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EXTREMAL PROBLEMS OF APPROXIMATION THEORY IN LINEAR SPACES

A. I. Stepanets UDC 517.5

We propose an approach that enables one to pose and completely solve main extremal problems
in approximation theory in abstract linear spaces.  This approach coincides with the traditional
one in the case of approximation of sets of functions defined and square integrable with respect

to a given  σ-additive measure on manifolds in  R
m

,  m ≥ 1. 

1.  Spaces  Sp
ΦΦ

In the present work, we develop the approach proposed in [1 – 7], which enables one to pose classical ex-

tremal problems of approximation theory in general linear spaces and find their exact solutions.  The spaces  S p
ϕ

considered in [1 – 7] are constructed as follows: 

Let  �  be an arbitrary linear complex space and let  ϕ = { } =
∞ϕk k 1  be a fixed countable system in it.  As-

sume that, for any pair  x, y ∈ �  in which at least one of the vectors belongs to  ϕ,  the scalar product  ( x, y )  is
defined and satisfies the following conditions: 

(i) ( x, y ) = ( )y x, ,  where  z   is the complex conjugate of  z ; 

(ii) ( λ x1 + µ x2 , y ) = λ  ( x1 , y ) + µ ( x2 , y ),  where  λ  and  µ  are arbitrary complex numbers; 

(iii) ( ϕk , ϕl )  =  
0

1

, ,

, .

k l

k l

≠

=




Every element  f ∈ �  is associated with a system of numbers  f̂ k( )  by the equalities 

f̂ k( )  =  f̂ kϕ( )   =  ( f, ϕk ),      k  =  1, 2, …    ( k ∈ N ), (1)

and, for fixed  p ∈ ( 0, ∞ ),  we set 

 
S S f f kp p p

k
ϕ ϕ ϕ= ( ) = ∈ ( ) < ∞






=

∞

∑� �: ˆ

1

. (2)

Elements  x, y ∈ S p
ϕ   are assumed to be identical if  x̂ kϕ( )  = ŷ kϕ( )  for all  k ∈ N. 

For vectors  x, y ∈ �,  we define the  ϕ-distance between them by the equality 
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ρϕ ( x, y ) p  =  
k

p
p

x k y k
=

∞

∑ ( ) − ( )





1

1

ˆ ˆ
/

ϕ ϕ .

The vector  θ  such that  θ̂ϕ( )k  = 0  for all  k ∈ N  is called the zero element of the space  S p
ϕ .  The distance

ρϕ ( θ, x ),  x ∈ S p
ϕ ,  is called the  ϕ-norm of an element  x  and is denoted by  || x || ϕ, p .  Thus, 

|| x || ϕ, p  =  ρϕ ( θ, x )  =  ˆ
/

x k
p

k

p

ϕ( )



=

∞

∑
1

1

. (3)

The set  S p
ϕ   is a linear space.  For  p ≥ 1,  the  ϕ-norm satisfies all necessary axioms of a norm.  In this case,  S p

ϕ

is a linear normed space containing the orthonormal system  ϕ.  For  p = 2,  the space  Sϕ
2  is a Hilbert space if it

is complete.  For other  p ∈ ( 0, ∞ ),  the spaces  S p
ϕ   inherit the most important properties of Hilbert spaces such

as the Parseval equality in the form (3), the minimum property of partial Fourier sums, etc. 

Let  ψ = { } =
∞ψk k 1  be a given system of complex numbers.  If, for a given element  f ∈ �,  there exists an

element  F ∈ �  for which 

ˆ ˆF k f kkϕ ψ( ) = ( ) ,      k ∈ N,

then the vector  F  is called the  ψ-integral of  f  and is denoted by  F = J ψ f.  Let  U p
ϕ   be a unit ball in the space

S p
ϕ ,  namely, 

U p
ϕ   =  { f ∈ S p

ϕ ,  || f || ϕ, p  ≤ 1 }.

By  ψ ϕU p ,  we denote the set of all  ψ-integrals of all elements of  U p
ϕ ,  i.e., 

ψ ϕU p   =  { F ∈ � :  F = J ψ f,  f ∈ U p
ϕ  }.

Note that if the space  �  is complete and, furthermore, 

ψk  ≠  0,      k ∈ N,

then 

  

ψ
ψϕ
ϕU f

f kp

k

p

k

= ∈
( )

≤

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ˆ
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1

 ,

i.e., the set  ψ ϕU p   is a  p-ellipsoid with semiaxes equal to  | ψk | . 

In [1–7], the least upper bounds were determined for the best approximations of elements  f ∈ ψ ϕU p   by
polynomials of the form 
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Pγn
  =  

k
k k

n∈
∑

γ
α ϕ ,

where  γn  are fixed collections of  n  natural numbers and  αk  are certain coefficients, and the exact values were

found for the Kolmogorov widths  d U Sn
p p( )ψ ϕ ϕ;   and the quantities 

e U f Pn
q

p
f U

pn k n
n

( ) = −
∈

ψ ϕ
ψ α γ

γ ϕ
ϕ

sup inf
, ,

,      0  <  p, q  <  ∞,

which are called the best  n-term approximations of the  q-ellipsoids  ψ ϕUq   in the space  S p
ϕ . 

It should be noted that, eventually, all these problems are reduced to the corresponding extremal problems
for numerical series with positive terms whose solutions can be obtained in explicit form. 

The system of numbers (1) can be regarded as the set of values of a certain function  f̂ t( )  defined on the

integer-valued lattice  Z 
m  in the Euclidean space  Rm  of dimension  m,  m ≥ 1,  with properly enumerated points

t ∈ Z 
m.  Moreover, the operator of scalar multiplication can be interpreted as an operator acting from  �  onto the

corresponding set of functions.  Furthermore, the functional defined by the series in (2) can be regarded as an in-

tegral constructed with respect to the measure  dµ  whose support is the set  Z 
m. 

This approach enables us to propose the following construction: 

Let  ( Rm, dµ ),  m ≥ 1,  be the  m-dimensional Euclidean space of points  t = ( t1 , … , tm )  equipped with a  σ-

additive measure  dµ,  let  A  be a  µ-measurable subset of  ( Rm, dµ )  whose  µ-measure is equal to  a,  where
either  a  is finite or  a = ∞,  i.e., 

mesµ A  =  | A | µ  =  a,      a ∈ ( 0, ∞ ] ,

and let  Y = Y ( A, dµ )  be the set of functions  y = y ( t )  defined on  A  and measurable with respect to the measure
dµ. 

Further, let  �  be an arbitrary linear space of vectors  x  and let  Φ  be a linear operator acting from  �  into
Y,  namely, 

Φ :  � → Y ( A, dµ ),      Φ ( x )  df=   x̂ ,      x ∈ �,      x̂  ∈ Y ( A, dµ ) .

For a given  p ∈  ( 0, ∞  ] ,  we denote by  Lp ( A, dµ )  a subset of functions from  Y  ( A, dµ )  that have the finite
norm 

|| y || Lp
 ( A, d µ )  =  

A

p p

t A

y t dt p

y t p

∫ ( )( ) ∈( ∞)

( ) = ∞









∈

1
0

/
, , ,

ess sup , ,
(4)

Let  S p
Φ  =  S Yp

Φ( )�;   denote the preimage of the set  Lp ( A, dµ )  in  �  under the mapping  Φ.  Thus, 

S p
Φ   =   S Yp

Φ( )�;   =  { x ∈ �,  || x̂  || Lp
 ( A, d µ ) < ∞  }. (5)
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Elements  x1 , x2 ∈  S p
Φ   are assumed to be identical if  x̂ t1( ) = x̂ t2( )   almost everywhere with respect to the

measure  µ. 

For elements  x1 , x2 ∈ S p
Φ ,  p ∈ ( 0, ∞ ),  we define the  Φ-distance between them by the equality 

ρΦ ( x1 , x2 )  =  ρ( )x x
S p1 2,

Φ
  =  || Φ ( x1 – x2 ) || Lp

 ( A, d µ )  =  
A

p
p

x t x t d∫ ( ) − ( )






ˆ ˆ
/

1 2

1

µ .

An element  θ  for which  θ̂( )t  = 0  almost everywhere on  A  is called the zero element of the set  S p
Φ  . 

The distance  ρΦ ( θ; x ),  x ∈ S p
Φ ,  is called the  Φ-norm of an element  x  and is denoted by  || x || p = || x || p, Φ .

Thus, by definition, 

|| x || p  =  || x || p, Φ  =  ρ θ( ); x
S p

Φ
  =  ||  x̂  || Lp

 ( A, d µ ). (6)

In this case,  S p
Φ   is a linear metric space; indeed, the operations of addition of elements and their multiplication

by numbers defined in  �  remain applicable for any pair  x1 , x2 ∈  S p
Φ .  Furthermore, for any numbers  λ1  and

λ2 ,  the element  x3 = λ1 x1 + λ2 x2  belongs to  S p
Φ .  Indeed, since  x3 ∈ �,  we have  x̂ t3( ) = λ1 1x̂ t( ) + λ2 2x̂ t( ) .

If  p ≥ 1,  then 

|| x3 || p  =  ||  x̂3 || Lp
 ( A, d µ )  ≤  | λ1 | || x̂1 || Lp

 ( A, d µ ) + | λ2 | || x̂2  || Lp
 ( A, d µ )  =  | λ1 | || x1 || p + | λ2 | || x2 || p 

by virtue of the Minkowski inequality.  If  p ∈ ( 0, 1 ),  then, using the inequality 

| a + b | 

p
  ≤  | a | 

p
 + | b | 

p
,      0  ≤  p  <  1,

we get 

|| x3 || p  =  
A

p
p

x t x t d∫ ( ) + ( )




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λ λ µ1 1 2 2
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p
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
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ˆ ˆ
/

  ≤  2
1

 

/
 

p
 ( | λ1 | || x1 || p + | λ2 | || x2 || p ),

i.e.,  x3 ∈ S p
ϕ   in all cases. 

It is clear that, for  p ≥ 1,  the functional  || ⋅ || p  satisfies all necessary axioms of a norm.  Therefore,  S p
Φ   is

a linear normed space for  p ≥ 1. 

In the terminology accepted in the theory of integral transformations, the element  x̂  = Φ ( x )  is the image
(Φ-image) of an element  x,  and the set  E ( Φ )  of values of the operator  Φ  is the set of images.  Thus, the  Φ-
distance and  Φ-norm are the distance and norm in the space of images. 
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2.  Multipliers.  Approximating Aggregates and Objects of Approximation

As approximating aggregates for elements  x ∈ S p
Φ ,  we use elements from  S p

Φ   whose images have sup-
ports  γσ  of given measure  σ.  It is clear that exactly this principle is used in the classical case in the construc-

tion of, e.g., trigonometric polynomials for the approximation of a given periodic function if the operator  Φ  is
understood as the mapping of functions into the set of their Fourier coefficients.  In the general case, there arise

certain problems related to the fact that the spaces  S p
Φ   can be incomplete.  In this connection, we introduce the

following definitions: 

Let  ω = ω ( t )  be a certain function from  Y ( A, dµ ).  Then we denote by  MΦ
ω   the operator acting from  �

into  �  that associates  x ∈ �  with an element  xω ∈ �  such that if  Φ  ( x ) = x̂ t( ),  then  x̂ tω( ) = Φ ( xω ) =

ω( ) ( )t x tˆ   almost everywhere.  The operator  MΦ
ω   is called the multiplier of the operator  Φ  generated by the

function  ω .  Let  ΩΦ ( � ) = ΩΦ ( �, � )  denote the subset of functions  ω  from  Y ( A, dµ )  for which the multi-

pliers  MΦ
ω   exist. 

