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Dzydyk's studies in the area of mathematical analysis and its applications are well 
known to a broad group of specialists. In the present article, we will attempt to describe 
basically those of his results that belong to the constructive theory of functions of a com- 
plex variable. We are fully justified in considering Dzydyk's principal papers in this area 
as fundamental; in the 30 years following publication of his first articles [5-7] of the 
approximation of continuous functions of a complex variable in closed domains with angles, 
the concepts presented in these articles defined the direction of the research of the mathe- 
matical school he created as well as that of many mathematicians in the Soviet Union and 
abroad on the solution of the intricate and difficult problem of direct and inverse theorems 
in the constructive theory of functions of a complex variable. 

Dzydyk obtained a number of profound and conclusive results in other areas of complex 
analysis, for example, analytic and harmonic transformations, limiting values of Cauchy-type 
integrals, Dirichlet series, Pade approximation, and the problem of moments, and also 
strengthened several classical results. 

One monograph that has achieved appreciable renown is [I], a paper which exerted a major 
influence on the development of the scientific interest of specialists on the theory of ap- 
proximation of functions as well as novice mathematical researchers. 

I. Direct and Inverse Theorems of Polynomial Approximation of Functions on Sets in the 
Complex Plane. Here Dzydyk is credited with the creation of a theory that established a 
relationship between the structural properties of functions defined on closed sets in the 
complex plane and the rate of approximation of these functions by n-th order polynomials. 
The principal reference point for the construction of this theory were the studies of Jackson, 
Bernshtein, and Valle~-Poussin in the theory of approximation of periodic functions by tri- 
gonometric polynomials and their analog, the theory of approximation of functions of alge- 
braic real polynomials continuous on the closed interval [a, b], a theory that had assumed 
a finished form by the end of the 1950's as a result of the studies of Nikol'skii [2], Dzydyk 
[3], and Timan [4]. Even for the H~ider classes H =, ~ 6 ~, l) (a typical instance forming a 
constructive characteristic of these classes in the periodic case) an improvement in the ap- 
proximation is observed in the nonperiodic case at the endpoints of the interval and the 
constructive characteristic cannot be given in terms of best approximations of En(f). 

The transition from the periodic to the nonperiodic case on [-i, i] was necessary in 
order to replace uniform bounds of the rate of convergence of the approximation of functions 
to zero expressed in terms of l/n, n + ~, by bounds expressed in terms of the function ~ (n, 

x) =: Vl--x~-~ "n-2, which depend on the position of the point x in [-I, i]. The necessary 
form of the function ~ (n, ~ was found as a result of lengthy studies, though before Dzydyk's 
studies on polynomial approximation in the complex plane [5, 6] there had been no convincing 
explanation as to why it is precisely this function which is critical for deriving a con- 
structive characteristic of the Hblder classes on [-I, i]. Dzydyk [5] "deciphered" this func- 
tion as a realizing order of the distance ~I+im(~ from the point z of [-i, I] (interpreted as 
a set in the complex plane) to the n-th level line of the Green function of the exterior of 
the closed interval [-i, i] (image of a circle of radius I + i/n under a conformal mapping of 
the exterior of the unit circle to the exterior of the continuum). This assertion incorpo- 
rated a daring assumption, i.e., that it is precisely in terms of the function p,+~m(z) that 
it is possible to create a complete constructive description of the most important classes of 
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functions of a complex variable analytic at interior points of the continuum*92c~ and con- 
tinuous on92, i.e., to prove the direct and inverse theorems of the constructive theory of 
functions in the complex plane. Note that in the narrowest formulation, where it is neces- 
sary to explain the special role of the endpoints of the interval [-i, i] as discerned from 
a constructive characteristic of Hblder classes defined on them by the geometric properties 
of the interval interpreted as a set in ~, this problem had been posed by Nikol'skii at the 
Third All-Union Mathematical Congress (1956). The constructive theory of functions on closed 
sets of the complex plane that was created as a result of the solution of this problem ex- 
tended far beyond the scope of Nikol'skii problem. Dzydyk is credited with a major contribu- 
tion to the creation of the groundwork of this theory [5-12]. For its further development 
right through its contemporary level, we are in debt to Dzydyk and to several of his students 
(Alibekov, Belyi, Vorob'ev, Polyakov, Shvai, and Shevchuk) as well as Andrievskii, Lebedev, 
Mamedkhanov, Tamrazov, Shirokov, and others. 

The scope of the present article is too narrow for a chronological presentation of 
all the theoretically significant concepts, results, and methods obtained by Dzydyk, and 
therefore we will try to identify those that are the most important according to an evalua- 
tion based on the contemporary interpretation of the processes under study and from the 
standpoint of the present level of this theory. 

