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Abstract

We develop a new approach for the construction of the Glauber dy-
namics in continuum. Existence of the corresponding strongly continuous
contraction semigroup in a proper Banach space is shown. Additionally
we present the finite- and infinite-volume approximations of the semigroup
by families of bounded linear operators.
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1 Introduction

The Glauber type stochastic dynamics in continuum are birth-and-death Markov
processes on configuration spaces with the given reversible states which are
grand canonical Gibbs measures. The corresponding Markov generators are re-
lated with the (non-local) Dirichlet forms for the considered Gibbs measures.
The latter fact gives a standard way to construct properly associated stationary
Markov processes. These processes preserve the initial Gibbs state in the time
evolution; they are called the equilibrium Glauber dynamics, see, e.g., [12], [13],
[14], [5]. Note that, in applications, the time evolution of initial state is the
subject of the primary interest. In what follows, we will try to understand the
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considered stochastic dynamics as the evolution of initial distributions for the
system. Actually, the Markov process itself gives a general technical equipment
to study this problem. Let us stress that the transition from the micro-state
evolution corresponding to the given initial configuration to the macro-state dy-
namics is the well developed concept in the theory of infinite particle systems.
This point of view appeared initially in the framework of the Hamiltonian dy-
namics of classical gases, see, e.g., [2].

The study of the non-equilibrium Glauber dynamics needs construction of
the time evolution for a wider class of initial measures. The lack of the gen-
eral Markov processes techniques for the considered systems makes necessary
to develop alternative approaches to study the state evolutions in the Glauber
dynamics. The approach realized in [10], [11] is probably the only known at
the present time. The description of the time evolutions for measures on con-
figuration spaces in terms of an infinite system of evolutional equations for
the corresponding correlation functions was used there. The latter system is a
Glauber evolution’s analog of the famous BBGKY-hierarchy for the Hamiltonian
dynamics.

Here we develop another approach to the Glauber dynamics in continuum.
This constructive approach was inspired by working up a new algorithm for
detection problems in image processing. Object detection, or detecting a con-
figuration of objects from a digital image, is a crucial step in many applications.
In paper [1], a new stochastic algorithm to solve object detection problems has
been proposed.

The algorithm is based on a continuous time stochastic evolution of macro-
objects in a large (but finite) volume in continuum. It was considered a model
of possibly partially overlapping discs. Each disc in the final configuration is
associated with a given object in the image. The evolution under consideration
is a birth-and-death equilibrium dynamics on the configuration space of discs
with a given stationary Gibbs measure. In this scheme, the intensity of birth
is a constant, whereas intensities of death depend on the energy function and
the present configuration. This choice of rates has been made to optimize the
convergence speed. Indeed, the volume of the space for birth is much larger
than the number of discs in the configuration. To apply the continuous time
dynamics to simulation process we have to construct a discretization of this
process in time. The resulting discrete time process is a non-homogeneous
Markov chain with transition probabilities depending on the energy function
and the discretization step. The main point of our approach is that each step
in proposed algorithm concerns the whole configuration, so that it is so-called
multiple birth-and-death algorithm.

In this paper, we introduce and study the analogous discretization for in-
finite volume birth and death dynamics of the Glauber type, and prove the
convergence to the continuous time process as the step of discretization tends
to zero. Furthermore, we use the discretization to construct a non-equilibrium
dynamics.
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2 Description of model

2.1 General facts and notations

Let B(Rd) be the family of all Borel sets in Rd, d ≥ 1. Bb(Rd) denotes the
system of all bounded sets in B(Rd).

We define the space of the n-point configurations in Y ∈ B(Rd) as

Γ
(n)
Y :=

{
η ⊂ Y

∣∣ |η| = n
}
, n ∈ N,

where | · | mean the cardinality of a finite set. We put also Γ
(0)
Y := {∅}. As a

set, Γ
(n)
Y is equivalent to the symmetrization of

Ỹ n =
{

(x1, . . . , xn) ∈ Y n
∣∣ xk 6= xl if k 6= l

}
.

Hence, one can introduce the corresponding Borel σ-algebra, which we denote

by B(Γ
(n)
Y ). The space of finite configurations in Y ∈ B(Rd) defined as

Γ0,Y :=
⊔
n∈N0

Γ
(n)
Y

is equipped with the topology of disjoint unions. Therefore, one can introduce
the corresponding Borel σ-algebra B(Γ0,Y ). In the case of Y = Rd we will omit

the index Y in the notation, namely, Γ0 := Γ0,Rd , Γ(n) := Γ
(n)

Rd .

The restriction of the Lebesgue product measure (dx)n to
(
Γ(n),B(Γ(n))

)
we

denote by m(n). We set m(0) := δ{∅}. Let κ > 0 be fixed. The Lebesgue–Poisson
measure λκ on Γ0 is defined as

λκ :=

∞∑
n=0

κn

n!
m(n).

For any Λ ∈ Bb(Rd) the restriction of λκ to ΓΛ := Γ0,Λ will be also denoted by
λκ. We denote also λ = λ1.

