕ with semiaxes equal to |ψk|.

4.3. Approximating Aggregates and Approximation Characteristics. The structure of aggregates used for
the approximation of elements f ∈ Sp,μ

ϕ is determined by the characteristic sequences ε(ψ), g(ψ), and δ(ψ) of
the system ψ. These characteristic sequences are defined as follows:

Let ψ = {ψk}∞k=1 be an arbitrary system of complex numbers that satisfies condition (4.6). Then ε(ψ) =
ε1, ε2, . . . denotes the set of values of the quantities |ψk| enumerated in decreasing order, g(ψ) = g1, g2, . . .

denotes the system of sets

gn = gψ
n = {k ∈ N : |ψk| ≥ εn} ,

and δ(ψ) = δ1, δ2, . . . denotes the sequence of numbers δn = |gn|, where |gn| is the number of numbers
k ∈ N in the set gn. The sequences ε(ψ), g(ψ), and δ(ψ) are called characteristic for the system ψ. Note that,
according to this definition, any number n∗ ∈ N belongs to all sets gψ

n for sufficiently large n and

lim
k→∞

δk = ∞.

In what follows, it is convenient to denote the empty set by g0 = gψ
0 and assume that δ0 = 0.

Let the set Sp,μ
ϕ be generated by the space X, systems ϕ and μ, and number p, p > 0, and let ψ =

{ψk}∞k=1 be an arbitrary system of complex numbers that satisfies condition (4.6).
As approximating aggregates for elements f ∈ ψ Sp,μ

ϕ , we consider the polynomials

Sn(f)ϕ,ψ = S
gψ

n
(f) =

∑
k∈gψ

n

f̂(k)ϕk, n = 1, 2, . . . , S0(f)ϕ,ψ = θ, (4.8)

where gψ
n are elements of the sequence g(ψ) and θ is a zero vector of the space Sp,μ

ϕ . We set

En(f)ψ,p,μ = ‖f − Sn−1(f)ϕ,ψ‖p,μ,

En(ψ U q,μ
ϕ )ψ,p,μ = sup

f∈ψ Uq,μ
ϕ

En(f)ψ,p,μ, p, q > 0.
(4.9)

The quantity En(f)ψ,p,μ is called the approximation of an element f ∈ Sp,μ
ϕ by Fourier sums constructed for

the domains gψ
n−1, and En(ψ U q,μ

ϕ )ψ,p,μ is called the approximation of the set ψ U q,μ
ϕ by these sums in the space

Sp,μ
ϕ . Further, let

En(f)ψ,p,μ = inf
ck

∥∥∥∥∥f −
∑

k∈gψ
n−1

ck ϕk

∥∥∥∥∥
p,μ
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be the best approximation of an element f ∈ ψ Sp,μ
ϕ by polynomials constructed for the domains gψ

n−1 and let

En(ψ U q,μ
ϕ )ψ,p,μ = sup

f∈ψ Uq,μ
ϕ

En(f)ψ,p,μ, p, q > 0, (4.10)

be the best approximation of the set ψ U q,μ
ϕ by these polynomials.

As usual,

dn(M;Y ) = inf
Fn∈Fn

sup
x∈M

inf
u∈Fn

‖x − u‖Y

is the Kolmogorov width of a set M in the space Y. Here, Fn is the set of all subspaces of dimension n ∈ N of
the space Y. According to the Jensen inequality, for any nonnegative sequence a = {ak}∞k=1, ak ≥ 0, we have

( ∞∑
k=1

ap
k

)1
p

≤
( ∞∑

k=1

aq
k

)1
q

, 0 < q ≤ p.

Therefore, the following inclusions are true:

S q,μ
ϕ ⊂ S p,μ

ϕ , 0 < q ≤ p, (4.11)

and

ψ U q,μ
ϕ ⊂ ψ Up,μ

ϕ , 0 < q ≤ p. (4.12)

In particular, this implies that quantities (4.9) and (4.10) are well defined at least for all systems ψ that satisfy
condition (4.6) under the assumption that 0 < q ≤ p.

4.4. Best Approximations and Widths of q-Ellipsoids. The following statement is true:

Theorem 4.1. Let ψ = {ψk}∞k=1 be a system of numbers that satisfies condition (4.6). Then, for any n ∈ N

and 0 < q ≤ p < ∞, the following relations are true:

En(ψ U q,μ
ϕ )ψ,p,μ ≤ En(ψ U q,μ

ϕ )ψ,p,μ ≤ εn. (4.13)

Furthermore, if

μk 	= 0 and ψk 	= 0 ∀k ∈ N, (4.14)

then the inequality signs in (4.13) are replaced by the equality signs. The quantity εn is the nth term of the
characteristic sequence ε(ψ).

Partial sums of the form (4.8) constructed for the domains gψ
n form an optimal aggregate for the approximation

of elements from the sets ψ U q,μ
ϕ in the sense of Kolmogorov widths. More exactly, the following theorem is true:

Theorem 4.2. Suppose that ψ = {ψk}∞k=1 and μ = {μk}∞k=1 satisfy conditions (4.6) and (4.14) and

dν

(
ψ Up,μ

ϕ

)
p,μ

= dν(ψ Up,μ
ϕ ;S p,μ

ϕ ) = inf
Fn∈Fn

sup
f∈ψ Up,μ

ϕ

inf
u∈Fn

‖f − u‖p,μ, ν = 0, 1, . . . ,
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are the Kolmogorov widths of the sets ψ Up,μ
ϕ in the space Sp,μ

ϕ . Then, for any p ∈ [1,∞) and n ∈ N, the
following equalities are true:

dδn−1(ψ Up,μ
ϕ ) p,μ = dδn−1+1(ψ Up,μ

ϕ ) = . . . = dδn−1(ψ Up,μ
ϕ ) p,μ = εn,

where δs and εs, s = 1, 2, . . . , are elements of the characteristic sequences δ(ψ) and ε(ψ) of the system ψ

and δ0 = 0.

Now assume that, along with the numbers p and q and the sequence μ = {μk}∞k=1, a sequence λ = {λk}∞k=1

of nonnegative numbers among which at least one number is not equal to zero is given. On the basis of the space
X and system ϕ, we construct the sets Sp,μ

ϕ and Sq,λ
ϕ . If 0 < q ≤ p and the sequences λ and μ coincide, then

inclusions (4.11) and (4.12) are true. It is also clear that, for any p ∈ (0,∞), we have

S p,λ
ϕ ⊂ S p,μ

ϕ ,

provided that

λk ≥ Cμk ∀k ∈ N,

where C is an arbitrary positive constant. Therefore, the following inclusion is true:

S q,λ
ϕ ⊂ S p,μ

ϕ ∀p, q, 0 < q ≤ p, λk ≥ Cμk ∀k ∈ N.

Let us establish analogs of Theorems 4.1 and 4.2 in the case where the approximated elements belong to the
space S q,λ

ϕ and the approximation is sought in the space S p,μ
ϕ . In this case, we also construct approximating

aggregates according to formulas (4.8), but, as the sequence ψ appearing in the definition of the domains gψ
n and

the sequence ε(ψ), we use the sequence

ψ′ = {ψ′
k}∞k=1 =

{
ψk

μk

λk

}∞

k=1

, (4.15)

where the numbers ψk, k ∈ N, are the same as in the definition of the approximated sets ψ U q,λ
ϕ .

Theorem 4.1′. Suppose that ψ = {ψk}∞k=1, μ = {μk}∞k=1, and λ = {λk}∞k=1 are fixed sequences that
satisfy the condition

lim
k→∞

ψk
μk

λk
= 0. (4.16)

Then, for any n ∈ N and 0 < q ≤ p, the following relations are true:

En(ψ U q,λ
ϕ )ψ′,p,μ ≤ En(ψ U q,λ

ϕ )ψ′,p,μ ≤ ε′n, (4.17)

where

En(ψ U q,λ
ϕ )ψ′,p,μ = sup

f∈ψ Uq,λ
ϕ

En(f)ψ′,p,μ,
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En(f)ψ′,p,μ = inf
ck

∥∥∥∥∥f −
∑

k∈gψ′
n−1

ck ϕk

∥∥∥∥∥
p,μ

,

En(ψ U q,λ
ϕ )ψ′,p,μ = sup

f∈ψ Uq,λ
ϕ

En(f)ψ′,p,μ,

En(f)ψ′,p,μ = ‖f − Sn−1(f)ϕ,ψ′‖ p,μ,

(4.18)

and ε′n and gψ′
n−1 are terms of the characteristic sequence of system (4.15). If, in addition, conditions (4.14) are

satisfied, then the inequality signs in (4.17) are replaced by the equality signs.