If  �  and  � ′  are some subsets of  �,  ω ∈ ΩΦ ( � ),  and the operator  MΦ
ω   maps  �  into  � ′,  then we

say that  MΦ
ω   has the type  ( �, � ′ ) .  In particular, if  MΦ

ω   maps  S p
Φ   into  S p

Φ ,  then the operator  MΦ
ω   has the

type  ( )S Sp p
Φ Φ,   or, briefly, the type  ( p, p ).  The set of functions  ω  generating operators of the type  ( p, p )  is

denoted by  ΩΦ
p . 

Thus, if  ω ∈ ΩΦ
p   and the operator  MΦ

ω   acts from  S p
Φ ,  then it acts into  S p

Φ .  In this case, every  x ∈ S p
Φ

is associated with an element  xω = M xΦ
ω( )   for which the following equality holds almost everywhere on  A : 

x̂ tω( )  =  Φ ( xω )  =  ω( ) ( )t x tˆ ,      x̂ω  ∈ Lp ( A, dµ ) . (7)

Given  σ > 0,  assume that  γσ  is a  µ-measurable set in  A,

mesµ γσ  
df=   | γσ |  =  σ,      σ  ≤  a, (8)

and  λ = λ  ( t )  is a measurable function with support  γσ .  Also assume that, for a given  p ∈  ( 0, ∞  ),  we have

λ ∈ ΩΦ
p   and  Uγσ

 ( x; λ ) df=  xλ = M xΦ
λ ( )  ,  and, therefore, according to (7), we get 

ˆ ; ;
ˆ , ,

, , .
U x U x

t x t t

t x S pγ γ
σ

σ
σ σ

λ λ
λ γ

γ
( ) = ( ) =

( ) ( ) ∈

∈ ∈






( )Φ

Φ0
(9)

The elements  Uγσ
 ( x; λ )  are considered as approximating aggregates for  x ∈ S p

Φ .  In this case, if  λ  ( t ) ≡ 1

on  γσ ,  i.e., if  λ  ( t )  coincides with the characteristic function  χγσ
 ( t )  of the set  γσ  ,  then we set  Uγσ

 ( x; χγσ
 ) =

Uγσ
 ( x ) . 

Let  Γσ = Γσ ( A )  be the set of all measurable subsets of  A  whose measures are equal to  σ.  We say that,

for a given  p > 0,  an operator  Φ  satisfies condition  ( Ap )  if the functions  χγσ
 ( t )  of all sets  γσ ∈ Γσ  belong to

ΩΦ
p   for all  σ ∈ [ 0, a ).  Thus, if  Φ  satisfies condition  ( Ap ),  then all elements  Uγσ

 ( x )  are defined for any

x ∈ S p
Φ   and are contained in  S p

Φ .  The element  Uγσ
 ( x )  is called the restriction of an element  x  of rank  σ,  and

the element  Uγσ
 ( x; λ )  is called the  λ-restriction of  x  of rank  σ. 
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Let  p  be an arbitrary positive number and let  x ∈ S p
Φ .  Then, by virtue of (6) and (9), we get 

x U x x t U x t
p

p

L A d

p

p
− ( ) = ( ) − ( )

( )γ γ µσ σ
λ λ; ˆ ˆ ; ;

,
  =  

γ γσ σ

λ µ µ∫ ∫− ( ) ( ) + ( )1 t x t d x t dp p

A

pˆ ˆ
\

.

Hence, we arrive at the following statement: 

Assertion 1.  Suppose that  p ∈  ( 0, ∞  ),  x ∈  S p
Φ  =  S Yp

Φ( )�; ,  γσ ∈  Γσ  ,  and the operator  Φ   satisfies

condition  ( Ap ) .  Then 

�γσ
 ( x ) p  

df=   inf
λ∈ΩΦ

p
 || x – Uγσ

 ( x; λ ) || p  =  || x – Uγσ
 ( x ) || p .

Furthermore, the following equality is true: 

�γσ
 ( x ) p  =  x x t dp

p p− ( )∫
γ σ

µˆ . (10)

Thus, if  χγσ
 ∈ ΩΦ

p ,  then, among all elements  Uγσ
 ( x; λ )  generated by the multipliers  MΦ

λ   and satisfying

condition (9), the element  Uγσ
 ( x )  has the least deviation from an element  x  in  Φ-norm in the space  S p

Φ ,  i.e.,

among all  λ-restrictions of  x  of given rank  σ,  its restriction for  λ  ( t ) ≡  1  is the closest one to  x.  It is clear
that this property is an analog of the minimum property of Fourier sums in the Hilbert spaces  L2 . 

Let  Γ = { γσ } σ > 0 ,  | γσ | = σ,  be a family of measurable subsets of  A  that exhausts the entire set  A  for

σ → ∞,  i.e., it possesses the property that any point  t ∈ A  is contained in all sets  γ σ  for all sufficiently large

values of  σ  and, therefore, 

lim ˆ ˆ
σ

γ σ

µ µ
→∞

∈
∫ ∫( ) = ( )

Γ

x t d x t dp

A

p       ∀x ∈ S p
Φ . (11)

Combining relations (10) and (11), we get 

lim
σ
γ σ

→∞
∈Γ

 �γσ
 ( x ) p  =  0      ∀x ∈ S p

Φ .

We now define the objects of approximation, namely the unions of elements  x ∈ �  corresponding to the
notion of a class of functions in approximation theory.  Such objects, along with approximating aggregates, are
introduced with the use of multipliers.  However, in this case, it is more convenient to use a somewhat different

terminology closer to the traditional one.  Let  ψ = ψ ( t )  be an arbitrary function from  ΩΦ ( � )  and let  MΦ
ω   be

the multiplier of an operator  Φ  generated by this function.  In this case, the image  xψ  of an element  x  under

the mapping  MΦ
ψ   is called the  ψ-integral of an element  x  and is denoted by  M xΦ

ψ( ) = xψ = J ψ x.  In certain

cases, it is convenient to call  x  the  ψ-derivative of  xψ  and write  x = Dψ
 xψ . 
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Thus, if  xψ  is the  ψ-integral of  x,  then 

x̂ψ   =  Φ ( J ψ x )  =  ψ( ) ( )t x tˆ (12)

almost everywhere. 
Let  �  be a certain subset of  �.  By  ψ �,  we denote the set of  ψ-integrals of all  x ∈ �  for which they

exist.  In particular, if  U p
Φ   is a unit ball in a certain space  S p

Φ ,  namely, 

U p
Φ   =  { x :  x ∈ S p

Φ ,  || x || p, Φ ≤ 1 },

then  ψU p
Φ   is the set of  ψ-integrals of all  x ∈ U p

Φ   for which these integrals exist. 
Comparing relations (12) and (7), we conclude that, as functions  ψ  for which the definition of  ψ-integral

is correct, one can choose any function from  ΩΦ Φ( )S p .  In this case, the inclusion  ψS p
Φ  ⊂ S p

Φ   is valid. 

3.  Approximation Characteristics

In the present work, we consider the following approximation characteristics of the sets  ψU p
Φ .  For any

γσ ∈ Γσ ,  we set 

�γσ
 ( x ) q  =  inf ;

,λ
γ σ

λ
∈

− ( )
Ω Φ

Φ
p

x U x
q

,      x ∈ S p
Φ , (13)

�γσ
( )ψU p

qΦ   =  sup
x U p∈ψ Φ

 �γσ
 ( x ) q 

, (14)

and 

� �σ
γ

γψ ψ
σ σ

σ
( ) = ( )

∈
U Up

q
p

qΦ Γ Φinf , (15)

In the case of the approximation of periodic functions by trigonometric polynomials, the quantity  
 
�γ σ

( )x q

corresponds to the best approximation of a function  x  by polynomials of degree  σ,  the quantity  
  
�γ σ

ψ( )U p
qΦ

corresponds to the upper bound of these best approximations on a given set of functions, and the quantity

  �σ ψ( )U p
qΦ   resembles the trigonometric width of order  σ  of the set  ψU p

Φ . 
We also consider the following characteristics, which, in the periodic case, correspond to quantities related

to the best  σ-term approximation: 

eσ ( x ) q  =  inf
γ σ σ∈Γ

 �γσ
 ( x ) q  =  inf inf ;

,γ λ
γ

σ σ
σ

λ
∈ ∈

− ( )
Γ Ω Φ

Φ
p

x U x
q

(16)

and

e U e xp
q

x U
q

p
σ

ψ
σψ( ) = ( )

∈
Φ

Φ

sup . (17)
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In what follows, we restrict ourselves to the case  p = q.  Moreover, we assume that the corresponding char-

acteristic functions  χγσ
 ( ⋅ )  belong to  ΩΦ

p ,  i.e., the operator  Φ  satisfies condition  ( Ap ).  In this case, according

to Assertion 1, of major interest are quantities (13) – (17), where  λ ( t ) = χγσ
 ( t ).  In this connection, we set 

�γσ
 ( x ) p  =  || x – Uγσ

 ( x ) || p, Φ ,      x ∈ S p
Φ , (18)

�γσ
( )ψU p

pΦ   =  sup
x U p∈ψ Φ

 �γσ
 ( x ) p , (19)

and 

  
� �σ

γ
γψ ψ

σ σ
σ

( ) = ( )
∈

U Up
p

p
pΦ Γ

Φinf , . (20)

Similarly, 

eσ ( x ) p  =  inf
γ σ σ∈Γ

 || x – Uγσ
 ( x ) || p, Φ (21)

and 

e U e xp
p

x U
p

p
σ

ψ
σψ( ) = ( )

∈
Φ

Φ

sup .

4.  Quantities  �γγ σσ
(( ))U p

pΦΦ   and   �σσ ψψ(( ))U p
pΦΦ

Below, we use the notion of the rearrangement of a function in decreasing order.  Apparently, this notion
first appeared in works of Hardy and Littlewood (see [8], Chap.  X), and then it was successfully used by many
authors.  We present necessary definitions following ([9], Chap. 6).  Note that, in [9], rearrangements of func-
tions of one variable are considered, but the main definitions can also be used in the general case. 