Suppose that 9R is a continuum in a finite complex plane ~ and that 92c is its comple- 
ment, which is assumed to be connected; A(gR) is the class of functions that are analytic in 
920= int92 and continuous on92, and At(92) are the subclasses of functions f from A(92) with 
r derivatives continuous on g~ ; A~ = A(92); ~ = ~(z) is a conformal mapping of 9~ c onto the 
exterior of the unit disc D normed by the conditions ~(~) = ~ and limz-1~(z)>0; ~=:~-*(w); 

t,+im = {z:]~(z)l = | + I/a} is the n-th level line of the exterior Green function for 92; i = a92; 
pl+i/,(z) is the distance of the point z6L to Ll+,/n. For every function f6A(92) we let ~(6) = 
~(f; 6) denote its modulus of continuity on 92. 

Schematically, the direct and inverse theorems of the constructive theory of functions 
on closed sets in ~ basically have the following form, which was rigorously confirmed after 
publication of [5, 6]. 

Direct Theorem. Suppose that f6Ar(92), r~0, where E01 is a continuum in ~ that satis- 
fies some set of conditions (DI). Then ~,6 N an algebraic n-th order polynomial Pn(z) may 
be found such that for all z6@E0~ , the following inequalities are satisfied:% 

Universe Theorem. Suppose that 92 is a continuum in ~ that satisfies some set of condi- 
tions (D2)~ If a function f(z) defined on 92 is the uniform limit of a sequence of poly- 
nomials {Pn(z)} such that for all z6 O~, 

If(z)--P.(z)l~< [Pt::~ (z)/§ r6~, =6(0, 1), (2) 
then [6A r(92) and ~(fr176 ~__<8% 

If constraints (DI) and (D 2) coincide on the continuum, the direct and inverse theorems 
together yield a constructive characteristic of the Hblder class H =, a 6 (0, l). 

To prove the inverse theorems, Dzydyk in 1959 investigated the behavior of the 
function P1+,/n (~ on the boundary og~ for a rather broad class of closed sets with piecewise 
smooth boundaries, proving that for any s~ ~ , 

1 - - s  / - - s  

an inequality that enabled him to establish an inverse theorem on these sets. 

In 1962-63, Dzydyk [6, 7] proved a direct theorem under the constraints (DI) , according 
to which 92 was a closed domain with piecewise smooth boundary consisting of arcs of con- 
tinuous curvature formed at the junction of external angles ~/2 and satisfying certain 

*Here and below it will be assumed that the continuum is bounded and does not degenerate to 
a point. 
%Here and below ~ w will denote ordinal inequality, and ~ weak equivalence, i.e., ordinal 
equality. 
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additional constraints on the boundary of the domain. Together with the inverse theorems, 
this result enabled Dzydyk to obtain the first constructive characteristic of the H~ider 
classes WrH = on sets with piecewise smooth boundary. 

It was an extraordinarily difficult and intricate problem to obtain the direct theorems, 
requiring the application of techniques of conformal mappings and the creation of a new 
analytic apparatus for the construction of approximating polynomials. As the constraints 
(D I) were gradually weakened, this apparatus had to be essentially redeveloped and improved. 
A number of Dzydyk's concepts and methods that were the basis for the technique of proving 
the direct theorems proved fundamental for the entire further development of the theory; 
the definition and use of the generalized rotation ~ = : ~ [O (~)e -~t] and generalized dilation 

= :~[RO(~)], R~ I; the construction of polynomial kernels by means of a generalized con- 
volution he introduced for Faber series that ensure an optimal approximation of the Cauchy 
kernel, and others. Let us discuss this result in some detail. 

Suppose that92 is an arbitrary nondegenerate continuum in ~ with connected complement 
having a rectifiable boundary r and suppose that two functions f(~) and K(~) are defined on 
F such that the 2~-periodic functions ~(t) = : f[~(eit)] and K(t) = : K[~(eit)] induced by 
them on the unit circle are summable on [0, 2~]. 

Dzydyk's convolution theorem (1961-67) confirms the following assertion [6]: 

i) if the functions f(z) and K(z) may be expanded in Faber series of the form 

[ (z) ~ ~, chFh (z) u K (z) ~ ~ ~Fk (z) (4)  
0 0 

and 

2) if at least one of the functions f(t), K(t), and ~(e it) has bounded variation on 
[0, 2~], while the other two are Lebesgue integrable, then 

�9 1 ~ = ~ c h F k ( z ) .  K - / = .  ~ i k (0 I (;,) ( ; - -  z) -1 d; . .  (5)  
--~ F ~-----0 

This theorem yields a convenient integral representation for any method of summation of Faber 
series generated by an even summable 2~-periodic function K(t). Selecting periodic kernels 
(Dirichlet, Fej~r, Jackson, etc. kernels) as the K(t) yields analogues of Fourier and Fej~r 
sums, Jackson polynomials, etc. Note that after a series of transformations of the integral 
in (5), it was found that (4), (5) in fact gives an approximation of the Cauchy kernel (~ - 
z) -I by polynomial kernels. Transformations of harmonic functions may be constructed in an 
analogous fashion (cf. [12]). 

