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UNIFORM CONVERGENCE OF ORTHOGONAL
EXPANSIONS ON THE REAL PROJECTIVE SPACES

Let IP’d(R) be the real projective space, dv its invariant normalized measure, A
its Laplace-Beltrami operator. Let 0 < 0o, -+ < 0, < --- be the eigenvalues
and Haor, k € NU {0} be the respective eigenspaces of A, dim Hox = doi. Let
{Yj%}?i’“l be an orthonormal basis of Hop. For any ¢ € Loo(PY(R)) with the
formal Fourier expansion

dak -
¢ ~co+ Z Z CQk,j(¢) Yfk, ch,j(d)) = / d)Y'JQk dv
keEN j=1 P (R)

consider the sequence of Fourier sums

n dog

San(8) = co(@) + D D e i (@) V7.

k=1 j=1
Our main result establishes sharp asymptotic for the mnorm of Fourier
projection. Namely, it is shown that

15201l Lo (pa () — Lo (Pa(R)) =

4n(d—1)/2 /2 ) (d-3)/2 0(7171/2)7 d=2
‘w3/2r<d/z>/o (sinm) d"(”{ on), dz3})'

In particular, if d = 2 then

. 3\\ 2
1S2nll s (B2(R)) — Lo (2 () = M7 2% (F (1)) + o

We give some applications of this result to the problem of uniform convergence
of orthogonal developments on Pd(R).

Introduction. Let P4(R) be the real d-dimensional projective space,
v its normalized volume element, A its Laplace-Beltrami operator. It is
well-known that the eigenvalues 6,,, m = 2k, k € NU {0} of A are
discrete, nonnegative and form an increasing sequence 0 < 6y < 6, <
<o < By < -+ with 400 the only accumulation point. Corresponding
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eigenspaces Haoi, & € NU {0}, are finite dimensional, do;, = dimHgy, <
o0, orthogonal and La(P4(R),v) = @®55_ Hak. Let {szk}?i’“l be an
orthonormal basis of Hag. Assume that ¢ € Lo, (P4(R)) with the formal
Fourier expansion

dag o
¢~ co+ Z Z CQIc,j((b)Yj?k7 C2k,j<¢) = / o Yj?kdu.
keN j=1 Pd(R)

Consider the sequence of Fourier sums

n  dag

Son(¢,x) = co + Z Z Cak,j (QS)YJ%(I’)

k=1 j=1

We shall be study an asymptotic behavior of the norms of Fourier
projections Sa, : Leo(PYR)) — Loo(P4(R)), as n — oo. Observe
that this problem is closely connected with the problem of uniform
convergence of Fourier series on P4(R). Indeed, let

Eon(¢) = inf {||¢p — tanllr pa(r)) | t2n € Ton}

be the best approximation of a function ¢ € Lo, (P?(R)) by the subspace
Ty, of polynomials of order < 2n, T, = ®}_,Hag. Then, by the Lebesgue
inequality we get

¢ — S2n (9, )| Lo (pa(m))

where

IN

(141120l Lo (Pe(R))— Lo (PA(R))) E2n(0),

1920 |1 (B (R))— Lo (BaR)) = SUP{||S2n () || 1. (Par)) @ € Loo(PH(R))}.

It means that Sa, (¢, z) converges uniformly to f if

- -1
E2n(9) =0 (|1S2nll 1o b)) — Lo pam))) 5 70— 0.
Tt is well-known that in the case of the circle, S', we have
1 [ 4

—T
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Remark that in the case of S¢, the unit Euclidean sphere in R%T!, sharp
asymptotics of the norms of Fourier projections have been found in
Gronwall [5] if d = 2 and in Kushpel [9] in the case d > 3. Namely,
it was shown that

_ On/?=1), d=2
15l enanen =R+ { G A G25

and

4 w/2 ) B B
KIS = 7oy [, im0 (eos )=,

3/21(

The cases of complex and quternionic projective spaces, P?(C) and P?(H)
respectively and the Cayley elliptic plane P!¢(Cay) have been considered
in Kushpel [10],