Assume that, on a  µ-measurable set  A ⊂  Rm,  m ≥ 1,  mesµ A = a,  where  a  is either finite or infinite, a

nonnegative  µ-measurable function  f ( x )  is defined for which the distribution function 

mf ( y )  =  mesµ Ey ,      Ey  =  { x :  x ∈ A,  f ( x ) ≥ y },      y  ≥  0,

takes only finite values for  y > 0. 
The function  t = mf ( y )  does not increase for all  y ≥ 0  and, moreover,  mf ( 0 ) = a.  If  mf ( y )  is continu-

ous and strictly decreasing, then, on the interval  t ∈ ( 0, a ),  there exists its strictly decreasing inverse  y = ϕ( )t  ,
which is called the rearrangement of the function  f ( x )  in decreasing order.  In the general case, depending on
f ( ⋅ ),  the function  mf ( y )  can possess intervals of constancy and discontinuities of the first kind on a finite or
countable set of points.  In order to uniquely determine the inverse function, we improve the graph of the func-
tion  mf ( y )  as follows:  At every discontinuity point  yj  of the function  mf ( y ),  we supplement its graph with

the segment  y = yj ,  mf ( yj + 0 ) ≤ t ≤ m ( yj + 0 ),  and, on every interval  [ α, β  ]  where  mf ( y )  is constant, we

leave only one point in its graph with the coordinates, say,  y = ( α + β  ) / 2  and  t = mf ( ( α + β  ) / 2 ).  In this case,
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every  t ∈ ( 0, a )  corresponds to a single point with coordinates  ( )− ( )t m tf, 1 .  This mapping defines the function

y = ϕ( )t  ,  which is the rearrangement of the function  ϕ ( x )  in the case under consideration.
For any  y ≥ 0,  the Lebesgue measure of the set of points  t ∈ ( 0, a )  on which  ϕ( )t  ≥ y  is  mf ( y ).  Thus, 

mes { t :  t ∈ ( 0, a ),  ϕ( )t  ≥ y }  =  mesµ { x :  x ∈ A,  f ( x ) ≥ y }  =  mf ( y ). (22)

In particular, this implies that 

0

a

A

F t dt F f x d∫ ∫( ) ( )( ) = ( )ϕ µ (23)

for any function  F  for which these integrals exist (see [8], Chap. X). 
In the notation accepted, the following statement is true: 

Theorem 1.  Let  ψ = ψ ( t )  be an arbitrary function from  Y ( A, dµ )  essentially bounded on  A,  i.e., 

ess sup
t A∈

 | ψ ( t ) |  =  || ψ || M  <  ∞, (24)

and, in the case where the set  A  is unbounded, let 

lim
t →∞

 ψ ( t )  =  0. (25)

Then, for any  �,  A ⊂  Rm,  m ≥ 1,  γσ ∈ Γσ  ,  σ < a,  and  p ∈  ( 0, ∞  )  and any operator  Φ  satisfying condi-

tion  ( Ap ),  the following estimates are true: 

  
� γ γσ σ

ψ ϕp p
pU( ) ≤ ( + )Φ 0 0 , (26)

where  
  
ϕγ σ

( )v   is the rearrangement of the function 

ϕσ ( t )  =  ϕγσ
 ( t )  =  

ψ γ

γ

σ

σ

( ) ∈

∈







t t A

t

p, \ ,

, ,0
(27)

in decreasing order, 

�σ ψ ψ σ( ) ≤ ( + )U p
pΦ 0  , (28)

and  ψ( )v   is the rearrangement of the function  | ψ ( t ) |  in decreasing order. 
If, in addition, the functions  χγσ

 ( t )  belong to the set  E  ( Φ )  for any  γσ ∈  Γσ  and   σ  ∈ ( 0, a  ) ,  and

their preimages  U γσ
  have  ψ-integrals, then relations (26) and (28) are the equalities.  In this case,  Γ σ

contains the set  γ σ
*   for which the following equalities are true: 
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� �γ σ

σ
ψ ψ ψ σ* ( ) = ( ) = ( + )U Up

p
p

pΦ Φ 0 . (29)

This set is defined by the relation 

γ σ
*   =  { t ∈ A :  | ψ ( t ) | ≥ ψ σ( + )0 },      mes γ σ

*   =  σ.

  Proof.  Conditions (24) and (25) guarantee that, for the function  | ψ ( t ) | ,  its distribution function 

m | ψ | ( y )  =  mesµ Ey ,      Ey  =  { t ∈ A :  | ψ ( t ) | ≥ y },      y  ≥  0, (30)

takes only finite values from the interval  [ 0, a ]  for any  y > 0.  Therefore, the quantities  ϕσ( + )0 0   and
ψ σ( + )0   are always defined. 
  We also note that, in the case where  E ( Φ ) = Lp ( A, dµ ),  the operator  Φ  satisfies condition  ( Ap ) .  More-

over, by virtue of conditions (24) and (25), the requirements that guarantee the equality in relations (26) and (28)
are also satisfied. 

  First, we prove relation (26).  If  x ∈ ψU p
Φ ,  then, according to (18), (6), and (12), we get 

  
� γ γ γσ σ σ

χp
p L

p

L

p
x x U x x t t x t

p p
( ) = ( ) − ( ) = ( ) − ( ) ( )( )Φ ˆ ˆ

=  ψ χ ψ ψ µγ
γ

σ

σ

( ) ( ) − ( ) ( ) ( ) = ( ) ( )∫t y t t t y t t y t d
L

p

A

p

p
\

, (31)

where  Lp = Lp ( A, dµ )  and  y  is a certain function from a unit ball  Up  in the space  Lp ( A, dµ ),  namely, 

  Up  =  { y ∈ Lp ( A, dµ ),  || y || Lp
 ( A, d µ ) ≤ 1 }.

Therefore, according to (19), 

  

  

� γ σ

σ

ψ ψ µp p
p

y U A

p pU t y t d
p

( ) ≤ ( ) ( )
∈

∫Φ sup ,      Aσ  =  A \ γσ .

  If  y ∈ Up ,  then the function  h = | y ( t ) | 

p
  belongs to the subset  U1

+   of nonnegative functions from  U1 .
Hence, 

  

  

� γ σσ

σ σ

ψ ψ µ ϕ µp p
p

h U A

p

h U A

U t h t d t h t d( ) ≤ ( ) ( ) = ( ) ( )
∈ ∈+ +∫ ∫Φ sup sup

1 1

.

In order to prove (26), it remains to show that 

sup
h U A

t h t d
∈ + ∫ ( ) ( ) = ( + )

1

0 0

σ

ϕ µ ϕσ σ . (32)
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  The function  ϕσ ( t )  is essentially bounded on  Aσ  by virtue of (24).  Therefore, its rearrangement in de-
creasing order is bounded.  Hence, the limit 

ϕσ( + )0 0   =  
 

lim
v→ +0 0

ϕσ   
df=   yσ (33)

exists.  Let  ey = E ( t :  ϕσ  ( t ) ≥ y ).  It is clear that the point  yσ  is such that  mesµ ey > 0  for  0 < y < yσ  and

mesµ ey = 0  for  y > yσ .  In particular, this yields 

yσ  =  ess sup
t A∈ σ

 ϕσ ( t ). (34)

  If  h ∈ U1
+   and  y ∈ ( 0, yσ ),  then 

A e A e e

t h t d t h t d y h t d t f t d

y y yσ σ

ϕ µ ϕ µ µ ϕ µσ σ σ∫ ∫ ∫ ∫( ) ( ) ≤ ( ) ( ) + ( ) ≤ ( ) ( )
\

, (35)

where 

                          f ( t )  =  h t e h t dy
A ey

( ) + ( ) ( )− ∫mes
\

µ
σ

µ1 .

Since 

                                  
ey

f t d∫ ( ) µ   ≤  1,

relations (34) and (35) imply that, for any  h ∈ U1
+ , 

                                
A

t h t d

σ

ϕ µσ∫ ( ) ( )   ≤  yσ .

Hence, 

sup
n U A

t h t d
∈ + ∫ ( ) ( )

1 σ

ϕ µσ   ≤  yσ . (36)

By virtue of (33), to prove equality (32) we must show that relation (36) cannot be the strict inequality. 
  Let  y  be an arbitrary number from the interval  ( 0, yσ )  and let  ey  be the set corresponding to it.  We put 

                          hy ( t )  =  
( ) ∈

∈







−mes , ,

, \ ,

µ

σ

e t e

t A e

y y

y

1

0

and, hence, we always have  hy ∈ U1
+ .  At the same time, 
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                              y  ≤  
A

yt h t d

σ

ϕ µσ∫ ( ) ( )   ≤  yσ .

Passing to the limit as  y  tends to  yσ ,  we conclude that, indeed, the strict equality in (36) cannot be realized,
which completes the proof of equality (32) and estimate (26). 

  Considering the lower bounds of both parts of (26) over the set  Γσ ,  we get 

  
�σ

γ
γψ ϕ

σ σ
σ

p p
pU( ) ≤ ( + )

∈Φ Γ
inf 0 0 . (37)

In view of relation (27), we can conclude that the least value of the quantity  ϕγ σ
( + )0 0   is realized in the case

where  γσ = γ σ
* ,  and this value is equal to  ψ σp( + )0  : 

inf *γ
γ γ

σ σ
σ σ

ϕ ϕ ψ σ
∈

( + ) = ( + ) = ( + )
Γ

0 0 0 0 0p . (38)

This proves relation (28). 
  Now assume that, for any  γσ ∈ Γσ  and  σ ∈ ( 0, a ) ,  the function  χγσ

 ( t )  belongs to the set  E ( Φ ),  and its

preimage  Uγσ
  has the  ψ-integral, which belongs to  S p

Φ   by virtue of (23).  For a given  γσ ∈ Γ,  we also assume

that  y ∈ ( 0, yσ ) ,  ey = E ( ϕσ ( t ) ≥ y ),  χ  ey
 ( t )  is the characteristic function of the set  ey , 

h ty
*( )  =  ( )−mes /

µ ey
p1 χ  ey

 ( t ) ,

Uy  is the preimage of the function  h ty
*( )  under the mapping of  Φ,  Φ ( Uy ) = h ty

*( ),  and  xψ = J ψ Uy  is the  ψ-

integral of the element  Uy 
.  By virtue of the above assumptions, all elements constructed exist, and, since 

A
y

p

e
y

p
h t d h t d

y

∫ ∫( ) = ( )* *µ µ   =  1,

we get  xψ ∈ ψ ψU p . 

  For the element  xψ 
,  relation (31) yields 

� γ ψ ψ γ ψσ σ
ψp

p L

p
y L

p
x x U x t h t

p p
( ) = ( ) − ( ) = ( ) ( )Φ *   =  mesµ ψ µe t dy

e

p

y

∫ ( )   ≥  y.

Taking into account the arbitrariness of the choice of  y  from the interval  (  0, yσ ),  we can conclude that the set

ψU p
Φ   contains elements  x  for which the values of  

 
� γ σ

p x( )   are arbitrarily close to the value of  yσ .  With re-

gard for relation (33), this means that, in the case considered, relation (26) is, in fact, the equality.  Then, accord-

ing to (37) and (38), relation (33) is also the equality.  If, in this case, the set  γ σ
*   is chosen from condition (30),

then 

ϕ ψ σγ σ*
( + ) = ( + )0 0 0p

 .
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Then, according to relation (26) (which is now the equality), we get 

  
� γ σ

ψ ψ σ* ( ) = ( + )U p
pΦ 0 .

This yields (29).  Theorem 1 is proved. 

5.  Quantities  e U p
pσσ ψψ(( ))ΦΦ

  In the notation accepted, the following theorem is true: 

  Theorem 2.  Let  ψ  = ψ ( t )  be an arbitrary function from  Y ( A, dµ )  essentially bounded on  A  and let
this function satisfy condition (25) if the set  A  is unbounded. 

Then, for any  �,  A ⊂  R  
m,  m ≥ 1,  σ < a,  and  p ∈  ( 0, ∞  ),  and any operator  Φ  satisfying condition

( Ap ) ,  the following relation is true: 

e U
q

dt
t

p p

q a
q

p

σ
σ

ψ σ

ψ

( ) ≤ −

( )
< ≤ ∫

Φ sup

0

 , (39)

where  ψ( )v   is the rearrangement of the function  |  ψ ( t ) |  in decreasing order.  The value of the least upper
bound in (39) is realized for a certain finite value  q = q*. 

If, in addition, the set  E  ( Φ )  of values of the operator  Φ  coincides with the entire space  L p ( A, dµ ),
then relation (39) is, in fact, the equality. 

Proof.  For any  x ∈ S p
Φ ,  relations (6) and (21) yield 

e x x U x x t tp
p L

p

L

p

p p
σ

γ
γ

γ
γ

σ σ
σ

σ σ
σ

χ( ) = − ( ) = ( ) − ( )
∈ ∈

( ) ( )inf inf ˆ
Γ Γ

Φ 1

=  inf ˆ ˆ
γ

γσ σ
σ

µ µ
∈ ∫ ∫( ) − ( )






Γ
A

p px t d x t d  

=  
A

p px t d x t d∫ ∫( ) − ( )
∈

ˆ sup ˆµ µ
γ γσ σ σ

Γ
,      Lp  

df=   Lp ( A, dµ ) .