The configuration space over space Rd consists of all locally finite subsets
(configurations) of Rd, namely,

Γ = ΓRd :=
{
γ ⊂ Rd

∣∣ |γ ∩ Λ| <∞, for all Λ ∈ Bb(Rd)
}
. (2.1)

The space Γ is equipped with the vague topology, i.e., the minimal topology for
which all mappings Γ 3 γ 7→

∑
x∈γ f(x) ∈ R are continuous for any continuous

function f on Rd with compact support. Note that
∑
x∈γ f(x) is always finite in

this case since the summation is taken over only finitely many points of γ which
belong to the support of f . Γ with the vague topology is a Polish space (see, e.g.,
[9] and references therein). The corresponding Borel σ-algebra B(Γ) appears as
the smallest σ-algebra for which all mappings Γ 3 γ 7→ |γΛ| ∈ N0 := N∪{0} are
measurable for any Λ ∈ Bb(Rd). Here and below γΛ := γ ∩ Λ.
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It can be shown that the space
(
Γ,B(Γ)

)
is the projective limit of the fam-

ily of spaces
{

(ΓΛ,B(ΓΛ))
}

Λ∈Bb(Rd)
. The Poisson measure πκ on

(
Γ,B(Γ)

)
is

given as the projective limit of the family of measures {πΛ
κ }Λ∈Bb(Rd), where

πΛ
κ := e−κm(Λ)λκ is the probability measure on

(
ΓΛ,B(ΓΛ)

)
. Here m(Λ) is the

Lebesgue measure of Λ ∈ Bb(Rd).
A function F on Γ is called cylinder function if it may be characterized by

the following relation:
F (γ) = F �ΓΛ

(γΛ) (2.2)

for some Λ ∈ Bb(Rd). The class of all such function will be denoted by Fcyl(Γ).
A set M ∈ B(Γ0) is called bounded if there exists Λ ∈ Bb(Rd) and N ∈ N

such that M ⊂
⊔N
n=0 Γ

(n)
Λ . The set of bounded measurable functions with

bounded support we denote by Bbs(Γ0), i.e., G ∈ Bbs(Γ0) if G �Γ0\M= 0 for
some bounded M ∈ B(Γ0). Note that any B(Γ0)-measurable function G on
Γ0, in fact, is a sequence of functions

{
G(n)

}
n∈N0

, where G(n) is a B(Γ(n))-

measurable function on Γ(n).
The following mapping between Bbs(Γ0) and Fcyl(Γ) plays the key role in

our further considerations:

KG(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.3)

where G ∈ Bbs(Γ0), see, e.g., [8, 15, 16]. The summation in the latter expression
is taken over all finite subconfigurations of γ, which is denoted by the symbol
η b γ. The mapping K is linear, positivity preserving, and invertible, with

K−1F (η) :=
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.4)

We denote the restriction of K onto functions on Γ0 by K0.
For any fixed C > 0 we consider the following (pre-)norm on the space

Bbs(Γ0)

‖G‖C :=

∫
Γ0

|G(η)|C |η|λ(dη). (2.5)

The completion of Bbs(Γ0) w.r.t. this pre-norm is the following Banach space
of B(Γ0)-measurable functions

LC :=
{
G : Γ0 → R

∣∣ ‖G‖C <∞
}
. (2.6)

Let µ be a probability measure on
(
Γ,B(Γ)

)
such that

∫
Γ
|γΛ|nµ(dγ) <∞ for

any Λ ∈ Bb(Rd), n ∈ N. The class of all such measures we denote byM1
fm(Γ). A

measure µ ∈ M1
fm(Γ) is called locally absolutely continuous w.r.t. the Poisson

measure π if for any Λ ∈ Bb(Rd) the projection of µ onto ΓΛ is absolutely
continuous w.r.t. the projection of π onto ΓΛ. By [8], in this case, there exists a

system of measurable symmetric functions k
(n)
µ : (Rd)n → [0; +∞), n ∈ N such
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that for any G ∈ Bbs(Γ0) the following identity holds∫
Γ

(KG(n))(γ)µ(dγ) =
1

n!

∫
(Rd)n

G(n)(x1, . . . , xn)k(n)
µ (x1, . . . , xn)dx1 . . . dxn.

(2.7)

Functions k
(n)
µ are called the correlation functions in mathematical physics as

well as functions 1
n!k

(n)
µ are called the factorial moments in probability theory.

We recall now without a proof the partial case of the well-known technical
lemma which plays a very important role in our calculations (cf., [14]).

Lemma 2.1. For any measurable function H : Γ0 × Γ0 × Γ0 → R∫
Γ0

∑
ξ⊂η

H (ξ, η \ ξ, η)λ (dη) =

∫
Γ0

∫
Γ0

H (ξ, η, η ∪ ξ)λ (dξ)λ (dη) (2.8)

if both sides of the equality make sense.