_ On/?>=1, d=2
10l 2. 10— Lo ity = KRED/2 4 { O((n<d—3>/2‘)), d>3 } ’

and
Mty = — 1 W/Q(Sin (d-3)/2 X (M)
T (d)) /0 n) (cos 1) n,
where
1/2, M?%=P4C), d=4,6,8, -,
x(M9) = 2, M¢=PYH), d=28,12,16,---,

7/2, M¢ = P'6(Cay).

The main result of this article is the following statement.
Theorem 1.

||S2n||Loo(Pd(R))—»LOC([Pd(R)) = /C(Pd(]R))n(d_l)/?
O(n~Y?), d=2
X (1+{ O(n~Y), d=>3 ,

/2
IC(]P)d(R)) = 73/2 ﬁ(d/?) /0 (Sinn)(d_3)/2d77~

where
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Elements of Harmonic Analysis. The real projective spaces
P?(R) can be obtained by identifying of the antipodal points on S9.
This quotient space of the sphere is homeomorphic with the collection
of all lines passing through the origin in R?. Also, P4(R) can be defined
as the cosets of the orthogonal group O(d + 1), i.e.,

_0@d+1)
PUR) = 501 % o(d)
et ot 0(d+1)
™ O+ = 5o

be the natural mapping and e be the identity of O(d + 1). The point
o = 7(e) which is invariant under all motions of O(1) x O(d) is called
the pole (or the north pole) of P4(R). On P4(R) there is an invariant
Riemannian metric d(-, -), an invariant Haar measure dv and an invariant
second order differential operator, the Laplace-Beltrami operator A. A
function Z(:) : P4(R) — R is called zonal if Z(h™!-) = Z(-) for any
h € O(1) x O(d).

For more details see, e.g., Cartan [3], Gangolli [4], and Helgason [6],
[7].

A function on P4(R) is invariant under the left action of O(1) x O(d)
on P4(R) if and only if it depends only the distance of its argument from
o. Since the distance of any point of P4(R) from o is at most 7/2, it
follows that a spherical function Z on P?(R) can be identified with a
function Z on [0,7/2]. Let 6 be the distance of a point from o. We may
choose a geodesic polar coordinate system (#,u) where u is an angular
parameter. In this coordinate system the radial part Ay of the Laplace-
Beltrami operator A has the expression

1 d d
Ag=—— — [ A(0)—
“ T A®0) d6< (H)de)’
where A(6) is the area of the sphere of radius 6 in P4(R). It is interesting
to remark that an explicit form the function A() can be computed

using methods of Lie algebras (see Helgason [7, p.251], [6, p.168] for the
details). It can be shown that

A(0) = wy(sin §)471,
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where wy is the area of the unit sphere in R¢. Now we can write the
operator Ay (up to some numerical constant) in the form

1 d, o d
= ot a0 g

Using a simple change of variables ¢t = cos 6, this operator takes the form
(up to a positive multiple),

d d
Ay = (1—12)7@=2/2 (1 —¢2)4/2 — 1
=1 Lzt )
We will need the following statement Szegd [11, p.60]:

Proposition 1. The Jacobi polynomials y = P,ga’ﬁ) satisfy the
following linear homogeneous differential equation of the second order:

1=y +(B—a—(a+B8+2)y +k(k+a+B+1)y=0,

or
d
dt
It follows from the above proposition that the eigenfunctions of the
operator A; which has been defined in (1) are well-known Jacobi

(1= A=)y )+ k(k+a+ 8+ 1)1 =) +t)y =0.