Hence, 

e U x t d x t dp p
p

x U A

p p

p
σ

ψ γ γ

ψ µ µ
σ σ σ

( ) = ( ) − ( )





∈ ∈
∫ ∫Φ

ΓΦ

sup ˆ sup ˆ . (40)

If  x ∈ ψU p
Φ ,  then  x̂ t( ) = ψ( ) ( )t y tˆ ,  where  y  is a certain element from  Up .  Therefore, the following relation is

true: 
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sup ˆ sup ˆ
x U A

p p

p
x t d x t d

∈ ∈
∫ ∫( ) − ( )






ψ γ γ

µ µ
σ σ σΦ Γ

  ≤  sup sup
y U A

p p p p

p

t y t d t y t d
∈ ∈

∫ ∫( ) ( ) − ( ) ( )






ψ µ ψ µ

γ γσ σ σ
Γ

 ,

=  sup sup
h U A

p pt h t d t h t d
∈ ∈+ ∫ ∫( ) ( ) − ( ) ( )






1

ψ µ ψ µ
γ γσ σ σ

Γ
, (41)

where, as above,  U1
+   is the subset of nonnegative functions from  U1 . 

To determine the value of the right-hand side of (41), we use the statement presented below,.  This state-
ment is, apparently, of independent interest, and, therefore, we formulate it as a theorem. 

Theorem 3.  Let  A  be an arbitrary  µ-measurable set from  Rm ,  m ≥ 1,  let  mesµ A = a,  where either

a  is finite or  a = ∞,  let  ϕ ( x )  be a nonnegative function essentially bounded on  A,  and let 

lim
x

x
→∞

( )ϕ   =  0 (42)

if the set  A  is unbounded.  Then, for any  σ < a,  the following equality is true: 

�σ ( ϕ )  =  sup inf
h U A

x h x d x h x d
∈ ∈

∈
+ ∫ ∫( ) ( ) − ( ) ( )






1
γ

γσ σ
σ σ

ϕ µ ϕ µ
Γ

Γ

  =  sup
σ

σ

ϕ
< ≤

−

( )∫q a
q

q
dt

t0

 , (43)

where  Γσ = Γσ ( A )  is the set of all  µ-measurable subsets  γσ  of  A  whose measures are equal to  σ,  and

ϕ( )t   is the decreasing rearrangement of the function  ϕ ( x ) . 
The least upper bound on the right-hand side of (43) is realized for a certain finite value  q = q*. 

Assume that Theorem 3 is proved.  Then, setting  ϕ ( x ) = | ψ ( x ) | 
p  and combining relations (40), (41), and

(43), we obtain relation (39). 
Note that the strict inequality in (39) can be realized only in the case where the same is true for (41).  The

strict inequality in (39) is possible only due to the fact that not every function  y ∈ Up  has its preimage in  U p
Φ

that possesses the  ψ-integral.  However, if  E ( Φ ) = Lp ( A ),  then this is not the case.  Indeed, for any  y ∈ Up ,  its

preimage exists, and, by virtue of the boundedness of  ψ,  the product  ψ  ( t ) y ( t )  belongs to  Lp ( A, dµ )  and,

hence, has its preimage in  S p
Φ ,  or, more precisely, in  ψU p

Φ .  Thus, in this case, relation (39) is, in fact, the
equality.  Thus, to prove Theorem 2, it remains to prove Theorem 3. 

6.  Proof of Theorem 3

First, we give several preliminary remarks.  Below, we consider the Lebesgue integrals of nonnegative  µ-

measurable functions  f ( x )  defined on  µ-measurable sets  A  in  Rm,  m ≥ 1,  namely, 

IA ( f )  =  
A

f x d∫ ( ) µ .
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In the case where this value if finite, we write  f ( x ) ∈ L ( A ).  We introduce the following definition: 

Definition 1.  Let  f ∈ L ( A )  and let  γσ  be an arbitrary measurable subset of  A  such that 

mesµ γσ  =  σ  <  a  =  mesµ A,

i.e.,  γσ ∈ Γσ = Γσ ( A ).  Then the quantity 

Jσ ( f )  =  sup sup
γ γ γ γσ σ σ σ σ

µ µ
∈ ∈

∫ ∫( ) = ( )
Γ

f x d f x d
A

(44)

is called the principal value of rank  σ  of the integral  IA ( f ) . 

The following statement is true: 

Proposition 1.  The quantity  Jσ ( f )  exists for any  f  ∈  L ( A ) .  Furthermore, the following equality is

true: 

Jσ ( f )  =  
0

σ

∫ ( )f t dt , (45)

where  f t( )  is the decreasing rearrangement of the function  f ( x ) . 

The least upper bound in (44) is realized on a certain set   γ σ
*  ⊂ A,  mesµ γ σ

*  = σ,  i.e., 

Jσ ( f )  =  sup
*γ γ γ

σ

σ σ σ

µ µ
∈

∫ ∫ ∫( ) = ( ) = ( )
A

f x d f x d f t dt
0

. (46)

Proof.  Let 

fγσ
 ( x )  =  

f x x

x

( ) ∈

∈





, ,

, .

γ

γ

σ

σ0

Then, for any set  γσ ,  relation (23) yields 

γ
γ γ

σ

γ
σ

σ σ σ
µ µ∫ ∫ ∫ ∫( ) = ( ) = ( ) = ( )f x d f x d f t dt f t dt

A

a

0 0

.

It is clear that  fγ σ
 ≤ f t( )  for all  t ∈ ( 0, σ ) .  Therefore, 

γ

σ

σ

µ∫ ∫( ) ≤ ( )f x d f t dt
0

      ∀γσ ⊂ A.
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Hence, we always have 

Jσ ( f )  ≤  
0

σ

∫ ( )f t dt ,

and, to prove equalities (45) and (46), it remain to establish the existence of the sets  γ σ
* . 

Let the quantity  yσ  be defined by the equality  f ( )σ  = yσ .  First, assume that  yσ  is a point of continuity of

the function  mf ( y ) .  Then we set  γ σ
*  = E ( f ( x ) ≥ yσ ). 

By virtue of (22),  mesµ γ σ
*  = σ  and  f t( ) ≥ yσ  for  t ∈ ( 0, σ ).  Therefore, according to (23), we get 

γ

σ

σ

µ
*
∫ ∫( ) = ( )f x d f t dt

0

, (47)

i.e., equalities (45) and (46) are proved in this case. 

If  yσ  is a point of discontinuity of the function  m f ( y ) ,  then the measure of the set  E ( f ( x ) ≥ y )  may be

greater than  σ.  In this case, we set  γ σ
*  = e1 + ′e2,  e1 = E ( f ( x ) > yσ ),  where  ′e2  is any measurable part of the

set  e2 = E ( f ( x ) = yσ )  for which  mesµ e1 + mesµ ′e2 = σ.  It is clear that relation (47) is true for the set  γ σ
*   thus

defined, which proves the required statement.  Note that, in the last case, the set  γ σ
*   is not unique. 

Definition 2.  Assume that, on a  µ-measurable set  A ⊂ Rm,  m ≥ 1,  mesµ A = a,  where either  a  is fi-

nite or  a = ∞,  a summable function  f ( x )  such that 

A

f x d∫ ( ) µ   <  ∞

is given and  γσ ∈ Γσ .  Then the quantity 

eσ ( f )  =  inf
γ

γσ
σ

µ µ
∈ ∫ ∫( ) − ( )

A
A

f x d f x d

is called the best approximation of the integral of a function  f  over the set  A  by integrals of rank  σ. 

If  f ( x ) ≥ 0  for all  x ∈ A,  then  eσ ( f )  can be represented in the form 

eσ ( f )  =  
A

f x d f x d∫ ∫( ) − ( )µ µ
γ γσ σ

sup .

Then Proposition 1 yields the following statement: 

Proposition 2.  Let a nonnegative summable function  f  (  x )  be defined on a measurable set  A  ⊂  Rm ,
where  m ≥ 1,  mesµ A = a,  and  a  is either finite or infinite.  Then 
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eσ ( f )  =  inf
γ

γ σσ
σ

µ µ
∈ ∫ ∫ ∫( ) − ( )







= ( )

A
A

a

f x d f x d f t dt . (48)

In this case, the lower bound in (48) is realized by the set  γ σ
*  ∈ A,  mesµ γ σ

*  = σ,  defined in Proposition 1. 

If  �  is a certain subset of functions from  L ( A ),  then we set 

�σ ( � )  =  
  
sup
f ∈�

 eσ ( f )  =  

 

sup inf
f A

A

f x d f x d
∈ ∈ ∫ ∫( ) − ( )






� γ
γσ

σ

µ µ .

Thus, the quantity  �σ( � )  is the upper bound of the best approximations of the integrals of functions from the

set  �  by integrals of rank  σ. 
As  �,  we now consider the set  Hϕ  that consists of functions  f ( x ),  x ∈  A.  These functions can be repre-

sented by products of a certain fixed nonnegative function  ϕ ( x )  and nonnegative functions  h ( x )  that belong to

the unit ball  U1
+   in  L ( A ) : 

Hϕ  =  { f ( x ) = ϕ ( x ) h ( x ) :  h ∈ U1
+}.

We see that the quantity  �σ ( ϕ )  in (43) coincides with  �σ  ( Hϕ ) ,  and, hence, it is the upper bound of the

best approximations of the integrals of functions  f ∈ Hϕ  over the set  A  by integrals of rank  σ. 
We now pass directly to the proof of Theorem 3. 
It suffices to prove Theorem 3 only in the case of bounded sets  A.  Indeed, assume that it is proved for any

bounded measurable set  A  from  Rm.  Let us show its validity in the general case. 

We fix an arbitrarily small number  ε > 0  and choose a number  Nε   such that, for all  N ≥ Nε  and  h ∈  U1
+ ,

the following relation is true: 

A A

f x d f x d

N

∫ ∫( ) = ( ) +µ µ ρ ,      f ( x )  =  ϕ ( x ) h ( x ),      AN  =  A I KN , (49)

KN  =  { x :  x ∈ Rm,  | x | ≤ N },      ρ  ≤  ε.

Note that, since  h ∈ U1
+ ,  we can take as  Nε  a number for which the relation  | x | > Nε  holds for  ϕ ( x ) < ε  [see

condition (42)]. 

At the same time, for any  γσ ∈ A  and  h ∈ U1
+ ,  we get 

  γ γσ σ

µ µ ρ∫ ∫( ) = ( ) + ′f x d f x d
ANI

,      ρ′  ≤  ε,

whence 

  

sup sup
γ γ γ γσ σ σ σ

µ µ ρ
∈ ∈

∫ ∫( ) = ( ) + ′′
A A A

f x d f x d

NI

,      ρ′′  ≤  ε. (50)
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Let  δσ  be any measurable subset of  AN ,  mesµ δ σ = σ.  Then 

sup sup
δ δ γ γσ σ σ σ

µ µ
∈ ∈

∫ ∫( ) ≤ ( )
A AN

f x d f x d (51)

and 

 

sup sup
γ γ δ δσ σ σ σ

µ µ
∈ ∈

∫ ∫( ) ≤ ( )
A A A

N N

f x d f x d
I

. (52)

Combining relations (49) – (52), we get 

sup sup ( )

γ γ δ δσ σ σ σ

µ µ ρ
∈ ∈

∫ ∫( ) = ( ) +
A A

f x d f x d
N

3 ,      ρ(
 
3

 
)  ≤  ε.