In this case, the following analog of Theorem 4.2 holds for the Kolmogorov widths:

Theorem 4.2′. Suppose that the systems ψ = {ψk}∞k=1 and μ = {μk}∞k=1 satisfy conditions (4.6) and
(4.14). Then, for any sequence λ = {λk}∞k=1 that satisfies condition (4.16), the following equalities hold for any
p ∈ [1,∞) and n ∈ N:

dδ′n−1
(ψ Up,λ

ϕ ) p,μ = dδ′n−1+1(ψ Up,λ
ϕ )p,μ = . . . = dδ′n−1(ψ Up,λ

ϕ ) p,μ = ε′n, (4.19)

where δ′s and ε′s, s = 1, 2, . . . , are elements of the characteristic sequences δ(ψ′) and ε(ψ′) of system (4.15)
and δ′0 = 0.

4.5. Quantities Dn(ψ Uq,λ
ϕ )p,μ . Let x = {xk}∞k=1 be an arbitrary sequence of complex numbers and

let ε(x) = {εk(x)}∞k=1, g(x) = {gk(x)}∞k=1, and δ(x) = {δk(x)}∞k=1 be its characteristic sequences. By
x̄ = {x̄k}∞k=1 we denote the rearrangement of the sequence {|xk|}∞k=1 in decreasing order. It is clear that the
values x̄k, k ∈ N, can be determined by the relations

x̄k = εn(x), k ∈ (δn−1(x), δn(x)], n ∈ N, δ0 = 0.

In this notation, equality (4.19) takes the form

dn(ψ Up,λ
ϕ ) p,μ = ψ̄′

n+1, n ∈ N, (4.19′)

where ψ̄′
n is the nth term of the sequence ψ̄′. Further, let γn be an arbitrary collection of n natural numbers and

let Fn be the set of all polynomials of the form

Pγn =
∑
k∈γn

ck ϕk, (4.20)

where ck are certain complex numbers. By virtue of the definition of width and relation (4.19′), we always have

inf
γn

sup
f∈ψ Up,λ

ϕ

inf
Pγn∈Fn

‖f − Pγn‖p,μ ≥ ψ̄′
n+1. (4.21)
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It follows from Theorem 4.1′ that if conditions (4.14) are satisfied, then relation (4.21) is, in fact, an equality. In
this connection, in the notation introduced, for any subset N ⊂ X we put

Dn(N)p,μ = inf
γn

sup
f∈N

inf
Pγn∈Fn

‖f − Pγn‖ p,μ. (4.22)

Then the relation proved above can be rewritten in the form

Dn(ψ U q,λ
ϕ ) p,μ = ψ̄′

n+1, p = q.

[It is clear that the quantity Dn(ψ U q,λ
ϕ ) corresponds to the quantity defined by (3.5).]

It turns out that this relation remains true for 0 < q < p. More exactly, the following theorem is true:

Theorem 4.3. Let ψ = {ψk}∞k=1, μ = {μk}∞k=1, and λ = {λk}∞k=1 be arbitrary systems of numbers that
satisfy the condition

lim
k→∞

ψk
μk

λk
= 0, (4.23)

let γn be an arbitrary collection of n natural numbers, and let q and p be arbitrary positive numbers such that
0 < q ≤ p. Then the following relations holds for any n ∈ N :

Dn(ψ U q,λ
ϕ ) p,μ = inf

γn

sup
f∈ψ Uq,λ

ϕ

inf
Pγn∈Fn

‖f − Pγn‖p,μ = ψ̄′
n+1, (4.24)

where ψ̄′
n+1 is the (n + 1)th term of the sequence ψ̄′ = {ψ̄k}∞k=1 that is the rearrangement of the sequence

|ψ′
k| =

∣∣∣∣ψk μk

λk

∣∣∣∣ , k = 1, 2, . . . ,

in decreasing order.

Theorems 4.1–4.3 were proved in [20]. For μk = λk ≡ 1, these statements were established in [14–16]. It
was shown in [20] that the inner lower bound in (4.24) is realized by polynomials of the form (4.20) for ck = f̂(k),
and the outer lower bound is realized by the set γ∗

n = {ik}n
k=1, where the values ik, k = 1, n, are such that

|ψ′
ik
| = ψ′

k. Therefore, the following statement is true:

Theorem 4.3′. Suppose that all conditions of Theorem 4.3 are satisfied. Then the following relations hold for
any n ∈ N :

Dn(ψ U q,λ
ϕ ) p,μ = sup

f∈ψ Uq,λ
ϕ

∥∥∥∥∥∥f −
∑
k∈γ∗

n

f̂(k)ϕk,

∥∥∥∥∥∥
p,μ

= ψ̄′
n+1, (4.25)

where γ∗
n = {ik}n

k=1 and the values ik, k = 1, n, are such that

∣∣∣∣ψik μik

λik

∣∣∣∣ = ψ̄′
k.
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Combining (4.25) and (4.19′), we conclude that the values of the widths dn(ψ Up,λ
ϕ ) p,μ in the case of ap-

proximation of elements f ∈ ψ Up,λ
ϕ in the space Sp,μ

ϕ are realized by Fourier sums constructed exactly for the
domains γ∗

n.

Note that, in the case of approximation of periodic functions by trigonometric polynomials, the quantities
Dn(N)p,μ are associated with so-called trigonometric widths. For this reason, we can call these quantities, e.g.,
basis widths of order n of the set N in the space Sp,μ

ϕ . Then it follows from Theorem 4.3′ that the values of the
basis widths Dn(ψ U q,λ

ϕ ) p,μ for 0 < q ≤ p are also realized by Fourier sums constructed for the domains γ∗
n.

4.6. Best Approximations of q-Ellipsoids in the Spaces Sp,μ
ϕ for q > p . Let us obtain an analog of

Theorem 4.1′ (and, hence, of Theorem 4.1) for 0 < p < q < ∞. In this case, conditions (4.16) are insufficient for
the inclusion

ψ U q,λ
ϕ ⊂ Sp,μ

ϕ .

This inclusion is now guaranteed by the conditions

∞∑
k=1

|ψ′
k|p q/(q−p) < ∞, ψ′

k = ψk
μk

λk
, k ∈ N, (4.26)

which can easily be verified by using the Hölder inequality.

Theorem 4.4. Let ψ, μ, and λ be sequences and let p and q be nonnegative numbers (q > p > 0) that
satisfy condition (4.26).

Then, for any natural n, the following equality is true:

En(ψ U q,λ
ϕ )ψ′,p,μ = En(ψ U q,λ

ϕ )ψ′,p,μ =

⎛⎝ ∞∑
k=δ′n−1+1

(ψ̄′
k)

p q
q−p

⎞⎠
q−p
p q

, (4.27)

where ψ̄′ = {ψ̄k}∞k=1 is a sequence for which

ψ̄′
k = ε′k, δ′n−1 < k ≤ δ′n, n ∈ N,

and ε′n and δ′n are terms of the characteristic sequences ε(ψ′) and δ(ψ′).

For μk = λk ≡ 1, this theorem was proved in [18], Sec. 11.8. The reasonings presented there, in fact, can be
used in the general case.

Proof. Since the first equality in (4.27) follows from Proposition 4.1, it suffices to verify the validity of the
second equality.

Let ε′n, δ′n, and g′n = gn(ψ′) = {k ∈ N : |ψ′
k| ≥ ε′n} be the characteristic sequences of the system ψ′ and

let

Sn(f)ϕ,ψ′ = S
gψ′

n
=

∑
k∈gψ′

n

f̂ϕ(k)ϕk

be the polynomials constructed according to (4.8) for elements f ∈ ψU q,λ
ϕ . Using relations (4.9), we get
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Ep
n(f)ψ′,p,μ =

∥∥f − Sn−1(f)ϕ,ψ′
∥∥p

p,μ
=

∑
k/∈gψ′

n−1

|μk f̂ϕ(k)|p

=
∑

k/∈gψ′
n−1

|ψk|p|μk f̂ ψ
ϕ (k)|p =

∑
k/∈gψ′

n−1

|ψ′
k|p|f̂ ψ

ϕ (k)|pλp
k. (4.28)

Let ik, k = 1, 2, . . . , denote natural numbers chosen from the condition

|ψ′
ik
| = ψ̄′

k, where ψ̄k = ε′k for k ∈ (δ′n−1, δ
′
n]. (4.29)

Then we can rewrite (4.28) in the form

Ep
n(f)ψ′,p,μ =

∑
k=δ′n−1+1

∣∣∣ψ̄′
k f̂ ψ

ϕ (ik)λik

∣∣∣p . (4.30)

We set

mk = |f̂ ψ
ϕ (ik)λik |q. (4.31)

In this case,

λp
ik
|f̂ ψ

ϕ (ik)|p = mk
p/q

and, hence,

Ep
n(f)ψ′,p,μ =

∞∑
k=δ′n−1+1

(ψ̄′
k)

p mr
k, r =

p

q
.

If f ∈ ψ U q,λ
ϕ , then

∞∑
k=1

|λk f̂ ψ
ϕ (k)|p ≤ 1.