polynomials P,ga’ﬁ) (t) and the corresponding eigenvalues are 0, = —k(k—+
a+ B+ 1), where a = 8 = (d — 2)/2. In this way zonal functions on
P4(R) can be easily identified since the elementary zonal functions are
eigenfunctions of the Laplace-Beltrami operator. Note, that on the real
projective spaces, P4(R), the only polynomials of even degree appear
because, due to the identification of antipodal points on S?, only the
even order polynomials PQ(,j’a), k € N can be lifted to be functions on
P4(R). Let Zay, k € N, with Zy = 1 be a zonal function corresponding
to the eigenvalue 6o = —2k(2k +d — 1) and Zok be the corresponding
functions induced on [0,7/2] by Zai. Then, Koornwinder [8],

Zae(8) = Cop(PUR) PLI=2/2=2)/2) (065.6). (2)

P}E(dﬁ)/?’(d*?)/?)

Remark that for any k£ € N the polynomial is just a

multiple of the Gegenbauer polynomial P,gdil)/ % A detailed treatment
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of the Jacobi polynomials can be found in Szego [11]. In particular, the

Jacobi polynomials P,ia’ﬁ) (t), « > —1, B8 > —1 are orthogonal with
respect to w®?(t) = ¢71(1 — t)*(1 +t)% on (—1,1). The above constant
c can be found using the normalization condition f]P’d(]R) dv = 1 for the

invariant measure dv on P%(R) and a well-known formula for the Euler
integral of the first kind

pl ql ()F(Q)
B(p.q) /f st =t P20 g0 @)

Applying (3) and a simple change of variables we get

1 1
Pd(R) 0 0

so that,

c= /01(1 — %) D2 = 2“(”1?(/;))2. (4)

We normalize the Jacobi polynomials as follows:

I'k+a+1)
Ma+1)I(k+1)

PEP(1) =

This way of normalization is coming from the definition of Jacoby
polynomials using the generating function Szegd [11, p.69]. In particular,

PUa=2/2(d=2)/2) (1) _ (d%’; +(2C§c/i)1)'

Let L,(P4(R)) be the set of functions of finite norm given by

lel,=1¢l Pa(R)) = { f]}»d x)|Pdv(x ))1/1’7 1<p<oo,
» g ess SUP{\SO( Iz ePI(R)}, p=oo

Further, let U, = {¢ | ¢ € L,(PYR)), | ¢ l,< 1} be the unit ball
of the space L,(P4(R)). The Hilbert space Ly(P4(R)) with usual scalar
product
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has the decomposition
La(P(R)) = ) He,
k=0

where Hog is the eigenspace of the Laplace-Beltrami operator
corresponding to the eigenvalue 0o, = —2k(2k+a+5+1). Let {szk}?zcl
be an orthonormal basis of Ha. The following addition formula is known,

Koornwinder [§],

> V@)Y () = Zax(cost), (5)

where 6 = d(z,y) or comparing (5) with (2) we get

dak ~
S V(@)Y (y) = Zi(cosh) = Con(PU(R) Pp ) (cos).  (6)

See Helgason [7], [6], Cartan [3], Koornwinder [8], and Gangolli [4]
for more information concerning the harmonic analysis on homogeneous
spaces.

Using multiplier operators we can introduce a wide range of smooth
functions on P4(R). Let ¢ € L,(P4(R)), 1 < p < oo, with the formal
Fourier expansion

oo dok 7
0~ DS cansOVF easlo) = [ oV
k=0 j=1 P4(R)

Let A = {Ar}renu{o) be a sequence of real (complex) numbers. If for
any ¢ € L,(P%(R)) there is a function f := A¢ € L,(P4(R)) such that

dog

[~ Z Ak Z Corj(9) Y,
k=0  j=1

then we shall say that the multiplier operator A is of (p, ¢)-type with
norm [[Allp,q == sup,cy, [[Aplly. We shall say that the function f is in
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AU, & R if
dak