Taking into account (43) and (49), we obtain 

�σ ( Hϕ )  =  sup sup
h U A A

x h x d x h x d
∈ ∈+ ∫ ∫( ) ( ) − ( ) ( )






1

ϕ µ ϕ µ
γ γσ σ

=  sup sup ( )

h U A A
N N

x h x d x h x d
∈ ∈+ ∫ ∫( ) ( ) − ( ) ( )







+

1

4ϕ µ ϕ µ ρ
δ δσ σ

=  sup sup ( )

h H A A
N N

x h x d x h x d
∈ ∈

∫ ∫( ) ( ) − ( ) ( )






+ϕ µ ϕ µ ρ

δ δσ σ

5   
df=   �σ ϕ( )H  + ρ(

 
5

 
), (53)

where  ρ(
 
4

 
)  and  ρ(

 
5

 
)  satisfy the inequalities 

| ρ(
 
4

 
) |  ≤  ε,      ρ(

 
5

 
)  ≤  ε,

Hϕ  = { f ( x ) = ϕ ( x ) h ( x ) :  h ∈ H },  and  H   is the subset of functions from  U1
+   for which 

AN

h x d∫ ( ) µ   ≤  1.

For any  N,  the sets  AN  are bounded and their measures are finite (assume that they are equal to  aN  ) .  There-
fore, according to the assumption made and equality (43), we have 

  

�σ ϕ
σ

σ

ϕ

( ) = −

( )
< < ∫

H
q

dt
t

q a
q

N
N

sup

0

, (54)
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where  ϕN t( )   is the decreasing rearrangement of the restriction of a function  ϕ ( x )  on the set  AN  and 

ϕN ( x )  =  
ϕ( ) ∈

∈





x x A

x A

N

N

, ,

, .0
(55)

Combining relations (53) and (54), we get 

�σ ( Hϕ )  =  sup
σ

σ

ϕ
< <

−

( )∫q a
q

N
N

q
dt

t0

 + ρ(
 
5

 
). (56)

Let us show that 

  

lim sup
N q a

qH
q

dt
t

→∞ < <
( ) = −

( )∫
�σ ϕ

σ

σ

ϕ0

. (57)

First, note that if  a = ∞,  then, for any fixed  σ,  the function

fσ ( q )  =  
q

dt
t

q
−

( )∫
σ

ϕ0

(58)

tends to zero as  q → ∞.  Therefore, there exists a point  q*  for which 

sup
σ < <q a

 fσ ( q )  =  fσ ( q* ) . (59)

It is clear that such a point  q*  can also be found for  a < ∞. 
Let us prove the following statement: 

Proposition 3.  Let  ϕN ( x )  be defined by relation (55).  Then, on a certain interval  [ 0, bN ] ,  one has 

ϕ ϕN t t( ) = ( ),      t ∈ [ 0, bN ] , (60)

and, furthermore, 

lim
N →∞

 bN  =  a. (61)

Proof.  For a given natural  N0,  let 

y0  =  yN0
  =  ess sup

\x A AN∈
0

 ϕ ( x ), (62)

Ey0
  =  { x :  x ∈ A,  ϕ ( x ) ≥ y0 }. (63)
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If  y0 = 0,  then there exists  N1   such that, for all  N > N1 ,  we have  ϕ ( x ) = 0  almost everywhere if  x � AN .

Consequently,  ϕN ( x ) ≡ ϕ ( x ),  x ∈ AN,  for all  N > N1,  whence  ϕN t( )  = ϕ( )t   for all  t � [ 0, aN  ].  Therefore, it

suffices to assume that  y0 > 0.  By virtue of condition (42), if  y0 > 0,  then the set  Ey 
0
  is bounded.  Therefore,

we can find a number  Ny0
  such that  Ey0

 ⊂ AN   ∀N > Ny0
 .  Hence, for  N > Ny0

 ,  we get  ϕ ( x ) < y0 ,  x  � AN .

Therefore, for the distribution functions  m ϕ ( y )  and  mϕN
 ( y ),  we get  mϕ ( y ) = mϕ N

 ( y ),  y  ∈  [ y0 ,  M  ϕ =

ess sup
x A∈

 ϕ ( x ) ].  Consequently, the functions  ϕ( )t   and  ϕN t( )   coincide on the interval  [ 0, mϕ ( y0 ) ],  i.e.,

ϕN t( )  = ϕ( )t ,  t ∈  [ 0, mϕ ( y0 ) ].  According to (42) and (62), we have  lim
N0 →∞

 yN0
 = 0.  Therefore, by setting

bN0
 = mϕ ( yN0

 ),  we arrive at relations (60) and (61). 

Returning to the proof of equality (57), we conclude that if the number  Nq *  is such that  bN  ≥ q*  for

N > Nq * ,  then 

sup
*

*σ

σ

ϕ

σ

ϕ
< <

−

( )

= −

( )∫ ∫q a
q

N

q
N

q
dt

t

q
dt

t0 0

,

which proves equality (57). 
Combining equalities (56) and (57) and taking into account the arbitrariness of the choice of the number  ε,

we arrive at the required statement.  Thus, it remains to prove the theorem only in the case of bounded sets  A. 
Assume that the theorem is proved for all bounded sets  A  in the case where the function  ϕ ( x )  takes an ar-

bitrary finite number of values.  Namely, assume that the following statement is true: 

Proposition 4.  Let  A  be an arbitrary bounded measurable set from   Rm,  mes A =  a,  and let  ϕ( x )  be
a nonnegative function taking finitely many values on  A.  Then, for any  σ < a,  equality (43) is satisfied. 

Let us prove the following statement: 

Proposition 5.  Let  A  be an arbitrary bounded measurable set from  Rm,  mes A = a,  and let  ϕ( x )  be
an arbitrary nonnegative bounded measurable function.  Then equality (43) holds for any  σ < a. 

Proof.  Let 

c  =  ess sup
x A∈

 ϕ ( x )

and let  n  be a certain natural number.  We divide the segment  [ 0, c ]  into  n  equal parts  ρk ,  k = 1, … , n,  by

points  yi
n( ) : 

c  =  y n
1
( )   >  y n

2
( )   > … >  yn

n( )   >  yn
n
+

( )
1  =  0.

If  E  is an arbitrary measurable subset of  A,  then we put 

ek  =  { x ∈ E :  yk
n( )  < ϕ ( x ) ≤ yk

n
+

( )
1},      k = 1, 2, … , n.
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Then, for any function  h ∈ U1
+ ,  we get 

n
k

n

k
n

e E

h y h x d x h x d

k

( ) df,
1

1
1∑ ∑ ∫ ∫( ) = ( ) ≤ ( ) ( )

=
+

( )ϕ µ ϕ µ   ≤  
k

n

k
n

e
n

y h x d h

k=

( )∑ ∫ ∑( ) = ( )
1

2µ ϕdf ( )
, .

In this case, we have 

n n
E

h h
c
n

h x d
c
n

( ) ( )
, ,

2 1∑ ∑ ∫( ) − ( ) = ( ) ≤ϕ ϕ µ .

Hence, 

E
n n n nx h x d h h∫ ∑ ∑( ) ( ) = ( ) + = ( ) −ϕ µ ϕ ε ϕ ε( ) ( ) ( ) ( ), ,
1 1 2 2 ,

0 1≤ ≤εn
c
n

( )
 ,      0 2≤ ≤εn

c
n

( ) .

Therefore, for any  h ∈ U1
+   and  n ∈ N,  the following equality is true: 

A A
x h x d x h x d∫ ∫( ) ( ) − ( ) ( )

∈
ϕ µ ϕ µ

γ γσ σ

sup   =  
A

n
A

n nx h x d x h x d∫ ∫( ) ( ) − ( ) ( ) +
∈

ϕ µ ϕ µ ε
γ γσ σ

sup ( )3 , (64)

where 

ϕn ( x )  =  yk
n( ) ,      x ∈ { yk

n( )  < ϕ ( x ) ≤ yk
n
+

( )
1}

and 

εn
c

n
( )3 2≤ .

Considering the upper bounds of both sides of equality (64) on the set  U1
+   and taking into account the uniform

boundedness of the quantities  εn
( )3   by the numbers  2c / n,  we get 

�σ ( Hϕ )  =  sup sup ( )

h U A
n

A
n nx h x d x h x d

∈ ∈+ ∫ ∫( ) ( ) − ( ) ( )






+

1

4ϕ µ ϕ µ ε
γ γσ σ

,

where 

εn
c

n
( )4 2≤ .

The function  ϕn ( x )  takes only  n  values, and, therefore, according to Proposition 4, we obtain 



EXTREMAL PROBLEMS OF APPROXIMATION THEORY IN LINEAR SPACES 1683

�σ  ( Hϕ )  =  sup ( )

σ

σ

ϕ

ε
< ≤

−

( )

+
∫q a

q

n

n
q

dt
t0

4 ,

where  ϕn t( )  is the decreasing rearrangement of the function  ϕn ( x ).  To prove Proposition 5, it remains to note

that, for any  q < a,  we have 

lim
n

q

n

q
dt

t
dt

t→∞ ∫ ∫( )
=

( )
0 0

ϕ ϕ
.

Thus, to complete the proof of the theorem, it remains to prove Proposition 4, i.e., to prove Theorem 3 in the
case of bounded sets  A  for the functions  ϕ ( x )  that take finitely many values  ϕj ,  j = 1, 2, … , n,  n ∈ N,  on  A. 

Assume that  ϕ ( x )  takes  n  different values  ϕk .  We enumerate them in decreasing order as follows: 

ϕ1  >  ϕ2  > … >  ϕn . (65)

We set 

ek  =  { x ∈ A :  ϕ ( x ) = ϕk },      k = 1, … , n,      mesµ ek = | ek |.

It is clear that the sets  ek  and  ej  do not intersect for  k ≠ j,  and 

k
keU   =  A. (66)

Let  h ( x )  be a function nonnegative on  A,  let 

hk ( x )  =  
h x x e

x e

k

k

( ) ∈

∈





, ,

, ,0
(67)

and let  h xk ( )   be the decreasing rearrangement of the function  hk ( x )  (defined on  [ 0, | ek | ] ).  Also let 

ti  =  
k

i

ke
=

∑
1

,      i  =  1, 2, … , n,      t0  =df   0. (68)

We define a function  h*
 ( t )  by setting 

h*
 ( t )  =  h t tk( − )−1 ,      t ∈ [ tk – 1 , tk )  df=   ∆k ,      k  =  1, … , n, (69)

and prove the following statement: 

Proposition 6.  Let  A  be an arbitrary bounded measurable set from  Rm,  mesµ A = a,  let  ϕ  (  x )  be a

nonnegative function taking finitely many values on  A,  and let  h ( x )  be a nonnegative function for which 
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A

h x d∫ ( ) µ   =  b  <  ∞.

Further, let  γσ  be an arbitrary subset of  A,  mesµ γσ = σ ≤ a.  Then the function  h*
 ( t )  defined by relation

(69) satisfies the equalities 

0

a

h t dt∫ ( )*   =  b

and 

�σ ( ϕ; h )  df=   
A A

x h x d x h x d∫ ∫( ) ( ) − ( ) ( )
⊂

ϕ µ ϕ µ
γ γσ σ

sup   =  
0 0

a

a

t h t dt t h t dt∫ ∫( ) ( ) − ( ) ( )
⊂( )

ϕ ϕ
δ δσ σ

*

,

*sup , (70)

where  ϕ( )t   is the decreasing rearrangement of the function  ϕ  (  x )  and   δ σ  are subsets of  (  0, a  )  f o r

which  mesµ δσ = σ. 