Taking relations (4.18), (4.31), and (4.30) into account, we get

Ep
n(ψ U q,λ

ϕ )ψ′,p,μ ≤ sup

{ ∞∑
k=δ′n−1+1

(ψ̄′
k)

p mr
k, r =

p

q
,

∞∑
k=1

mk ≤ 1

}
. (4.32)

Setting (ψ̄′
k)

p = αk, we rewrite condition (4.26) in the form

∞∑
k=1

α
1

1−r

k < ∞, αk > 0 ∀k ∈ N. (4.33)
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Consequently, the determination of the right-hand side of (4.32) reduces to the solution of the extremal problem

∞∑
k=δ′n−1+1

αk xr
k → sup (4.34)

under the conditions xk ≥ 0 and
∑

k=δn−1+1

xk = 1, and the numbers αk form a nonincreasing sequence and

satisfy condition (4.33).
The solutions x̄k of this problem were obtained in [18], Sec. 11.8. They have the form

x̄k = α
1

1−r

k

⎛⎝ ∞∑
i=δ′n−1+1

α
1

1−r

i

⎞⎠−1

, k = δ′n−1 + 1, δ′n−1 + 2, . . . . (4.35)

Combining relations (4.32) – (4.35), we get

Ep
n(ψ U q,λ

ϕ )ψ′,p,μ ≤
∞∑

k=δ′n−1+1

αkx̄
r
k =

⎛⎝ ∞∑
k=δ′n−1+1

α
1

1−r

k

⎞⎠1−r

=

⎛⎝ ∞∑
k=δ′n−1+1

(ψ̄′
k)

p q
q−p

⎞⎠
q−p
p q

.

To complete the proof of the theorem, it remains to show that this relation is, in fact, an equality. To this end, it
suffices to show that, for any ε > 0, the set ψ U q,λ

ϕ contains an element fε for which

En(fε)ψ′,p,μ >

⎛⎝ ∞∑
k=δ′n−1+1

(ψ̄′
k)

p q
q−p

⎞⎠
q−p
p q

− ε. (4.36)

We construct this element using the procedure proposed in [18], Sec. 11.8.
Let

h =
∞∑

k=1

cik ϕik ,

where the numbers ik are chosen according to (4.29) and the numbers cik are such that

cq
ik

λq
ik

=

⎧⎪⎨⎪⎩
0, k = 1, 2, . . . , δ′n−1,

α
1

1−r

k σ−1
2 (δ′n−1), k > δ′n−1,

σ2(s) =
∞∑
i=s

α
1

1−r

i .

It is clear that

‖h‖q,λ =
∞∑

k=1

cq
ik

λq
ik

= 1. (4.37)
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Now let ε be an arbitrary positive number and let Nε be so large that, for all n > Nε, the following inequality is
true:

σ−r
2 (δ′n−1)

∞∑
k=Nε+1

α
1

1−r

k < ε.

By virtue of (4.37), the element

hε =
Nε∑
k=1

cik ϕik

belongs to U q
ϕ. Therefore, the element fε = J ψ hε belongs to ψ U q

ϕ. Calculating the value of En(fε)ψ′,p,μ

according to (4.9), we establish the validity of estimate (4.36). This completes the proof of Theorem 4.4.

4.7. Quantities Dn(ψ Uq,λ
ϕ )p,μ for q > p > 0 . Let us find analogs of Theorems 4.3 and 4.3′ for

q > p > 0. As before, let γn be an arbitrary collection of n natural numbers, let Fn be the set of all polynomials
of the form (4.20), let

Eγn(f) p,μ = inf
Pγn∈Fn

‖f − Pγn‖p,μ, f ∈ Sp,μ
ϕ , (4.38)

be the best approximation of an element f by polynomials constructed on the basis of the given collection γn of
n basis vectors, let

Eγn(f)p,μ = ‖f − Sγn(f)‖p,μ, Sγn(f) =
∑
k∈γn

f̂ϕ(k) ϕk, (4.38′)

Eγn(N) p,μ = sup
f∈N

Eγn(f) p,μ

be an upper bound of the quantities Eγn(f) p,μ on a certain subset N from Sp,μ
ϕ , and let

Eγn(N) = sup
f∈N

Eγn(f) p,μ.

In this notation, the quantity Dn(ψ U q,λ
ϕ ) p,μ defined by (4.22) has the form

Dn(ψ U q,λ
ϕ ) p,μ = inf

γn

Eγn(ψ U q,λ
ϕ ) p,μ. (4.39)

We introduce additional notation. If ψ = {ψk}∞k=1 = {ψ(k)}∞k=1 is a certain system of complex numbers,
μ = {μk}∞k=1 and λ = {λk}∞k=1 are systems of nonnegative numbers, and γn is a fixed collection of n natural
numbers, then we set

ψγn = {ψγn(k)}∞k=1,

where

ψγn(k) =

⎧⎨⎩0, k ∈ γn,

ψk = ψ(k), k /∈ γn,
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ψ′ = {ψ′(k)}∞k=1, ψ′(k) = ψ′
k = ψk

μk

λk
, (4.40)

ψ′
γn

= {ψ′
γn

(k)}∞k=1, (4.41)

and

ψ′
γn

(k) =

⎧⎨⎩0, k ∈ γn,

ψ′
k, k /∈ γn.

In the notation introduced, the following statement is true:

Theorem 4.5. Suppose that numbers p and q and sequences ψ, μ, and λ are such that q > p > 0 and
condition (4.26) is satisfied.

Then, for any natural n, the following equality is true:

Eγn(ψ U q,λ
ϕ ) p,q = Eγn(ψ U q,λ

ϕ ) p,q =

( ∞∑
k=1

(ψ̄′
γn

(k))
p q

q−p

)q−p
p q

, (4.42)

where ψ̄′
γn

(k), k ∈ N, is the rearrangement of the sequence |ψ′
γn

(k)|, k ∈ N, in decreasing order.

Proof. First, note that equality (4.27) is a special case of (4.42). Indeed, let gψ′
n−1 be the (n − 1)th term of

the characteristic sequence of the domains gψ′

k for the system ψ′, i.e.,

gψ′
n−1 = {k ∈ N : |ψ′(k)| ≥ εn−1}, (4.43)

and let n′ df= δ′n−1 = |gψ′
n−1| be the number of natural numbers contained in gψ′

n−1. We choose the collection γ ∗
n′

from the condition γ ∗
n′ = gψ′

n−1. According to (4.40) and (4.41), we have

ψ̄′
γ∗

n′
(k) = ψ̄′(k + n′), k = 1, 2, . . . . (4.44)

Therefore, by virtue of (4.43), (4.44), and (4.27), we get

Eγ∗
n′ (ψ U q,λ

ϕ ) p,q = Eγ∗
n′ (ψ U q,λ

ϕ ) p,q =

( ∞∑
k=n′+1

(ψ̄′(k))
p q

q−p

)q−p
p q

= En(ψ U q,λ
ϕ )ψ′ p,μ.

Thus,

Eγ∗
δn−1

(ψ U q,λ
ϕ ) p,q = Eγ∗

δn−1
(ψ U q,λ

ϕ ) p,q = En(ψ U q,λ
ϕ )ψ′ p,μ = En(ψ U q,λ

ϕ )ψ′ p,μ.

The proof of this theorem is analogous to the proof of Theorem 4.4. Therefore, we only dwell on its key points.
By virtue of Proposition 4.1, it suffices to prove only the second equality in (4.42). To this end, we first write the
following analog of equality (4.28) by using (4.38′) and (4.41):
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Ep
γn

(f) p,μ =
∑
k/∈γn

|μkf̂ϕ(k)|p =
∑
k/∈γn

|ψ′
k|p|f̂ ψ

ϕ (k)|p λp
k =

∞∑
k=1

|ψ′
γn

(k)|p |f̂ ψ(k)|p λp
k (4.45)

where ik, k ∈ 1, 2, . . . , denote natural numbers chosen from the condition

ψ′
γn

(ik) = ψ̄′
γn

(k), k = 1, 2, . . . .

Then we rewrite (4.45) in the form

Ep
γn

(f) p,μ =
∞∑

k=1

|ψ̄′
γn

(k) f̂ ψ
ϕ (ik)λik |p.

Performing substitution (4.31), we obtain the following analog of inequality (4.32):

Ep
γn

(ψ U q,λ
ϕ ) p,μ ≤ sup

{ ∞∑
k=1

(ψ̄′
γn

(k))p mr
k, r =

p

q
,

∞∑
k=1

mk ≤ 1

}
.

To complete the proof of the theorem, it suffices to repeat the corresponding arguments used in the proof of Theo-
rem 4.4.

Considering lower bounds of both sides of equality (4.42) over all possible collections γn of n natural num-
bers, we conclude that the least lower bound of the right-hand of (4.42) is realized by the collection γ∗

n defined by
the relation

γ∗
n = {ik ∈ N : |ψ′

ik
| = |ψ̄′

ik
|, k = 1, 2, . . . , n}, n = 1, 2, . . . .