2.2 Glauber dynamics in continuum

Let φ : Rd → R+ := [0; +∞) be even non-negative function which satisfies
integrability condition

Cφ =

∫
Rd

(
1− e−φ(x)

)
dx < +∞. (2.9)

For any γ ∈ Γ, x ∈ Rd \ γ we set

Eφ(x, γ) :=
∑
y∈γ

φ(x− y) ∈ [0;∞]. (2.10)

Let us define the (pre-) generator of the Glauber dynamics: for any F ∈
Fcyl(Γ) we set

(LF )(γ) :=
∑
x∈γ

[
F (γ \ x)− F (γ)

]
(2.11)

+ z

∫
Rd

[
F (γ ∪ x)− F (γ)

]
exp
{
−Eφ(x, γ)

}
dx, γ ∈ Γ.

Here z > 0 is the activity parameter. Note that, because of (2.2), for F ∈ Fcyl(Γ)
there exists Λ ∈ Bb(Rd) such that F (γ \ x) = F (γ) for any x ∈ γΛc and
F (γ ∪ x) = F (γ) for any x ∈ Λc; note also that exp

{
−Eφ(x, γ)

}
≤ 1, therefore,

the sum and integral in (2.11) are finite.
Using the techniques considered in [7], it is possible to show that there exists

a proper subspace S ⊂ Γ and an S-valued stochastic process with sample paths
in the Skorokhod space DS [0;∞) associated to the generator L.

This allows us to define the semigroup associated with L in the space of
bounded continuous functions on S. This semigroup determines the solution
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to the Kolmogorov equation, which formally (only in the sense of action of
operator) has the following form:

dFt
dt

= LFt, Ft
∣∣
t=0

= F0. (2.12)

However, to show that L is a generator of a semigroup in other functional
spaces on Γ seems to be a difficult problem. This difficulty is hidden in the
complex structure of the non-linear infinite dimensional space Γ.

In various applications the evolution of the corresponding correlation func-
tions (or measures) helps already to understand the behavior of the process and
gives candidates for invariant states. The evolution of correlation functions of
the process is related heuristically to the evolution of states of our infinite par-
ticle systems. The latter evolution is formally given as a solution to the dual
Kolmogorov equation (Fokker–Planck equation):

dµt
dt

= L∗µt, µt
∣∣
t=0

= µ0, (2.13)

where L∗ is the adjoint operator to L on M1
fm(Γ), provided, of course, that it

exists.
Following the general scheme proposed in [10], we construct the evolution

of functions which corresponds to the symbol (K-image) L̂ = K−1LK of the
operator L in L1-space on Γ0 w.r.t. the weighted Lebesgue–Poisson measure,
namely, in the space LC , see (2.6).

The evolution equation for quasi-observables (functions on Γ0) corresponding
to the Kolmogorov equation (2.12) has the following form

dGt
dt

= L̂Gt, Gt
∣∣
t=0

= G0. (2.14)

Then in a way analogous to that in which the corresponding Fokker–Planck
equation (2.13) was determined for (2.12) we get the evolution equation for the
correlation functions corresponding to the equation (2.14):

dkt
dt

= L̂∗kt, kt
∣∣
t=0

= k0, (2.15)

where L̂∗ is the mapping dual to L̂ w.r.t. the pairing

〈〈G, k〉〉 =

∫
Γ0

G(η)k(η)λ(dη). (2.16)

The existence of the evolution (2.14) in LC gives now the following bounds
for the solution of (2.15) (if it exists):

|kt(η)| ≤ const · C |η|, η ∈ Γ0. (2.17)

The estimate (2.17) is called the Ruelle bound: in [17], [18], it was shown that
there is a class of Gibbs measures {µ} whose correlation functions {kµ > 0}
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satisfy (2.17) for const = 1. The bound (2.17) is also called sub-Poissonian since
{Cn}n≥0 is the system of the correlation functions for the Poisson measure πC .

In the present paper we obtain the strong solution to the equation (2.14)
in LC . This allows us to solve the equation (2.15) in a weak sense w.r.t. the
pairing (2.16). In the forthcoming paper [4] we will consider the strong solution
to (2.15) in a proper Banach space. Moreover, we will show that this solution
at any moment of time is a correlation function of some state.

3 Construction and properties of the semigroup

3.1 Description of approximation

Let G ∈ Bbs(Γ0) then F = KG ∈ Fcyl(Γ). By [6, 11], we have the following

explicit form for the mapping L̂ := K−1LK on Bbs(Γ0)

(L̂G)(η) = −|η|G(η)+z
∑
ξ⊂η

∫
Rd
e−E

φ(x,ξ)G(ξ∪x)eλ(e−φ(x−·)−1, η\ξ)dx, (3.1)

where, by definition, for any B(Rd)-measurable function f ,

eλ(f, η) :=
∏
x∈η

f(x), η ∈ Γ0\{∅}, eλ(f, ∅) := 1. (3.2)

Let us denote for any η ∈ Γ0

(L0G)(η) := −|η|G(η); (3.3)

(L1G)(η) := z
∑
ξ⊂η

∫
Rd
e−E

φ(x,ξ)G(ξ ∪ x)eλ(e−φ(x−·) − 1, η \ ξ)dx. (3.4)

Proposition 3.1. The expression (3.1) defines a linear operator L̂ in LC with
the dense domain L2C ⊂ LC .

