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Abstract

We consider Vlasov-type scaling for the Glauber dynamics in con-
tinuum with a positive integrable potential, and construct rescaled and
limiting evolutions of correlation functions. Convergence to the limit-
ing evolution for the positive density system in infinite volume is shown.
Chaos preservation property of this evolution gives a possibility to derive
a non-linear Vlasov-type equation for the particle density of the limiting
system.

1 Introduction

Kinetic equations are a useful approximation for the description of dynamical
processes in multi-body systems, see, e.g., the reviews by H.Spohn [32], [33].
Among them, the Vlasov equation has important role in physics (in particular,
physics of plasma). It describes the Hamiltonian motion of an infinite particle
system in the mean field scaling limit when the influence of weak long-range
forces is taken into account. The convergence of the Vlasov scaling limit was
shown rigorously by W.Braun and K.Hepp [1] (for the Hamiltonian dynamics)
and by R.L.Dobrushin [3] (for more general deterministic dynamical systems).
However, the resulting Vlasov-type equations for particle densities are consid-
ered in classes of integrable functions (or, in the weak form, of finite measures).
This, in fact, restricts us to the case of finite volume systems or systems with
zero mean density in an infinite volume. Detailed analysis of Vlasov-type equa-
tions for integrable functions is presented in the recent paper by V.V.Kozlov
[25].

In [9], we proposed a general approach to study the Vlasov-type scaling for
some classes of stochastic evolutions in the continuum, in particular, for spatial
birth-and-death Markov processes. The approaches mentioned above are not
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applicable to these dynamics (even in a finite volume) due to essential reasons
(see [9] for details). One of them is a possible variation of the particle number
during the evolution. More essentially is that for these processes the possi-
bility of their descriptions in terms of proper stochastic evolutional equations
for particle motion is, generally speaking, absent. There are only few works
concerning general spatial birth-and-death evolutions, see [30], [16], [13], [14],
[29], [31]. However, the conditions for the existence (in different senses) of the
evolutions considered therein are quite far from the general form.

Therefore, we looked for an alternative approach to the derivation of kinetic
Vlasov-type equations from stochastic dynamics. The correct Vlasov limit can
be easily guessed from the BBGKY hierarchy for the Hamiltonian system, see,
e.g., [32]. Such a heuristic derivation does not assume the integrability condition
for the density, but until now, it could not be made rigorously due to the lack of
detailed information about the properties of solutions to the BBGKY hierarchy.
Our approach is based on this observation applied in a new dynamical frame-
work. Note that we already know that many stochastic evolutions in continuum
admit effective descriptions in terms of hierarchical equations for correlation
functions which generalize the BBGKY hierarchy from Hamiltonian to Markov
setting, see, e.g., [12] and the references therein. Even more, these hierarchi-
cal equations are often the only available technical tools for a construction of
considered dynamics [20], [21], [8].

Developing this point of view, our scheme for the Vlasov scaling of stochastic
dynamics is based on the proper scaling of the hierarchical equations. This
scheme has also a clear interpretation in the terms of scaled Markov generators.
An application of the considered scaling leads to the limiting hierarchy which
posses a chaos preservation property. Namely, if we start from a Poissonian
(non-homogeneous) initial state of the system, then during the time evolution
this property will be preserved. Moreover, a special structure of the interaction
in the resulting virtual Vlasov system gives a non-linear evolutional equation
for the density of the evolving Poisson state.

The control of the convergence of Vlasov scalings for the considered hier-
archies is a quite difficult technical problem which should be analyzed for any
particular model separately. In the present paper, we solve this problem for
the Glauber dynamics in continuum. These dynamics have given reversible
states which are grand canonical Gibbs measures. The corresponding equilib-
rium dynamics which preserve the initial Gibbs state in the time evolution were
considered in, e.g., [22], [23], [24], [11]. Note that, in applications, the time
evolution of initial state is the subject of the primary interest. Therefore, we
understand the considered stochastic (non-equilibrium) dynamics as the evolu-
tion of initial distributions for the system. Actually, the corresponding Markov
process (provided it exists) itself gives a general technical equipment to study
this problem. Moreover, using the techniques developed in [13], it is possible to
construct this Markov process as a solution of a stochastic differential equation.
Unfortunately, this approach does not give any information about the proper-
ties of the corresponding correlation functions which we need for the study of
Vlasov scaling as was mentioned above.
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However, we note that the transition from the micro-state evolution corre-
sponding to the given initial configuration to the macro-state dynamics is the
well developed concept in the theory of infinite particle systems. This point
of view appeared initially in the framework of the Hamiltonian dynamics of
classical gases, see, e.g., [4]. Again, the lack of the general Markov processes
techniques for the considered systems makes it necessary to develop alternative
approaches to study the state evolutions in the Glauber dynamics. Such ap-
proaches we realized in [20], [21], [10], [7]. The description of the time evolutions
for measures on configuration spaces in terms of an infinite system of evolutional
equations for the corresponding correlation functions was used there. The latter
system is a Glauber evolution’s analog of the famous BBGKY-hierarchy for the
Hamiltonian dynamics.

Here we extend the approximation approach proposed in [10], [7] to the
Vlasov scaling for the Glauber dynamics in continuum. We construct and study
semigroups corresponding to properly rescaled Markov generator of the Glauber
dynamics (Propositions 3.8 and 3.11). We prove for the integrable and bounded
potential the convergence of these semigroups to the limiting semigroup which
describe Vlasov evolution (Theorem 3.12). We derive the corresponding Vlasov-
type equation from this evolution (Theorem 3.14). Note that the stationary so-
lution of this equation will satisfied the well-known Kirkwood–Monroe equation
in the freezing theory (Remark 3.15).

2 Glauber dynamics in continuum

2.1 Basic facts and notation

Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1; Bb(Rd) denotes the
system of all bounded sets in B(Rd).

The configuration space over space Rd consists of all locally finite subsets
(configurations) of Rd, namely,

Γ = ΓRd :=
{

γ ⊂ Rd
∣∣∣ |γΛ| < ∞, for all Λ ∈ Bb(Rd)

}
. (2.1)

Here γΛ := γ ∩ Λ, and | · | means the cardinality of a finite set. The space Γ
is equipped with the vague topology, i.e., the minimal topology for which all
mappings Γ 3 γ 7→

∑
x∈γ f(x) ∈ R are continuous for any continuous function

f on Rd with compact support; note that the summation in
∑

x∈γ f(x) is taken
over finitely many points of γ which belong to the support of f . In [19], it was
shown that Γ with the vague topology may be metrizable and it becomes a Polish
space (i.e., complete separable metric space). Corresponding to this topology,
the Borel σ-algebra B(Γ) is the smallest σ-algebra for which all mappings Γ 3
γ 7→ |γΛ| ∈ N0 := N ∪ {0} are measurable for any Λ ∈ Bb(Rd).

The space of n-point configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ(n)
Y :=

{
η ⊂ Y

∣∣∣ |η| = n
}

, n ∈ N.
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We set also Γ(0)
Y := {∅}. As a set, Γ(n)

Y may be identified with the symmetrization
of

Ỹ n =
{

(x1, . . . , xn) ∈ Y n
∣∣∣ xk 6= xl if k 6= l

}
.

Hence one can introduce the corresponding Borel σ-algebra, which we denote
by B(Γ(n)

Y ). The space of finite configurations in an arbitrary Y ∈ B(Rd) is
defined by

Γ0,Y :=
⊔

n∈N0

Γ(n)
Y .

This space is equipped with the topology of disjoint unions. Therefore, one can
introduce the corresponding Borel σ-algebra B(Γ0,Y ). In the case of Y = Rd we
will omit the index Y in the notation, namely, Γ0 := Γ0,Rd , Γ(n) := Γ(n)

Rd .
The restriction of the Lebesgue product measure (dx)n to

(
Γ(n),B(Γ(n))

)
we

denote by m(n). We set m(0) := δ{∅}. The Lebesgue–Poisson measure λ on Γ0

is defined by

λ :=
∞∑

n=0

1
n!

m(n). (2.2)

For any Λ ∈ Bb(Rd) the restriction of λ to ΓΛ := Γ0,Λ will be also denoted
by λ. The space

(
Γ,B(Γ)

)
is the projective limit of the family of spaces{

(ΓΛ,B(ΓΛ))
}

Λ∈Bb(Rd)
. The Poisson measure π on

(
Γ,B(Γ)

)
is given as the

projective limit of the family of measures {πΛ}Λ∈Bb(Rd), where πΛ := e−m(Λ)λ

is the probability measure on
(
ΓΛ,B(ΓΛ)

)
. Here m(Λ) is the Lebesgue measure

of Λ ∈ Bb(Rd).
For any measurable function f : Rd → R we define a Lebesgue–Poisson

exponent
eλ(f, η) :=

∏
x∈η

f(x), η ∈ Γ0; eλ(f, ∅) := 1. (2.3)

Then, by (2.2), for f ∈ L1(Rd, dx) we obtain eλ(f) ∈ L1(Γ0, dλ) and∫
Γ0

eλ(f, η)dλ(η) = exp

{∫
Rd

f(x)dx

}
. (2.4)

A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N
such that M ⊂

⊔N
n=0 Γ(n)

Λ . The set of bounded measurable functions with
bounded support we denote by Bbs(Γ0), i.e., G ∈ Bbs(Γ0) if G �Γ0\M= 0 for
some bounded M ∈ B(Γ0). Any B(Γ0)-measurable function G on Γ0, in fact, is a
sequence of functions

{
G(n)

}
n∈N0

where G(n) is a B(Γ(n))-measurable function
on Γ(n). We consider also the set Fcyl(Γ) of cylinder functions on Γ. Each
F ∈ Fcyl(Γ) is characterized by the following relation: F (γ) = F �ΓΛ (γΛ) for
some Λ ∈ Bb(Rd).