A generalization of the results obtained was undertaken in succeeding years. 

In 1968-69, the inequality for the derivative of polynomials of the form of (3) and an 
inverse theorem were generalized by Lebedev and Tamrazov [13, 14] to very broad classes of 
sets, more precisely, all compacta that are regular in the Dirichlet problem. 

Results obtained in four interdependent directions played a major role in the develop- 
ment of studies on the direct theorems: i) improvement of methods for the constructive crea- 
tion of approximating polynomials; 2) development of an exact local theory of distance dis- 
tortions in conformal mapping; 3) effective continuation of functions and the improvement 
of averaging methods for continued functions; 4) development of the theory of high-order 
smoothness moduli to sets in ~ . Dzydyk made a major contribution to the development of all 
these research trends, though his most important contribution was to the first; the construc- 
tion of universal polynomial kernels for the approximation of Cauchy kernels. 

In 1967 (cf. [15] and, for a detailed discussion, [16-18]), Dzydyk proposed a general 
construction of such kernels in the form 

1 -- [I -- (~ --z) ~ (~, z)C (6) Kin,. (;, z) = ; - - z  ' 

where m 6 ~  i s  a p a r a m e t e r  and ~n(~,  z)  an e l e m e n t a r y  k e r n e l  in  t h e  form o f  a p o l y n o m i a l  in  
z of order n with coefficients meromorphic in ~ (i.e., a blending) that approximates the 
Cauchy kernel on E0~. 

In 1967-72, Dzydyk explained ([19]; cf., too, [17]) that it is best to present the 
elementary kernels ~n(~, z) in the form 
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: t  k ( n - - l )  

.~, (;, z) = d_..h (t) dt = ]v 

t " - ~t -- z v=o 1 + [~(Df 
n~(z). (7 )  

where ~v(z) are generalized Faber polynomials determined from the expansion 

1 " II~ (z) 
; - - z  = E  [~(D]" ' z E ~ ,  ;Egx ~, 

"4~-~0 

and Jn,k(t) are generalized Jackson trigonometric kernels. As result, kernels of the fol- 
lowing form were obtained: 

[I(11; ) ; - - z  = ; ~  ---~-~ J ,k( t )  ! - z  dt . (8 )  

--a ~t -- Z 

These kernels possess such profound properties that since the time they were first con- 
structed around 20 years ago, they have been regularly applied for obtaining increasingly more 
exact direct theorems for the approximation of analytic functions by algebraic polynomials 
and of harmonic functions by harmonic polynomials on increasingly more complicated continua. 
Often Dzydyk kernels may be conveniently applied in the "permuted" form 

~.~ (;. z) = - ~  ; - t ;, - z 

( c f .  [19 ,  2 0 ] ) .  No te ,  t o o ,  t h e  f o l l o w i n g :  1) Shevchuk r e c e n t l y  [1]  p r o v e d  t h a t ,  even  when 
the continuum ~ is the closed interval [-i, i], these kernels are essentially novel and 
reduce to the form 

0 1 ~ m_l , 
Km..(x, y) = ( m - -  1)! Ox m ( x - - y )  d~(t)dt  (9 )  

where  m and n a r e  n a t u r a l  numbers ;  x, g e l - - 1 ,  1]; ~ = arccosx; ~ = arccosy. In  p a r t i c u l a r ,  t h e y  
may be e f f e c t i v e l y  a p p l i e d  t o  p r o b l e m s  o f  c o a p p r o x i m a t i o n  on an open i n t e r v a l  ( c f .  S h e v c h u k ' s  
article in this number); 2) if the Jackson kernel Jnk(t) in (8) is replaced by some other 

even trigonometric kernel Kn(t) = ~Xhcoskt, for example, a Poisson, Dirichlet, Faber, Rogo- 
0 

zinskii, etc. kernel, we obtain algebraic polynomial blendings that are good analogues for ~ 
of the corresponding trigonometric kernels. 

N 

The integrals Kin,, (~, z) 

1 ~ ~ 1 

a r e  a p p r o x i m a t i n g  p o l y n o m i a l s  by means o f  which  i t  i s  p o s s i b l e  t o  p r o v e  t h e  d i r e c t  t heo rems  
f o r  t h e  t y p e  (B) domains t h a t  had been  i n t r o d u c e d  by Dzydyk in  1972. The c o n d i t i o n s  t h a t  
define domains in the class (B) played an important role as a guide post for the further 
development of research on ~irect theorems, and are of the nature of axiomatics. For this 
reason we will discuss them in some detail. 