Proof. For any G ∈ L2C

‖L0G‖C =

∫
Γ0

|G(η)||η|C |η|λ(dη) <

∫
Γ0

|G(η)|2|η|C |η|λ(dη) <∞

and, by Lemma 2.1,

‖L1G‖C ≤ z
∫

Γ0

∑
ξ⊂η

∫
Rd

e−E
φ(x,ξ) |G(ξ ∪ x)| eλ

(∣∣∣e−φ(x−·) − 1
∣∣∣ , η \ ξ) dxC |η|λ (dη)

= z

∫
Γ0

∫
Γ0

∫
Rd

e−E
φ(x,ξ) |G(ξ ∪ x)| eλ

(∣∣∣e−φ(x−·) − 1
∣∣∣ , η) dxC |η|C |ξ|λ (dξ)λ (dη)

≤ z

C
exp {CCφ}

∫
Γ0

|G (ξ)| |ξ|C |ξ|λ (dξ) <
z

C
exp {CCφ}

∫
Γ0

|G (ξ)| 2|ξ|C |ξ|λ (dξ)

<∞.

Embedding L2C ⊂ LC is dense since Bbs(Γ0) ⊂ L2C .
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Let δ ∈ (0; 1) be arbitrary and fixed. Consider for any Λ ∈ Bb(Rd) the
following linear mapping on functions F ∈ Fcyl(Γ0) := K0Bbs(Γ0)(

PΛ
δ F
)

(γ) =
∑
η⊂γ

δ|η| (1− δ)|γ\η|
(
ΞΛ
δ (γ)

)−1
(3.5)

×
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,γ)F ((γ \ η) ∪ ω)λ (dω) , γ ∈ Γ0,

where

ΞΛ
δ (γ) =

∫
ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,γ)λ (dω) . (3.6)

Clearly, PΛ
δ is a positive preserving mapping and(

PΛ
δ 1
)

(γ) =
∑
η⊂γ

δ|η| (1− δ)|γ\η| = 1, γ ∈ Γ0.

Operator (3.5) is constructed as a transition operator of a Markov chain,
which is a time discretization of a continuous time process with the generator
(2.11) and discretization parameter δ ∈ (0; 1). Roughly speaking, according to
the representation (3.5), the probability of transition γ → (γ \ η)∪ω (which de-
scribes removing of subconfiguration η ⊂ γ and birth of a new subconfiguration
ω ∈ ΓΛ) after small time δ is equal to(

ΞΛ
δ (γ)

)−1
δ|η|(1− δ)|γ\η|(zδ)|ω|

∏
y∈ω

e−E
φ(y,γ).

We may rewrite (3.5) in another manner.

Proposition 3.2. For any F ∈ Fcyl(Γ0) the following equality holds(
PΛ
δ F
)

(γ) =
∑
ξ⊂γ

(1− δ)|ξ|
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,γ) (3.7)

× (K−1
0 F ) (ξ ∪ ω)λ (dω) .

Proof. Let G := K−1
0 F ∈ Bbs(Γ0). Since ΞΛ

δ doesn’t depend on η, for γ ∈ Γ0

we have (
PΛ
δ F
)

(γ) =
(
ΞΛ
δ (γ)

)−1
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,γ) (3.8)

×
∑
η⊂γ

δ|γ\η| (1− δ)|η| F (η ∪ ω)λ (dω) .

To rewrite (3.5), we have used also that any η ⊂ γ corresponds to a unique
γ \ η ⊂ γ. Applying the definition of K0 to F = K0G we obtain∑
η⊂γ

δ|γ\η| (1− δ)|η| F (η ∪ ω) =
∑
η⊂γ

δ|γ\η| (1− δ)|η|
∑
ζ⊂η

∑
β⊂ω

G (ζ ∪ β) (3.9)

=
∑
ζ⊂γ

∑
β⊂ω

G (ζ ∪ β)
∑

η′⊂γ\ζ

δ|γ\(η
′∪ζ)| (1− δ)|η

′∪ζ| ,
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where after changing summation over η ⊂ γ and ζ ⊂ η we have used the fact
that for any configuration η ⊂ γ which contains fixed ζ ⊂ γ there exists a unique
η′ ⊂ γ \ ζ such that η = η′ ∪ ζ. But by the binomial formula∑

η′⊂γ\ζ

δ|γ\(η
′∪ζ)| (1− δ)|η

′∪ζ| = (1− δ)|ζ|
∑

η′⊂γ\ζ

δ|(γ\ζ)\η
′| (1− δ)|η

′| (3.10)

= (1− δ)|ζ|(δ + 1− δ)|γ\ζ| = (1− δ)|ζ|.

Combining (3.8), (3.9), (3.10), we get

(
PΛ
δ F
)

(γ) =
(
ΞΛ
δ (γ)

)−1
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,γ)

×
∑
ζ⊂γ

∑
β⊂ω

G (ζ ∪ β) (1− δ)|ζ|λ (dω) .