Proof.  Taking (23) into account, we get 

b  =  
A k

n

e k

n

e

kh x d h x d h x d

k k

∫ ∑ ∫ ∑ ∫( ) = ( ) = ( )
= =

µ µ µ
1 1

=  
k

n e

k
k

n

k k

ak

k

h t dt h t t dt h t dt
= =

−∑ ∫ ∑ ∫ ∫( ) = ( − ) = ( )
1 0 1

1

0∆

* .

Let us show that the function also satisfies equality (70).  First, note that, by virtue of (23), the following equal-
ities are true: 

A k

n

k

e

k
k

n

k

e

kx h x d h x d h t dt

k

k

∫ ∑ ∫ ∑ ∫( ) ( ) = ( ) = ( )
= =

ϕ µ ϕ µ ϕ
1 1 0

=  
k

n

k k k
k

n

k

a

k k

h t t dt h t dt t h t dt
=

−
=

∑ ∫ ∑ ∫ ∫( − ) = ( ) = ( ) ( )
1

1
1 0

ϕ ϕ ϕ
∆ ∆

* * .

Therefore, it remains to verify the relation 

J  ( ϕ h )  df=   

  

sup sup
,

* *

γ γ δ δ
σ

σ σ σ σ

ϕ µ ϕ ϕ
⊂ ⊂( )

∫ ∫( ) ( ) = ( ) ( ) = ( )
A a

x h x d t h t dt h
0

J  . (71)
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Let  γσ  be an arbitrary set from  A,  mesµ γσ = | γσ | = σ,  and let 

ηk  =  γσ I ek ,      k  =  1, 2, … , n,      mesµ ηk = | ηk |. (72)

Then 

γ η

η

σ

ϕ µ ϕ µ ϕ∫ ∑ ∫ ∑ ∫( ) ( ) = ( ) = ( )
= =

x h x d h x d h t dt
k

n

k
k

n

k k

k

k

1 1 0

=  

  
k

n

k k k
k

n

k

k k kk
n

h t t dt h t dt t h t dt
=

−
=

∑ ∫ ∑ ∫ ∫( − ) = ( ) = ( ) ( )

=
1

1
1

1

ϕ ϕ ϕ
β β β

* *

U

, (73)

where  βk = { t :  t ∈ ∆k ,  t – tk – 1 ∈ ( 0, | ηk | ) }.  Since 

  

mesµ β η
k

n

k
k

n

k
= =

= ∑
1 1

U   =  σ,

we conclude, by virtue of (73), that 

J  ( ϕ h )  =  

  

sup sup
,

* *

γ γ δ δ
σ

σ σ σ σ

ϕ µ ϕ ϕ
⊂ ∈( )

∫ ∫( ) ( ) ≤ ( ) ( ) = ( )
A a

x h x d t h t dt h
0

J . (74)

To prove (70), it remains to show that the last relation cannot be the strict equality.  For this purpose, taking

Proposition 1 into account, we consider a set  δσ
*   with measure  σ  on  [ 0, a )  for which 

  

Jσ
δ

ϕ ϕ
σ

( ) = ( ) ( )∫h t h t dt* *

*

(75)

and put 

νk  =  δσ
*  I ∆k ,      mesµ νk = | νk |,      k  =  1, … , n.

According to (69) and (75), we get 

  

Jσ
ν ν α

ϕ ϕ ϕ ϕ( ) = ( ) = ( − ) = ( )
= =

−
=

∑ ∫ ∑ ∫ ∑ ∫h h t dt h t t dt h t dt
k

n

k
k

n

k k k
k

n

k k

k k k

* *

1 1
1

1

, (76)

where  αk = { t :  t ∈ [ 0, | νk | ) ,  t + tk – 1 ∈ νk },  k = 1, 2, … , n.  On the intervals  [  0, | νk | ),  the functions  h tk ( )
do not decrease.  Hence, the functions  h t tk k( − )−1   do not decrease for  t ∈  ∆k .  Therefore, relations (75) and
(76) yield 
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νk  =  [ tk – 1 , tk – 1 + | νk | ],      k  =  1, 2, … , n,

or 

νk  =  { t :  t ∈ ∆k ,  h t tk k( − )−1  ≥ hk  ( | νk | ) }. (77)

Consequently, according to (76), we obtain 

  

Jσ

ν

ϕ ϕ( ) = ( )
=

∑ ∫, *h h t dt
k

n

k k

k

1 0

. (78)

We now construct a set  γ σ
*  ⊂ A  corresponding to the set  δσ

*  ⊂ [ 0, a ).  For this purpose, we put 

ηk
*   =  { x :  x ∈ ek ,  h ( x ) ≥ hk  ( | νk | ) },      k  =  1, 2, … , n, (79)

and 

 

γ ησ
* *=

=k

n

k
1

U . (80)

Since  h ( x ) = hk ( x )  for  x ∈ ek ,  by virtue of (22), (77), and (79) we get  mesµ ηk
*  = mesµ νk = | νk | .  Hence, ac-

cording to (80), we have  mesµ γ σ
*  = σ.  For such  γ σ

* ,  we obtain [see relations (72), (73), and (78)] 

  γ

η ν

σ

σ

ϕ µ ϕ ϕ ϕ
*

*

,∫ ∑ ∫ ∑ ∫( ) ( ) = ( ) = ( ) = ( )
= =

x h x d h t dt h t dt h
k

n

k k
k

n

k k

k k

1 0 1 0

J  .

Thus, relation (74) is indeed the equality, i.e., relation (71) is true.  Proposition 6 is proved. 

Assume, as above, that 

U h x h x h x d
A

1 0 1+ = ( ) ( ) ≥ ( ) ≤








∫: , µ ,

the function  ϕ ( x )  takes finitely many values  ϕj ,  j = 1, 2, … , n,  on  A,  and  H 
*

 ( ϕ )  is the set of functions de-

fined on  [ 0, a )  and constructed for every  h ∈ U1
+   according to formula (69).  Then Proposition 6 yields the

following statement: 

Proposition 7.  Let  A  be an arbitrary bounded measurable set from  R  
m ,  mesµ  A  = a,  and let  ϕ  (  x )

be a nonnegative function taking a finite number  n   of values  ϕ j  ,  j = 1, 2, …  , n,  on  A .  Then, for any

σ ≤ a,  the following equality is true: 
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�σ  ( Hϕ )  =  

  

sup ; sup sup
* *

*

,

*

h U h H

a

a

h t h t dt t h t dt
∈ ∈ ( ) ∈( )+

( ) = ( ) ( ) − ( ) ( )








∫ ∫

1 0 0
�σ

ϕ δ δ

ϕ ϕ ϕ
σ σ

, (81)

where  ϕ( )t   is the decreasing rearrangement of the function  ϕ  ( x )  and   δσ  are the subsets of  (  0, a )  for

which  mesµ δσ = σ. 

Finally, we establish one more auxiliary statement. 

Lemma 1.  Assume that, on an interval   (  0, a )  of the real axis  R1,  where  a  is either finite or infinite,
a bounded nonincreasing function  α ( t )  satisfying the condition 

lim
t→∞

 α ( t )  =  0

in the case  a = ∞  (in this case, we write  α  ∈  A )  and the set  M   of nonnegative functions  m  ( t )  for
which 

0

a

m t dt∫ ( )   ≤  1

are given.  Then 

�σ ( α, M )  =  

  

sup sup
,m

a

a

t m t dt t m t dt
∈ ∈( )

∫ ∫( ) ( ) − ( ) ( )










M 0 0
α α

δ δσ σ

  =  sup
,q a

a

q
dt

t
∈( )

−

( )∫σ

σ

α0

, (82)

where  δσ  is an arbitrary measurable set from  (  0, a ),  mes δσ = | µ | = σ.  The upper bound on the right-hand

side of (82) is always realized at a certain point  q* ∈  ( σ, a ).  The upper bound on the left-hand side of (82) is
realized by a function  m* ∈ M ,  namely 

m*
 ( t )  =  

1 0

0
0α α( ) ( )

∈[ ]

∈( )









∫t
dx

x
t q

t q a

q*

, , ,

, , .

*

*

Proof.  For given  α ∈ A  and  m ∈ M,  let 

Fσ ( α, m )  =  
0

a

t m t dt t m t dt∫ ∫( ) ( ) − ( ) ( )α α
δ δσ σ

sup (83)

and let  δσ
*  = δσ

* ( )m   be the set from  ( 0, a )  for which 
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Fσ ( α, m )  =  
0

a

t m t dt t m t dt∫ ∫( ) ( ) − ( ) ( )α α
δσ

*

.

Note that the existence of such a set  δσ
*   is guaranteed by Proposition 1 and the summability of the product

α  ( t ) m ( t ) .  Assume, in addition, that 

yσ  =  yσ ( m )  =  inf
*t ∈δσ

 α ( t ) m ( t ) .

It is clear that, in this case, we have 

δσ
*   =  { t :  α ( t ) m ( t ) ≥ yσ }, (84)

and the inequality  t ∈ eσ = ( 0, a ) \ δσ
*   holds for  α  ( t ) m ( t )  ≤  yσ .  Therefore, for the function 

m t
m t t e
y

t
t

( ) =
( ) ∈

( )
∈







, ,

, ,*

σ

σ
σα

δ (85)

the following equalities are true: 

δσ

α
*
∫ ( ) ( )t m t dt   =  σ yσ

and 

Fσ ( α, m )  =  Fσ ( α, m ) . (86)

We choose a point  c > σ  from the condition 

0

c

c

a
y

t
m t dt m t dt∫ ∫( )

− ( )





= ( )σ
α

. (87)

By virtue of the fact that  α  ( t )  is a monotone nonincreasing function, such a point always exists and is unique.
We set 

m′ ( t )  =  

y
t

t c

t c a

σ
α( ) ∈( )

∈[ )








, , ,

, , .

0

0

(88)

Taking (87) into account, we obtain 
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0 0 0

a a c

c

a

t m t dt t m t dt t
y

t
m t dt t m t dt∫ ∫ ∫ ∫( ) ′( ) − ( ) ( ) = ( )

( )
− ( )





− ( ) ( )α α α
α

ασ

≥  α
α

σ( + )
( )

− ( )





− ( )




∫ ∫c

y

t
m t dt m t dt

c

c

a

0
0

  =  0.

By virtue of (86), this yields 

Fσ ( α, m′ )  ≥  Fσ ( α, m ) . (89)

It follows from relations (85) and (84) that 

0 0

a a

m t dt m t dt∫ ∫( ) ≤ ( ) ,

and relations (88) and (87) yield 

0 0 0

a c a

m t dt
y

t
dt m t dt∫ ∫ ∫′( ) =

( )
= ( )σ

α
.

Hence,  m′ ∈ M. 

Let  M ′  denote the subset of functions  m  from  M  for which there exists a number  q = q ( m ),  σ < q ≤ a,
such that  m ( t ) = 0  for all  t ∈ ( q, a ),  and the product  α  ( t ) m ( t )  is constant on the interval  [ 0, q ) : 

m ( t )  =  
λ, , ,

, , ,

t q

t q a

∈[ ]

∈( )





0

0
(90)

where  λ  is a positive number.  The function  m   from (88) belongs to  M ′  and satisfies relation (89).  There-
fore, 

�σ ( α, M )  =  sup
m∈M

 Fσ ( α, m )  =  
 
sup

m∈ ′M
 Fσ ( α, m )  =  �σ ( α, M ′ ) .