According to (4.40) and (4.41), we have

ψ̄′
γ∗

n
(k) = ψ̄′(k + n), k = 1, 2, . . . .

Therefore, by virtue of (4.39), we get

Dn(ψ U q,λ
ϕ ) p,μ =

( ∞∑
k=1

(ψ̄′
γ∗

n
(k))

p q
q−p

)q−p
p q

=

( ∞∑
k=n+1

(ψ̄′(k))
p q

q−p

)q−p
p q

.

Thus, the following statement is true:

Theorem 4.6. Suppose that numbers p and q and sequences ψ, μ, and λ are such that q > p > 0 and
condition (4.26) is satisfied. Then, for any natural n, the following equality holds:

Dn(ψ U q,λ
ϕ ) p,μ =

( ∞∑
k=n+1

(ψ̄′
k)

p q
q−p

)q−p
p q

, (4.46)

where ψ̄′
k, k ∈ N, is the rearrangement of the sequence {|ψ′

k|}∞k=1 in decreasing order.
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Note that, in the general case, ψ̄′
k, k ∈ N, is a steplike sequence. Therefore, by virtue of equality (4.24), the

quantity Dn(ψ U q,λ
ϕ ) p,μ has the same behavior for p ≥ q > 0. If p < q, then, according to (4.46), this quantity

strictly decreases as the parameter n increases.

4.8. Best n-Term Approximations. Let Sp,μ
ϕ = Sp,μ

ϕ (X) be the space defined by the space X, system ϕ,

number p > 0, and sequence μ. Further, let f ∈ Sp,μ
ϕ and let Eγn(f)p,μ be the quantity of the best approximation

of the element f by polynomials constructed on the basis of the given collection γn of n basis vectors defined
by (4.38). The quantity

en(f)p,μ = inf
γn

E γn(f)p,μ (4.47)

is called the best n-term approximation of the element f in the space Sp,μ
ϕ , and the quantity

en(N)p,μ = sup
f∈N

en(f)p,μ (4.48)

is called the best n-term approximation of a subset N of Sp,μ
ϕ in the space Sp,μ

ϕ . It is clear that the quantities
en(f)p,μ and en(N)p,μ correspond to quantities (3.1) and (3.2).

Apparently for the first time, quantities analogous to those defined by equality (4.48) were considered by
Stechkin in [37]. Later, they were studied in the theory of approximation of periodic functions by many authors
(see, e.g., [38–50]).

As sets N, we consider the sets ψ U q,λ
ϕ of ψ-integrals of all elements from the unit balls in the spaces S q,λ

ϕ

under the conditions that guarantee the inclusion

S q,λ
ϕ ⊂ S p,μ

ϕ .

Theorem 4.7. Let p and q be real numbers such that p ≥ q > 0 and let ψ, μ, and λ be sequences that
satisfy condition (4.23). Then, for any n ∈ N, the following equality is true:

ep
n(ψ U q,λ

ϕ )p,μ = sup
l>n

(l − n)

(
l∑

k=1

(ψ̄′
k)

−q

)− p
q

= (l∗ − n)

(
l∗∑

k=1

(ψ̄′
k)

−q

)− p
q

,

where ψ̄′ = {ψ̄′
k}∞k=1 is the rearrangement of the sequence

|ψ′
k| =

∣∣∣∣ψk μk

λk

∣∣∣∣ , k = 1, 2, . . . ,

in decreasing order and l∗ is a certain natural number.

This theorem and Theorem 4.8 for μk = λk ≡ 1, k ∈ N, were proved in [14, 15] (see also [18]). In the
general case, they were proved in [20]. An important role in the proof of Theorem 4.7 is played by the following
statement proved in [14] (see also [18]):

Lemma 4.1. Let α = {αk}∞k=1 be a nonincreasing sequence of positive numbers αk ≥ 0, k ∈ N, for
which

lim
k→∞

αk = 0
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and let m = {mk}∞k=1 be a sequence of nonnegative numbers mk ≥ 0, k ∈ N, that satisfies the condition

|m| =
∞∑

k=1

mk ≤ 1.

Suppose that r is an arbitrary number, r ≥ 1, and

S(r)(m) =
∞∑

k=1

αk mr
k, S(r)

γn
(m) =

∑
k∈γn

αk mr
k,

where γn is an arbitrary collection of n natural numbers,

En(m) = Eα,r
n (m) = S(r)(m) − sup

γn

S(r)
γn

(m),

and

En = Eα,r
n = sup

|m|≤1
Eα,r

n (m).

Then, for any natural n, there exists a number l∗ > n such that

En = (l∗ − n)

(
l∗∑

k=1

α
−1/r
k

)−r

.

The number l∗ is determined by the equality

sup
l>n

(l − n)

(
l∑

k=1

α
−1/r
k

)−r

= (l∗ − n)

(
l∗∑

k=1

α
−1/r
k

)−r

.

Moreover, for the sequence m′ = {m′
k}∞k=1, where

m′
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
−1/r
k

(
l∗∑

i=1

α
−1/r
i

)−r

, k = 1, 2, . . . , l∗,

0, k > l∗,

the following equality is true:

En(m′) = (l∗ − n)

(
l∗∑

i=1

α
−1/r
i

)−r

.

For q < p, the following statement is true:



84 A. I. STEPANETS

Theorem 4.8. Let p and q be arbitrary numbers such that q > p and let ψ, μ, and λ be sequences for
which condition (4.26) is satisfied. Then, for any n ∈ N, the following equality is true:

ep
n(ψ U q,λ

ϕ )p,μ = σ̄
− p

q

1

[
(s − n)

q
q−p + σ̄

q
q−p

1 σ̄2

]q−p
q

,

where

σ̄1 = σ̄1(s) =
s∑

k=1

(ψ̄′
k)

−q, σ̄2 = σ̄2(s) =
∞∑

k=s+1

(ψ̄′
k)

−pq/(q−p),

ψ̄′ = {ψ̄′
k}∞k=1 is the rearrangement of the sequence

|ψ′
k| = |ψk

μk

λk
|, k = 1, 2, . . . ,

in decreasing order, and the number s is chosen from the condition

(ψ̄′
s)

−q ≤ 1
s − n

s∑
k=1

(ψ̄′
k)

−q < (ψ̄′
s+1)

−q.

The number s always exists and is unique.

Proof. The proof of this theorem is based on the following analog of Lemma 4.1 proved in [16] (see also
[18]):

Lemma 4.2. Let α = {αk}∞k=1 be a nonincreasing sequence of positive numbers αk ≥ 0, k ∈ N, such
that, for a given r ∈ (0, 1), one has ∑

k

α
1

1−r

k < ∞

and let m = {mk}∞k=1 be a sequence of nonnegative numbers mk ≥ 0, n ∈ N, that satisfies the condition

|m| =
∞∑

k=1

mk ≤ 1.

Let S(r)(n1), S
(r)
γn (m), En(m), and En be the quantities defined in Lemma 4.1.

Then, for any natural n, the following relation is true:

En = En(α; r) = σ−r
1 (s)

[
(s − n)

1
1−r + σ

1
1−r

1 σ2(s)
]1−r

,

where

σ1(s) =
s∑

k=1

α
−1/r
k , σ2(s) =

s∑
k=s+1

α
1

1−r

k ,
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and the number s is chosen from the condition

a−1/r
s ≤ σ1(s)

s − n
≤ α

−1/r
s+1 , s > n.

The number s always exists and is unique.
The upper bound in the relation

En = sup
|m|≤1

En(m)

is realized by the sequence m = {mk}∞k=1, where

mk =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
ts
αk

)1/r

, k = 1, 2, . . . , s,

1 − t
1/r
s σ1(s)

σ2(s)
α

1/(1−r)
k , k > s,

ts =

(
σ1(s) +

(
σ1(s)
s − n

)1/(1−r)

σ2(s)

)−r

.

4.9. Best n-Term Approximations with Restrictions. Let Γn be the set of all collections γn of n natural
numbers.

In this case, we can represent the quantity en(f)p,μ defined by (4.47) in the form

en(f)p,μ = inf
γn∈Γn

Eγn(f)p,μ.

Parallel with en(f)p,μ, one can also consider the quantities

en(f ; Γ′
n)p,μ = inf

γn∈Γ′
n

Eγn(f)p,μ,

where Γ′
n is a certain proper subset of Γn. In this connection, it is convenient to call the quantity en(f)p,μ the

absolute best n-term approximation and to call the quantity en(f ; Γ′
n)p,μ the best n-term approximation with

restrictions, keeping in mind that the term “restriction” stands for the choice of the subset Γ′
n.

