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Abstract

The evolutions of states is described corresponding to the Glauber dy-
namics of an infinite system of interacting particles in continuum. The
description is conducted on both micro- and mesoscopic levels. The mi-
croscopic description is based on solving linear equations for correlation
functions by means of an Ovsjannikov-type technique, which yields the
evolution in a scale of Banach spaces. The mesoscopic description is per-
formed by means of the Vlasov scaling, which yields a linear infinite chain
of equations obtained from those for the correlation function. Its main
peculiarity is that, for the initial correlation function of the inhomoge-
neous Poisson measure, the solution is the correlation function of such
a measure with density which solves a nonlinear differential equation of
convolution type.

1 Introduction

In the statistical theory of large systems [2], the system states are described as
probability measures on the corresponding phase space rather than pointwise,
which is typical for the standard theory of dynamical systems. For such large
systems, in order to obtain the description independent of the system size one
employs the models where the system is infinite and distributed over a non-
compact manifold with positive density. A particular case constitute models of
interacting point particles distributed over Rd, which are widely used in math-
ematical physics, ecology, sociology, etc, see [3, 6, 8–10, 13–15]. Here the states
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are probability measures on the space of the particle configurations

Γ ≡ Γ(Rd) :=
{
γ ⊂ Rd : |γ ∩K| <∞ for any compact K ⊂ Rd

}
, (1.1)

where |A| denotes the cardinality of A. The system is characterized by a collec-
tion of appropriate functions F : Γ → R, called observables. For a state µ, the
quantity

〈〈F, µ〉〉 =

∫
Γ

F (γ)µ(dγ)

is called the mean value of observable F in state µ. Then the system evolu-
tion is described as the evolution of observables obtained from the Kolmogorov
equation

d

dt
Ft = LFt, Ft|t=0 = F0, t > 0, (1.2)

where the ‘generator’ L is specified within the choice of the model. The evolution
of states is obtained from the Fokker–Planck equation

d

dt
µt = L∗µt, µt|t=0 = µ0, (1.3)

related to (1.2) by the duality

〈〈F0, µt〉〉 = 〈〈Ft, µ0〉〉. (1.4)

Note that L ought to be Markovian in order that the solutions of (1.3) be
probability measures. One of the possibilities here is to describe the evolution
pathwise—by constructing a stochastic Markov process Xµ0

t , corresponding to
the ‘generator’ L and to the initial state µ0. Then the state µt is just the
distribution law of Xµ0

t . However, for a number of important models this way
encounters serious problems and hence is rather unrealistic. Moreover, the mere
existence of the process tells not too much about the properties of the system
evolution. Thus, the main idea which we realize in this work is to describe
the system evolution as the Markov evolution of states µ0 7→ µt, not necessarily
based on the pathwise description, and accompanied with a more detailed study
of its properties. In a sense, our approach is suggested by classical works on the
Hamiltonian dynamics where the system evolution is described as the evolution
of the corresponding correlation functions obtained by solving the equation

d

dt
kt = L∆kt, kt|t=0 = k0. (1.5)

In the Hamiltonian dynamics, the analog of (1.5) is the BBGKY hierarchy. As
mentioned in [2], kinetic equations of the Hamiltonian dynamics allow one to
describe the evolution approximately but in more detail and in simpler terms.
Such kinetic equations can be obtained from equations like (1.5), provided all
necessary information about their solutions is available, see the corresponding
discussion in [2, section 6].
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In the present article, we describe the Markov evolution of states in terms of
the correlation functions on both microscopic, obtained from (1.5), and meso-
scopic levels. The latter will be done by means of a nonlinear (kinetic) equation
obtained from (1.5) in the Vlasov scaling limit. As in [8, 15], our object is the
Glauber dynamics described by the ‘generator’ (1.2) having the form

(LF )(γ) =
∑
x∈γ

[F (γ \ x)− F (γ)] (1.6)

+ κ
∫
Rd

exp
(
−
∑
y∈γ

φ(x− y)
)

[F (γ ∪ x)− F (γ)] dx.

Here the first term describes the particle death with constant rate, whereas the
second one is the birth term with activity κ > 0 and an interaction potential
φ ≥ 0, which is supposed to obey a natural integrability condition only. In
contrast to [8, 15], where κ and φ were subject to a certain constraint, here we
obtain the evolution k0 7→ kt for all κ and φ, which, however, is restricted to a
limited time interval [0, T∗). Instead of the semigroup techniques used in [8,15],
we apply Picard-like approximations and a method suggested in [4, pp. 94, 95],
which allows for constructing classical solutions in a scale of Banach spaces1