Thus, the problem of the determination of the quantity  �σ ( α, M )  is reduced to the determination of the quan-

tity  �σ ( α, M ′ ) . 

If  m ∈ M ′,  then, according to (90), we get 

Fσ ( α, m )  =  λ  ( q – σ )

and 

|| m || 1  
df=   

0 0

q q

m t dt dt
t∫ ∫( ) =

( )
λ

α
.
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Consequently, since  || m ||1 ≤ 1,  we obtain 

Fσ ( α, m )  =  
( − )

( )

≤ −

( )∫ ∫
q m

dt
t

q
dt

t

q q
σ

α

σ

α

1

0 0

.

Therefore, 

 
sup

m∈ ′M
 Fσ ( α, m )  ≤  sup

σ

σ

α
< ≤

−

( )∫q a
q

q
dt

t0

. (91)

The existence of the number  q*  indicated in Lemma 1 has, in fact, been established above [see relations (58)
and (59)].  Therefore, according to (91), we get 

sup
m∈ ′M

 Fσ ( α, m )  ≤  
q

dt
t

q

*

*

−

( )∫
σ

α0

. (92)

The function 

m*
 ( t )  =  

1 0

0
0α α( ) ( )

∈[ ]

∈( )









∫t
dx

x
t q

t q a

q*

, , ,

, , ,

*

*

belongs to  M ′,  and, hence, relation (92) is indeed the equality, which completes the proof of Lemma 1. 

We continue the proof of Proposition 4.  The set  H*
 ( ϕ )  from equality (81) is contained in  M .  Therefore,

denoting the right-hand side of this equality by  �σ ϕ( ); *H ,  we get 

    
�σ

ϕ
σ σϕ ϕ ϕ( ) = ( ) ≤ ( )

∈ ( ) ∈
; sup ; sup ;* *

*

H F h F m
h H m M

. (93)

On the interval  ( 0, a ) ,  the function  ϕ( )t   satisfies the conditions imposed on the function  α  ( t )  in Lemma 1
(for finite values of  a ).  Therefore, according to Lemma 1, we obtain 

  

sup ; sup
,

*

*
m q a

q q
F m

q
dt

t

q
dt

t
∈ ∈( )

( ) = −

( )

= −

( )∫ ∫M
σ

σ
ϕ σ

ϕ

σ

ϕ0 0

, (94)

where  q*  is a certain point from  ( σ, a )  and the upper bound on the left-hand side is realized by the function 

m*
 ( t )  =  

1 0

0
0ϕ ϕ( ) ( )

∈[ ]

∈( )









∫t
dx

x
t q

t q a

q*

, , ,

, , ,

*

*

(95)
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i.e., 

F m
q

dt
t

qσ ϕ σ

ϕ

( ) = −

( )∫
; *

*

*

0

.

In Proposition 4, the function  ϕ ( x )  takes only a finite number of values  ϕk ,  k = 1, 2, …  , n.  If these

values are enumerated in decreasing order, then its rearrangement is constant on the intervals  ∆k  [see relations
(65) – (69)]: 

ϕ( )t   =  ϕk ,        t ∈ ∆k ,      k = 1, 2, … , n.

Therefore, in this case, the function  m*
 ( t )  from (95) is piecewise constant on  [ 0, q*

 ] : 

m*
 ( t )  =  

1 1 2

0
0

1ϕ ϕk

q

k k k
dx

x
m t t t k t q

t q a

*

df *

*

, , , , , , ,

, , .

∫ ( )
= ∈[ ] = … ≤

∈( )









−

This implies that the set  U1
+   contains a function  h  for which the function  h*  constructed according to (69)

coincides with  m*.  This means that  m* ∈  H 
*

 ( ϕ ).  Thus, relation (93) is, in fact, the equality.  Combining
equalities (93) and (94), we complete the proof of Proposition 4 and Theorem 3. 

7.  Examples

Consider several simplest realizations of the constructions considered above. 

1.  We say that a certain space  �  is a partial case of the space  S p
Φ   if it can be obtained by the proper

choice of the space  �,  measure  dµ,  and operator  Φ. 

In this sense, the spaces considered in [1 – 5], as well as the spaces  S p
ϕ   introduced in [6], are partial cases

of the space  S p
Φ .  We show this in a simple but important case. 

Let  Rm  be the  m-dimensional,  m ≥ 1,  Euclidean space, let  x = ( x1 , … , xm )  be its elements, let  Z  
m  be

the integer-valued lattice in  Rm,  i.e., the set of all vectors  k = ( k1 , … , km )  with integer-valued coordinates, and

let  x y = ( x1 y1 + … + xm ym )  ,  | x | = x x, ,  and, in particular,  k x = k1 x1 + … + km xm ) ,  | k | = k km1
2 2+ … + . 

Further, we denote by  L = L ( Rm, 2π )  the set of all functions  f ( x ) = f ( x1 , … , xm )  2π-periodic in each
variable and summable with respect to the ordinary Lebesgue measure in the cube of periods 

Qm  =  { x :  x ∈ Rm,  – π ≤ xk ≤ π,  k = 1, 2, … , m }.

In the space  L ( R 
m, 2π ),  we define an operator  �  by setting 

� ( f; k )  =  ( π) ( ) = ( )− −∫2 2m

Q

ikx

m

f x e dx f k/ ˆ . (96)
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The operator  �  maps the space  L ( Rm, 2π )  into the set  Y  of functions  y ( t )  given on the integer-valued

lattice  Z 
m  in  Rm.  Now let  dµ  be a measure in the space  Rm  whose support is the set  Zm ,  where it is equal to

1,  i.e.,  µ ( k ) ≡ 1,  k ∈ Zm .  In this case, the functional defined by equality (4) has the form 

|| y || Lp
 ( Rm, d µ )  =  

R

p
p

k Z

p
p

m m

y t d f k∫ ∑( )






= ( )





∈
µ

1 1/ /

ˆ ,      p ∈ ( 0, ∞ ).

Choosing the space  L  as  �  and the operator  �  as  Φ,  we obtain the space    S L Yp
�( );  : 

S L Y f L f xp

k Z

p

m
�( ) = ∈ ( ) < ∞











∈
∑; : ˆ .

Note that these spaces coincide with the considered spaces  S p
ϕ   generated by the space  L ,  the system  ϕ =

{ } =
∞ϕk k 1,  where 

ϕk  =  ( 2π ) 
–

 
m

 
/
 
2

 ei
 
k

 
x,      k  =  1, 2, … ,

and the scalar product  ( f, ϕk ) = f̂ k( )   defined by (96). 

If  f = f ( x )  and  g = g ( x )  are arbitrary functions from  L ( Rm, 2π ),  then their convolution 

h ( x )  =  ( f * g ) ( x )  =  ( π) ( ) ( − )− ∫2 2m

Qm

f t g x t dt/ (97)

also belongs to  L ( R 
m, 2π ) ,  and 

� ( h; x )  =  ˆ ˆ ˆ/h k h x e dx f k g km

Q

ikx

m

( ) = ( π) ( ) = ( ) ( )∫ −2 2
 . (98)

Therefore, the role of the multiplier  MΦ
ω   is played by the convolution operator (97), and the set  ΩΦ

p   contains
all functions  ω ( t )  satisfying the equality 

ω ( k )  =  ĝ k( ),      g ∈ L,

and such that 

∑ ( ) ( )f̂ k k
p pω   <  ∞

for all  f ∈ S p
Φ .  In the case under consideration, the measure of any bounded set  γσ  is a natural number or zero.

Therefore, for any function  λ  ( t )  on  γσ ,  the function 
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gγσ
 ( x )  =  

k

ikxk e
∈
∑ ( )

γ σ

λ

is a polynomial of degree  ≤  σ,  and, hence, it belongs to  S p
Φ   for any  p ∈ ( 0, ∞ ).  Setting 

Uγσ
 ( f; λ ) ( x )  =  ( f * gγσ

 ) ( x ) ,

we get 

� ( Uγσ
 ( f; λ ) )  =  

λ γ

γ

σ

σ

( ) ( ) ∈

∈







k f k k

k

ˆ , ,

, ,0

by virtue of (98), i.e., the function  Uγσ
 ( f; λ ) ,  which is also a polynomial of degree  σ,  satisfies condition (9).

In particular, if  λk = 1  for  k ∈ γσ ,  then  Uγσ
 ( f )  is a polynomial with the numbers of harmonics belonging to

γσ ,  and its coefficients are the corresponding Fourier coefficients of the function  f.  Such polynomials are called

the Fourier sums of a function  f  constructed on the sets  γσ . 

In this case,  ψ-integrals are defined in the following way:  Let  ψ = { ψ ( k ) } k ∈ Z m  be an arbitrary system of

complex numbers and let  f ∈ L.  Then a  ψ-integral of a function  f  is an arbitrary function  u = J  
ψ f  from  L  for

which 

                                � ( u; k )  =  ψ( ) ( )k f kˆ .

In particular, if  ψ ∈ ΩΦ
p ,  then  J  

ψ f  is given by the formula 

                                    J  
ψ f  =  f * Ψ,

where  ψ = ψ ( x )  is a function summable on  Rm  and such that its Fourier series has the form 

                                S [ ψ ]  =  
k Z

ikx

m

k e
∈
∑ ( )ψ .

In this case, we have  

                              ψS Sp p
� �⊂ ,      p ∈ ( 0, ∞ ) .

The results corresponding to those obtained in Theorems 1 and 2 for the case under consideration are presented
in [1 – 5]. 

  We now give examples of the spaces  S p
Φ   that have nothing common with the scheme of the construction

of the spaces  S p
ϕ   in Sec. 1. 
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  2.  Consider an example in which the spaces  S p
Φ   are definitely nonseparable.  Let  L 2 ( R 

m
 )  be the space of

all functions  f ( x ) = f ( x1 , … , xm )  Lebesgue-measurable on  Rm,  m ≥ 1,  and such that 

                          || f || L2
 ( Rm )  =  

Rm

f x dx∫ ( )






2
1 2/

  <  ∞.

As  �  and  Y,  we choose the spaces  L2 ( Rm
 )  and define the operator  Φ  by the Fourier transformation 

                    Φ ( f )  =  f̂ t( )  =  � ( f; t )  =  ( π) ( )− −∫2 2m

R

itx

m

f x e dx/ .

  As is known (see, e.g., [11, Chap. I], the operator  �   is unitary on  L2 ( R  
m

 ) .  Hence, the  Φ-norm  || f || 2, Φ

of an element  f  coincides with its norm in the space  L2 ( R 
m

 ) : 

                                || f || 2, �  =  || f || L2
 ( Rm ) .                                 (99)

In this case, by virtue of formula (5), the space  SΦ
2  = SΦ

2 ( L2 ( R  
m

 ) , L2 ( R  
m

 ) , dx )  has the form  SΦ
2  = { f :  f ∈

L2 ( R 
m

 ) },  i.e.,  SΦ
2  = � = L2 ( R 

m
 ) = Y. 