As Γ′
n, we consider two subsets Γ(1)

n and Γ(2)
n . Let Γ(1)

n denote the set of collections

γ(1)
n = {in + 1, in + 2, . . . , (i + 1)n}, i = 0, 1, . . . ,

and let Γ(2)
n denote the set of collections

γ(2)
n = {i + 1, i + 2, . . . , i + n}, i = 0, 1, . . . .

It is clear that we always have

Γ(1)
n ⊂ Γ(2)

n ⊂ Γn,
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whence

en(f)p,μ ≤ en(f ; Γ(2)
n )p,μ ≤ en(f ; Γ(1)

n )p,μ.

Therefore, by setting

en(N; Γ′
n) = sup

f∈N

en(f ; Γ′
n),

where N is a certain subset of Sp,μ
ϕ , we obtain the estimates

en(N)p,μ ≤ en(N; Γ(2)
n )p,μ ≤ en(N; Γ(1)

n )p,μ.

As before, we use the sets ψ U q,λ
ϕ of ψ-integrals of all elements of the unit ball U q,λ

ϕ in the space Sq,λ
ϕ as the

sets N.

First, we consider the case where p ≥ q > 0. The following theorem is true:

Theorem 4.9. Let p and q be real numbers such that p ≥ q > 0 and let ψ, μ, and λ be sequences for
which the quantities

|ψ′
k| =

∣∣∣∣ψkμk

λk

∣∣∣∣ , k = 1, 2, . . . , (4.49)

do not increase and tend to zero. Then, for any n ∈ N, the following equalities are true:

en(ψ U q,λ
ϕ ; Γ(1))p,μ = en(ψ U q,λ

ϕ ; Γ(2))p,μ = (l∗ − 1)1/p

(
l∗∑

k=1

|ψ′
(k−1)n+1|−q

)−1/q

,

where l∗ is a natural number for which

sup
l>1

(l − 1)1/p

(
l∑

k=1

|ψ′
(k−1)n+1|−q

)−1/q

= (l∗ − 1)

(
l∗∑

k=1

|ψ′
(k−1)n+1|−q

)−1/q

.

The number l∗ always exists.

Proof. For μk ≡ λk ≡ 1, k ∈ N, this theorem was, in fact, proved in [20]. In the general case, it was proved
in [51]. Its proof is based on the arguments of [20] and the following statement proved therein:

Lemma 4.3. Let α = {αk}∞k=1 be a nonincreasing sequence of positive numbers for which

lim
k→∞

αk = 0 (4.50)

and let m = {mk}∞k=1 be a sequence of nonnegative numbers such that

|m| =
∞∑

k=1

mk ≤ 1. (4.51)

(In this case, one has α ∈ A and, hence, m ∈ M.)
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Suppose that, for each n ∈ N, one has

Fn,r(α, m) =
∞∑

k=1

αk mr
k − sup

γn∈Γ
(1)
n

∑
k∈γn

αk mr
k, α ∈ A, m ∈ M, r > 0,

and

σn,r(α) = sup
m∈M

Fn,r(α, m).

Then, for any r ≥ 1 and n ∈ N, the following equality is true:

σn,r(α) = sup
q>1

(q − 1)

(
q∑

i=1

α
−1/r
(i−1)n+1

)−r

. (4.52)

The upper bound on the right-hand side of (4.52) is always attained for a certain value q∗. Moreover, for the
sequence m′ = {m′

k}∞k=1 from M, where

m′
k =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α
−1/r
(i−1)n+1

(
q ∗∑
j=1

α
−1/r
(j−1)n+1

)−1

, k = (i − 1)n + 1, i = 1, 2, . . . , q ∗,

0 for the other values of k,

the following equality holds:

Fn,r(α, m′) = (q ∗ − 1)

⎛⎝ q ∗∑
i=1

α
−1/r
(i−1)n+1

⎞⎠−r

.

For q > p > 0, the following statement is true:

Theorem 4.10. Let p and q be real numbers such that q > p > 0 and let ψ, μ, and λ be sequences
for which quantities (4.49) do not increase, tend to zero, and satisfy condition (4.26). Then, for any n ∈ N, the
following equality holds:

ep
n(ψ U q,λ

ϕ ; Γ(1)
n )p,μ = σ̃

− p
q

1 (s) [(s − 1)
q

q−p + σ̃
p

q−p

1 (s) σ̃2(s)]
q−p

q ,

where

σ̃1(s) =
s∑

k=1

⎛⎝ k n∑
i=(k−1)n+1

|ψ′
i|

p q
q

⎞⎠−
q−p

q

,

σ̃2(s) =
∞∑

k=s n+1

|ψ′
k|

p q
q−p .
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The number s is chosen from the condition

⎛⎝ s n∑
k=(s−1)n+1

|ψ′
k|

p q
q−p

⎞⎠−
q−p

p

≤ σ̃1(s)
s − 1

<

⎛⎝ (s+1)n∑
k=s n+1

|ψ′
k|

p q
q−p

⎞⎠−
q−p

p

.

The number s always exists and is unique.

This theorem was proved in [51]. The proof is based on the following analog of Lemma 4.3:

Lemma 4.4. Let α = {αk}∞k=1 be a nonincreasing sequence of positive numbers for which condition (4.50)
is satisfied and, for a given r ∈ (0, 1), one has

∞∑
k=1

α
1

1−r

k < ∞

and let m = {mk}∞k=1 be a sequence of nonnegative numbers for which condition (4.51) is satisfied. (In this case,
one has α ∈ Ar and, as before, m ∈ M.)

Suppose that, for each n ∈ N,

Fn,r(α, m) =
∞∑

k=1

αkm
r
k − sup

γn∈Γ
(1)
n

∑
k∈γn

αkm
r
k, α ∈ Ar, m ∈ M, r ∈ (0, 1),

and

σn,r(α) = sup
m∈M

Fn,r(α, m). (4.53)

Then, for any r ∈ (0, 1) and n ∈ N, the following equality is true:

σn,r(α) = σ̄−r
1 (s)

[
(s − 1)

1
1−r + σ̄

r
1−r

1 (s) σ̄2(s)
]1−r

,

where

σ̄1(s) = σ̄1(α; s) =
s∑

k=1

⎛⎝ k n∑
i=(k−1)n+1

α
1

1−r

i

⎞⎠− 1−r
r

,

σ̄2(s) = σ̄2(α; s) =
∞∑

k=s n+1

α
1

1−r

i ,

and the number s is chosen from the condition

a
− 1

r
s ≤ σ̄1(s)

s − 1
< a

− 1
r

s+1, aj =

⎛⎝ j n∑
i=(j−1)n+1

α
1

1−r

i

⎞⎠1−r

, j = 1, 2, . . . .
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The number s always exists and is unique.
The upper bound in (4.53) is realized by the sequence m∗ for which

m ∗
k = μ ∗

i α
1

1−r

k a
− 1

1−r

i , (i − 1)n + 1 ≤ k ≤ i n, i = 1, 2, . . . ,

where

μ ∗
i =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
ts
ai

)1/r

, i = 1, 2, . . . , s,

1 − t
1
r
s σ̄1(s)

σ̄2(s)
a

1
1−r

i , i > s,

ts =

⎛⎝σ̄1(s) +

(
σ̄1(s)
s − 1

) 1
1−r

σ̄2(s)

⎞⎠−r

.

Results concerning the quantity en

(
ψ U q,λ

ϕ ; Γ(2)
n

)
p,μ

for q > p > 0 are given in [51].

5. Approximation of Individual Elements in the Spaces Sp
Φ

In Sec. 4 , we have considered extremal problems for various approximation characteristics of the sets ψ Up,μ
ϕ .

In this section, we present results concerning the best approximations of individual elements from the spaces Sp
Φ.

As in Sec. 4.3, let

En(f) = En(f)ψ,p,μ = inf
ck

∥∥∥∥∥f −
∑

k∈gψ
n−1

ck ϕk

∥∥∥∥∥
p,μ

(5.1)

be the best approximation of an element f ∈ ψ Sp,μ
ϕ by polynomials constructed for the domains gψ

n−1. In the
case where the sequence μ is such that μk ≡ 1, we omit the index μ in all objects considered. In this notation,
the following statements were proved in [16]:

Theorem 5.1. Suppose that f ∈ Sp
ϕ, p > 0, and a sequence ψ = {ψk}∞k=1 satisfies condition (4.6). Then

the series

∞∑
k=2

( εp
k − εp

k−1)E
p
k(f)ψ,p

converges and, for any n ∈ N, the following equality is true:

Ep
n(f)ψ,p = εp

n Ep
n(fψ)ψ,p +

∞∑
k=n+1

(εp
k − εp

k−1)Ep
k(fψ)ψ,p, (5.2)

where the quantities En(x)ψ,p are determined by equality (5.1) and εk, k = 1, 2, . . . , are elements of the
characteristic sequence ε(ψ).
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Theorem 5.2. Suppose that f ∈ Sp
ϕ, p > 0, and a sequence ψ = {ψk}∞k=1 satisfies condition (4.6). Also

assume that

lim
k→∞

ε−1
k Ek(f)ψ,p = 0.