{Kα}α∈I⊂R, Kα′ ⊂ Kα′′ for α′′ < α′. Namely, in Theorem 3.6 we show that,
for any α0 ∈ R and any α < α0, there exists T (α0, α) > 0 such that, for any
t ∈ [0, T (α0, α)), there exists αt ∈ (α, α0) such that the problem (1.5) with
k0 ∈ Kα0 has a classical solution kt ∈ Kαt being the correlation function of a
certain µt. The latter fact is obtained by means of the corresponding result
of [3]. This yields the evolution µ0 7→ µt. In addition, in Theorem 3.9 we
show that, for k0(η) ≤ κ|η|, the solution obeys kt(η) ≤ κ|η| and hence can be
continued in time to the whole R+. These are the main results of Section 3. In
Section 4, we perform the Vlasov scaling and obtain the Vlasov hierarchy—a
linear evolution equation (d/dt)rt = LV rt, which we study in the same scale of
Banach spaces where the correlation functions evolve. Its main peculiarity is the
fact that if r0 is the correlation function of a nonhomogeneous Poisson measure
π%0

with density %0, then the solution rt is the correlation function for π%t with
%t satisfying a nonlinear nonlocal equation, see Lemma 4.2 and Theorem 4.4.
Finally, in Theorem 4.5 we show that the rescaled correlation functions converge
in the scaling limit to the corresponding rt. In Section 5, we briefly summarize
and compare with each other the results of Sections 3 and 4.

2 The basic notions and the model

2.1 The notions

All the details of the framework used in this paper can be found in [6,8–11,14].
We consider an infinite system of point particles located in Rd, d ≥ 1. By B(Rd)

1Further developments are known under the name Ovsjannikov’s method, see e.g. [18].
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and Bb(Rd) we denote the set of all Borel and the set of all bounded Borel subsets
of Rd, respectively. For X ∈ B(Rd), the set of n-particle configurations in X is

Γ
(0)
X = {∅}, Γ

(n)
X =

{
η ⊂ X : |η| = n

}
, n ∈ N,

where | · | denotes cardinality. Γ
(n)
X can be identified with the symmetrization

of {(x1, . . . , xn) ∈ Xn : xi 6= xj , for i 6= j}, which allows one to introduce the

corresponding topology and hence the Borel σ-algebra B(Γ
(n)
X ). The set of finite

configurations in X is

Γ0,X =
⊔
n∈N0

Γ
(n)
X .

We equip it with the topology of the disjoint union and hence with the Borel

σ-algebra B(Γ0,X). For X = Rd, we write Γ(n) and Γ0 meaning Γ
(n)
X and Γ0,X ,

respectively. The restriction of the Lebesgue product measure dx1dx2 · · · dxn to
(Γ(n),B(Γ(n))) is denoted bym(n). The Lebesgue-Poisson measure on (Γ0,B(Γ0))
is given by

λ = δ∅ +

∞∑
n=1

1

n!
m(n). (2.1)

For any X ∈ B(Rd), the restriction of λ to Γ0,X will also be denoted by λ.
The set of all configurations in Rd is

Γ = {γ ⊂ Rd : |γ ∩ Λ| <∞ for all Λ ∈ Bb(Rd)}. (2.2)

We equip it with the vague topology—the weakest topology in which all the
maps

Γ 3 γ 7→ 〈γ, f〉 =
∑
x∈γ

f(x), f ∈ C0(Rd),

are continuous. Here C0(Rd) stands for the set of all continuous f : Rd → R,
which have compact supports. The vague topology on Γ admits a metriza-
tion, which turns it into a complete and separable metric (Polish) space, see
e.g. [12]. By B(Γ) we denote the corresponding Borel σ-algebra. It turns
out that the measurable space (Γ,B(Γ)) is the projective limit of the family
{(Γ0,Λ,B(Γ0,Λ))}Λ∈Bb(Rd). Then the Poisson measure π on (Γ,B(Γ)) is defined

as the projective limit of the family {πΛ}Λ∈Bb(Rd), where

πΛ = exp(−m(Λ))λ, (2.3)

m(Λ) being the Lebesgue measure of Λ. The Poisson measure π% corresponding
to the density % : R → R+ is introduced by means of the measure λ%, defined
as in (2.1) with m replaced by m%, where, for Λ ∈ Bb(Rd),

m%(Λ) =

∫
Λ

%(x)dx, (2.4)

which is supposed to be finite. Then π% is defined by its projections

πΛ
% = exp(−m%(Λ))λΛ

% . (2.5)
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For a measurable f : Rd → R and η ∈ Γ0, the Lebesgue-Poisson exponent is

e(f, η) :=
∏
x∈η

f(x), e(f, ∅) := 1. (2.6)

Clearly e(f, ·) ∈ L1(Γ0, dλ) for any f ∈ L1(Rd), and∫
Γ0

e(f, η)λ(dη) = exp

{∫
Rd
f(x)dx

}
. (2.7)

A set M ∈ B(Γ0) is said to be bounded if

M ⊂
N⊔
n=0

Γ
(n)
Λ (2.8)

for some Λ ∈ Bb(Rd) and N ∈ N. By Bbs(Γ0) we denote the set of all bounded
measurable functions G : Γ0 → R, which have bounded supports. That is, each
such G is the zero function on Γ0 \M for some bounded M . Noteworthy, any
measurable G : Γ0 → R is in fact a sequence of measurable symmetric functions
G(n) : (Rd)n → R.