  The set  ΩΦ
2  = ΩΦ

2 ( L2 ( Rm
 ) )  coincides with the set of all functions  ω  for which the product  ω( ) ( )t f tˆ   is

contained in  L 2 ( R 
m

 )  for any  f ∈ L2 ( Rm
 ),  and the function  fω ( t ) = M f tΦ

ω ( )   satisfying equality (7) is given by
the formula 

                    fω ( t )  =  � 
–

 
1

 ( ω f̂ ; t )  =  ( π) ( ) ( )∫2 2m

R

itx

m

x f x e dx/ ˆω .                   (100)

It is clear that the set  ΩΦ
2 ( L2 ( Rm

 ) )  contains all functions essentially bounded on  Rm.  In particular,  ΩΦ
2 ( Rm

 )
contains all essentially bounded functions  λσ = λσ ( t )  whose supports are bounded sets  γσ  for which condition

(8) is satisfied, and, hence, the operator  �  satisfies condition  (  A2 ).  In this case, according to (100), the func-
tions  Uγσ

 ( f; λ; x )  have the form 

          Uγσ
 ( f; λ; x )  =  ( π) ( ) ( ) = ( π) ( ) ( − )− −∫ ∫

∨
2 22 2m

R

ixt m

Rm m

t f t e dt f z x z dz/ /ˆλ λσ σ ,         (101)

where 

                      λσ
∨

( )v   =  � 
–

 
1

 ( λσ ; v )  =  

 

( π) ( )− ∫2 2m

R

i t

m

t e dt/ λσ
v .

  The proof of equality (101) is based on the well-known Plancherel theory.  It is also known that, in this
case, the functions  Uγσ

 ( f; λ; x )  are entire functions of exponential type (see, e.g., [10, Chap. V]). 
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  In the case under consideration, the  ψ-integrals of functions  f ∈ L2 ( R  
m

 )  are defined as follows:  Let  ψ =

ψ ( t )  be a certain function from   Ω�
2   and let  f ∈  L2 ( Rm

 ).  Then the  ψ-integral of  f  is the function  fψ = J  
ψ f

from  L2 ( Rm
 )  for which 

                                J  ( fψ ; t )  =  ψ( ) ( )t f tˆ .

Note that if  ψ ∈ L2 ( R 
m

 ) ,  then the function  fψ  is representable in the form 

      fψ ( x )  =  J  
ψ f ( x )  =  ( π) ( ) ( − )− ∫ ∨

2 2m

Rm

f z x z dz/ ψ ,      

 

ψ ψ∨ ( ) = ( π) ( )− ∫v v2 2m

R

i t

m

t e dt/ .

In this case, Theorem 1 yields the following statement: 

  Theorem 1′′′′.  Let  ψ = ψ ( t ) = ψ ( t1 , … , tm )  be an arbitrary function essentially bounded on  Rm,  m ≥ 1,

                                ess sup
t Rm∈

 | ψ ( t ) |  <  ∞,

and such that 

                                  lim
t →∞

 | ψ ( t ) |  =  0,

and let  ψ  U2  be the set of  ψ-integrals of all functions from  U2 ( Rm
 ) = { ϕ :  || ϕ || L2

 ( R m  ) ≤ 1 }.  Further, let

Γσ  be the set of all Lebesgue-measurable subsets  γσ ⊂  Rm  whose measures are equal to  σ ,  σ  ∈ ( 0, ∞  ) .

Then, for any  γσ ∈ Γσ ,  the following equalities are true: 

                
  
� γ

ψ
γ γσ σ σ

ψ ϕ2
2

2

2
2

0 0( ) = (⋅) − ( ⋅) = ( + )
∈ ( )

U f U f
f U

L Rmsup ; ,

where  
  
ϕγ σ

( )v   is the decreasing rearrangement of the function 

                          ϕγσ
 ( t )  =  

ψ γ

γ

σ

σ

( ) ∈

∈







t t R

t

m2

0

, \ ,

, ,

and 

                      Dσ ( ψ U2 )  =  inf
γ σ σ∈Γ

 �γσ
 ( ψ U2 )  =  ψ σ( + )0 ,

where    ψ( )v   is the decreasing rearrangement of the function  | ψ ( t ) | . 

  The set  Γσ  contains the set  γ σ
*   for which 

                          � γ σ
ψ* ( )U2   =  Dσ ( ψ U2 )  =  ψ σ( + )0 .
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This set is defined by the relation 

                  γ σ
*   =  { t ∈ Rm :  | ψ ( t ) | ≥ ψ σ( + )0 },      mes γ σ

*   =  σ.

By analogy, using Theorem 2, we obtain the following statement: 

  Theorem 2′′′′.  Under the conditions of Theorem 1′ and in the notation accepted therein, the following
equality is true: 

              e U f U f
q

dt

t

p

f U
L R

p

q
q

p

mσ
ψ γ

γ
σ

ψ σ

ψ
σ σ

σ
( ) = (⋅) − ( ⋅) = −

( )
∈ ∈ ( ) > ∫

2

0
2

2
sup inf ; sup

Γ
 ,           (102)

where    ψ( )v   is the rearrangement of the function  | ψ ( t ) |  in decreasing order.  The least upper bound on the
right-hand side of (102) is realized for a certain finite value  q = q*. 

  3.  Using the scheme presented in the second example, we can obtain analogs of Theorems 1′ and 2′ in the
case where, instead of the Fourier transformation, one takes an arbitrary operator  Φ   unitary on the set

L2 ( A, dµ ),  where  A  is a certain manifold in  Rm  and  µ  is a certain  σ-additive measure in  Rm.  We present the

corresponding reasoning for the case where  L2 ( A, dµ )  is the set  L R2
1( )+   of functions  f ( t )  square summable

in the Lebesgue sense on the semiaxis  ( 0, ∞ ),  and  Φ  is the Hankel transformation, i.e., 

          Hν f  =  Hν ( f; x )  =  ˆ ˆ / ˙f x f x x d
dx

x xt
f t

t
dt( ) = ( ) = ( ) ( )−( + )

∞
+

+∫ν
ν ν

ν
1 2

0

1
1J ,

where  ν  is a certain number,  ν > – 1,  and   J̇α( )z   is the Bessel function of the first kind of order  α. 

  As is known, the Hankel transformation generates the operator  Hν ,  which is unitary on  L2 ( R1
 )  and coin-

cides with its inverse (see, e.g., [10, Chap. III]).  Therefore, the following analog of equality (99) is true: 

                                || f || 2, Hν
  =  || || ( )+

f
L R2

1 .

Hence,  SHν
2  = { f :  L R2

1( )+ },  i.e.,  SHν
2  = X = L R2

1( )+  = Y  in this case as well. 

  As in the previous example, the set  ΩHν
2  = ΩH L R

ν
2

2
1( )( )+   is the set of functions  ω  for which the product

ω( ) ( )t f tˆ   is contained in  L R2
1( )+   if  f ∈  L R2

1( )+  ,  and the function  fω ( t ) = M f tHν
ω ( )  satisfying equality (7) is

defined by the equality 

                fω ( t )  =  

 
H f t t d

dt
t xt x

f x
x

dxν
ν ν

νω ω( ) = ( ) ( ) ( )−( + )
∞

+
+∫ˆ;

ˆ
/ ˙1 2

0

1
1J .             (103)

In particular, if  Γσ  is the set of all Lebesgue-measurable subsets  γ σ  of  R+
1   whose measures are equal to  σ,

σ ∈ ( 0, ∞ ) ,  and  γσ ∈ Γσ ,  then 
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U f x H f t t
d
dt

t xt
f x

x
dxγ ν γ

ν

γ

ν
νσ σ

σ

χ( ) = ( ) = ( ) ( )−( + ) +
+∫; ˆ;

ˆ
/ ˙1 2 1

1J .             (104)

If  ψ ∈ ΩHν
2   and  f ∈ L R2

1( )+ ,  then the  ψ-integral of a function  f  is defined by formula (103) for  ω  ( t ) = ψ ( t ) .

If we now denote the set of  ψ-integrals of all functions from  U R2
1( )+  = { ϕ  :  || || ( )+

ϕ
L R2

1  ≤ 1 }  by  ψ  U2 ,  then

the functions  Uγσ
 ( f; ⋅ )  defined by (104) satisfy the statement obtained from Theorems 1′  and 2′ by the replace-

ment of  Rm  by  R+
1 . 

  4.  Consider the partial case of the spaces  S p
Φ   generated by the identity operator, i.e., the case  Φ  = I.  It is

clear that, in this case,  � = Y ( A, dµ ),  x̂  = x,  and, according to (5), we get 

              SI
p   =  { x ∈ � :  || x || Lp

 ( A, d µ ) < ∞  }  =  Lp ( A, dµ ),      p ∈ ( 0, ∞ ].

The set  ΩΦ
I   contains all  µ-measurable functions  ω  for which the product  ω ( t ) x ( t )  belongs to  Lp ( A, dµ )  for

all  x ∈ Lp ( A, dµ ) .  In particular, if  γσ ∈ Γσ ( A ),  then, for any  σ ∈ ( 0, ∞  ),  the inclusion  λγσ
 ∈  ΩI

p   holds for

any essentially bounded function  λ = λ  ( t )  with support  γσ .  The multiplier  MI
ω   multiplies the element  x ( t )

by  ω ( t ) .  Therefore, 

                      Uγσ
 ( x, λ; t )  =  

λ γ

γ λ

σ

σ

( ) ( ) ∈

∈ ∈





t x t t

t A I
p

, ,

, \ , ,0 Ω

and, correspondingly, 

                            Uγσ
 ( x; t )  =  

x t t

t A

( ) ∈

∈





, ,

, \ .

γ

γ

σ

σ0

In this case, the unit ball  UI
p  coincides with the unit ball  Up  in  Up ( A, dµ ),  i.e., 

                    UI
p  =  { x :  x ∈ SI

p  = Lp ( A, dµ ),  || x || Lp
 ( A, d µ ) ≤ 1 },

and, for a given function  ψ = ψ ( t ) ,  the set  ψUI
p  is the set of products  ψ ( t ) x ( t ),  x ∈ UI

p. 
  In the case under consideration, Theorems 1 and 2 yield the following statement: 

  Theorem 4.  Let  ψ  = ψ ( t )  be an arbitrary function from  Y ( A, dµ )  essentially bounded on  A  and let

condition (25) be satisfied in the case where the set  A ⊂ Rm,  m ≥ 1,  is unbounded.  If  γσ ∈ Γσ ( A ),  σ < a =

mesµ A,  then the following equalities are true: 

      

  

� γ
ψ λ

γ µσ σ
ψ λp

I
p

p
x U

L A d

p
U x t U x t

p I
p p

( ) = ( ) − ( )
∈ ∈ ( )
sup inf ; ;

,Ω

=  sup ;
,

x U
L A d

p

p
p

x t U x t
∈ ( )

( ) − ( )
ψ

γ µσ
  =  ϕσ( + )0 0 ,      p ∈ ( 0, ∞ ) ,
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where  ϕγ σ
( )v   is the decreasing rearrangement of the function 

                            ϕσ ( t )  =  
ψ γ

γ

σ

σ

( ) ∈

∈







t t A

t

p, \ ,

, ,0

and 

              D U x t U x tI
p

A x U
L A d

p
p

σ
γ ψ

γ µ
ψ ψ σ

σ σ
σ

( ) = ( ) − ( ) = ( + )
∈ ( ) ∈ ( )
inf sup ;

,Γ
0 ,

where    ψ( )v   is the decreasing rearrangement of the function  | ψ ( t ) | . 
For the quantities 

                  e U x t U x tI
p

x U A L A d
p

p
σ

ψ γ
γ µ

ψ
σ σ

σ
( ) = ( ) − ( )

∈ ∈ ( ) ( )
sup inf ;

,Γ
,

the following equality is true: 

                            e U
q

dt
t

p
I
p

q a
q

p

σ
σ

ψ σ

ψ

( ) = −

( )
< ≤ ∫
sup

0

 .                           (105)

The least upper bound on the right-hand side of (105) is realized for a certain finite value  q = q*. 
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