In order that

f ∈ Sp
ϕ,

it is necessary and sufficient that the series

∞∑
k=2

( ε−p
k − ε−p

k−1)E
p
k(f)ψ,p

be convergent. If this series converges, then the following equality holds for any n ∈ N :

Ep
n(f)ψ,p = ε−p

n Ep
n(fψ)ψ,p +

∞∑
k=n+1

(ε−p
k − ε−p

k−1)Ep
k(f)ψ,p,

where the quantities En(x)ψ,p and εk have the same sense as in Theorem 5.1.

Theorem 5.1 establishes the relationship between the best approximation of an element f and the best ap-
proximations of its derivatives. As is known, in approximation theory similar statements are usually called direct
theorems. In this sense, Theorem 5.2 is an inverse theorem: it establishes the existence of derivatives of an ele-
ment f on the basis of properties of the best approximation of this element and gives information about the best
approximation of these derivatives.

Taking into account that the quantities εn are strictly decreasing and using relation (5.2), we get

Ep
n(f)ψ,p ≤ εp

n Ep
n(fψ)ψ,p ∀f ∈ ψ Sp

ϕ ∀n ∈ N. (5.3)

Note that, by virtue of Proposition 4.1, we always have

lim
n→∞

Ep
n(fψ)ψ,p = 0.

On important subsets N of ψ Sp
ϕ, relation (5.3) gives an exact result. Consider one of these cases.

As N, we take the set ψ U q
ϕ for 0 < q < p. If f ∈ ψ U q

ϕ, then fψ ∈ U q
ϕ and, moreover, f ψ ∈ Up

ϕ.

Therefore, ‖f ψ‖p ≤ 1 and, hence, Ep
n(fψ)ψ,p ≤ 1. Consequently,

Ep
n(f)ψ,p ≤ εp

n ∀ f ∈ ψ U q
ϕ, 0 < q ≤ p. (5.4)

On the other hand, let k′ be an arbitrary point from the set gψ
n \ gψ

n−1 and let f∗ = ψk′ ϕk′ , (ψk′) 	= 0. Since

f ψ
∗ = ϕk′ , we have ‖f ψ

∗ ‖q = 1 for any q > 0. Therefore, f∗ ∈ ψ U q
ϕ for any q > 0. It is clear that

En(f∗)ψ,p = ‖f∗‖ϕ,p = ψk′ = εn. (5.5)
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Thus, combining relations (5.4) and (5.5) and setting

En(ψ U q
ϕ)ψ,p = sup

f∈ψ Uq
ϕ

En(f)ψ,p, En(ψ U q
ϕ)ψ,p = sup

f∈ψ Uq
ϕ

En(f)ψ,p,

we arrive at the following statement:

Theorem 5.3. Let ψ = {ψk}∞k=1 be a system of numbers that satisfies conditions (4.6) and (4.14). Then, for
any n ∈ N and 0 < q ≤ p < ∞, the following equalities are true:

En(ψ U q
ϕ)ψ,p = En(ψ U q

ϕ)ψ,p = εn,

where εn is the nth term of the characteristic sequence ε(ψ).

Note that this statement is a special case of Theorem 4.1.

6. Applications of the Results Obtained to Problems of Approximation of Periodic Functions
of Many Variables

Consider one possible concretization of the spaces Sp
ϕ = Sp

ϕ(X) for which one can deduce statements on
approximation of periodic functions from the general results obtained in Secs. 4 and 5.

Assume that Rm is an m-dimensional (m ≥ 1) Euclidean space, x = (x1, . . . , xm) are its elements, Zm is
the integer lattice in Rm (the set of vectors k = (k1, . . . , km) with integral coordinates), xy = x1y1+. . .+xmym,

|x| =
√

(xx), and, in particular, kx = k1x1 + . . . + kmxm, |k| =
√

k2
1 + . . . + k2

m.

Further, let L = L(Rm) be the set of all functions f(x) = f(x1, . . . , xm) 2π-periodic in each variable and
summable in the cube of periods Qm, where

Qm = {x : x ∈ Rm, −π ≤ xk ≤ π, k = 1, . . . , m}.

If f ∈ L, then S[f ] denotes the Fourier series of the function f in the trigonometric system

(2π)−m/2 eikx, k ∈ Z m, (6.1)

i.e.,

S[f ] = (2π)−m/2
∑

k∈Zm

f̂(k) eikx, f̂(k) = (2π)−m/2

∫
Qm

f(t) eiktdt. (6.2)

If functions equivalent with respect to the Lebesgue measure are assumed to be indistinguishable, then we can take
the space L(Rm) as X ; as the system ϕ we can take the trigonometric system τ = {τs}, s ∈ N, where

τs = (2π)−m/2 eiks x, ks ∈ Z m, s = 1, 2, . . . ,

which is obtained from system (1.6) by an arbitrary fixed enumeration of its elements. In this case, the scalar
product is defined in the following way:

(f, τs) = (2π)−m/2

∫
Qm

f(t) e−iks tdt = f̂(ks) = f̂τ (ks).
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For fixed p ∈ (0,∞), according to (1.6) we set

Sp
τ = Sp

τ (L(Rm)) =

{
f ∈ L(Rm)) :

∞∑
s=1

|f̂(ks)|p ≤ ∞
}

. (6.3)

The “ϕ-norm” in the space Sp
τ is introduced according to (1.7) as follows:

‖f‖p,τ =

( ∞∑
s=1

∣∣∣∣f̂(ks)
∣∣∣∣p

)1
p

. (6.4)

By virtue of equalities (6.3) and (6.4), the quantities ‖ · ‖p,τ and the spaces Sp
τ do not depend on the enumeration

of system (6.1). For this reason, in what follows, we set Sp
τ = Sp.

Now let ψ = {ψ(k)}k∈Zm be an arbitrary system of complex numbers (a multiple sequence). For functions
f ∈ L, parallel with (6.2) we consider the series

(2π)−m/2
∑

k∈Zm

ψ(k) f̂(k) eikx.

If this series for a given function f and a system ψ is the Fourier series for a function F from L, then we say
that F is the ψ-integral of the function f and write F (x) = J ψ(f ;x). It is sometimes convenient to call the
function f the ψ-derivative of the function F and write f(x) = Dψ(F ;x) = Fψ(x). The set of ψ-integrals of
all functions f ∈ L is denoted by Lψ. If N is a certain subset of L, then Lψ N denotes the set of ψ-integrals
of all functions from N. It is clear that if f ∈ Lψ, then the Fourier coefficients of the functions f and fψ are
connected by the relation

f̂(k) = ψ(k) f̂ ψ(k), k ∈ Zm.

As N, we consider the unit ball Up in the space Sp :

Up = {f : f ∈ Sp, ‖f‖p ≤ 1}.

In this case, we set Lψ Up = Lψ
p = Lψ

p (Rm). For the system ψ, we assume that

lim
|k|→∞

ψ(k) = 0. (6.5)

Note that if f ∈ LψSp and |ψ(k)| ≤ C, k ∈ Zm, C > 0, then f ∈ Sp, i.e., condition (6.5) always guarantees
the inclusion Lψ

p ⊂ Sp.

We define the characteristic sequences ε(ψ), g(ψ), and δ(ψ) as follows:

ε(ψ) = ε1, ε2, . . . is the set of the values of |ψ(k)|, k ∈ Zm, arranged in decreasing order;

g(ψ) = {gn}∞n=1, where

gn = gψ
n = {k ∈ Zm : |ψ(k)| ≥ εn};

δ(ψ) = {δn}∞n=1, where δn = δψ
n = |gn| is the number of numbers k ∈ Zm belonging to the set gn.
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In the case considered, by virtue of condition (6.5), the sequences ε(ψ) and g(ψ) are determined, as in
Sec. 4.3, with regard for the fact that k ∈ Zm. As before, we assume that g0 = gψ

0 is the empty set and δ0 =
δψ
0 = 0.

As approximating aggregates for the functions f ∈ Lψ, we take the following trigonometric polynomials,
which are analogs of sums (4.8):

Sn(f ;x) = S
gψ

n
(f ;x) = (2π)−m/2

∑
k∈gψ

n

f̂(k) eikx, (6.6)

n ∈ N, S0(f ;x) = 0,

where gψ
n are elements of the sequence g(ψ).