A finite closed simply connected domain G belongs to the class (B) if [19]: 

(I) the boundary L = 8G is rectifiable; 

(2) there exists a natural n~ber k such that for all z6L, ~6L, n = i, 2 .... and 

t6 [m, v], the following cases hold: a)]~t--zl(l+nltl)e~I~--z[, that is, also [~--~[~(I+ 

nit 1) k 1~-- ;1; b) I~--  ; [ ~ < I$ - -  z I~-' 17 - -  z I; c) I~ , - -  z l ~  p,+,/.+~,, (z); 

(3 )  ~ z E L  and ~6L , t h e  i n e q u a l i t y  s ( ; , z ) ~ [ ~ - - z [  h o l d s ,  where  s ( ~ ,  z)  i s  a l i n e a r  
measure of the set LN{~:I~--;I~Iz--;t}. 

The class (B) is rather general, though the axiomatic structure of its definition posed 
two important questions: what sort of geometric properties must G possess in order to belong 
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to (B), and is such a set of conditions minimal for a domain and does not ensure the validity 
of the direct theorems. 

A complete geometric characterization of sets belonging to class (B) was obtained in 
1976-83 by Belyi and Andrievskii through an extension basically of the second and third of the 
above lines of reasoning. 

In 1970-72 (in repeated discussions of direct theorems with Belyi), Dzydyk suggested to 
Belyi that, in view of the high level of the Donets school on the theory of mappings, he 
undertake a thorough investigation of the extension of the direct theorems to moregeneral 
levels that may be described in geometric terms of the continuum. Thus was created in Donets 
a new scientific line of research, together with a mathematical school that extended and 
extensively applied methods from the theory of conformal invariants and quasiconformal map- 
pings for the solution of problems of approximation and other problems of complex analysis. 

In 1974 Belyi and Miklyukov [22], applying for the first time methods from the theory 
of quasiconformal mappings for the purpose of obtaining direct theorems, obtained direct 
theorems in domains with quasiconformal boundaries that satisfy conditions (i) and (3) and 
two geometric-type constraints, including the case in which ~ is an arbitrary closed convex 
domain. These constraints were simultaneously eliminated by Dzydyk [23] and Belyi [24] in 
1975. 

In 1975 Dzydyk [25] generalized the direct theorems to continua belonging to the class 
(B k) whose boundary consists of a finite number of rectifiable curves and for each of which 

conditions (1)-(3) hold, with condition (2.c) replaced by the weaker condition l[--zl~--. 
Pi+i/,(c~. Thus was the remarkable potention of the Dzydyk kernels (6) and (8) completely 
completely revealed in [25], as well as in subsequent studies by Belyi [26, 27], Shevchuk 
[28, 29], Andrievskii [30-33]~ and others. 

In 1976, based on the local theory of distance distortions under conformil mappings 
he had developed and the method of conformal invariants and the theory of quasiconformal 
mappings, Belyi proved the direct theorems for an arbitrary finite domain G having a quasi- 
conformal boundary [26, 27, 24]. He also proved here that i) conditions (i) and (3) are 
not necessary for the direct theorems to hold; ii) condition (2.a) holds for an arbitrary 
continuum even when k = 4; and applied the Dzydyk kernels (8) and (6) in a generalized con- 
volution with area integral. These studies were further extended in studies completed in 
1980-85 by Andrievskii [30-33], who obtained direct theorems for the approximation of func- 
tions over a broad class of continua with piecewise quasiconformal boundary and also applied 
the kernels (6). In particular, he developed a technique for deriving various geometric 
relations from information on the constructive properties of functions belonging to these 
classes and found necessary conditions (D l) that were very similar to the sufficient condi- 
tions under which direct theorems expressed in terms of the function P,+i/, (z) hold. 

Because of space limitations, the present survey will not discuss results on direct and 
inverse problems that relate to the approximation of functions with given majorant function 
of the k-th modulus of smoothness, the simultaneous approximation of functions and their 
derivatives by polynomials and by their corresponding derivatives, approximation by rational 
functions with fixed poles, approximation in integral metrics and a number of other problems 
directly and conceptually related to the direct and inverse theorems. 