There is the following mapping from Bbs(Γ0) into Fcyl(Γ), which plays the
key role in our further considerations:

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.5)
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where G ∈ Bbs(Γ0), see, e.g., [18, 26, 27]. The summation in (2.5) is taken
over all finite subconfigurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ;
we denote this by the symbol, η b γ. The mapping K is linear, positivity
preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.6)

We denote the restriction of K onto functions on Γ0 by K0.
A measure µ ∈ M1

fm(Γ) is called locally absolutely continuous with respect
to (w.r.t. for short) the Poisson measure π if for any Λ ∈ Bb(Rd) the projection
of µ onto ΓΛ is absolutely continuous w.r.t. the projection of π onto ΓΛ. By
[18], in this case, there exists a correlation functional kµ : Γ0 → R+ such that
for any G ∈ Bbs(Γ0) the following equality holds∫

Γ

(KG)(γ)dµ(γ) =
∫

Γ0

G(η)kµ(η)dλ(η). (2.7)

The restrictions k
(n)
µ of this functional on Γ(n)

0 , n ∈ N0 are called correlation
functions of the measure µ. Note that k

(0)
µ = 1.

We recall now without a proof the partial case of the well-known technical
lemma (cf., [24]) which plays very important role in our calculations.

Lemma 2.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R∫
Γ0

∑
ξ⊂η

H (ξ, η \ ξ, η) dλ (η) =
∫

Γ0

∫
Γ0

H (ξ, η, η ∪ ξ) dλ (ξ) dλ (η) (2.8)

if only both sides of the equality make sense.

2.2 Non-equilibrium Glauber dynamics in continuum

Let φ : Rd → R+ := [0;+∞) be an even non-negative function which satisfies
the following integrability condition

Cφ :=
∫

Rd

(
1− e−φ(x)

)
dx < +∞. (2.9)

For any γ ∈ Γ, x ∈ Rd \ γ we set

Eφ(x, γ) :=
∑
y∈γ

φ(x− y) ∈ [0;∞]. (2.10)

Let us define the (pre-)generator of the Glauber dynamics: for any F ∈
Fcyl(Γ) we set

(LF )(γ) :=
∑
x∈γ

[
F (γ \ x)− F (γ)

]
(2.11)

+ z

∫
Rd

[
F (γ ∪ x)− F (γ)

]
exp
{
−Eφ(x, γ)

}
dx, γ ∈ Γ.
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Here z > 0 is the activity parameter. Note that for any F ∈ Fcyl(Γ) there exists
a Λ ∈ Bb(Rd) such that F (γ \ x) = F (γ) for all x ∈ γΛc and F (γ ∪ x) = F (γ)
for all x ∈ Λc; note also that exp

{
−Eφ(x, γ)

}
≤ 1, therefore, sum and integral

in (2.11) are finite.
For any fixed C > 1 we consider the following Banach space of B(Γ0)-

measurable functions

LC :=
{

G : Γ0 → R
∣∣∣∣ ‖G‖C :=

∫
Γ0

|G(η)|C |η|dλ(η) < ∞
}

.

In [10, Proposition 3.1], it was shown that the mapping L̂ := K−1LK given
on Bbs(Γ0) by

(L̂G)(η) =− |η|G(η) (2.12)

+ z
∑
ξ⊂η

∫
Rd

e−Eφ(x,ξ)G(ξ ∪ x)eλ(e−φ(x−·) − 1, η \ ξ)dx

is a linear operator on LC with the dense domain L2C ⊂ LC . If additionally,

z ≤ min
{
Ce−CCφ ; 2Ce−2CCφ

}
, (2.13)

then
(
L̂,L2C

)
is closable linear operator in LC and its closure

(
L̂,D(L̂)

)
gen-

erates a strongly continuous contraction semigroup T̂ (t) on LC (see [10, Theo-
rem 3.8] for details).

Let us set dλC := C |·|dλ; then the dual space (LC)′ =
(
L1(Γ0, dλC)

)′ =
L∞(Γ0, dλC). The space (LC)′ is isometrically isomorphic to the Banach space

KC :=
{

k : Γ0 → R
∣∣∣ k · C−|·| ∈ L∞(Γ0, λ)

}
with the norm ‖k‖KC

:= ‖C−|·|k(·)‖L∞(Γ0,λ) where the isomorphism is provided
by the isometry RC

(LC)′ 3 k 7−→ RCk := k · C |·| ∈ KC . (2.14)

In fact, one may consider the duality between the Banach spaces LC and
KC given by the following expression

〈〈G, k〉〉 :=
∫

Γ0

G · k dλ, G ∈ LC , k ∈ KC (2.15)

with |〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC
. It is clear that k ∈ KC implies |k(η)| ≤

‖k‖KC
C |η| for λ-a.a. η ∈ Γ0.

Let
(
L̂′, D(L̂′)

)
be an operator in (LC)′ which is dual to the closed operator(

L̂,D(L̂)
)
. We consider also its image on KC under the isometry RC , namely,

let L̂∗ = RCL̂′RC−1 with the domain D(L̂∗) = RCD(L̂′). It was noted in [7]
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that L̂∗ is the dual operator to L̂ w.r.t. the duality (2.15) and that for any
k ∈ D(L̂∗)

(L̂∗k)(η) =− |η|k(η) (2.16)

+ z
∑
x∈η

e−Eφ(x,η\x)

∫
Γ0

eλ(e−φ(x−·) − 1, ξ)k((η \ x) ∪ ξ) dλ(ξ).

Under condition (2.13), we consider the adjoint semigroup T̂ ′(t) in (LC)′

and its image T̂ ∗(t) in KC . By the general results from [28, Sections 1.2, 1.3],
the restriction T̂�(t) of the semigroup T̂ ∗(t) onto its invariant Banach subspace
D(L̂∗) is a contraction strongly continuous semigroup. By [7, Proposition 3.1],
for any α ∈ (0; 1) we have KαC ⊂ D(L̂∗) and, moreover, by [7, Proposition 3.3],
there exists α0 = α0(z, φ, C) ∈ (0; 1) such that for any α ∈ (α0; 1) the set KαC

will be also a T̂ ∗(t)-invariant linear subspace. As a result, for any D(L̂∗) the
Cauchy problem in KC 

∂

∂t
kt = L̂∗kt

kt

∣∣
t=0

= k0

(2.17)

is well-defined and solvable: kt = T̂ ∗(t)k0 = T̂�(t)k0 ∈ D(L̂∗); moreover,
k0 ∈ KαC implies kt ∈ KαC .

3 Vlasov-type scaling

3.1 Description of scaling

We start from the explanation of the idea of the Vlasov-type scaling. We want
to construct some scaling of the generator L, say, Lε, ε > 0, such that the fol-
lowing scheme holds. Suppose that we have a semigroup T̂ε(t) with generator L̂ε

in some LCε . Consider the dual semigroup T̂ ∗
ε (t). Let us choose an initial func-

tion of the corresponding Cauchy problem with a big singularity by ε, namely,
k

(ε)
0 (η) ∼ ε−|η|r0(η), ε → 0, η ∈ Γ0 with some function r0, independent of ε.

Our first demand to the scaling L 7→ Lε is that the semigroup T̂ ∗
ε (t) preserves

the order of the singularity:

(T̂ ∗
ε (t)k(ε)

0 )(η) ∼ ε−|η|rt(η), ε → 0, η ∈ Γ0. (3.1)

And the second one is that the dynamics r0 7→ rt should preserve Lebesgue–
Poisson exponents, namely, if r0(η) = eλ(ρ0, η) then rt(η) = eλ(ρt, η) and there
exists explicit (nonlinear, in general) differential equation for ρt:

∂

∂t
ρt(x) = υ(ρt)(x) (3.2)

which we will call the Vlasov-type equation.
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Now let us explain an informal way for the realization of this scheme. Let
us consider for any ε > 0 the following mapping (cf. (2.14)) on functions on Γ0

(Rεr)(η) := ε|η|r(η). (3.3)

This mapping is “self-dual” w.r.t. the duality (2.15), moreover, R−1
ε = Rε−1 .

Then we have k
(ε)
0 ∼ Rε−1r0, and we need rt ∼ RεT̂

∗
ε (t)k(ε)

0 ∼ RεT̂
∗
ε (t)Rε−1r0.

Therefore, we have to show that for any t ≥ 0 the operator family RεT̂
∗
ε (t)Rε−1 ,

ε > 0 has limiting (in a proper sense) operator U(t) and

U(t)eλ(ρ0) = eλ(ρt). (3.4)

But, informally, T̂ ∗
ε (t) = exp {tL̂∗ε} and RεT̂

∗
ε (t)Rε−1 = exp {tRεL̂

∗
εRε−1}. Let

us consider the “renormalized” operator

L̂∗ε, ren := RεL̂
∗
εRε−1 . (3.5)

In fact, we need that there exists an operator L̂∗V such that exp {tRεL̂
∗
εRε−1} →

exp {tL̂∗V } =: U(t) for which (3.4) holds. Therefore, a heuristic way to produce
such a scaling L 7→ Lε is to demand that

lim
ε→0

(
∂

∂t
eλ(ρt, η)− L̂∗ε, reneλ(ρt, η)

)
= 0, η ∈ Γ0

if only ρt is satisfied (3.2). The point-wise limit of L̂∗ε, ren will be natural candi-
date for L̂∗V .

Note that (3.5) implies L̂ε, ren = Rε−1L̂εRε. Hence, we will use the following
scheme to give rigorous meaning to all considerations above. We consider, for
a proper scaling Lε, the “renormalized” operator L̂ε, ren and prove that it is a
generator of a strongly continuous contraction semigroup T̂ε, ren(t) in LC . Next,
we show that the formal limit L̂V of L̂ε, ren is also a generator of a strongly
continuous contraction semigroup T̂V (t) in LC also. Then, we consider the dual
semigroups T̂ ∗

ε, ren(t) and T̂ ∗
V (t) in the proper Banach subspace of the space KC .

