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UNIFORM CONVERGENCE OF ORTHOGONAL
EXPANSIONS ON THE REAL PROJECTIVE SPACES
Let Pd(R) be the real projective space, dν its invariant normalized measure, ∆
its Laplace-Beltrami operator. Let 0 ≤ θ0, · · · ≤ θn ≤ · · · be the eigenvalues
and H2k, k ∈ N ∪ {0} be the respective eigenspaces of ∆, dimH2k = d2k. Let
{Y 2k

j }d2k
j=1 be an orthonormal basis of H2k. For any φ ∈ L∞(Pd(R)) with the

formal Fourier expansion

φ ∼ c0 +
X

k∈N

d2kX
j=1

c2k,j(φ) Y 2k
j , c2k,j(φ) =

Z

Pd(R)
φ Y 2k

j dν

consider the sequence of Fourier sums

S2n(φ) = c0(φ) +

nX

k=1

d2kX
j=1

c2k,j(φ) Y 2k
j .

Our main result establishes sharp asymptotic for the norm of Fourier
projection. Namely, it is shown that

‖S2n‖L∞(Pd(R))→L∞(Pd(R)) =

=
4n(d−1)/2

π3/2Γ(d/2)

Z π/2

0

(sin η)(d−3)/2 dη

„
1 +


O(n−1/2), d = 2
O(n−1), d ≥ 3

ff«
.

In particular, if d = 2 then

‖S2n‖L∞(P2(R))→L∞(P2(R)) = n1/2 25/2

„
Γ

„
3

4

««−2

+ O(1).

We give some applications of this result to the problem of uniform convergence
of orthogonal developments on Pd(R).

Introduction. Let Pd(R) be the real d-dimensional projective space,
ν its normalized volume element, ∆ its Laplace-Beltrami operator. It is
well-known that the eigenvalues θm, m = 2k, k ∈ N ∪ {0} of ∆ are
discrete, nonnegative and form an increasing sequence 0 ≤ θ0 ≤ θ2 ≤
· · · ≤ θ2k ≤ · · · with +∞ the only accumulation point. Corresponding
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eigenspaces H2k, k ∈ N ∪ {0}, are �nite dimensional, d2k = dimH2k <
∞, orthogonal and L2(Pd(R), ν) = ⊕∞2k=0H2k. Let {Y 2k

j }d2k
j=1 be an

orthonormal basis of H2k. Assume that φ ∈ L∞(Pd(R)) with the formal
Fourier expansion

φ ∼ c0 +
∑

k∈N

d2k∑

j=1

c2k,j(φ)Y 2k
j , c2k,j(φ) =

∫

Pd(R)

φ Y 2k
j dν.

Consider the sequence of Fourier sums

S2n(φ, x) = c0 +
n∑

k=1

d2k∑

j=1

c2k,j(φ)Y 2k
j (x).

We shall be study an asymptotic behavior of the norms of Fourier
projections S2n : L∞(Pd(R)) → L∞(Pd(R)), as n → ∞. Observe
that this problem is closely connected with the problem of uniform
convergence of Fourier series on Pd(R). Indeed, let

E2n(φ) = inf
{‖φ− t2n‖L∞(Pd(R)) | t2n ∈ T2n

}

be the best approximation of a function φ ∈ L∞(Pd(R)) by the subspace
T2n of polynomials of order≤ 2n, T2n = ⊕n

k=0H2k. Then, by the Lebesgue
inequality we get

‖φ− S2n(φ, x)‖L∞(Pd(R)) ≤
(
1 + ‖S2n‖L∞(Pd(R))→L∞(Pd(R))

)
E2n(φ),

where

‖S2n‖L∞(Pd(R))→L∞(Pd(R)) = sup{‖S2n(φ)‖L∞(Pd(R))|φ ∈ L∞(Pd(R))}.

It means that S2n(φ, x) converges uniformly to f if

E2n(φ) = o
(‖S2n‖L∞(Pd(R))→L∞(Pd(R))

)−1
, n →∞.