Interest in the proof of direct and inverse theorems in Dzydyk's formulation served as 
an impetus for ~ number of profound investigations: 

- theory of finite difference smoothness and related polynomial approximation in the com- 
plex plane (Tamrazov, Shevchuk); investigation of the approximating and structural 
properties of functions and their derivatives belonging (on the sets ~ ~ ~ ) to 
classes determined by high-order smoothness moduli (Dzydyk, Tamrazov, Shevchuk, Shvai, 
Belyi, Andrievskii, and others); 

- exact theory of local distance distortions under conformal mapping (Belyi); develop- 
ment of method of conformal invariants and quasiconformal mappings in approximation 
problems (Belyi, Andrievskii); 

- investigation of the properties of Cauchy-type integrals and its generalizations 
(Dzydyk, Shevchuk, Andrievskii, Belyi, and others); 
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- -  description of classes of functions characterized by a given rate of decrease of their 
optimal uniform approximations on sets of the complex plane (Dzydyk and Alibekov, 
Volkov, Galan, Antonyuk, Dyn'kin, Andrievskii, and others); 

- constructive description of classes of functions on continua for which the direct 
theorems expressed in terms of PI+I/, (z) is theoretically impossible (Andrievskii); 

- approximation of harmonic functions by means of harmonic polynomials [direct and 
inverse theorems expressed in terms of P1+wn [z) in ~z (Andrievskii)]. 

This far from complete list shows that Dzydyk and his students and followers created a 
trend of research in the theory of approximations that has proven to be among the most fruit- 
ful and most productive [Usp. Mat. Nauk, 34, No. 4, 233 (1979)]. 

II. Investigations on the Theory of Rational Approximation. A number of important and 
clever concepts were proposed by Dzydyk in the field of rational approximation. Note, above 
all, the interrelation between bi-orthogonality and Pad~ approximation Dzydyk found. Dzydyk 
was the first to use this interrelation to investigate the asymptotics of the errors of Pad~ 
diagonal approximations of the functions sin z, cos z, sinh z, and cosh z [37]. Note in this 
connection that Perron had been the first to study the far simpler case of Pad~ approximation 
of the function e z and that the functions in (i + z) and (I + z) = were studied by Luke and in- 
dependently (using a different method) Dzydyk and Filozof (cf. [36]). The interrelation 
noted above served as a starting point for the generalization of the classical problem of 
moments and thereby made it possible to formulate in much broader terms many important re- 
sults in the theory of Pad~ approximation. The extension of the a-method for the approximate 
solution of linear differential equations with polynomial coefficients to the case of ra- 
tional approximation [35-38] served as the starting point for these studies. To illustrate 
this concept, consider the integral equation for eZ: 

(;) = I + ~ y (D d~, ; 6 [0, z]. (10 )  Y 
0 

The t e c h n i q u e  of  the  a-method p re supposes  t h a t  t h i s  e q u a t i o n  be r e p l a c e d  by t he  o p e r a t o r -  
valued equation 

yn-, (;) = ~ yn-, (D d% +, - �9 (z) P~ , ( 1 i) 

0 
n--| 

in which Pn(t) is some fized polynomial and Yn-1 (~)= E Ch~k" By setting the coefficients of 
k-----0 

powers of ~ equal, Eq. (ii) reduces to a system of linear algebraic equations in the unknowns 
co, c, ..... On_l, x, wherecj = cj(z); ~---- T n (z) ; j = i, 2, .... Solving this system and setting ~ = z, 
we obtain a rational function R,,, (z) ---- Yn-1 (zi-~ �9 (z)Pn (i) that approximates the exact solution. 
The form and properties of this approximation depend on the choice of the polynomial Pn(t). 
Dzydyk remarked that for this example mixed orthonormal Legendre polynomials Ln(t) must be 
taken as the Pn(t), and ultimately found diagonal Pad~ approximations for e z [36]. It is 
possible to construct and investigate diagonal Pad~ polynomials for the functions in (i + z), 
arctanz, and (i + z) ~ in a similar way. However, even in the case of the functions sinz, 
cos z, sinhz, and coshz that satisfy second-order differential equations, it was necessary to 
resort to essential novel concepts. Consider the integral equation for sin z: 

(iz) 
y(;) = ;-- [ (;--Dy(~)aL ~C [0, zl 

0 

The operator-valued equation corresponding to it has the form 

Y2n-I (~) = ; - -  S (; - -  ~) Y2. -I  (~) d~ - -  x (z) A2n+~ , ( 13  ) 
0 

where the  po lynomia l s  Y2n- l (5 )  and A2n+l ( t )  and t he  f u n c t i o n  x ( z )  a re  unknown. We c o n s t r u c t  
r a t i o n a l  po lynomia l s  R2,,+l,2.(z)-----y2n-l(z).-l-A2.+l(1)'~(z) by means of  t he  a-method and o b t a i n  the  
following representation for the error: 

l 

y (z) - -  R2.+i  ,2. (z) = - -  �9 (z) z S sin z (1 - -  0 A2.+t ( 0  dt.  ( 1 4 )  
0 
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Since T(z) ~ z n as z + 0, we find that to obtain the required order of tangency at the point 
z = 0, it is necessary to use as Axn+x(t) a polynomial determined by the bi-orthogonality 
properties: 

I 

S(1 t ,"-~A = , (15) - -  ) 2 .+ l  ( t )  d t  = O, i 1 , 2  . . . .  n .  