Finally, we prove that T̂ ∗
ε, ren(t) → T̂ ∗

V (t) strongly on this subspace and explain
in which sense T̂ ∗

V (t) satisfies the properties above. Below we try to realize this
scheme.

3.2 Construction and convergence of the evolutions in LC

Let us consider for any F ∈ Fcyl(Γ), ε > 0

(LεF )(γ) :=
∑
x∈γ

[
F (γ \ x)− F (γ)

]
(3.6)

+ ε−1z

∫
Rd

[
F (γ ∪ x)− F (γ)

]
exp
{
−εEφ(x, γ)

}
dx, γ ∈ Γ.
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We define also for any G ∈ Bbs(Γ0), ε > 0

L̂εG := K−1LεKG; L̂ε, renG := Rε−1L̂εRεG.

Let φ be integrable function on the whole Rd, namely,

β :=
∫

Rd

φ(x)dx < +∞. (3.7)

We fix this notation for our considerations below.
Then, by the elementary inequality

1− e−t ≤ t, t ≥ 0 (3.8)

(which we will use often), φ will satisfy (2.9) and Cφ ≤ β.

Proposition 3.1. For any G ∈ Bbs (Γ0)

(L̂ε,renG) (η) = (L1G) (η) + (L2,εG) (η) , (3.9)

where

(L1G) (η) = − |η|G (η) ,

(L2,εG) (η) = z
∑
ξ⊂η

∫
Rd

eλ

(
e−εφ(x−·), ξ

)
× eλ

(
e−εφ(x−·) − 1

ε
, η \ ξ

)
G (ξ ∪ x) dx.

Moreover, the expression (3.9) defines a linear operator in LC with dense do-
main L2C .

Proof. By (2.12), for any G ∈ Bbs(Γ0) we have

(L̂εG)(η) =− |η|G(η) (3.10)

+ ε−1z
∑
ξ⊂η

∫
Rd

e−εEφ(x,ξ)G(ξ ∪ x)eλ(e−εφ(x−·) − 1, η \ ξ)dx.

Then

(L̂ε, renG)(η) = (Rε−1L̂εRεG)(η)

= −ε−|η||η|ε|η|G(η)

+ ε−|η|ε−1z
∑
ξ⊂η

∫
Rd

e−εEφ(x,ξ)ε|ξ∪x|G(ξ ∪ x)eλ(e−εφ(x−·) − 1, η \ ξ)dx

= (L1G) (η) + (L2,εG) (η) .
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Next, for any G ∈ L2C we obtain

‖L1G‖C =
∫

Γ0

|η| |G (η)|C |η|dλ (η)

≤
∫

Γ0

2|η| |G (η)|C |η|dλ (η) = ‖G‖2C . (3.11)

From (3.8) and the estimate e−φ ≤ 1 we get

‖L2,εG‖C

≤z

∫
Γ0

∑
ξ⊂η

∫
Rd

|G (ξ ∪ x)| eλ

(
1− e−εφ(x−·)

ε
, η \ ξ

)
dxC |η|dλ (η)

≤z

∫
Γ0

∑
ξ⊂η

∫
Rd

|G (ξ ∪ x)| eλ (φ (x− ·) , η \ ξ) dxC |η|dλ (η) ,

then, by Lemma 2.1, one may continue,

≤z

∫
Γ0

∫
Γ0

∫
Rd

|G (ξ ∪ x)| eλ (φ (x− ·) , η) dxC |η|dλ (η) C |ξ|dλ (ξ)

and (2.4) yields

=z exp {Cβ}
∫

Γ0

∫
Rd

|G (ξ ∪ x)| dxC |ξ|dλ (ξ) ,

then, using Lemma 2.1 again,

=z exp {Cβ}C−1

∫
Γ0

|G (ξ)| · |ξ|C |ξ|dλ (ξ)

≤z exp {Cβ}C−1 ‖G‖2C . (3.12)

The estimates (3.11) and (3.12) provide the statement.

Proposition 3.2. Let for any G ∈ Bbs(Γ0)

(L̂V G) (η) := lim
ε→0

(L̂ε,renG) (η) = (L1G) (η) + (LV
2 G) (η) , η ∈ Γ0, (3.13)

where

(LV
2 G) (η) =z

∑
ξ⊂η

∫
Rd

G (ξ ∪ x) eλ (−φ (x− ·) , η \ ξ) dx.

Then, the expression (3.13) defines a linear operator in LC with dense domain
L2C .

Proof. Since, by the definition,∥∥LV
2 G
∥∥

C
≤ z

∫
Γ0

∑
ξ⊂η

∫
Rd

|G (ξ ∪ x)| eλ (φ (x− ·) , η \ ξ) dxC |η|dλ (η)

the statement follows from (3.11) and (3.12).
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Let us set (cf. [10, (3.12)]) for any δ ∈ (0; 1), ε > 0, G ∈ Bbs (Γ0), η ∈ Γ0(
P̂δ,εG

)
(η) :=

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω| G (ξ ∪ ω) (3.14)

× eλ

(
e−εEφ(·,ω), ξ

)
eλ

(
e−εEφ(·,ω) − 1

ε
, η \ ξ

)
dλ (ω) .

and (
Q̂δG

)
(η) :=

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω| G (ξ ∪ ω) (3.15)

× eλ

(
−Eφ (·, ω) , η \ ξ

)
dλ (ω) .

Proposition 3.3. Let
zeβC ≤ C. (3.16)

Then P̂δ,ε and Q̂δ given by (3.14) and (3.15) are well defined linear contractions
on LC .

Proof. By (3.8), Lemma 2.1, and (2.4), we get for any G ∈ LC

max
{∥∥P̂δ,εG

∥∥
C

;
∥∥Q̂δG

∥∥
C

}
≤
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω| |G (ξ ∪ ω)| eλ

(
Eφ (·, ω) , η \ ξ

)
dλ (ω) C |η|dλ (η)

=
∫

Γ0

∫
Γ0

(1− δ)|ξ|
∫

Γ0

(zδ)|ω| |G (ξ ∪ ω)| eλ

(
Eφ (·, ω) , η

)
dλ (ω) C |η|dλ (η) C |ξ|dλ (ξ)

=
∫

Γ0

∫
Γ0

(1− δ)|ξ| (zδ)|ω| |G (ξ ∪ ω)| exp {Cβ |ω|} dλ (ω) C |ξ|dλ (ξ)

=
∫

Γ0

∫
Γ0

(1− δ)|ξ| |G (ξ ∪ ω)|
(
zδ exp {Cβ}C−1

)|ω|
C |ω|C |ξ|dλ (ξ) dλ (ω)

=
∫

Γ0

|G (ξ)|
(
1− δ + zδ exp {Cβ}C−1

)|ξ|
C |ξ|dλ (ξ) ≤ ‖G‖C ,

that proves the contraction property; then, in particular,(
P̂δ,εG

)
(η) < +∞,

(
Q̂δG

)
(η) < +∞

for λ-a.a. η ∈ Γ0.

Now let us construct the approximations for the operators L̂V and L̂ε, ren.

Proposition 3.4. Let for δ ∈ (0; 1)

L̂δ,V :=
1
δ

(
Q̂δ − 1

)
; L̂δ,ε :=

1
δ

(
P̂δ,ε − 1

)
, ε > 0.

11



Let (3.16) holds, then ∥∥∥(L̂δ,V − L̂V

)
G
∥∥∥

C
< 3δ ‖G‖2C

and for any ε > 0 ∥∥∥(L̂δ,ε − L̂ε,ren

)
G
∥∥∥

C
≤ 3δ ‖G‖2C .

Proof. Let us denote(
Q̂

(0)
δ G

)
(η) :=

∑
ξ⊂η

(1− δ)|ξ| G (ξ) 0|η\ξ| = (1− δ)|η| G (η) ,

(
Q̂

(1)
δ G

)
(η) :=zδ

∑
ξ⊂η

(1− δ)|ξ|
∫

Rd

G (ξ ∪ x) eλ (−φ (x− ·) , η \ ξ) dx,

and
Q̂

(≥2)
δ := Q̂δ −

(
Q̂

(0)
δ + Q̂

(1)
δ

)
.

Clearly, we have∥∥∥(L̂δ,V − L̂V

)
G
∥∥∥

C
≤
∥∥∥∥1

δ

(
Q̂

(0)
δ − 1

)
G− L1G

∥∥∥∥
C

+
∥∥∥∥1

δ
Q̂

(1)
δ G− LV

2 G

∥∥∥∥
C

+
∥∥∥∥1

δ
Q̂

(≥2)
δ G

∥∥∥∥
C

.