It is well-known that in the case of the circle, S1, we have

‖Sn‖L∞(S1)→L∞(S1) =
1
π

∫ π

−π

|Dn(t)|dt =
4
π2

ln n + O(1).
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Remark that in the case of Sd, the unit Euclidean sphere in Rd+1, sharp
asymptotics of the norms of Fourier projections have been found in
Gronwall [5] if d = 2 and in Kushpel [9] in the case d ≥ 3. Namely,
it was shown that

‖Sn‖L∞(Sd)→L∞(Sd) = K(Sd)n(d−1)/2 +
{

O(nd/2−1), d = 2
O(n(d−3)/2), d ≥ 3

}
,

and

K(Sd) =
4

π3/2Γ(d/2)

∫ π/2

0

(sin η)(d−3)/2 (cos η)(d−1)/2dη,

The cases of complex and quternionic projective spaces, Pd(C) and Pd(H)
respectively and the Cayley elliptic plane P16(Cay) have been considered
in Kushpel [10],

‖Sn‖L∞(Md)→L∞(Md) = K(Rd)n(d−1)/2 +
{

O(nd/2−1), d = 2
O(n(d−3)/2), d ≥ 3

}
,

and

K(Md) =
4

π3/2Γ(d/2)

∫ π/2

0

(sin η)(d−3)/2 (cos η)χ(Md)dη,

where

χ(Md) =





1/2, Md = Pd(C), d = 4, 6, 8, · · · ,
2, Md = Pd(H), d = 8, 12, 16, · · · ,

7/2, Md = P16(Cay).

The main result of this article is the following statement.
Theorem 1.

‖S2n‖L∞(Pd(R))→L∞(Pd(R)) = K(Pd(R))n(d−1)/2

×
(

1 +
{

O(n−1/2), d = 2
O(n−1), d ≥ 3

})
,

where
K(Pd(R)) =

4
π3/2 Γ(d/2)

∫ π/2

0

(sin η)(d−3)/2dη.
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Elements of Harmonic Analysis. The real projective spaces
Pd(R) can be obtained by identifying of the antipodal points on Sd.
This quotient space of the sphere is homeomorphic with the collection
of all lines passing through the origin in Rd. Also, Pd(R) can be de�ned
as the cosets of the orthogonal group O(d + 1), i.e.,

Pd(R) =
O(d + 1)

O(1)×O(d)
.

Let
π : O(d + 1) → O(d + 1)

O(1)×O(d)
be the natural mapping and e be the identity of O(d + 1). The point
o = π(e) which is invariant under all motions of O(1) ×O(d) is called
the pole (or the north pole) of Pd(R). On Pd(R) there is an invariant
Riemannian metric d(·, ·), an invariant Haar measure dν and an invariant
second order di�erential operator, the Laplace-Beltrami operator ∆. A
function Z(·) : Pd(R) → R is called zonal if Z(h−1·) = Z(·) for any
h ∈ O(1)×O(d).

For more details see, e.g., Cartan [3], Gangolli [4], and Helgason [6],
[7].

A function on Pd(R) is invariant under the left action of O(1)×O(d)
on Pd(R) if and only if it depends only the distance of its argument from
o. Since the distance of any point of Pd(R) from o is at most π/2, it
follows that a spherical function Z on Pd(R) can be identi�ed with a
function Z̃ on [0, π/2]. Let θ be the distance of a point from o. We may
choose a geodesic polar coordinate system (θ,u) where u is an angular
parameter. In this coordinate system the radial part ∆θ of the Laplace-
Beltrami operator ∆ has the expression

∆θ =
1

A(θ)
d

dθ

(
A(θ)

d

dθ

)
,

where A(θ) is the area of the sphere of radius θ in Pd(R). It is interesting
to remark that an explicit form the function A(θ) can be computed
using methods of Lie algebras (see Helgason [7, p.251], [6, p.168] for the
details). It can be shown that

A(θ) = ωd(sin θ)d−1,
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where ωd is the area of the unit sphere in Rd. Now we can write the
operator ∆θ (up to some numerical constant) in the form

∆θ =
1

(sin θ)d−1

d

dθ
(sin θ)d−1 d

dθ
.