Ap=f~C + Z Ak ZCQk,j(@Yj%,
k=1 j=1

where C € R and ¢ € U,. In particular, the v-th fractional integral
(y > 0) of a function ¢ € L;(P%(R)) is defined by the sequence \, =
(2k(2k +d —1))~7/2. Sobolev’s classes W (P4(R)) on P4(R) are defined
as sets of functions with formal Fourier expansions

S dak
C+> (2k2k+d—1))72Y e (9)V7F,
j=1

k=1

where C € R and ||¢]|, < 1. Let Z be a zonal integrable function on
P4(R). For any integrable function g we can define convolution A on
P4(R) as the following

h) = (Z20)0) = [ Z(con(dl)gla)ivia)

For the convolution on P4(R) we have Young’s inequality

[z 9)llg < lIzl5ll9llr,
where 1/¢g = 1/p+1/r—1 and 1 < p,q,r < oco. It is possible to show
that for any v > 0 the function

Gy=Gypr~ Y (2k(2k+d —1))7/2Z],
k=1

with pole 7 is integrable on P4(R) and for any function g € W) (P%(R))
we have an integral representation

g=C+Gyx*09,

where C' € R and ¢ € U,,.
The Orthogonal Projection. In this section we prove Theorem 1
which has been noticed in the Introduction.
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Proof. We will need an explicit representation for the constant
Cox(PY(R)) defined in (6). Putting y = x in (6) and then integrating
both sides with respect to dv(x) we get

dog

do, = dim Hyy, = Z/d Y2k \ dv(z)
Pd(R)

= Corn(PU(R)) PLL* /2272 (1), (7)

Taking the square of both sides of (6) and then integrating with respect
to dv(x) we find

dag . 9
S IV@)? = Ch(PUR)) / - (P22 cosd(,y)) ) dvia),
j=1

(8)

Since dv is shift invariant then
[ (B2 costa ) avte) = e | P
P4(R)

where the constant c is defined by (4) and (see Szeg6 [11], p.68)

d—2)/2,(d—2)/2)||? ! d—2)/2,(d—2)/2 2 _
Hpéé )/2.( >/>H2:/0 (PQ(k )/2:( )/)(t)> (1— 12)(d=2)/2gy —

242 (T'(2k + d/2))?
C4k+d—1T@2k+ )2k +d—1)

So that, (8) can be written in the form

dog

2
_ d—2)/2,(d—
S IVE)P = ¢ CREAR)) [P
j=1

Integrating the last line with respect to dv(y) we obtain

2
dax = 13, (PUR)) | PP
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It is sufficient to compare this with (7) to obtain

d—2)/2,(d—2)/2
Coutpi(my) = P )
HP((d—2>/2,<d—2>/2) H2 '

2k

(9)

We get now an integral representation for the Fourier sums S, (¢, x) of
a function ¢ € Lo (P4(R)),

n  dag
Son(0,x) = co(@ +ch2k] Y%
k=1 j=1
n  dok
= Y2k ()d 2k () =
L, 2070 +ZZ</( DY)ty >)Y] @)

dag

= [ S @) ) sty -

d(R)k =0 \j=1

/P ZZ% y)dv(y) = Kon(z,y)o(y)dv(y),  (10)

“(R) k=0 P4(R)

where
K2n z y ZZ2IC (11)

By (2) and (9) we have

n - p(d=2)/2,(d-2)/2) B B
Kop(z,y) :CZ 2k (1) Pé,id /2, 2)/2)(cosd(;v,y)).