0 

Dzydyk introduced such polynomials and studied their properties, and subsequently investi- 
gated the behavior of the Pad~ polynomials for the functions sin z, cos z, sinhz, and cosh z 
[37]. 

From an analysis of the results he obtained, Dzydyk proposed the following important 
definition [39]: 

A representation of some sequence of, in general complex numbers {h}k=0, in the form of 
the system of equalities (in which s m admits m distinct representations when j + k = m) 

1 

si+k = ( aj (t) bh (r dlz (t), k, ] = O, 1 . . . . .  ( 16 ) 

is called the generalized moment representation of this sequence, where B(t) is some non- 
decreasing function on [0, i] and [aj(t)}~= 0 and {bh(t)}~=0 are certain sequences of functions 
under which Eqs. (16) hold (cf. [39, 407). 

It is easily seen that in the case ak(t) = bk(t) = t k, we obtain a formulation of the 
classical problem of moments for which the existence conditions for the solution are well 
known. 

It was proved in [42] that representations of the form (16) may be constructed for a 
very broad class of sequences, that is, for all sequences { k}k=0 whose Hankel determinants 
HN=detlis~+i[l(~.i=o are nonzero (at the same time, for the classical problem of moments, all 
these determinants must be positive). On the other hand, by using these representations and 
resorting to the concept of bi-orthogonality, it is possible to construct and analyze the 
Pad~ approximations of the generating functions of these sequences. Thus, if we set f(z) = 

~ suz ~ , where the sequence {Sk}k~=0 may be represented in the form (16), then the Pad~ diagonal 
k=0 

polynomials of order [N/N] of the function f(z) have the form [39, 40] 

N 

c ")P-iTj (h z) 
P~ (z) j=0 ( 17 ) 

~ q ; z ) =  O~(z )  - ~; 
~'~ _(N)=N--] 

]=0 

( N )  
where  T j ( f ;  z )  a r e  t h e  T a y l o r  p o l y n o m i a l s  o f  t h e  f u n c t i o n  f ( z )  o f  o r d e r  j ,  and c j  , j = O, 

N 
1, . . . .  n a r e  t h e  c o e f f i c i e n t s  o f  t h e  n o n t r i v i a l  p o l y n o m i a l B N ( t ) =  ~ c~ N) bj(t) t h a t  s a t i s f y  t h e  

1 ./=0 

b i - o r t h o g o n a l i t y  c o n d i t i o n s  ~ ah (t) BN (t) dg (t) --_ O, k --= 0 . . . . .  N - -  I. The e q u a l i t y  
0 

z"+' ~ V ah (t) zkBu (t) d~ (t) 
k=0  

w i l l  h o l d  h e r e  f o r  t h e  e r r o r  o f  t h e  a p p r o x i m a t i o n .  S t a r t i n g  f rom t h e  g e n e r a l i z e d  moment 
r e p r e s e n t a t i o n ,  Dzydyk e s t a b l i s h e d  [39 ,  40] t h e o r e m s  t h a t  g e n e r a l i z e  t h e  b a s i c  r e s u l t s  
Chebyshev  had  o b t a i n e d  f o r  t h e  c l a s s i c a l  moment p r o b l e m  ( c f . ,  f o r  e x a m p l e ,  [ 4 1 ] ,  pp .  178- 
194]). 

Generalized moment representations were also found to be effective in the derivation 
of a variety of new integral representations for a host of hypergeometric functions [40, 43]. 
These concepts were also used and extended by Golub and Chyp, two of Dzydyk's students. 

III. Investigations on the Representation of Functions by Means of Series of Exponential 
Functions. By the 1970's Leont'ev [44-47] had completed a number of far-reaching studies 
devoted to the representation of functions f(z) analytic in convex domains Q ~  by means 
of series of exponential functions of the form 
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t (z) = y c .?  nz. (18) 

In 1970 Dzydyk was the first to study the convergence of series of exponential func- 
tions of the form (18) on closed convex domains Q. 