Using a simple change of variables t = cos θ, this operator takes the form
(up to a positive multiple),

∆t = (1− t2)−(d−2)/2 d

dt
(1− t2)d/2 d

dt
. (1)

We will need the following statement Szeg�o [11, p.60]:

Proposition 1. The Jacobi polynomials y = P
(α,β)
k satisfy the

following linear homogeneous di�erential equation of the second order:

(1− t2)y
′′

+ (β − α− (α + β + 2)t)y
′
+ k(k + α + β + 1)y = 0,

or
d

dt
((1− t)α+1(1− t)β+1y

′
) + k(k + α + β + 1)(1− t)α(1 + t)βy = 0.

It follows from the above proposition that the eigenfunctions of the
operator ∆t which has been de�ned in (1) are well-known Jacobi
polynomials P

(α,β)
k (t) and the corresponding eigenvalues are θk = −k(k+

α + β + 1), where α = β = (d − 2)/2. In this way zonal functions on
Pd(R) can be easily identi�ed since the elementary zonal functions are
eigenfunctions of the Laplace-Beltrami operator. Note, that on the real
projective spaces, Pd(R), the only polynomials of even degree appear
because, due to the identi�cation of antipodal points on Sd, only the
even order polynomials P

(α,α)
2k , k ∈ N can be lifted to be functions on

Pd(R). Let Z2k, k ∈ N, with Z0 ≡ 1 be a zonal function corresponding
to the eigenvalue θ2k = −2k(2k + d − 1) and Z̃2k be the corresponding
functions induced on [0, π/2] by Z2k. Then, Koornwinder [8],

Z̃2k(θ) = C2k(Pd(R)P ((d−2)/2,(d−2)/2)
2k (cos θ). (2)

Remark that for any k ∈ N the polynomial P
((d−2)/2,(d−2)/2)
k is just a

multiple of the Gegenbauer polynomial P
(d−1)/2
k . A detailed treatment
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of the Jacobi polynomials can be found in Szeg�o [11]. In particular, the
Jacobi polynomials P

(α,β)
k (t), α > −1, β > −1 are orthogonal with

respect to ωα,β(t) = c−1(1− t)α(1 + t)β on (−1, 1). The above constant
c can be found using the normalization condition

∫
Pd(R)

dν = 1 for the
invariant measure dν on Pd(R) and a well-known formula for the Euler
integral of the �rst kind

B(p , q) =
∫ 1

0

ξp−1(1− ξ)q−1dξ =
Γ(p)Γ(q)
Γ(p + q)

, p > 0, q > 0. (3)

Applying (3) and a simple change of variables we get

1 =
∫

Pd(R)

dν =
∫ 1

0

ω(d−2)/2,(d−2)/2(t)dt = c−1

∫ 1

0

(1− t2)(d−2)/2dt,

so that,

c =
∫ 1

0

(1− t2)(d−2)/2dt = 2d−2 (Γ(d/2))2

Γ(d)
. (4)

We normalize the Jacobi polynomials as follows:

P
(α,β)
k (1) =

Γ(k + α + 1)
Γ(α + 1)Γ(k + 1)

.

This way of normalization is coming from the de�nition of Jacoby
polynomials using the generating function Szeg�o [11, p.69]. In particular,

P
((d−2)/2,(d−2)/2)
2k (1) =

Γ(2k + d/2)
Γ(d/2)Γ(2k + 1)

.

Let Lp(Pd(R)) be the set of functions of �nite norm given by

‖ ϕ ‖p = ‖ ϕ ‖Lp(Pd(R)) =
{

(
∫
Pd(R)

|ϕ(x)|pdν(x))1/p, 1 ≤ p < ∞,

ess sup{|ϕ(x)| | x ∈ Pd(R)}, p = ∞.