It follows from the simple inequality

0 ≤ n− 1− (1− δ)n

δ
< δ · 2n, n ∈ N, δ > 0, (3.17)

that ∥∥∥∥1
δ

(
Q̂

(0)
δ − 1

)
G− L1G

∥∥∥∥
C

=
∥∥∥∥1

δ

(
(1− δ)|·| − 1

)
G + |·|G

∥∥∥∥
C

< δ ‖G‖2C

and∥∥∥∥1
δ
Q̂

(1)
δ G− LV

2 G

∥∥∥∥
C

≤z

∫
Γ0

∣∣∣∣∣∣
∑
ξ⊂η

[
(1− δ)|ξ| − 1

] ∫
Rd

G (ξ ∪ x) eλ (−φ (x− ·) , η \ ξ) dx

∣∣∣∣∣∣C |η|dλ (η)

≤z

∫
Γ0

∫
Γ0

[
1− (1− δ)|ξ|

] ∫
Rd

|G (ξ ∪ x)| eλ (φ (x− ·) , η) dxC |η|C |ξ|dλ (η) dλ (ξ)

=z exp {Cβ}
∫

Γ0

[
1− (1− δ)|ξ|

] ∫
Rd

|G (ξ ∪ x)| dxC |ξ|dλ (ξ)

≤δz exp {Cβ}
∫

Γ0

|ξ|
∫

Rd

|G (ξ ∪ x)| dxC |ξ|dλ (ξ)

=δz exp {Cβ}C−1

∫
Γ0

|ξ| (|ξ| − 1) |G (ξ)|C |ξ|dλ (ξ) < δ ‖G‖2C ,
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since, n (n− 1) ≤ 2n, n ∈ N. And, if we denote

Γ(≥2)
0 :=

⊔
n≥2

Γ(n)
0 ,

we obtain ∥∥∥∥1
δ
Q̂

(≥2)
δ G

∥∥∥∥
C

≤1
δ

∫
Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ
(≥2)
0

(zδ)|ω| |G (ξ ∪ ω)|

× eλ

(
Eφ (·, ω) , η \ ξ

)
dλ (ω) C |η|dλ (η)

=
1
δ

∫
Γ0

∫
Γ0

(1− δ)|ξ|
∫

Γ
(≥2)
0

(zδ)|ω| |G (ξ ∪ ω)|

× eλ

(
Eφ (·, ω) , η

)
dλ (ω) C |η|dλ (η) C |ξ|dλ (ξ)

≤δ

∫
Γ0

(1− δ)|ξ|
∫

Γ0

(z exp {Cβ})|ω| |G (ξ ∪ ω)| dλ (ω) C |ξ|dλ (ξ)

=δ

∫
Γ0

(C − δC + z exp {Cβ})|ξ| |G (ξ)| dλ (ξ)

≤δ

∫
Γ0

(2C − δC)|ξ| |G (ξ)| dλ (ξ) < δ ‖G‖2C .

The same considerations may be done for P̂δ,ε. Namely, let(
P̂

(0)
δ,ε G

)
(η) :=

∑
ξ⊂η

(1− δ)|ξ| G (ξ) 1|ξ|0|η\ξ| = (1− δ)|η| G (η) ,

(
P̂

(1)
δ,ε G

)
(η) :=zδ

∑
ξ⊂η

(1− δ)|ξ|
∫

Rd

G (ξ ∪ x)

× eλ

(
e−εφ(x−·), ξ

)
eλ

(
e−εφ(x−·) − 1

ε
, η \ ξ

)
dx,

and
P̂

(≥2)
δ,ε := P̂δ,ε −

(
P̂

(0)
δ,ε + P̂

(1)
δ,ε

)
.

Then ∥∥∥∥1
δ

(
P̂

(0)
δ,ε − 1

)
G− L1G

∥∥∥∥
C

=
∥∥∥∥1

δ

(
Q̂

(0)
δ − 1

)
G− L1G

∥∥∥∥
C

< δ ‖G‖2C ,

next, by (3.8), (3.16) and Lemma 2.1,∥∥∥∥1
δ
P̂

(1)
δ,ε G− L2,εG

∥∥∥∥
C

≤z

∫
Γ0

∫
Γ0

[
1− (1− δ)|ξ|

] ∫
Rd

|G (ξ ∪ x)| eλ (φ (x− ·) , η) dxC |η|C |ξ|dλ (η) dλ (ξ)

< ‖G‖2C · δeCβC−1z ≤ δ ‖G‖2C , (3.18)
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and, finally,∥∥∥∥1
δ
P̂

(≥2)
δ,ε G

∥∥∥∥
C

≤1
δ

∫
Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ
(≥2)
0

(zδ)|ω| |G (ξ ∪ ω)|

×
∣∣eλ

(
Eφ (·, ω) , η \ ξ

)∣∣ dλ (ω) C |η|dλ (η) < δ ‖G‖2C .

Combining all these inequalities we obtain the assertion.

We will need the following results in the sequel.

Lemma 3.5 ([6, Corollary 3.8]). Let A be a linear operator on a Banach space
L with D (A) dense in L, and let ||| · ||| be a norm on D (A) with respect to which
D (A) is a Banach space. For n ∈ N let Tn be a linear ‖·‖-contraction on L
such that Tn : D (A) → D (A), and define An = n (Tn − 1). Suppose there exist
ω ≥ 0 and a sequence {εn} ⊂ (0;+∞) tending to zero such that for n ∈ N

‖(An −A) f‖ ≤ εn|||f |||, f ∈ D (A) (3.19)

and
|||Tn �D(A) ||| ≤ 1 +

ω

n
. (3.20)

Then A is closable and the closure of A generates a strongly continuous con-
traction semigroup on L.

Lemma 3.6 (cf. [6, Theorem 6.5]). Let L,Ln, n ∈ N be Banach spaces, and
pn : L → Ln be bounded linear transformation, such that supn ‖pn‖ < ∞.
For any n ∈ N, let Tn be a linear contraction on Ln, let εn > 0 be such that
limn→∞ εn = 0, and put An = ε−1

n (Tn − 11). Let Tt be a strongly continuous
contraction semigroup on L with generator A and let D be a core for A. Then
the following are equivalent:

1. For each f ∈ L, T
[t/εn]
n pnf → pnTtf in Ln for all t ≥ 0 uniformly on

bounded intervals. Here and below [ · ] mean the entire part of a real num-
ber.

2. For each f ∈ D, there exists fn ∈ Ln for each n ∈ N such that fn → pnf
and Anfn → pnAf in Ln.

Lemma 3.7. Let X be a Banach space with a norm ‖ · ‖X ; A and B be linear
contraction mappings on X. Let Y with a norm ‖ · ‖Y be a Banach subspace of
X such that Y is invariant w.r.t. B. Suppose that the restriction of B on Y is
also a contraction w.r.t. ‖ · ‖Y . Suppose also that there exists c > 0 such that
for any f ∈ Y

‖Af −Bf‖X ≤ c‖f‖Y . (3.21)

Then for any m ∈ N and for any f ∈ Y

‖Amf −Bmf‖X ≤ cm‖f‖Y . (3.22)

14



Proof. For any f ∈ Y , m ≥ 2 we have

‖Amf −Bmf‖X

≤‖Amf −ABm−1f‖X + ‖ABm−1f −Bmf‖X

≤‖A‖ · ‖Am−1f −Bm−1f‖X + ‖(A−B)Bm−1f‖X

(where ‖A‖ means the norm of the operator A on X); since ‖A‖ ≤ 1 and
Bm−1f ∈ Y , condition (3.21) yields

≤‖Am−1f −Bm−1f‖X + c‖Bm−1f‖Y ,

but, B is a contraction on Y , therefore, one get

≤‖Am−1f −Bm−1f‖X + c‖f‖Y ,

that gives (3.22) by induction principle.

And now one can construct the corresponding semigroups rigorously.

Proposition 3.8. Let

z ≤ min
{
Ce−Cβ , 2Ce−2Cβ

}
. (3.23)

Then,
(
L̂V ,L2C

)
and

(
L̂ε,ren,L2C

)
are closable linear operators in LC and their

closures
(
L̂V , D(L̂V )

)
and

(
L̂ε,ren, D(L̂ε,ren)

)
generate strongly continuous con-

traction semigroups T̂V (t) and T̂ε, ren(t) on LC , respectively. Moreover, for any
G ∈ LC , ε > 0

Q̂
[nt]
1
n

G → T̂V (t)G, P̂
[nt]
1
n ,ε

G → T̂ε, ren(t)G, n →∞ (3.24)

for any t ≥ 0 uniformly on bounded intervals.

Proof. Note that (3.23) provides that Q̂δ and P̂δ,ε are also contractions on L2C .
Then the first part of the statement follows from Lemma 3.5. Therefore, L2C

will be a core for the generators and, by Lemma 3.6, we obtain the conver-
gence (3.24).

The definition (3.13) of L̂V together with Proposition 3.8 allow us to expect
that the semigroup T̂ε, ren(t) converges to T̂V (t) in a proper sense. The next
theorem improve this statement. However, this result is not crucial in the
context of the our paper. Moreover, its proof is quite technical and, on the
other hand, is very similar to the proof of the main Theorem 3.12 concerning
the dual semigroups. Hence, we give the sketch of the proof only.

Theorem 3.9. Let (3.23) holds and suppose that φ̄ := supRd φ (x) < +∞. Then
for any G ∈ L2C∥∥∥T̂ε, ren(t)G− T̂V (t)G

∥∥∥
C
≤ εt φ̄ (1 + β) ‖G‖2C

for any t ≥ 0, ε > 0. In particular, it means that T̂ε, ren(t)G → T̂V (t)G in LC

as ε → 0 for any t ≥ 0 uniformly on bounded intervals.
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Proof. By the triangle inequality,∥∥∥T̂ε, ren(t)G− T̂V (t)G
∥∥∥

C
≤
∥∥∥T̂ε, ren(t)G− P̂

[nt]
1
n ,ε

G
∥∥∥

C
(3.25)

+
∥∥∥P̂ [nt]

1
n ,ε

G− Q̂
[nt]
1
n

G
∥∥∥

C
+
∥∥∥Q̂[nt]

1
n

G− T̂V (t)G
∥∥∥

C
.

By (3.24), the first and third norms in the r.h.s. of (3.25) are tend to 0 as
n →∞. Next, in a similar way as for the proof of (3.45) one can show that for
any G ∈ L2C ∥∥∥P̂ 1

n ,εG− Q̂ 1
n
G
∥∥∥

C
≤ 1

n
ε φ̄ (1 + β) ‖G‖2C . (3.26)

By Proposition 3.3 and condition (3.23), the subspace L2C is Q̂ 1
n
-invariant,

hence, by Lemma 3.7, we obtain∥∥∥P̂ [nt]
1
n ,ε

G− Q̂
[nt]
1
n

G
∥∥∥

C
≤ [nt]

φ̄ (1 + β)
n

ε ‖G‖2C

< φ̄ (1 + β)
(

t +
1
n

)
ε ‖G‖2C ,

that fulfilled the first assertion. And, clearly, L2C is a dense subspace of LC .