In 1973 Leont'ev [47] and Dzydyk and Krutigolova [48] initiated the study of this topic. 
In 1974 Dzydyk [49] was the first to discover (for the case where Q is a polygon) a relation 
between series of exponential functions of the form (18) on the boundary of the polygon 8Q 
and the behavior of the Fourier series of certain periodic functions generated by the bound- 
ary values of f(z) on the sides of the polygon. With this relation he was able to establish 
the following result: 

N 

Suppose that {% ~ ~- o~. n}n=1 is the set of roots of the entire function ~(L) =m abe , where 
k=l 

d~0, ak(k= 1,2 ..... N; N~3) are the vertices of the polygon Q (in [47] d k = i, though this 
is not essential). Then in order that the series (18) converge uniformly on 8Q, it is suf- 

. I 

ficient that the following conditions hold: i) Zdk[(ah)= 0; 2) S ~([;t) t d~<oowhere f; t) 
k 0 

is the modulus of continuity of f(z) on the closed polygon Q (Dini condition). 

Note, too, that in [49], and in part in an earlier study [48], may be found a represen- 
tation of an arbitrary function analytic in the convex polygon Q expressed in the form of a 
sum of analytic periodic functions (in the case where Q is a square). 

These investigations of Dzydyk's were of great importance for the subsequent development 
of the theory of representation of analytic functions by series of exponential functions, 
serving as impetus (direct or indirect) for new studies by Leont'ev [50], Mel'nik [51-55], 
Sedletskii [54-56], and others. 

IV. "Strengthening Certain Classical Results. i. Picard's theorem for the existence 
of the solution y(x) of Cauchy's problem of the form 

' r r [ x . , x o + h ] .  ( 1 9 )  V = / ( x , Y ) ,  y ( X o ) = y . ,  . 

is well known. Dzydyk strengthened Picard's results for the case in which the function f(x, 
y) in (i) is analytic with respect to both variables, and thus developed what is now called 
the iterative-approximation method [57, 58], by means of which it became possible to approxi- 
mate the solution y(x) effectively, easily, and highly accurately. 

This method was also used by Dzydyk and his students to produce highly accurate solutions 
of boundary-value problems of the form y" = f(x, y, y'), y(0) = Y0, y(h) = Yl, to solve 
Goursat, Cauchy, and Darboux problems in the simplest types of domains for hyperbolic-type 
partial differential equations, and to obtain a new highly effective quadrature formula. 

2. Chebyshev, Markov, and Bernshtein had successively solved (using different tech- 
niques) the following problem posed by Chebyshev; suppose that a positive polynomial %(x) = 
x ~ +clxi-l~ ..- #ct is defined on [-i, i]. For given t~I/2, hEN, it is necessary to construct 
a polynomial T~(x) of the form T~(x)=x n + t[x "-~ + ... + t~, under which the equality 

-~ 6 x  ~ ... + & - i x  '~-1 i (20) 
t I I 1 

h o l d s .  

This problem had been previously solved by means of a rather complex method for every 
fixed n ~59]. Dzydyk [57] proposed a new approach to this problem and strengthened the pre- 
ceding results, establishing that for all n ~ N, n~I/2, T~(x) constitutes a linear combina- 
tion of the classical Chebyshev polynomials, i.e., that there exist numbers 70, Xl,.-.,~Z 
such that for any integers a~//2, the identity 

l 

T~ (x) = ~ vsTI._j, (x), Th (x) = cos k arccos x, k = 0, 1, 2 . . . .  ( 2 1 )  
i=0 

holds. He also indicated an effective method for the construction of the numbers ~j, j = 0, 
i,...,s 
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3. Let us present the following theoretically important result ([60] or [38]). Suppose 
that in the half-open interval (a, a + hi a singular linear differential equation is defined 
having (for the sake of simplifying the discussion) only a single regular singular point a, 
i.e., an equation of the form 

ao (x) (x - -  a) k f~)  + a I (x) (x - -  a) ~- '  y c~-1~ + ... + a~ (x) y = O, ( 2 2 )  

where all the aj(x) are polynomials and ao(x)~c>O g x 6  [a, a + h]. 

Each solution of the fundamental system S of this equation is called a special function. 
Examples of such functions are the Bessel functions, hypergeometric functions, Riemann P- 
functions, Laplace functions, Neiman functions, Kelvin functions, Dirac functions, etc. 
There are now over 1500 classes of functions and individual functions used just in applied 
problems. 