Next, Lemma 2.1 yields(
PΛ
δ F
)

(γ) =
(
ΞΛ
δ (γ)

)−1
∫

ΓΛ

∫
ΓΛ

(zδ)
|ω∪β| ∏

y∈ω∪β

e−E
φ(y,γ)

×
∑
ζ⊂γ

G (ζ ∪ β) (1− δ)|ζ|λ (dω)λ (dβ)

=

∫
ΓΛ

(zδ)
|β|∏

y∈β

e−E
φ(y,γ)

∑
ζ⊂γ

G (ζ ∪ β) (1− δ)|ζ|λ (dβ) ,

which proves the statement.

In the next proposition we describe the image of PΛ
δ under the K0-transform.

Proposition 3.3. Let P̂Λ
δ = K−1

0 PΛ
δ K0. Then for any G ∈ Bbs(Γ0) the fol-

lowing equality holds(
P̂Λ
δ G
)

(η) =
∑
ξ⊂η

(1− δ)|ξ|
∫

ΓΛ

(zδ)
|ω|
G (ξ ∪ ω) (3.11)

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y′∈η\ξ

(
e−E

φ(y′,ω) − 1
)
λ (dω) , η ∈ Γ0.

Proof. By (3.7) and the definition of K−1
0 , we have

(
P̂Λ
δ G
)

(η) =
∑
ζ⊂η

(−1)|η\ζ|
∑
ξ⊂ζ

(1− δ)|ξ|
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,ζ)G (ξ ∪ ω)λ (dω)

=
∑
ξ⊂η

(1− δ)|ξ|
∑
ζ⊂η\ξ

(−1)|(η\ξ)\ζ|
∫

ΓΛ

(zδ)
|ω|∏

y∈ω
e−E

φ(y,ζ∪ξ)G (ξ ∪ ω)λ (dω) .
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Using the definition (2.10) of the relative energy we obtain∏
y∈ω

e−E
φ(y,ζ∪ξ) =

∏
y∈ξ

e−E
φ(y,ω)

∏
y′∈ζ

e−E
φ(y′,ω).

The well-known equality∑
ζ⊂η\ξ

(−1)|(η\ξ)\ζ|
∏
y′∈ζ

e−E
φ(y′,ω) =

(
K−1

0

∏
y′∈·

e−E
φ(y′,ω)

)
(η \ ξ)

=
∏

y′∈η\ξ

(
e−E

φ(y′,ω) − 1
)

(see, e.g., [6]) completes the proof.

3.2 Construction of the semigroup on LC

By analogy with (3.11), we consider the following linear mapping on measurable
functions on Γ0(

P̂δG
)

(η) :=
∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)
|ω|
G (ξ ∪ ω) (3.12)

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y′∈η\ξ

(
e−E

φ(y′,ω) − 1
)
λ (dω) , η ∈ Γ0.

Proposition 3.4. Let
zeCCφ ≤ C. (3.13)

Then P̂δ, given by (3.12), is a well defined linear operator in LC , such that∥∥P̂δ∥∥ ≤ 1. (3.14)

Proof. Since φ ≥ 0 we have∥∥∥P̂δG∥∥∥
C
≤
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

(zδ)
|ω| |G (ξ ∪ ω)|

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y′∈η\ξ

∣∣∣e−Eφ(y′,ω) − 1
∣∣∣λ (dω)C |η|λ (dη)

=

∫
Γ0

∫
Γ0

(1− δ)|ξ|
∫

Γ0

(zδ)
|ω| |G (ξ ∪ ω)|

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y′∈η

∣∣∣e−Eφ(y′,ω) − 1
∣∣∣λ (dω)C |η|C |ξ|λ (dξ)λ (dη)

=

∫
Γ0

∫
Γ0

(1− δ)|ξ| (zδ)|ω| |G (ξ ∪ ω)|

×
∏
y∈ξ

e−E
φ(y,ω) exp

{
C

∫
Rd

(
1− e−E

φ(y′,ω)
)
dy′
}
λ (dω)C |ξ|λ (dξ) .
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It is easy to see by the induction principle that for φ ≥ 0, ω ∈ Γ0, y /∈ ω

1− e−E
φ(y,ω) = 1−

∏
x∈ω

e−φ(x−y) ≤
∑
x∈ω

(
1− e−φ(x−y)

)
. (3.15)

Then∥∥P̂δG∥∥C ≤∫
Γ0

∫
Γ0

(1− δ)|ξ| (zδ)|ω| |G (ξ ∪ ω)|

× exp

{
C
∑
x∈ω

∫
Rd

(
1− e−φ(x−y)

)
dy

}
λ (dω)C |ξ|λ (dξ)

=

∫
Γ0

∫
Γ0

(1− δ)|ξ| (zδ)|ω| |G (ξ ∪ ω)| eCCφ|ω|C |ξ|λ (dω)λ (dξ)

=

∫
Γ0

[
(1− δ)C + zδeCCφ

]|ω| |G (ω)|λ (dω) ≤ ‖G‖C .