3.3 Convergence of the evolutions in KC

Let ε > 0 be given. Let
(
L̂′ε, ren, D(L̂′ε, ren)

)
and

(
L̂′V , D(L̂′V )

)
be dual opera-

tors to the closed operators
(
L̂ε, ren, D(L̂ε, ren)

)
and

(
L̂V , D(L̂V )

)
in the Banach

space (LC)′. Let the operators
(
L̂∗ε, ren, D(L̂∗ε, ren)

)
and

(
L̂∗V , D(L̂∗V )

)
be their

images in the space KC under the isometry (2.14). Our aim is to transfer the
previous results onto ∗-objects. However, similarly to the case of the operator
L̂∗ (see Subsection 2.2), the space KC is too big. The reason is that the dual
semigroup in a non-reflexive case (namely, L1 case) will not be a strongly con-
tinuous semigroup on the whole dual space. Hence, we consider some Banach
subspace of KC which will be useful for the strong continuity property.

Proposition 3.10. For any α ∈ (0; 1), ε > 0, and k ∈ KαC we have that{
L̂∗ε, renk, L̂∗V k

}
⊂ KC . (3.27)

Moreover, for any k ∈ KαC

(L̂∗ε, renk) (η) =− |η| k (η) (3.28)

+ z
∑
x∈η

∫
Γ0

eλ

(
e−εφ(x−·), η \ x

)
× eλ

(
e−εφ(x−·) − 1

ε
, ξ

)
k (ξ ∪ η \ x) dλ(ξ)
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and

(L̂∗V k) (η) =− |η| k (η) (3.29)

+ z
∑
x∈η

∫
Γ0

eλ (−φ (x− ·) , ξ) k (ξ ∪ η \ x) dλ(ξ).

Proof. By Lemma 2.1, for any G ∈ Bbs(Γ0) we have∫
Γ0

∑
ξ⊂η

∫
Rd

eλ

(
e−εφ(x−·), ξ

)
eλ

(
e−εφ(x−·) − 1

ε
, η \ ξ

)
×G (ξ ∪ x) dxk(η)dλ(η)

=
∫

Γ0

∫
Γ0

∫
Rd

eλ

(
e−εφ(x−·), ξ

)
eλ

(
e−εφ(x−·) − 1

ε
, η

)
×G (ξ ∪ x) dxk(η ∪ ξ)dλ(ξ)dλ(η)

=
∫

Γ0

∫
Γ0

∑
x∈ξ

eλ

(
e−εφ(x−·), ξ \ x

)
eλ

(
e−εφ(x−·) − 1

ε
, η

)
×G (ξ) dxk(η ∪ ξ \ x)dλ(ξ)dλ(η),

that implies (3.28). The equality (3.29) may be obtained in the same way or
just as a point-wise limit of (3.28) as ε → 0.

The inclusion (3.27) follows from the estimate (k ∈ KαC)

1
C |η|

∑
x∈η

∫
Γ0

eλ

(
e−εφ(x−·), η \ x

)
eλ

(∣∣∣∣e−εφ(x−·) − 1
ε

∣∣∣∣ , ξ) ∣∣k (ξ ∪ η \ x)
∣∣dλ(ξ)

≤‖k‖KαC

C |η|

∑
x∈η

∫
Γ0

eλ (φ (x− ·) , ξ) (αC)|ξ∪η\x|dλ(ξ)

=
‖k‖KαC

· exp{αCβ}
αC

|η|α|η| ≤ ‖k‖KαC
· exp{αCβ}
αC

· −1
e lnα

,

where we used that xαx ≤ − 1
e lnα

for any α ∈ (0; 1) and x ≥ 0; and the similar
estimates for

1
C |η| |η| |k(η)| , 1

C |η|

∑
x∈η

∫
Γ0

eλ (φ (x− ·) , ξ)
∣∣k (ξ ∪ η \ x)

∣∣dλ(ξ). (3.30)

Let now (3.23) holds. By Proposition 3.8, there exist strongly continuous
contraction semigroups T̂ε, ren(t) and T̂V (t) on LC . Then the corresponding dual
semigroups T̂ ′

ε, ren(t) and T̂ ′
V (t) act in the space (LC)′. Let us denote by T̂ ∗

ε, ren(t)
and T̂ ∗

V (t) their corresponding images in KC under the isometry (2.14).
Proposition 3.10 yields that for any α ∈ (0; 1) the following inclusion holds

KαC ⊂
(⋂

ε>0

D(L̂∗ε, ren)
)⋂

D(L̂∗V ) (3.31)
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(all closures are in KC ; in particular, KαC is a Banach space with norm ‖ · ‖C).
Moreover, by, e.g., [28, Sections 1.2, 1.3] or [5, Subsection II.2.5], for any ε >

0 the restrictions T̂�
ε, ren(t) and T̂�

V (t) of T̂ ∗
ε, ren(t) and T̂ ∗

V (t) onto D(L̂∗ε, ren) and

D(L̂∗V ), correspondingly, are strongly continuous semigroups; their generators
L̂�ε, ren and L̂�V are the parts of L̂∗ε, ren and L̂∗V , correspondingly. Namely,

D(L̂�ε, ren) =
{
k ∈ D(L̂∗ε, ren)

∣∣ L̂∗ε, renk ∈ D(L̂∗ε, ren)
}
,

D(L̂�V ) =
{
k ∈ D(L̂∗V )

∣∣ L̂∗V k ∈ D(L̂∗V )
}
,

and

L̂∗ε, renk = L̂�ε, renk, k ∈ D(L̂�ε, ren),

L̂∗V k = L̂�V k, k ∈ D(L̂�V ).

Proposition 3.11. Assume that, as before,

z ≤ min
{
Ce−Cβ , 2Ce−2Cβ

}
. (3.32)

If Cβ = ln 2 we suppose additionally that z < C
2 . Then, there exists α1 =

α1(z, β, C) ∈ (0; 1) such that for any α ∈ (α1; 1) the space KαC will be T̂�
V (t)-

and T̂�
ε, ren(t)-invariant, ε > 0.

Proof. The proof is fully analogous to that of [7, Proposition 3.3]. For readers
convince we explain it in details.

By (3.32), zβ ≤ min{Cβe−Cβ , 2Cβe−2Cβ}. Note that the function f(x) =
xe−x, x ≥ 0 is increasing on (0; 1) from 0 to e−1 and it is asymptotically
decreasing on (1;+∞) from e−1 to 0. Therefore, if Cβe−Cβ 6= 2Cβe−2Cβ then
(3.32) with necessity implies zβ < e−1. Otherwise, if Cβ = ln 2 then the
condition 2z < C implies zβ < Cβ

2 = Cβe−Cβ = 2Cβe−2Cβ , and, again,
zβ < e−1. As a result, the equation f(x) = zβ has exactly two roots, say,
0 < x1 < 1 < x2 < +∞. Therefore, x1 < Cβ < 2Cβ < x2.

If Cβ > 1 then we set α1 := max
{

1
2 ; 1

Cβ ; 1
C

}
< 1. This yields 2αCβ > Cβ

and αCβ > 1 > x1. If x1 < Cβ ≤ 1 then we set α1 := max
{

1
2 ; x1

Cβ ; 1
C

}
< 1

that gives 2αCβ > Cβ and αCβ > x1. As a result,

x1 < αCβ < Cβ < 2αCβ < 2Cβ < x2 (3.33)

and 1 < αC < C < 2αC < 2C. The last inequality shows that L2C ⊂ L2αC ⊂
LC ⊂ LαC .

By (3.33), zβ < min{f(αCβ), f(2αCβ)}, hence, z < min{αCe−αCβ , 2αCe−2αCβ}.
Then, analogously to Proposition 3.8, we obtain that the operators

(
L̂V ,L2αC

)
and

(
L̂ε,ren,L2αC

)
are closable in LαC and their closures are generators of con-

traction semigroups, say, T̂α,V (t) and T̂α,ε, ren(t) on LαC , correspondingly.
It is easy to see, that T̂α,V (t)G = T̂V (t)G and T̂α,ε, ren(t)G = T̂ε, ren(t)G for

any G ∈ LC . Indeed, since the contraction mappings Q̂δ and P̂δ,ε, δ, ε > 0 do
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not depend on α, we obtain, by Proposition 3.8, that for any G ∈ LC ⊂ LαC

we have that T̂V (t)G ∈ LC ⊂ LαC and T̂α,V (t)G ∈ LαC and

‖T̂V (t)G− T̂α,V (t)G‖αC

≤
∥∥∥T̂V (t)G− Q̂

[ t
δ ]

δ G
∥∥∥

αC
+
∥∥∥T̂α,V (t)G− Q̂

[ t
δ ]

δ G
∥∥∥

αC

≤
∥∥∥T̂V (t)G− Q̂

[ t
δ ]

δ G
∥∥∥

C
+
∥∥∥T̂α,V (t)G− Q̂

[ t
δ ]

δ G
∥∥∥

αC
→ 0,

as δ → 0. Therefore, T̂V (t)G = T̂α,V (t)G in LαC (recall that G ∈ LC) that yields
T̂V (t)G(η) = T̂α,V (t)G(η) for λ-a.a. η ∈ Γ0 and, therefore, T̂V (t)G = T̂α,V (t)G
in LC .

Note that for any G ∈ LC ⊂ LαC and for any k ∈ KαC ⊂ KC we have
T̂α,V (t)G ∈ LαC and 〈〈

T̂α,V (t)G, k
〉〉

=
〈〈

G, T̂ ∗
α,V (t)k

〉〉
,

where, by construction, T̂ ∗
α,V (t)k ∈ KαC . But G ∈ LC , k ∈ KC implies〈〈

T̂α,V (t)G, k
〉〉

=
〈〈

T̂V (t)G, k
〉〉

=
〈〈

G, T̂ ∗(t)k
〉〉

.

Hence, T̂ ∗
V (t)k = T̂ ∗

α,V (t)k ∈ KαC that is what we need.