Further, let Up = {ϕ | ϕ ∈ Lp(Pd(R)), ‖ ϕ ‖p≤ 1} be the unit ball
of the space Lp(Pd(R)). The Hilbert space L2(Pd(R)) with usual scalar
product

〈f, g〉 =
∫

Pd(R)

f(x)g(x)dν(x)
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has the decomposition

L2(Pd(R)) =
∞⊕

k=0

Hk,

where H2k is the eigenspace of the Laplace-Beltrami operator
corresponding to the eigenvalue θ2k = −2k(2k+α+β+1). Let {Y 2k

j }d2k
j=1

be an orthonormal basis of H2k. The following addition formula is known,
Koornwinder [8],

d2k∑

j=1

Y 2k
j (x)Y 2k

j (y) = Z̃2k(cos θ), (5)

where θ = d(x, y) or comparing (5) with (2) we get
d2k∑

j=1

Y 2k
j (x)Y k

j (y) = Z̃k(cos θ) = C2k(Pd(R))P (α,β)
2k (cos θ). (6)

See Helgason [7], [6], Cartan [3], Koornwinder [8], and Gangolli [4]
for more information concerning the harmonic analysis on homogeneous
spaces.

Using multiplier operators we can introduce a wide range of smooth
functions on Pd(R). Let φ ∈ Lp(Pd(R)), 1 ≤ p ≤ ∞, with the formal
Fourier expansion

φ ∼
∞∑

k=0

d2k∑

j=1

c2k,j(φ)Y 2k
j , c2k,j(φ) =

∫

Pd(R)

φY 2k
j dν.

Let Λ = {λk}k∈N∪{0} be a sequence of real (complex) numbers. If for
any φ ∈ Lp(Pd(R)) there is a function f := Λφ ∈ Lq(Pd(R)) such that

f ∼
∞∑

k=0

λk

d2k∑

j=1

c2k,j(φ)Y 2k
j ,

then we shall say that the multiplier operator Λ is of (p, q)-type with
norm ‖Λ‖p,q := supϕ∈Up

‖Λϕ‖q. We shall say that the function f is in
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ΛUp ⊕ R if

Λφ = f ∼ C +
∞∑

k=1

λk

d2k∑

j=1

c2k,j(φ)Y 2k
j ,

where C ∈ R and φ ∈ Up. In particular, the γ-th fractional integral
(γ > 0) of a function φ ∈ L1(Pd(R)) is de�ned by the sequence λk =
(2k(2k + d− 1))−γ/2. Sobolev's classes W γ

p (Pd(R)) on Pd(R) are de�ned
as sets of functions with formal Fourier expansions

C +
∞∑

k=1

(2k(2k + d− 1))−γ/2
d2k∑

j=1

c2k,j(φ)Y 2k
j ,

where C ∈ R and ‖φ‖p ≤ 1. Let Z be a zonal integrable function on
Pd(R). For any integrable function g we can de�ne convolution h on
Pd(R) as the following

h(·) = (Z ∗ g)(·) =
∫

Pd(R)

Z(cos(d(·, x))g(x)dν(x).

For the convolution on Pd(R) we have Young's inequality

‖(z ∗ g)‖q ≤ ‖z‖p‖g‖r,

where 1/q = 1/p + 1/r − 1 and 1 ≤ p, q, r ≤ ∞. It is possible to show
that for any γ > 0 the function

Gγ = Gγ,η ∼
∞∑

k=1

(2k(2k + d− 1))−γ/2Zη
2k

with pole η is integrable on Pd(R) and for any function g ∈ W γ
p (Pd(R))

we have an integral representation

g = C + Gγ ∗ φ,

where C ∈ R and φ ∈ Up.
The Orthogonal Projection. In this section we prove Theorem 1

which has been noticed in the Introduction.
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Proof. We will need an explicit representation for the constant
C2k(Pd(R)) de�ned in (6). Putting y = x in (6) and then integrating
both sides with respect to dν(x) we get

d2k = dim H2k =
d2k∑

j=1

∫

Pd(R)

|Y 2k
j (x)|2dν(x)

= C2k(Pd(R))P ((d−2)/2,(d−2)/2)
2k (1). (7)

Taking the square of both sides of (6) and then integrating with respect
to dν(x) we �nd

d2k∑

j=1

|Y 2k
j (y)|2 = C2

2k(Pd(R))
∫

Pd(R)

(
P

((d−2)/2,(d−2)/2)
2k (cos d(x, y))

)2

dν(x).