For the last inequality we have used that (3.13) implies (1− δ)C+zδeCCφ ≤ C.
Note that, for λ-a.a. η ∈ Γ0 (

P̂δG
)
(η) <∞, (3.16)

and the statement is proved.

Proposition 3.5. Let the inequality (3.13) be fulfilled and define

L̂δ :=
1

δ
(P̂δ − 11), δ ∈ (0; 1),

where 11 is the identity operator in LC . Then for any G ∈ L2C∥∥(L̂δ − L̂)G
∥∥
C
≤ 3δ‖G‖2C . (3.17)

Proof. Let us denote(
P̂

(0)
δ G

)
(η) =

∑
ξ⊂η

(1− δ)|ξ|G (ξ) 0|η\ξ| = (1− δ)|η|G (η) ; (3.18)

(
P̂

(1)
δ G

)
(η) = zδ

∑
ξ⊂η

(1− δ)|ξ|
∫
Rd
G (ξ ∪ x) (3.19)

×
∏
y∈ξ

e−φ(y−x)
∏
y∈η\ξ

(
e−φ(y−x) − 1

)
dx; (3.20)

and
P̂

(≥2)
δ = P̂δ −

(
P̂

(0)
δ + P̂

(1)
δ

)
. (3.21)

Clearly∥∥(L̂δ − L̂)G
∥∥
C

=

∥∥∥∥1

δ

(
P̂δG−G

)
− L̂G

∥∥∥∥
C

(3.22)

≤
∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥
C

+

∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥
C

+
1

δ

∥∥∥P̂ (≥2)
δ G

∥∥∥
C
.

11



Now we estimate each of the terms in (3.22) separately. By (3.3) and (3.18), we
have∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥
C

=

∫
Γ0

∣∣∣∣∣ (1− δ)|η| − 1

δ
+ |η|

∣∣∣∣∣ |G (η)|C |η|λ (dη) .

But, for any |η| ≥ 2∣∣∣∣∣ (1− δ)|η| − 1

δ
+ |η|

∣∣∣∣∣ =

∣∣∣∣∣∣
|η|∑
k=2

(
|η|
k

)
(−1)kδk−1

∣∣∣∣∣∣
= δ

∣∣∣∣∣∣
|η|∑
k=2

(
|η|
k

)
(−1)kδk−2

∣∣∣∣∣∣ ≤ δ
|η|∑
k=2

(
|η|
k

)
< δ · 2|η|.

Therefore, ∥∥∥∥1

δ

(
P̂

(0)
δ G−G

)
− L0G

∥∥∥∥
C

≤ δ‖G‖2C . (3.23)

Next, by (3.4) and (3.20), one can write∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥
C

= z

∫
Γ0

∣∣∣∣∑
ξ⊂η

(
(1− δ)|ξ| − 1

)∫
Rd
G (ξ ∪ x)

∏
y∈ξ

e−φ(y−x)

×
∏
y∈η\ξ

(
e−φ(y−x) − 1

)
dx

∣∣∣∣C |η|λ (dη)

≤ z
∫

Γ0

∫
Γ0

(
1− (1− δ)|ξ|

)∫
Rd
|G (ξ ∪ x)|

∏
y∈ξ

e−φ(y−x)

×
∏
y∈η

(
1− e−φ(y−x)

)
dxC |ξ|C |η|λ (dξ)λ (dη) ,

where we have used Lemma 2.1. Note that for any |ξ| ≥ 1

1− (1− δ)|ξ| = δ

|ξ|−1∑
k=0

(1− δ)k ≤ δ |ξ|

Then, by (3.13) and (2.9), one may estimate∥∥∥∥1

δ
P̂

(1)
δ G− L1G

∥∥∥∥
C

≤ zδ
∫

Γ0

|ξ|
∫
Rd
|G (ξ ∪ x)| dxC |ξ|eCCφλ (dξ) (3.24)

≤ zδ
∫

Γ0

|ξ| (|ξ| − 1) |G (ξ)|C |ξ|−1eCCφλ (dξ) .

Since n (n− 1) ≤ 2n, n ≥ 1 and by (3.13), the latter expression can be bounded
by

δ

∫
Γ0

|G (ξ)| (2C)
|ξ|
λ (dξ) .
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Finally, Lemma 2.1, (3.15) and bound e−E
φ(y,ω) ≤ 1, imply (set Γ

(≥2)
0 :=⊔

n≥2 Γ(n))∥∥∥∥1

δ
P̂

(≥2)
δ G

∥∥∥∥
C

≤ 1

δ

∫
Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ
(≥2)
0

(zδ)
|ω| |G (ξ ∪ ω)| (3.25)

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y∈η\ξ

(
1− e−E

φ(y,ω)
)
λ (dω)C |η|λ (dη)

≤ δ
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ
(≥2)
0

z|ω| |G (ξ ∪ ω)|

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y∈η\ξ

(
1− e−E

φ(y,ω)
)
λ (dω)C |η|λ (dη)