Since T̂�
V (t) and T̂�

ε, ren(t) are restrictions of T̂ ∗
V (t) and T̂ ∗

ε, ren(t) onto D(L̂∗V )

and D(L̂∗ε, ren), correspondingly, one has, by (3.31), that the corresponding semi-
groups coincide on KαC . Therefore, KαC is T̂�

V (t)- and T̂�
ε, ren(t)-invariant,

ε > 0; and the result follows from the continuity of operators which formed
semigroups.

Let now T̂�α
V (t) and T̂�α

ε, ren(t) be restrictions of the strongly continuous semi-

groups T̂�
V (t) and T̂�

ε, ren(t) (which acting on the Banach spaces D(L̂∗V ) and

D(L̂∗ε, ren), correspondingly) onto the closed linear subspace KαC of all these
Banach spaces which are invariant w.r.t. all these �-semigroups. By the gen-
eral result (see, e.g., [5, Subsection II.2.3]), T̂�α

V (t) and T̂�α
ε, ren(t) are strongly

continuous semigroups on KαC with generators L̂�α
V and L̂�α

ε, ren which are re-
strictions of the corresponding operators L̂�V and L̂�ε, ren. Namely,

D(L̂�α
V ) =

{
k ∈ KαC

∣∣ L̂∗V k ∈ KαC

}
, (3.34)

D(L̂�α
ε, ren) =

{
k ∈ KαC

∣∣ L̂∗ε, renk ∈ KαC

}
, ε > 0, (3.35)

and

L̂�α
V k = L̂∗V k, k ∈ D(L̂�α

V ), (3.36)

L̂�α
ε, renk = L̂∗ε, renk, k ∈ D(L̂�α

ε, ren). (3.37)
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By Proposition 3.8, T̂V (t) and T̂ε, ren(t) are contraction semigroups on LC ,
then, T̂ ′

V (t) and T̂ ′
ε, ren(t) are also contraction semigroups on (LC)′; but iso-

morphism (2.14) is isometrical, therefore, T̂ ∗
V (t) and T̂ ∗

ε, ren(t) are contraction
semigroups on KC . As a result, their restrictions T̂�α

V (t) and T̂�α
ε, ren(t) are con-

traction semigroups on KαC .
To summarize, we have the Banach space KαC and the family of the strongly

continuous contraction semigroups T̂�α
V (t) and T̂�α

ε, ren(t), ε > 0 on this space.
The generators of these semigroups are satisfied (3.34)–(3.37). Moreover, by
construction, T̂�α

V (t)k = T̂ ∗
V (t)k and T̂�α

ε, ren(t)k = T̂ ∗
ε, ren(t)k for any k ∈ KαC .

Theorem 3.12. Let C, z, β, α1 be as in Proposition 3.11. Suppose additionally
that φ̄ := supRd φ (x) < +∞. Then, for any α ∈ (α1; 1) and for any k ∈ KαC∥∥T̂�α

ε, ren(t)k − T̂�α
V (t)k

∥∥
KC

≤ εtA‖k‖KαC
, ε > 0, (3.38)

where A is depend on α, C, φ̄ only.

Proof. Let Q̂∗
δ , P̂ ∗

δ,ε, δ ∈ (0; 1), ε > 0 be the images of the dual operators Q̂′
δ, P̂ ′

δ,ε

under the isometrical isomorphism (2.14). Since the norms of dual operators
are equal we have that Q̂∗

δ and P̂ ∗
δ,ε are linear contractions on KC . Moreover,

for any k ∈ KαC we have∫
Γ0

(Q̂δG) (η) k (η) dλ (η)

=
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)|ω| G (ξ ∪ ω)

× eλ

(
−Eφ (·, ω) , η \ ξ

)
dλ (ω) k (η) dλ (η)

=
∫

Γ0

∫
Γ0

∫
Γ0

(1− δ)|ξ| (zδ)|ω| G (ξ ∪ ω)

× eλ

(
−Eφ (·, ω) , η

)
dλ (ω) k (η ∪ ξ) dλ (η) dλ (ξ)

=
∫

Γ0

∫
Γ0

∑
ω⊂ξ

(1− δ)|ξ\ω| (zδ)|ω| G (ξ)

× eλ

(
−Eφ (·, ω) , η

)
k (η ∪ ξ \ ω) dλ (η) dλ (ξ)

and, therefore,

(Q̂∗
δk) (η) =

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|

×
∫

Γ0

eλ

(
−Eφ (·, ω) , ξ

)
k (ξ ∪ η \ ω) dλ (ξ) . (3.39)
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Then, by (3.32),

(αC)−|η|
∣∣∣(Q̂∗

δk) (η)
∣∣∣

≤‖k‖KαC
(αC)−|η|

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|

×
∫

Γ0

eλ

(
Eφ (·, ω) , ξ

)
(αC)|ξ∪η\ω|

dλ (ξ)

= ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω|
(

zδ

αC

)|ω|
exp

{
αC

∫
Rd

Eφ (x, ω) dx

}

= ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω|
(

zδ

αC

)|ω|
exp {αC |ω|β}

≤‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω| δ|ω| = ‖k‖KαC
.

Therefore, KαC is Q̂∗
V -invariant, hence, KαC is also Q̂∗

V -invariant due to con-
tinuity of Q̂∗

V ; moreover, Q̂∗
V is a contraction in LαC . Absolutely in the same

way we may obtain that for any k ∈ KαC

(P̂ ∗
δ,εk) (η) =

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω| eλ

(
e−εEφ(·,ω), η \ ω

)
×
∫

Γ0

eλ

(
e−εEφ(·,ω) − 1

ε
, ξ

)
k (ξ ∪ η \ ω) dλ (ξ) (3.40)

and that the set KαC , and, therefore, the set KαC are P̂ ∗
δ,ε-invariant; moreover,

P̂ ∗
δ,ε is a contraction in LαC . We preserve the same notations for the restrictions

of this contractions onto KαC .
Now, for any fixed ε > 0 we consider a set Dε :=

{
k ∈ KαC

∣∣ L̂∗ε, renk ∈
KαC

}
. By (3.35), Dε is a core for the operator L̂�α

ε, ren. Next, let us show that
for any k ∈ Dε

lim
δ→0

∥∥∥1
δ
(P̂ ∗

δ,ε − 11)k − L̂�α
ε, renk

∥∥∥
KC

= 0. (3.41)

Indeed, let

(P̂ ∗,(0)
δ,ε k) (η) =(1− δ)|η|k(η);

(P̂ ∗,(1)
δ,ε k) (η) =

∑
x∈η

(1− δ)|η|−1
zδeλ

(
e−εEφ(·,x), η \ x

)
×
∫

Γ0

eλ

(
e−εEφ(·,x) − 1

ε
, ξ

)
k (ξ ∪ η \ x) dλ (ξ) ;
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and P̂
∗,(≥2)
δ,ε = P̂ ∗

δ,ε−P̂
∗,(0)
δ,ε −P̂

∗,(1)
δ,ε . One may improve inequality (3.17), namely,

for any n ∈ N ∪ {0}, δ ∈ (0; 1)

0 ≤ n− 1− (1− δ)n

δ
≤ δ

n(n− 1)
2

.

Then, for any k ∈ KαC , η 6= ∅

C−|η|
∣∣∣∣1δ (P̂ ∗,(0)

δ,ε − 11)k(η) + |η|k(η)
∣∣∣∣ (3.42)

≤‖k‖KαC
α|η|

∣∣∣|η| − 1− (1− δ)|η|

δ

∣∣∣ ≤ δ

2
‖k‖KαC

α|η||η|(|η| − 1)

and the function αxx(x − 1) is bounded for x ≥ 1, α ∈ (0; 1). Next, for any
k ∈ KαC , η 6= ∅

C−|η|

∣∣∣∣∣1δ P̂
∗,(1)
δ,ε k(η)− z

∑
x∈η

∫
Γ0

eλ

(
e−εφ(x−·), η \ x

)
(3.43)

× eλ

(
e−εφ(x−·) − 1

ε
, ξ

)
k (ξ ∪ η \ x) dλ(ξ)

∣∣∣∣∣
≤ z

αC
α|η|

∑
x∈η

(
(1− δ)|η|−1 − 1

)
eλ

(
e−εEφ(·,x), η \ x

)
×
∫

Γ0

eλ

(
αC

|e−εEφ(·,x) − 1|
ε

, ξ

)
dλ (ξ)

≤ z

αC
α|η|

∑
x∈η

∣∣(1− δ)|η|−1 − 1
∣∣ exp {αCβ}

≤ z

αC
α|η|δ|η|(|η| − 1) exp {αCβ}

that is smaller then δ uniformly in |η|. And, finally,

1
δC |η|

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω| (zδ)|ω| eλ

(
e−εEφ(·,ω), η \ ω

)

×
∫

Γ0

eλ

(∣∣∣∣∣e−εEφ(·,ω) − 1
ε

∣∣∣∣∣, ξ
)
|k(ξ ∪ η \ ω)|dλ (ξ)

≤ 1
δC |η|

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω| (zδ)|ω|

×
∫

Γ0

eλ

(
Eφ (·, ω) , ξ

)
(αC)|ξ| (αC)|η|−|ω| dλ (ξ)

=α|η|
1
δ

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω|
(

zδ

αC
exp {αCβ}

)|ω|
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but recall that α > α1, therefore, z exp{αCβ} ≤ αC, and one may continue

≤α|η|
1
δ

∑
ω⊂η
|ω|≥2

(1− δ)|η\ω| δ|ω| = δα|η|
|η|∑

k=2

|η|!
k! (|η| − k)!

(1− δ)|η|−k
δk−2

=δα|η|
|η|−2∑
k=0

|η|!
(k + 2)! (|η| − k − 2)!

(1− δ)|η|−k−2
δk

=δα|η| |η| (|η| − 1)
|η|−2∑
k=0

(|η| − 2)!
(k + 2)! (|η| − k − 2)!