(8)
Since dν is shift invariant then
∫

Pd(R)

(
P

((d−2)/2,(d−2)/2)
2k (cos(d(x, y)))

)2

dν(x) = c−1
∥∥∥P

((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2
,

where the constant c is de�ned by (4) and (see Szeg�o [11], p.68)
∥∥∥P

((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2
=

∫ 1

0

(
P

(d−2)/2,(d−2)/2)
2k (t)

)2

(1− t2)(d−2)/2dt =

=
2d−2

4k + d− 1
(Γ(2k + d/2))2

Γ(2k + 1)Γ(2k + d− 1)
.

So that, (8) can be written in the form

d2k∑

j=1

|Y 2k
j (y)|2 = c−1C2

2k(Pd(R))
∥∥∥P

((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2
.

Integrating the last line with respect to dν(y) we obtain

d2k = c−1C2
2k(Pd(R))

∥∥∥P
(α,β)
2k

∥∥∥
2

2
.
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It is su�cient to compare this with (7) to obtain

C2k(Pd(R)) =
cP

((d−2)/2,(d−2)/2)
2k (1)∥∥∥P
((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2

. (9)

We get now an integral representation for the Fourier sums S2n(φ, x) of
a function φ ∈ L∞(Pd(R)),

S2n(φ, x) = c0(φ) +
n∑

k=1

d2k∑

j=1

c2k,j(φ)Y 2k
j (x) =

=
∫

Pd(R)

φ(y)Y 0
1 (y)dν(y) +

n∑

k=1

d2k∑

j=1

(∫

Pd(R)

φ(y)Y 2k
j (y)dν(y)

)
Y 2k

j (x) =

=
∫

Pd(R)

n∑

k=0




d2k∑

j=1

Y 2k
j (y)Y 2k

j (x)


φ(y)dν(y) =

=
∫

Pd(R)

n∑

k=0

Zx
2k(y)φ(y)dν(y) =

∫

Pd(R)

K2n(x, y)φ(y)dν(y), (10)

where
K2n(x, y) =

n∑

k=0

Zx
2k(y). (11)

By (2) and (9) we have

K2n(x, y) = c

n∑

k=0

P
((d−2)/2,(d−2)/2)
2k (1)∥∥∥P

((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2

P
((d−2)/2,(d−2)/2)
2k (cos d(x, y)).

Let us denote

G(α,β)
n (γ, δ) =

n∑

k=0

P
(α,β)
k (γ)P (α,β)

k (δ)∥∥∥P
(α,β)
k

∥∥∥
2

2,∗

,



Uniform convergence of orthogonal . . . 201

where ∥∥∥P
(α,β)
k

∥∥∥
2

2,∗
=

∫ 1

−1

(
P

(α,β)
k (t)

)2

(1− t)α(1 + t)βdt

Then by Szeg�o [11], p.71,

G(α,β)
n (γ, 1) =

n∑

k=0

P
(α,β)
k (γ)P (α,β)

k (1)∥∥∥P
(α,β)
k

∥∥∥
2

2,∗

=

= 2−α−β−1 Γ(n + α + β + 2)
Γ(α + 1)Γ(n + β + 1)

P (α+1,β)
n (γ). (12)

Remark that, Szeg�o [11],

P
(α,β)
k (γ) = (−1)kP

(β,α)
k (−γ) (13)

for any γ ∈ R and k ∈ N. By the de�nitions of the norms ‖·‖2 and ‖·‖2,∗
∥∥∥P

((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2,∗
= 2

∥∥∥P
((d−2)/2,(d−2)/2)
2k

∥∥∥
2

2
, (14)

for any k ∈ N since P
((d−1)/2,(d−1)/2)
2k is an even function. Comparing

(12) - (14) we get an explicit representation for the kernel function (11)
in the integral representation (10), i.e.,

K2n(x, y) = c2−α−β−12
Γ(2n + α + β + 2)

Γ(α + 1)Γ(2n + β + 1)
×

×P
(α+1,β)
2n (cos d(x, y)) + P

(β,α+1)
2n (cos d(x, y))