Assume that p and q are arbitrary numbers, p, q > 0,

En(f)ψ,p = ‖f(x) − Sn−1(f ;x)‖Sp , (6.7)

En(Lψ
q )p = sup

f∈Lψ
q

E(f)ψ,p, n = 1, 2, . . . , (6.8)

En(f)ψ,p = inf
ak

‖f(x) − (2π)−m/2
∑

k∈gψ
n−1

ak eikx‖Sp , (6.9)

and

En(Lψ
q )

p
= sup

f∈Lψ
q

En(f)ψ,p, n = 1, 2, . . . . (6.10)

Further, let

dn(Lψ
p )p = inf

Fn∈Gn

sup
f∈Lψ

p

inf
u∈Fn

‖f − u‖Sp , n ∈ N, d0(Lψ
p )p

df= sup
f∈Lψ

p

‖f‖Sp ,

where Gn is the set of all n-dimensional subspaces in Sp, be the Kolmogorov widths of the classes Lψ
p and let

en(Lψ
q )p = sup

f∈Lψ
q

inf
ak,γn

‖f(x) − (2π)−m/2
∑
k∈γn

ak eikx‖Sp ,

where γn is an arbitrary collection of n vectors k ∈ Zm, be the quantity of the best n-term approximation of
the class Lψ

q in the space Sp.

In the notation introduced, the following statements (analogs and, in fact, special cases of the theorems proved
in Secs. 4 and 5) are true:

Theorem 6.1. Let ψ = {ψk}k∈Zm be a system of numbers that satisfy conditions (6.5) and are such that

ψ(k) 	= 0 ∀k ∈ Zm. (6.11)
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Then, for any n ∈ N and 0 < q ≤ p < ∞, the following equalities are true:

En(Lψ
q )p = En(Lψ

q )p = εn, (6.12)

en(Lψ
q )p = sup

l>n
(l − n)

(
l∑

k=1

ψ̄−q
k

)− p
q

= (l∗ − n)

(
l∗∑

k=1

ψ̄−q
k

)− p
q

, (6.13)

where ψ̄ = {ψ̄k}∞k=1 is the sequence defined by the relations

ψ̄k = εn for k ∈ (δn−1, δn], n = 1, 2, . . . ,

εn and δn are terms of the characteristic sequences of the system ψ, and l∗ is a certain natural number, which
always exists under the conditions of the theorem.

The following statements are analogs of Theorems 5.1 and 5.2:

Theorem 6.2. Suppose that f ∈ Lψ
p , p > 0, and ψ = {ψk}k∈Zm is a system of numbers that satisfies

conditions (6.5). Then the series

∞∑
k=1

(εp
k − εp

k−1)E
p
k(fψ)ψ,p

converges and, for any n ∈ N, the following equality holds:

Ep
n(f)ψ,p = εp

n Ep
n(fψ)ψ,p +

∞∑
k=n+1

(εp
k − εp

k−1)E
p
k(fψ)ψ,p,

where the quantities Eν(·)ψ,p are defined by (6.9) and εk are elements of the characteristic sequence ε(ψ) of the
system ψ.

Theorem 6.3. Suppose that f ∈ Sp, p > 0, and the system ψ = {ψk}k∈Zm satisfies condition (6.9). Also
assume that

lim
k→∞

ε−1
k Ek(f)ψ,p = 0.

In order that

f ∈ Lψ
p ,

it is necessary and sufficient that the following series be convergent:

∞∑
k=1

(ε−p
k − ε−p

k−1)E
p
k(f)ψ,p.
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If this series converges, then the following equality holds for any n ∈ N :

Ep
n(fψ)ψ,p = ε−p

n Ep
n(f)ψ,p +

∞∑
k=n+1

(ε−p
k − ε−p

k−1)E
p
k(f)ψ,p,

where the quantities En(·)ψ,p and εk have the same sense as in Theorem 6.2.

Let ψ = {ψk}k∈Zm be an arbitrary system of numbers that satisfies condition (6.5). We enumerate all vectors
k ∈ Zm in a certain order using a natural index s. We say that the system ψ belongs to a set Ap,q for some
values of p and q, q > p > 0, if

∞∑
s=1

|ψ(ks)|
p q

q−p < ∞. (6.14)

It is clear that the sets A p,q are independent of the method of enumeration of the numbers k ∈ Zm and are
completely determined by the quantities |ψ(k)| and numbers p and q.

Theorem 6.4. Suppose that, for given p and q such that q > p > 0, a system ψ = {ψk}k∈Zm , belongs to
the set Ap,q. Then

En(Lψ
q )p = En(Lψ

q )p =

⎛⎝ ∞∑
k=δn−1+1

ψ̄
p q

q−p

⎞⎠
q−p
p q

, n = 1, 2, . . . ,

and

ep
n(Lψ

q )p = σ̃
− p

q

1 (s)
[
(s − n)

q
q−p + σ̃

p
q−p

1 (s) σ̃2(s)
] q−p

q
,

where

σ̃1(s) =
s∑

k=1

ψ̄−q
k , σ̃2(s) =

∞∑
k=s +1

ψ
p q

q−p

k ,

ψ̄ = {ψk}∞k=1 is a sequence for which

ψ̄k = εk for k ∈ (δn−1, δn], n = 1, 2, . . . ,

εn and δn are terms of the characteristic sequences ε(ψ) and δψ, and the number s is chosen from the condition

ψ̄−q
s ≤ 1

s − n

s∑
k=1

ψ̄−q
k < ψ−q

s+1. (6.15)

The number s always exists and is unique.

The proofs of these theorems are based on the corresponding theorems from previous sections.
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Using the systems ψ appearing in these statements as a starting point, we enumerate all vectors k ∈ Zm so
that all vectors k from the sets gψ

n \ gψ
n−1 are enumerated by numbers s ∈ (δn−1, δn] in a certain fixed order.

Then we define a sequence ψ′ = {ψ̄s}∞s=1 by setting

ψ′
s = ψ(ks), s = 1, 2, . . . . (6.16)

Then

S[f ] = (2π)−m/2
∑

k∈Zm

f̂(k) eikx = (2π)−m/2
∞∑

s=1

f̂(ks) ei ks x,

and, according to (6.16),

J ψ′
(f ;x) = (2π)−m/2

∞∑
s=1

ψ(ks)f̂(ks) ei ks x = J (f ;x) ∀f ∈ L.

Therefore, Lψ′
= Lψ. Further, note that Lψ′

= ψ′Up, where ψ′Up is the set defined according to (4.7′), namely

ψ′Up = {f ∈ L : f ψ′ ∈ Up},

where Up = Up
ϕ and ϕ = {2π−m/2ei ks x}∞s=1. Furthermore, the sequences E(ψ′) and Eψ, as well as δ(ψ′) and

δ(ψ), coincide, and the following equalities are true:

S
gψ′

n
(f) = S

gψ
n
(f ;x), En(f)ψ′,p = En(f)ψ,p, En(ψ′U q)p = En(Lψ

q )p,

En(f)ψ′,p = En(f), En(ψ′U q)p = En(Lψ
q )p .

The left-hand sides of these equalities are determined by (4.8) and (4.9), and their right-hand sides are determined
by (6.6) – (6.10). It is clear that en(Lψ

q )p = en(ψ′U q) and ψ̄′ = ψ̄. This implies that equality (6.12) follows from
(4.13), equality (6.13) follows from Theorem 4.7, Theorems 6.2 and 6.3 follow from Theorems 5.1 and 5.2, and
Theorem 6.4 follows from Theorems 4.4 and 4.8.

For the completeness of presentation, we reformulate Theorem 4.2 for the Kolmogorov widths of the sets Lψ
p .

Theorem 6.5. Let ψ = {ψk}k∈Zm be a system of numbers that satisfies conditions (6.5) and (6.11) and let
p ∈ [1,∞). Then the following relation holds for any n ∈ N :

dδn−1(L
ψ
p ;Sp) = dδn−1+1(L

ψ
p ;Sp) = . . . = dδn−1(L

ψ
p ;Sp) = En(Lψ

p )p = εn,

where εn and δn are terms of the characteristic sequences ε(ψ) and δ(ψ).

7. Remarks

7.1. On the Sequences Ψ. In all previous constructions, the sequences ψ play the key role: they determine
approximated sets, the approximation apparatus is constructed on their basis, and approximation characteristics are
expressed in their terms. Except for conditions of the form (6.9) and (6.21), without which considerations become
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almost meaningless, no restrictions have been imposed on the sequences ψ in the present paper. For this reason,
the systems ψ and their characteristic sequences ε(ψ), g(ψ), and δ(ψ) may be fairly complicated in the general
case.

In the multidimensional case, apparently the most natural and simplest systems are the systems ψ for which
the numbers ψ(k) are represented by the products

ψ(k) = ψ(k1, . . . , km) =
m∏

j=1

ψj(kj), kj ∈ Z1, j = 1, m, (7.1)

of values of the one-dimensional sequences ψj = {ψj(kj)}∞kj=1. Furthermore, if

ψ(−kj) = ψj(kj), j = 1, m,

where z̄ denotes the complex conjugate of the number z, then the sets gψ
n are symmetric with respect to all

coordinate planes. It is easy to verify that

∑
k∈Zm

ψ(k) eikt =
∑

k∈Zm
+

2m−q(k)
m∏

j=1

|ψj(kj)| cos
(

kjtj −
βkj

π

2

)
, (7.2)

where Zm
+ = {k ∈ Zm, ki ≥ 0, i = 1, m}, q(k) is the number of zero coordinates of the vector k, and the

numbers βkj
are defined by the equalities

cos
βkj

π

2
=

Re ψj(kj)
|ψj(kj)|

, sin
βkj

π

2
=

Im ψj(kj)
|ψj(kj)|

.