≤ δ
∫

Γ0

∑
ξ⊂η

(1− δ)|ξ|
∫

Γ0

z|ω| |G (ξ ∪ ω)|

×
∏
y∈ξ

e−E
φ(y,ω)

∏
y∈η\ξ

(
1− e−E

φ(y,ω)
)
λ (dω)C |η|λ (dη)

≤ δ
∫

Γ0

∫
Γ0

(1− δ)|ξ| z|ω| |G (ξ ∪ ω)|

×
∫

Γ0

∏
y∈η

(
1− e−E

φ(y,ω)
)
C |η|λ (dη)λ (dω)C |ξ|dλ (ξ)

≤ δ
∫

Γ0

∫
Γ0

(1− δ)|ξ| z|ω| |G (ξ ∪ ω)| eCCφ|ω|dλ (ω)C |ξ|dλ (ξ)

≤ δ
∫

Γ0

[
(1− δ)C + zeCCφ

]|ω| |G (ω)| dλ (ω)

≤ δ
∫

Γ0

[(2− δ)C]
|ω| |G (ω)| dλ (ω) ≤ δ

∫
Γ0

|G (ω)| (2C)
|ω|
dλ (ω) .

Combining inequalities (3.23)–(3.25) we obtain the assertion of the proposition.

We will need the following results in the sequel.

Lemma 3.6 ([3, Corollary 3.8]). Let A be a linear operator on a Banach space
L with D (A) dense in L, and let ||| · ||| be a norm on D (A) with respect to which
D (A) is a Banach space. For n ∈ N let Tn be a linear ‖·‖-contraction on L
such that Tn : D (A)→ D (A), and define An = n (Tn − 1). Suppose there exist
ω ≥ 0 and a sequence {εn} ⊂ (0; +∞) tending to zero such that for n ∈ N

‖(An −A) f‖ ≤ εn|||f |||, f ∈ D (A) (3.26)

and ∣∣∣∣∣∣Tn �D(A)

∣∣∣∣∣∣ ≤ 1 +
ω

n
. (3.27)

Then A is closable and the closure of A generates a strongly continuous con-
traction semigroup on L.
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Lemma 3.7 (cf. [3, Theorem 6.5]). Let L,Ln, n ∈ N be Banach spaces, and
pn : L → Ln be bounded linear transformation, such that supn ‖pn‖ < ∞.
For any n ∈ N, let Tn be a linear contraction on Ln, let εn > 0 be such that
limn→∞ εn = 0, and put An = ε−1

n (Tn − 11). Let Tt be a strongly continuous
contraction semigroup on L with generator A and let D be a core for A. Then
the following are equivalent:

1. For each f ∈ L, T
[t/εn]
n pnf → pnTtf in Ln for all t ≥ 0 uniformly on

bounded intervals. Here and below [ · ] mean the entire part of a real num-
ber.

2. For each f ∈ D, there exists fn ∈ Ln for each n ∈ N such that fn → pnf
and Anfn → pnAf in Ln.

And now we are able to show the existence of the semigroup on LC .

Theorem 3.8. Let

z ≤ min
{
Ce−CCφ ; 2Ce−2CCφ

}
. (3.28)

Then
(
L̂,L2C

)
from Proposition 3.1 is a closable linear operator in LC and its

closure
(
L̂,D(L̂)

)
generates a strongly continuous contraction semigroup T̂t on

LC .

Proof. We apply Lemma 3.6 for L = LC ,
(
A,D(A)

)
=
(
L̂,L2C

)
, ||| · ||| := ‖ · ‖2C ;

Tn = P̂δ and An = n (Tn − 1) = 1
δ (P̂δ − 11) = L̂δ, where δ = 1

n , n ≥ 2.
Condition zeCCφ ≤ C, Proposition 3.4, and Proposition 3.5 provide that Tn,

n ≥ 2 are linear ‖ · ‖C-contractions and (3.26) holds with εn = 3
n = 3δ. On the

other hand, in addition, Proposition 3.4 applied to the constant 2C instead of
C gives (3.27) for ω = 0 under condition ze2CCφ ≤ 2C.

Moreover, since we proved the existence of the semigroup T̂t on LC one can
apply contractions P̂δ defined above by (3.12) to approximate the semigroup T̂t.

Corollary 3.9. Let (3.13) holds. Then for any G ∈ LC(
P̂ 1
n

)[nt]
G→ T̂tG, n→∞

for all t ≥ 0 uniformly on bounded intervals.

Proof. The statement is a direct consequence of Theorem 3.8, convergence
(3.17), and Lemma 3.7 (if we set Ln = L = LC , pn = 11, n ∈ N).

3.3 Finite-volume approximation of T̂t

Note that P̂δ defined by (3.12) is a formal point-wise limit of P̂Λ
δ as Λ ↑ Rd.

We have shown in (3.16) that this definition is correct. Corollary 3.9 claims
additionally that the linear contractions P̂δ approximate the semigroup T̂t, when
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δ ↓ 0. One may also show that mappings P̂Λ
δ have a similar property when

Λ ↑ Rd, δ ↓ 0.
Let us fix a system {Λn}n≥2, where Λn ∈ Bb(Rd), Λn ⊂ Λn+1,

⋃
n Λn = Rd.