2
o sz(lgd&)/z,(dfz)/z)u

Let us denote

n_ p(a,f) (e, 8)
P, P,
Ggf"’ﬁ)('y,é) — § : k (V)P (9)
k=0 HPIE
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where
2

el = f 11 (PCP0) (1 - 071+ s

Then by Szeg6 [11], p.71,

2,%

n P(avﬁ) P(a’ﬁ)l
Gy =y B0 )

=R

2%

)

Fa+1)I'(n+B+1) "

Remark that, Szego [11],

_ 270&7ﬁ71

() (12)

PP () = (~1)F PP (<) (13)

for any v € R and k € N. By the definitions of the norms |- ||z and |- ||2,«
2

d—2)/2,(d—2)/2
HP2(’(€ )/2.( >/>‘ (14)

2 d—2)/2,(d—2)/2

| =l
for any k£ € N since P;,idil)/Q’(dfl)/Q) is an even function. Comparing
(12) - (14) we get an explicit representation for the kernel function (11)

in the integral representation (10), i.e.,

F(2n+a+6+2)
o+ D)I'(2n+ B +1)

Kon(x,y) = 27 P12

P (cos d(a,y)) + PI Y (cos d(w, )
2
I'(2n + d)

[(d/2)0(2n +dj2) "

x (PP cos d(a,y) + PP cosd(a,y)))  (15)

= 2741

since @ = B = (d—2)/2. It is known, Szego [11], p.196, that for 0 < n < ,

PR (cosn) = n~ 2 58 (1) cos(Nn + ) + O(n~3/?), (16)
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where 1/2 B—1/2
k(@B () = 7=1/2 (sin Q) (cos ﬂ) )
2 2
1 d—1 1/2
NZTL—F%Znﬁ-Ta and 7:_04“"2/%

Let 7 = d(z,y) and o be the north pole of P4(R), then from (15), (16)
and since Ko, is a zonal function and dv is shift invariant we get

1520 ..o (P (R))— L oo (P (R)) = sup 120 (6, )| L (pa(r)) =

911 o (e (ryy ST

= sup {/ | Kop(z,y)|dv(y) : x € ]P’d(]R)} =
P4(R)

B 27T (2n +d)
- /IF’d(]R) |K2n(07y)|dy(y) - F(d/?)F(Zn _|_ d/2) X

: /]pd(R) |PL/ D) (cos(d(o,y)) + PLL P (cosd(o, ) | dv(y) =

27T (2n 4 d)
- T(d/2)T(2n +d/2) "

where

1
I = / ‘ PL/2@=D/2) 4y | PQ(de‘Q)/Q’d/Q)(t)‘ (1— £2)(d=2/2gy —
0

/2
= / ‘PQ(Z/Q’(d_Q)/Q)(COS n) + PQ(,(Ld_Q)/Q’d/Q)(COS n)‘ (sinn)4~tdt =
0

9d/2+1/2 /2 d—1 (d+ 1w
. inp)@—3)/2 _
EVETT S /0 (sinn) cos (<2n + 5 ) n 1 > ‘ dn+

+0(n=3/%).

Applying a simple Tylor series arguments and an elementary estimates
of the derivative of the function (sinn)@=2)/2 we get

9d/2+1 /2 O(n—l/Z) d=2
e — i (d—3)/2 ) )
In 7I.3/2nl/2 A (smn) d77 + { O(n—l)7 d Z 3 } .
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Remark 1. Let M? = S P4(R), P4(C), P?(H), P'®(Cay). It is known
[1], [2] that for any v > 0,

B, (WL (M?)) := sup{En(f)| f € WLM')} xn™7, n— co.

From the Theorem 1 and the Lebesgue inequality it follows that the
Fourier series of a function f € W2 (M?) converges uniformly if v >
(d - 1)/2 In general, let AO)\k = Ak, Al/\k = A — Ag+1, AS+1>\]C =
AN — A% X1, k,s € Nand

N = (d+1)/2? d:375a"'7

Let A = {\x}renugo} be a multiplier operator, A : Loo (M%) — Lo (M?)
and AU, (M?) be the respective set of smooth functions, then from the
Theorem 2, [2], p.317, [1] it follows that the Fourier series of a function
f € AU (M%) converges uniformly if

lim n(4=172 3" JANTI | BN =0,
k=n-+1

since By (AUs (M%) < 3202 1 [ANTINL] BN as n — oc.
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