In this case, the set Lψ of ψ-integrals of real functions ϕ from L(Rm) consists of real functions f, and if,
in addition, the series in (7.2) is the Fourier series of a certain summable function Dψ(t), then a necessary and
sufficient condition for the inclusion f ∈ LψN is the representability of f by a convolution of the form

f(x) = (2π)−m

∫
Qm

ϕ(x − t)Dψ(t)dt,

where ϕ ∈ N and, almost everywhere, ϕ(x) = fψ(x). In particular, this means that the classes LψN cover the
classes of functions represented by convolutions with fixed summable kernels (see, e.g., [52], Sec. 1.9).

7.2. On Relationship between the Spaces Sp and Lp . Let Lp = Lp(Rm), p ∈ [1,∞), be the space of
functions f ∈ L with finite norm ‖ · ‖Lp , where

‖f‖Lp =

( ∫
Qm

|f(t)|pdt

)1/p

. (7.3)

The known Hausdorff–Young theorem establishes a relationship between the sets Lp and Sp (see, e.g., [53],
Sec. XII.2). This theorem states that the following assertions are true:
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I. If f ∈ Lp, p ∈ (1, 2], and f̂(k) are the Fourier coefficients of the function f defined by the relation

f̂(k) = (2π)−m/2

∫
Qm

f(t) e−iktdt,

then ( ∑
k∈Zm

|f̂(k)|p′
)1/p′

≤ (2π)m( 1
2
− 1

p
) ‖f‖Lp ,

1
p

+
1
p′

= 1.

II. Let {ck}k∈Zm be a sequence of complex numbers for which∑
k∈Zm

|ck|p < ∞, p ∈ (1, 2].

Then there exists a function f ∈ Lp′ for which f̂(k) = ck and

‖f‖Lp′ ≤ (2π)m( 1
2
− 1

p
)

( ∑
k∈Zm

|ck|p
)1/p

,
1
p

+
1
p′

= 1.

It follows from this theorem that if p ∈ (1, 2 ], then

Lp ⊂ Sp ′
and ‖f‖Sp ′ ≤ (2π)m( 1

2
− 1

p
) ‖f‖Lp , (7.4)

Sp ⊂ Lp ′ and ‖f‖Lp′ ≤ (2π)m( 1
2
− 1

p
) ‖f‖Sp . (7.5)

In particular, for p = p′ = 2, the following equalities are true:

L2 = S2 and ‖ · ‖L2 = ‖ · ‖S2 . (7.6)

By virtue of relations (7.4) and (7.5), the theorems proved for the spaces Sp also contain information for the spaces
Lp, which is more complete by virtue of relation (7.6) in the case p = 2.

Since this case is very important, we present the corresponding exact statements.
As before, let ψ = {ψk}k∈Zm be an arbitrary system of complex numbers and let LψN be the set of ψ-

integrals of all functions f ∈ N, where N is a certain subset of L = L(Rm), m ≥ 1. As N, we take the unit
ball UL2 in the space L2 :

UL2 = {f : f ∈ L2, ‖f‖L2 ≤ 1}. (7.7)

Here, the norm ‖ · ‖L2 is defined by equality (7.3) for p = 2. In this case, we set LψUL2 = Uψ
L2

.

Assuming that condition (6.5) is satisfied, we determine the characteristic sequences ε(ψ), g(ψ), and δ(ψ)
and the polynomials Sn(f ;x) according to (6.6). For f ∈ Uψ

L2
, we set

Eψ
n (f)L2 = ‖f(x) − Sn−1(f ;x)‖L2 , En(Uψ

L2
)L2 = sup

f∈Uψ
L2

= Eψ
n (f)L2 ,
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Eψ
n (f)L2 = inf

ak

∥∥∥∥∥∥∥f(x) − (2π)−m/2
∑

k∈gψ
n−1

ak eikx

∥∥∥∥∥∥∥
L2

,

and

En(Uψ
L2

)L2 = sup
f∈Uψ

L2

Eψ
n (f)L2 .

Also let

dn(Uψ
L2

)L2 = inf
Fn∈Gn

sup
f∈Lψ

p

inf
u∈Fn

‖f − u‖L2 , n ∈ N, d0(U
ψ
L2

) = sup
f∈Uψ

L2

‖f‖L2 ,

where Gn is the set of all n-dimensional subsets in L2, and let

en(Uψ
L2

)L2 = sup
f∈Uψ

L2

inf
ak,γn

∥∥∥∥∥∥f(x) − (2π)−m/2
∑
k∈γn

ak eikx

∥∥∥∥∥∥
L2

,

where γn is an arbitrary collection of n vectors k ∈ Zm, be the quantity of the best n-term approximation of
the class Uψ

L2
in the space L2. The following statement is true:

Theorem 7.1. Let ψ = {ψk}k∈Zm be a system of numbers satisfying conditions (6.3) and (6.9). Then, for
any n ∈ N, the following equalities are true:

En(Uψ
L2

)L2 = En(Uψ
L2

) = εn, (7.8)

dδn−1(U
ψ
L2

)L2 = dδn−1+1(U
ψ
L2

) = . . . = dδn−1(U
ψ
L2

)L2 = En(Uψ
L2

)L2 = εn, (7.9)

e2
n(Uψ

L2
)L2 = sup

l>n
(q − n)/

l∑
s=1

ψ̄−2
s = (l ∗ − n)/

l ∗∑
s=1

ψ̄−2
s , (7.10)

where εs and δs are elements of the characteristic sequences ε(ψ) and δ(ψ), δ0 = 0, l∗ is a certain natural
number, and

ψ̄s = εn, δn−1 < s < δn, n = 1, 2, . . . .

Proof. By virtue of (7.6) and (7.7), we have UL2 = U2 and, hence, Uψ
L2

= Lψ
2 . Therefore,

En(Uψ
L2

)L2 = En(Lψ
2 )2, En(Uψ

L2
)L2 = En(Lψ

2 )2, dn(Uψ
L2

)L2 = dn(Lψ
2 )2,

and

en(Uψ
L2

)L2 = en(Lψ
2 )2, n = 1, 2, . . . .
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This implies that equalities (7.7) – (7.10) follow from relations (6.12), (6.15), and (6.13).
Note that, in the one-dimensional case, i.e., for m = 1, equalities (7.8) and (7.9) (in somewhat different

terminology) were obtained in 1936 by Kolmogorov in his well-known paper [54], which gave rise to investigations
of various functional classes. In the general case, these equalities can also be obtained by analyzing the results and
ideas presented by Tikhomirov in his monograph [55] (Sec. 4.4).

Equality (7.10) is, apparently, new even in the one-dimensional case.
It should also be noted that, as follows from equalities (7.8) and (7.9), in the space L2 the values of the widths

of the sets Uψ
L2

are realized by approximations by sums (6.6), i.e., by polynomials that are the best in the sense of

widths in the spaces Sp for all p ∈ [1,∞) for the classes Lψ
p . This allows us to conjecture that sums (6.6) also

form the best approximation apparatus (in the sense of Kolmogorov widths) in the spaces Lp for all p ≥ 1 for the
corresponding sets Uψ

Lp
, namely

Uψ
Lp

= LψULp , ULp = {f : f ∈ Lp, ‖f‖Lp ≤ 1},

which are direct generalizations of the known Sobolev spaces obtained from Uψ
Lp

by taking ψ(k) in the form (7.1)
in the case where

ψj(kj) =

⎧⎨⎩1, kj = 0,

(ikj)rj , kj 	= 0, j = 1, m,
(7.11)

where rj are certain real numbers.
Let m = 2 and let the sequences ψ1(k1) and ψ2(k2) be defined by equalities (7.11) under the condition that

r1 = r2 = r > 0.

For the first time, the classes Uψ
L2

defined by these sequences were considered from the viewpoint of determi-
nation of their widths by Babenko in [1, 2], where, in fact, relation (7.9) was also obtained in the case indicated.

In the case considered, the characteristic sequence ε(ψ) consists of elements εn = n−r, n ∈ N, of the set
gψ
n , i.e., the set of vectors k = (k1, k2) ∈ Z2 that satisfy the condition

k′
1k

′
2 ≤ n,

where

k ′
j =

⎧⎨⎩1, kj = 0,

|kj |, kj 	= 0, j = 1, 2.

These sets appeared for the first time in Babenko’s works indicated above and are now customarily called hyperbolic
crosses.

All these comments were presented by the author in [15], where one can also find more detailed results for the
periodic case, including specific numerical examples.

The main results of this paper were announced by the author in [56].
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