We set
Tn := P̂Λn

1
n

.

Note that any Tn is a linear mapping on Bbs(Γ0). We consider also the system
of Banach spaces of measurable functions on Γ0

LC,n :=

{
G : ΓΛn → R

∣∣∣∣ ‖G‖C,n :=

∫
ΓΛn

|G(η)|C |η|λ(dη) <∞
}
.

Let pn : LC → LC,n be a cut-off mapping, namely, for any G ∈ LC

(pnG)(η) = 11ΓΛn
(η)G(η).

Then, obviously, ‖pnG‖C,n ≤ ‖G‖C . Hence, pn : LC → LC,n is a linear bounded
transformation with ‖pn‖ = 1.

Proposition 3.10. Let (3.13) hold. Then for any G ∈ LC∥∥(Tn)[nt]pnG− pnT̂tG∥∥C,n → 0, n→∞

for all t ≥ 0 uniformly on bounded intervals.

Proof. The proof of the proposition is completed by showing that all conditions
of Lemma 3.7 hold. Using completely the same arguments as in the proof of
Proposition 3.4 one gets that each Tn = P̂Λn

1
n

is a linear contraction on LC,n,

n ≥ 2 (note that for any n ≥ 2, (2.9) implies
∫

Λn

(
1 − e−φ(x)

)
dx ≤ Cφ < ∞).

Next, we set An = n(Tn − 11n) where 11n is a unit operator on LC,n and let
us expand Tn in three parts analogously to the proof of Proposition 3.5: Tn =

T
(0)
n + T

(1)
n + T

(≥2)
n . As a result, An = n(T

(0)
n − 11n) + nT

(1)
n + nT

(≥2)
n . For any

G ∈ L2C we set Gn = pnG ∈ L2C,n ⊂ LC,n. To finish the proof we have to
verify that for any G ∈ L2C

‖AnGn − pnL̂G‖C,n → 0, n→∞. (3.29)

For any G ∈ L2C

‖AnGn − pnLG‖C,n ≤‖n(T (0)
n − 11n)Gn − pnL0G‖C,n (3.30)

+ ‖nT (1)
n Gn − pnL1G‖C,n + ‖nT (≥2)

n Gn‖C,n.

Note, that pnL0G = L0Gn. Using the same arguments as in the proof of
Proposition 3.5 we obtain

‖n(T (0)
n − 11n)Gn − pnL0G‖C,n + ‖nT (≥2)

n Gn‖C,n ≤
2

n
‖G‖2C,n ≤

2

n
‖G‖2C .
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Next,

‖nT (1)
n Gn − pnL1G‖C,n

≤ z
∫

ΓΛn

∑
ξ⊂η

∫
Rd

∣∣∣∣∣
(

1− 1

n

)|ξ|
11Λn(x)− 1

∣∣∣∣∣ |G (ξ ∪ x) |

×
∏
y∈ξ

e−φ(y−x)
∏
y∈η\ξ

(
1− e−φ(y−x)

)
dxC |η|dλ (η)

≤ z
∫

ΓΛn

∫
ΓΛn

∫
Rd

[
1−

(
1− 1

n

)|ξ|
11Λn(x)

]
|G (ξ ∪ x) |

×
∏
y∈η

(
1− e−φ(y−x)

)
dxC |η∪ξ|dλ (η) dλ (ξ)

≤C
∫

ΓΛn

∫
Rd

[
1−

(
1− 1

n

)|ξ|
11Λn(x)

]
|G (ξ ∪ x) |dxC |ξ|dλ (ξ) ,

where we have used (2.9) and (3.13). Using the same estimates as for (3.24) we
may continue

≤C
∫

ΓΛn

∫
Λn

[
1−

(
1− 1

n

)|ξ|]
|G (ξ ∪ x) |dxC |ξ|dλ (ξ)

+ C

∫
ΓΛn

∫
Λcn

|G (ξ ∪ x) |dxC |ξ|dλ (ξ)

≤ 1

n
‖G‖2C,n + C

∫
Γ0

∫
Λcn

|G (ξ ∪ x) |dxC |ξ|dλ (ξ) .

But by the Lebesgue dominated convergence theorem,∫
Γ0

∫
Λcn

|G (ξ ∪ x) |dxC |ξ|dλ (ξ)→ 0, n→∞.

Indeed, 11Λcn
(x)|G (ξ ∪ x) | → 0 point-wisely and may be estimated on Γ0 × Rd

by |G (ξ ∪ x) | which is integrable:

C

∫
Γ0

∫
Rd
|G (ξ ∪ x) |dxC |ξ|dλ (ξ) =

∫
Γ0

|ξ||G(ξ)|C |ξ|dλ (ξ) ≤ ‖G‖2C <∞.

Therefore, by (3.30), the convergence (3.29) holds for any G ∈ L2C , which
completes the proof.
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