2
=

= c2−d+1 Γ(2n + d)
Γ(d/2)Γ(2n + d/2)

×

×
(
P

(d/2,(d−2)/2)
2n (cos d(x, y)) + P

((d−2)/2,d/2)
2n (cos d(x, y))

)
(15)

since α = β = (d−2)/2. It is known, Szeg�o [11], p.196, that for 0 < η < π,

P (α,β)
n (cos η) = n−1/2 κ(α,β)(η) cos(Nη + γ) + O(n−3/2), (16)
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where
κ(α,β)(η) = π−1/2

(
sin

η

2

)−α−1/2 (
cos

η

2

)−β−1/2

,

N = n +
α + β + 1

2
= n +

d− 1
2

, and γ = −α + 1/2
2

π.

Let η = d(x, y) and o be the north pole of Pd(R), then from (15), (16)
and since K2n is a zonal function and dν is shift invariant we get

‖S2n‖L∞(Pd(R))→L∞(Pd(R)) = sup
‖φ‖

L∞(Pd(R))≤1

‖S2n(φ, x)‖L∞(Pd(R)) =

= sup

{∫

Pd(R)

|K2n(x, y)|dν(y) : x ∈ Pd(R)

}
=

=
∫

Pd(R)

|K2n(o, y)|dν(y) =
c2−d+1Γ(2n + d)

Γ(d/2)Γ(2n + d/2)
×

×
∫

Pd(R)

∣∣∣P (d/2,(d−2)/2)
2n (cos(d(o, y)) + P

((d−2)/2,d/2)
2n (cos(d(o, y))

∣∣∣ dν(y) =

=
2−d+1Γ(2n + d)

Γ(d/2)Γ(2n + d/2)
In,

where

In :=
∫ 1

0

∣∣∣P (d/2,(d−2)/2)
2n (t) + P

((d−2)/2,d/2)
2n (t)

∣∣∣ (1− t2)(d−2)/2dt =

=
∫ π/2

0

∣∣∣P (d/2,(d−2)/2)
2n (cos η) + P

((d−2)/2,d/2)
2n (cos η)

∣∣∣ (sin η)d−1dt =

=
2d/2+1/2

π1/2(2n)1/2

∫ π/2

0

(sin η)(d−3)/2

∣∣∣∣cos
((

2n +
d− 1

2

)
η − (d + 1)π

4

)∣∣∣∣ dη+

+O(n−3/2).

Applying a simple Tylor series arguments and an elementary estimates
of the derivative of the function (sin η)(d−3)/2 we get

In =
2d/2+1

π3/2n1/2

∫ π/2

0

(sin η)(d−3)/2dη +
{

O(n−1/2), d = 2,
O(n−1), d ≥ 3

}
.
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Remark 1. LetMd = Sd,Pd(R),Pd(C),Pd(H),P16(Cay). It is known
[1], [2] that for any γ > 0,

En(W γ
∞(Md)) := sup{En(f)| f ∈ W γ

∞(Md)} ³ n−γ , n →∞.

From the Theorem 1 and the Lebesgue inequality it follows that the
Fourier series of a function f ∈ W γ

∞(Md) converges uniformly if γ >
(d − 1)/2. In general, let ∆0λk = λk, ∆1λk = λk − λk+1, ∆s+1λk =
∆sλk −∆sλk+1, k, s ∈ N and

N :=
{

(d + 1)/2, d = 3, 5, · · · ,
(d + 2)/2, d = 2, 4, · · ·

Let Λ = {λk}k∈N∪{0} be a multiplier operator, Λ : L∞(Md) → L∞(Md)
and ΛU∞(Md) be the respective set of smooth functions, then from the
Theorem 2, [2], p.317, [1] it follows that the Fourier series of a function
f ∈ ΛU∞(Md) converges uniformly if

lim
n→∞

n(d−1)/2
∞∑

k=n+1

|∆N+1λk| kN = 0,

since En(ΛU∞(Md) ¿ ∑∞
k=n+1 |∆N+1λk| kN as n →∞.
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