(1− δ)|η|−2−k
δk

≤δα|η| |η| (|η| − 1)
|η|−2∑
k=0

(|η| − 2)!
k! (|η| − k − 2)!

(1− δ)|η|−2−k
δk

=δα|η| |η| (|η| − 1) .

Combining these inequalities, we obtain (3.41).
Analogously, one may obtain that for any k ∈ DV :=

{
k ∈ KαC

∣∣ L̂∗V k ∈
KαC

}
(that is core for L̂�α

V )

lim
δ→0

∥∥∥1
δ
(Q̂∗

δ − 11)k − L̂�α
V k

∥∥∥
KC

= 0. (3.44)

By Lemma 3.6, we obtain that for any k ∈ KαC

(P̂ ∗
δ,ε)
[

t
δ

]
k → T̂�α

ε, ren(t)k; (Q̂∗
δ)
[

t
δ

]
k → T̂�α

V (t)k

(convergence in KαC , recall that norm in this space is ‖ · ‖KC
).

Therefore, to use the same arguments as in the proof of Theorem 3.9 and to
apply Lemma 3.7, we need only to show that for any k ∈ KαC∥∥P̂ ∗

δ,εk − Q̂∗
δk
∥∥
KC

≤ εδA‖k‖KαC
. (3.45)

We have the following elementary inequalities. For any {ak}n
k=1 ⊂ [0; 1],

n ∈ N

1−
n∏

k=1

ak ≤
n∑

k=1

(1− ak) , (3.46)

which can be easily checked by the induction principle. Next, since

x + e−x − 1 ≤ x2, x ≥ 0,

we obtain

Eφ (x, ω)

(
1− 1− e−εEφ(x,ω)

εEφ (x, ω)

)
≤ ε

(
Eφ (x, ω)

)2
. (3.47)
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Hence,

1
C |η|

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|

×
∫

Γ0

∣∣∣∣∣(e−εEφ(·,ω), η \ ω
)

eλ

(
e−εEφ(·,ω) − 1

ε
, ξ

)
− eλ

(
−Eφ (·, ω) , ξ

)∣∣∣∣∣
× k (ξ ∪ η \ ω) dλ (ξ)

≤
‖k‖KαC

C |η|

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|

×
∫

Γ0

eλ

(
Eφ (·, ω) , ξ

) ∣∣∣∣∣(e−εEφ(·,ω), η \ ω
)

eλ

(
1− e−εEφ(·,ω)

εEφ (·, ω)
, ξ

)
− 1

∣∣∣∣∣
× (αC)|ξ∪η\ω|

dλ (ξ)

and, by (3.46), one may continue

≤α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|
∫

Γ0

eλ

(
Eφ (·, ω) , ξ

)
×
∑

x∈η\ω

(
1− e−εEφ(x,ω)

)
(αC)|ξ\ω| dλ (ξ)

+ α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω| (zδ)|ω|
∫

Γ0

eλ

(
Eφ (·, ω) , ξ

)
×
∑
x∈ξ

(
1− 1− e−εEφ(x,ω)

εEφ (x, ω)

)
(αC)|ξ\ω| dλ (ξ)

and, by (3.47),

≤α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω|
(

zδ

αC
exp {αCβ}

)|ω| ∑
x∈η\ω

εEφ (x, ω)

+ α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω|
(

zδ

αC

)|ω|
×
∫

Γ0

∫
Rd

ε
(
Eφ (x, ω)

)2
eλ

(
Eφ (·, ω) , ξ

)
(αC)|ξ| αCdxdλ (ξ)

again, z exp{αCβ} ≤ αC and we continue

≤ε φ̄ α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω| δ|ω||η \ ω| · |ω|

+ εαC φ̄α|η| ‖k‖KαC

∑
ω⊂η

(1− δ)|η\ω| δ|ω| |ω|2 =: J.
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To complete the proof we need to use the following simple estimates: for any
|ξ| = n ≥ 2 one has∑

ω⊂ξ

|ω| |ξ \ ω| (1− δ)|ξ\ω| δ|ω| (3.48)

=
n−1∑
k=1

n!
k! (n− k)!

k (n− k) (1− δ)n−k
δk

=
n−1∑
k=1

n!
(k − 1)! (n− k − 1)!

(1− δ)n−k
δk

=
n−2∑
k=0

n!
k! (n− (k + 1)− 1)!

(1− δ)n−(k+1)
δk+1

=δ (1− δ) n (n− 2)
n−2∑
k=0

(n− 2)!
k! (n− 2− k)!

(1− δ)n−2−k
δk

=δ (1− δ) n (n− 2) (1− δ + δ)n−2 ≤ δ · 2n = δ · 2|ξ|

(and this estimate is trivial for |ξ| ≤ 1); and, for any n = |ξ| ≥ 1∑
ω⊂ξ

(1− δ)|ξ\ω| δ|ω| |ω|2 (3.49)

=
n∑

k=1

n!
k! (n− k)!

k2 (1− δ)n−k
δk

=δ

n∑
k=1

n!
(k − 1)! (n− 1− (k − 1))!

k (1− δ)(n−1)−(k−1)
δk−1

=δ

n−1∑
k=0

n!
k! (n− 1− k)!

k (1− δ)(n−1)−k
δk

≤δn (n− 1) (1− δ + δ)n−1
< δ · 2n

(and, again, it is trivial for ξ = ∅).
Then, by (3.48), (3.49), we obtain for any |η| ≥ 2

J ≤ ε φ̄ α|η| ‖k‖KαC
δ|η|(|η| − 1) + εαC φ̄α|η| ‖k‖KαC

δ|η|(|η| − 1) ≤ εδA,

where A is independent on η.

Corollary 3.13. Let the conditions of Theorem 3.12 hold. Then for any
{k(ε), k} ⊂ KαC , ε > 0∥∥T̂�α

ε, ren(t)k(ε) − T̂�α
V (t)k

∥∥
KC

≤
∥∥k(ε) − k

∥∥
KC

+ εtA‖k‖KαC
. (3.50)

Proof. The proof follows directly from the triangle inequality and the contractive
property of the semigroup T̂�α

ε, ren.

25



And now we will show that our Vlasov limiting dynamics has the properties
described in the Subsection 3.1.

Theorem 3.14. Let C, z, β, α1 be as in Proposition 3.11, and α2 := max
{
α1,

z
C

}
∈

(0; 1). Let ρ0 be a measurable function on Rd such that there exists α ∈ (α2; 1)
such that 0 ≤ ρ0(x) ≤ αC for a.a. x ∈ Rd. Then the Cauchy problem

∂

∂t
kt = L̂∗V kt

k0 = eλ(ρ0)
(3.51)

is well-defined on KαC and has a solution kt = eλ(ρt) ∈ KαC , where ρt is a
solution of the Cauchy problem

∂

∂t
ρt(x) = −ρt(x) + z exp

{
−
∫

Rd

ρt(y)φ(x− y)dy

}
,

ρt

∣∣
t=0

(x) = ρ0(x),
(3.52)

for a.a. x ∈ Rd such that 0 ≤ ρt(x) ≤ αC for a.a. x ∈ Rd.

Proof. First of all, we note that (3.32) implies z < C, therefore, the condition
z
C < 1 holds. Next, if (3.52) has a solution ρt(x) ≥ 0 then ∂

∂tρt(x) ≤ −ρt(x)+ z
and, therefore, ρt(x) ≤ rt(x) where rt(x) is a solution of the Cauchy problem

∂

∂t
rt(x) = −rt(x) + z,

rt

∣∣
t=0

(x) = ρ0(x),

for a.a. x ∈ Rd, hence,

rt(x) = e−tρ0(x) + z(1− e−t) = z + e−t(ρ0(x)− z) ≤ max{z, ρ0(x)} ≤ αC,

that yields 0 ≤ ρt(x) ≤ αC.
To prove the existence of the solution of (3.52) let us fix some T > 0 and

define the Banach space XT = C([0;T ], L∞(Rd)) of all continuous functions on
[0;T ] with values in L∞(Rd); the norm on XT is given by ‖u‖T := max

t∈[0;T ]
‖ut‖L∞(Rd).

We denote by X+
T the cone of the all nonnegative functions from XT .

Let Φ be a mapping which assign to any v ∈ XT the solution ut of the linear
Cauchy problem

∂

∂t
ut(x) = −ut(x) + z exp{−(vt ∗ φ)(x)},

ut

∣∣
t=0

(x) = ρ0(x),
(3.53)

for a.a. x ∈ Rd, where we use the usual notation for convolution on Rd:
(f ∗ g)(x) :=

∫
Rd f(y)g(x− y)dy. Therefore,

(Φv)t(x) = e−tρ0(x) + z

∫ t

0

e−(t−s) exp{−(vt ∗ φ)(x)}ds ≥ 0. (3.54)
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Similarly as before we obtain that v ∈ X+
T implies the estimate |(Φv)t(x)| ≤

max{z, ρ0(x)}; in particular, Φv ∈ X+
T . Next, using elementary inequality

|e−a − e−b| ≤ |a− b| for any a, b ≥ 0, we obtain that for any v, w ∈ X+
T∣∣(Φv)t(x)− (Φw)t(x)

∣∣ ≤ z

∫ t

0

e−(t−s)
∣∣∣exp{−(vt ∗ φ)(x)− exp{−(wt ∗ φ)(x)}

∣∣∣ds

≤ z

∫ t

0

e−(t−s)
∣∣(vt ∗ φ)(x)− (wt ∗ φ)(x)

∣∣ds

≤ z

∫ t

0

e−(t−s)(|vt − wt| ∗ φ)(x)ds

≤ zβ‖v − w‖T (1− e−t),

where we used the inequality |(f ∗ g)(x)| ≤ ‖f‖L∞(Rd)‖g‖L1(Rd) and condition
(3.7). Therefore, ‖Φv − Φw‖T ≤ zβ‖v − w‖T . Since (3.32) implies zβ ≤ e−1

(see the proof of Proposition 3.11), hence, Φ is a contraction mapping on the
cone X+

T . Taking, as usual, v(n) = Φnv(0), n ≥ 1 for v(0) ∈ X+
T we obtain

that {v(n)} ⊂ X+
T is a fundamental sequence in XT which has, therefore, a

unique limit point v ∈ XT . Since X+
T is a closed cone we have that v ∈

X+
T . Then, identically to the classical Banach fixed point theorem, v will be

a fixed point of Φ on XT and a unique fixed point on X+
T . Then, this v is

the nonnegative solution of (3.52) on the interval [0; T ]. By the note above,
vt(x) ≤ αC. Changing initial value in (3.52) onto ρt

∣∣
t=T

(x) = vT (x) we may
extend all our considerations on the time-interval [T ; 2T ] with the same estimate
vt(x) ≤ αC; and so on. As a a result, (3.52) has a global bounded solution ρt(x)
on R+.