Because of investigations carried out over the past century alone, it is known that 
each special function y(x) determined by Eq. (20) may be represented in the form (with a = 0) 

y (x) = x ~ [aj (In x) % (x) + ai_~ (In x) % (x) + ... § a o (ln x) %+1 (x)], ( 2 3 )  

/ =  1, 2 . . . . .  g~ = ~ ( r ) ,  
k 

where r is any of the roots of the characteristic equation ~ a~(O)(r)k_, = 0; ~ is its multi- 
i=0 

p l i c i t y ;  rpv(x ) = ct~(r; x ) =  ,~  Cux~ a r e  unknown a n a l y t i c  f u n c t i o n s  whose  c o e f f i c i e n t s  c,  = cu(r, ], ~,) 

may be  f o u n d  U s i n g  t h e  m e t h o d  o f  u n d e t e r m i n e d  c o e f f i c i e n t s  by  s u b s t i t u t i n g  y ( x )  f r o m  Eq.  ( 2 3 )  
s(s-- 1) . . .  ( s  - -  i + !) 

i n  ( 2 2 ) ;  a n d  a 0 ( x ~ - - l ,  a~(s) : -~  �9 i! , i =  1,  2 , . . .  i s  a s y s t e m  o f  s t a n d a r d  p o l y -  

n o m i a l s .  

By means of very far-reaching and rigorous reasonings, Dzydyk strengthened this result 
of Fuks', establishing that each of the functions ~j(x) = ~j(r; x) is not only analytic, but 
also satisfies a certain singular, in general, nonhomogeneous linear differential equation, 
which he obtained using a highly original method that he gave an explicit description of 
(cf. [60] or [38, pp. 220-228]). The first term of this equation always coincides with the 
first term [equal to a0(x)xky(k) ] of Eq. (22). As a result, every analytic segment of ,I~tv~ 
is a single-valued analytic function in the Mittag-Leffler star which may be obtained by 
discarding rays from the complex plane each of which begins at a zero of the coefficient 
a0(z) in Eq. (22) and extends to infinity in such a way that the coordinate origin is situ- 
ated along the extension of this ray. 

The interest in this result of Dzydyk's for experts in computational mathematics and 
the theory of approximation is that it made it possible to replace, in the approximate com- 
putation of special functions, the ordinary method of power series by the singular analogue 
(proposed by Dzydyk) of the a-method he had previously developed for the effective construc- 
tion of polynomials Pn(x) of degree n for every natural number n. Here the following equal- 
ity holds: 

[] ~(x~ --  Pn (x)[IL~x) = (1 + en) En (y)L~x), ( 2 4 )  

where ~n + 0 and E,[y)z~r ~ is the optimal approximation of the unknown analytic part of r 

in the quasi-Chebyshev metric L~(x) generated by the weight p(x) determined by the poly- 
nomial a0(x). 

Equation (22) asserts that the polynomials Pn(x) yield an asymptotically optimal approx- 
imation of the analytic part of @(x) and approximate it at least 2 n times better than the 
n-th order partial sums of the power series into which @ (x) may be expanded. 

i, 

2. 
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DZYDYK'S APPROXIMATION METHODS FOR THE SOLUTION OF DIFFERENTIAL 

AND INTEGRAL EQUATIONS 

V. I. Bilenko, V. N. Konovalov, 
I. A. Lukovskii, A. Yu. Luchka, 
G. E. Pukhov, and N. I. Ronto 

UDC 519:622+517.5 

The theory and computational applications of approximation methods for the solution of 
operator-valued equations is one of the fields of mathematics in which Dzydyk obtained a 
number of important results. 

Beginning in 1969, he undertook a far-reaching investigation of the potential and meth- 
ods of application of a number of methods, concepts, and results of the Chebyshev theory of 
approximation of functions for the construction of novel and highly efficient (in the sense 
of the number of operations required and the precision achieved) methods and algorithms for 
the solution of differential and integral equations. In the process, he created and provided 
a rigorous grounding for three interdependent and highly complementary computational approxi- 
mation methods: 

i) linear polynomial operators; 

2) approximation method (a-method) for the solution of linear differential equations 
with polynomial coefficients; 

3) interative-approximation method(ia-method) for the solution of nonlinear differential 
and integral equations under analytic conditions. 

The sources for the methods developed by Dzydyk can be found in the classical studies of 
Chebyshev, Rits, Radon, Galerkin, Bernshtein, Krylov, Bogolyubov, Kravchuk, Kantorovich, 
Pol'skii, Vainikko, and others. Dzydyk, one of the leading specialists in the theory of 
approximation of functions, the foundation of the field of computational mathematics, syn- 
thesized the most important results in the Chebyshev theory of approximation of functions and 
a number of computational methods for the solution of equations of mathematical physics, and 
with this as a starting point, constructed an elegant theory of approximation methods with 
an abundance of promising concepts. The basic assertions of this theory were systematically 
set forth by him in a monograph [i] which has most certainly served as a powerful impetus 
for the further development and improvement of computational methods for the solution of oper- 
ator-valued equations of mathematical physics as a whole. 

In the present survey, we will briefly set forth the essentials of the approximation 
methods, and analyze some of the more important theoretical results and numerical examples 
that provide a good illustration of the high degree of efficiency and constructivity of these 
methods. 
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