Clearly, k0 = eλ(ρ0) ∈ KαC ⊂ KαC . Then kt = T̂�α
V (t)k0 will be a strongly

differentiable function (in the sense of norm ‖·‖KC
in KαC); moreover, kt ∈ KαC .

Next, if we substitute kt = eλ(ρt) into (3.51), then, by (3.28), we obtain∑
x∈η

∂

∂t
ρt(x)eλ(ρt, η \ x)

=− |η| eλ(ρt, η)

+ z
∑
x∈η

eλ(ρt, η \ x)
∫

Γ0

eλ (−φ (x− ·) , ξ) eλ(ρt, ξ)dλ(ξ)

=−
∑
x∈η

ρt(x)eλ(ρt, η \ x)

+ z
∑
x∈η

eλ(ρt, η \ x) exp
{
−
∫

Rd

φ(x− y)ρt(y)dy

}
,

that holds since ρt is satisfied (3.52).

Remark 3.15. Note that the stationary equation for (3.52) has the following
form

ρ(x) = z exp
{
−
∫

Rd

ρ(y)φ(x− y)dy

}
(3.55)
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and coincides with the famous Kirkwood–Monroe equation ([17], see also, e.g.,
[15] and references therein, and the recent work [2]).

3.4 Further considerations

We have realized the scheme proposed at the end of Subsection 3.1. But let us
explain also the rigorous meaning of the equivalence (3.1) which was background
to all our consideration.

Let C, z, β, α2 be as in Theorem 3.14. Then, for any fixed ε > 0 we have
1 − exp{−εφ} ∈ L1(Rd) and, by [10, Proposition 3.2], L̂ε, given by (3.10), is
a linear operator in Lε−1C with dense domain L2ε−1C . Consider the image(
L̂∗ε, D(L̂∗ε)

)
in Kε−1C = Rε−1KC under the isometrical isomorphism Rε−1C of

the dual operator
(
L̂′ε, D(L̂′ε)

)
in (Lε−1C)′.

We are not able to show that L̂ε is a generator of a strongly continuous
semigroup in Lε−1C since a condition like (2.13) (with ε−1C instead of C) cannot
be fulfilled uniformly in ε > 0. But one can do in the following manner.

Let α ∈ (α2; 1) and let us consider the space Kα
ε = Kε−1αC

Kε−1C . Note that
for any r(ε) ∈ Kα

ε there exist {r(ε)
n } ⊂ Kε−1αC such that

0 = lim
n→∞

‖r(ε)
n − r(ε)‖Kε−1C

= lim
n→∞

‖Rεr
(ε)
n −Rεr

(ε)‖KC

and the inclusion Rεr
(ε)
n ∈ KαC , n ∈ N yields Rεr

(ε) ∈ KαC . Vise versa, for
any k(ε) ∈ KαC we see that Rε−1k(ε) ∈ Kα

ε . As a result, Rε provides an iso-
metrical isomorphism between the Banach spaces Kα

ε and KαC . Then, Uα
ε (t) :=

Rε−1 T̂�α
ε, ren(t)Rε will be a strongly continuous contraction semigroup on Kα

ε with
the generator Aα

ε = Rε−1L̂�α
ε, renRε and the domain D(Aα

ε ) = Rε−1D(L̂�α
ε, ren).

Moreover, since KαC ∩D(L̂�α
ε, ren) is a core for L̂�α

ε, ren, the set Kε−1αC ∩D(Aα
ε )

is a core for Aα
ε and on this core the operator Aα

ε coincides with L̂∗ε. Note that,
the semigroup Uα

ε (t) is the rigorous analog of T̂ ∗
ε in (3.1).

Let now {k0, k
(ε)
0 |ε > 0} ⊂ KαC . Then, by (3.50),∥∥Uα

ε (t)Rε−1k
(ε)
0 −Rε−1 T̂�α

V (t)k0

∥∥
Kε−1C

(3.56)

=
∥∥Rε

(
Uα

ε (t)Rε−1k
(ε)
0 −Rε−1 T̂�α

V (t)k0

)∥∥
KC

=
∥∥T̂�α

ε, ren(t)k(ε)
0 − T̂�α

V (t)k0

∥∥
KC

≤ Aεt‖k0‖KαC
+ ‖k(ε)

0 − k0‖KC
.

On the other hand,∥∥Ua
ε (t)Rε−1k

(ε)
0 −Rε−1 T̂�α

V (t)k0

∥∥
Kε−1C

(3.57)

= ess sup
η∈Γ0

{
(ε−1C)−|η|

∣∣Rε−1 T̂�α
V (t)k0(η)

∣∣ ∣∣∣∣∣Ua
ε (t)Rε−1k

(ε)
0 (η)

Rε−1 T̂�α
V (t)k0(η)

− 1

∣∣∣∣∣
}

=ess sup
η∈Γ0

{
C−|η|∣∣T̂�α

V (t)k0(η)
∣∣ ∣∣∣∣∣Ua

ε (t)Rε−1k
(ε)
0 (η)

Rε−1 T̂�α
V (t)k0(η)

− 1

∣∣∣∣∣
}

.
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In particular, if
lim
ε→0

‖k(ε)
0 − k0‖KC

= 0 (3.58)

then (3.56), (3.57) imply

lim
ε→0

Ua
ε (t)Rε−1k

(ε)
0 (η)

Rε−1 T̂�α
V (t)k0(η)

= 1 for λ−a.a. η ∈ Γ0. (3.59)

The equality (3.59) is a rigorous realization of the equivalence (3.1) (with
changes k

(ε)
0 onto Rε−1k

(ε)
0 ).

Moreover, let T > 0 and suppose that there exists a function c : Γ0 →
(0;+∞) such that

q(α, T ) := sup
t∈[0;T ]

ess sup
η∈Γ0

c(η)
T̂�α

V (t)k0(η)
< +∞. (3.60)

Then, using the equality

c(η)C−|η|

∣∣∣∣∣Ua
ε (t)Rε−1k

(ε)
0 (η)

Rε−1 T̂�α
V (t)k(η)

− 1

∣∣∣∣∣
=C−|η|∣∣T̂�α

V (t)k0(η)
∣∣ ∣∣∣∣∣Ua

ε (t)Rε−1k
(ε)
0 (η)

Rε−1 T̂�α
V (t)k0(η)

− 1

∣∣∣∣∣ c(η)∣∣T̂�α
V (t)k0(η)

∣∣ ,
we obtain that for such k0 and for any t ∈ [0;T ]∥∥∥∥∥Ua

ε (t)Rε−1k
(ε)
0 (η)

Rε−1 T̂�α
V (t)k0(η)

− 1

∥∥∥∥∥
C,c

≤ q(α, T )Aεt‖k0‖KαC
+ ‖k(ε)

0 − k0‖KC
, (3.61)

where

‖k‖C,c = ess sup
η∈Γ0

|k(η)|
C |η|c−1(η)

.

This gives that the equivalence (3.1) may be shown in a proper Banach space
which is independent on ε.

Remark 3.16. The condition (3.60) on k0 is reasonable: for example, for k0 =
eλ(ρ0), since, by the Theorem 3.14, we have T̂�α

V (t)k0(η) = eλ(ρt, η), where ρt

satisfies (3.52); therefore, (3.60) holds for any |ρ0(x)| ≤ αC such that

sup
t∈[0;T ]

inf
x∈Rd

|ρt(x)| ≥ ρmin > 0

if we set c(η) = eλ(ρmin, η) = ρ
|η|
min. Moreover, we obtain that |ρt(x)| ≤ αC.

The following example shows which function k
(ε)
0 one can choose in this case.
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Example 3.17. Let k0(η) = ρ
|η|
0 , ρ0 ∈ (0;αC). Let us consider the scaled

Lebesgue–Poisson exponent k
(ε)
0 (η) = eλ

(
ρ0(1+εu(·)), η

)
, where supx∈Rd |u(x)| =

ū < ∞, ε > 0. Then for any ε < αC−ρ0
ρ0ū we have |k(ε)

0 (η)| < (αC)|η|. Moreover,

C−|η|∣∣k(ε)
0 (η)− k0(η)

∣∣ = (ρ0

C

)|η|∣∣eλ

(
1 + εu(·), η

)
− 1
∣∣

≤
(ρ0

C

)|η|
ε sup

s∈(0;ε)

∣∣∣∣ d

ds
eλ

(
1 + su(·), η

)∣∣∣∣
=
(ρ0

C

)|η|
ε sup

s∈(0;ε)

∣∣∣∣∑
x∈η

u(x)eλ

(
1 + su(·), η \ x

)∣∣∣∣
≤
(ρ0

C

)|η|
ε
∑
x∈η

ūeλ

(
1 + εū, η \ x

)
≤
(ρ0

C

)|η|
ε|η|ū

(
1 +

αC − ρ0

ρ0ū
ū

)|η|−1

=ε
ρ0

αC
|η|α|η| ≤ ε

ρ0

αC

−1
e lnα

.

As a result, ‖k(ε)
0 − k0‖KC

→ 0 as ε → 0.
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