For Λ ∈ Bb(Rd) and γ ∈ Γ, by γΛ we denote γ ∩ Λ; thus, γΛ ∈ Γ0,Λ.
A measurable function F : Γ → R is called a cylinder function if there exist
Λ ∈ Bb(Rd) and a measurable G : Γ0,Λ → R such that F (γ) = G(γΛ) for all
γ ∈ Γ. By Fcyl(Γ) we denote the set of all cylinder functions. For γ ∈ Γ, by
writing η b γ we mean that η ⊂ γ and η is finite, i.e., η ∈ Γ0. For G ∈ Bbs(Γ0),
we set

(KG)(γ) =
∑
ηbγ

G(η), γ ∈ Γ. (2.9)

It is known that K is linear and positivity preserving, and maps Bbs(Γ0) into
Fcyl(Γ) (see e.g. [11]).

ByM1
fm(Γ) we denote the set of all probability measures on (Γ,B(Γ)) which

have finite local moments, that is, for which∫
Γ

|γΛ|nµ(dγ) <∞ for all n ∈ N and Λ ∈ Bb(Rd). (2.10)

A measure ρ on (Γ0,B(Γ0)) is said to be locally finite if ρ(M) < ∞ for every
bounded M ⊂ Γ0. By Mlf(Γ0) we denote the set of all such measures. For
Λ ∈ Bb(Rd), by pΛ we denote the map Γ 3 γ 7→ pΛ(γ) = γΛ. Then, for
A ⊂ Γ0,Λ, we write p−1

Λ (A) = {γ ∈ Γ : pΛ(γ) ∈ A}. A measure µ ∈ M1
fm(Γ) is

said to be locally absolutely continuous with respect to the Poisson measure π
if, for every Λ ∈ Bb(Rd), µΛ := µ ◦ p−1

Λ is absolutely continuous with respect to
πΛ, see (2.3).

Let M ⊂ Γ0 be bounded, and let IM be its indicator function on Γ0. Then
IM is in Bbs(Γ0) and hence one can apply (2.9). For µ ∈M1

fm(Γ), let

ρµ(M) =

∫
Γ

(KIM )(γ)µ(dγ), (2.11)
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which uniquely determines a measure ρµ ∈Mlf(Γ0)). It is called the correlation
measure for µ. This defines the map K∗ : M1

fm(Γ) → Mlf(Γ0)) such that
K∗µ = ρµ. In particular, K∗π = λ. It is known that, see [11, Proposition 4.14],
ρµ is absolutely continuous with respect to λ if µ is locally absolutely continuous
with respect to π. In this case, we have that for any Λ ∈ Bb(Rd),

kµ(η) =
dρµ
dλ

(η) =

∫
Γ0,Λ

dµΛ

dπΛ
(η ∪ γ)πΛ(dγ). (2.12)

The Radon–Nikodym derivative kµ is called the correlation function correspond-
ing to the measure µ.

Finally, we mention the following integration rule, c.f. [8, Lemma 2.1],∫
Γ0

∑
ξ⊂η

H(ξ, η \ ξ, η)λ(dη) =

∫
Γ0

∫
Γ0

H(ξ, η, η ∪ ξ)λ(dξ)λ(dη), (2.13)

which holds for any appropriate function H if both parts of (2.13) are finite.

2.2 The model

Let φ : Rd → R+ := [0,+∞) be such that φ(x) = φ(−x) and be integrable in
the following sense

cφ :=

∫
Rd

(
1− e−φ(x)

)
dx <∞. (2.14)

For γ ∈ Γ, we set

Eφ(x, γ) =
∑
y∈γ

φ(x− y), (2.15)

with the possibility that Eφ(x, γ) = +∞ for some γ. In the model we consider,
the dynamics of the observables is defined by the ‘generator’ (1.6) with φ just
mentioned and κ > 0 being the birth activity parameter. The action of the
‘generator’ (1.6) on F ∈ Fcyl(Γ) is well-defined. Indeed, for any F ∈ Fcyl(Γ), one
finds Λ ∈ Bb(Rd) such that F (γ\x) = F (γ∪x) = F (γ) for any x ∈ Λc := Rd\Λ.
Thus, the sum and the integral in (1.6) are finite.

Following the general scheme developed in [13] one constructs the evolution
of the quasi-observables, which are functions on Γ0. This evolution is obtained
as a solution to the following Cauchy problem

dGt
dt

= L̂Gt, Gt|t=0 = G0, (2.16)

where L̂ = K−1LK is the so called symbol of L, which has the form

(L̂G)(η) = −|η|G(η) + κ
∑
ξ⊂η

∫
Rd
e(tx, η \ ξ)e(τx, ξ)G(ξ ∪ x)dx, (2.17)

where e(tx, ·) is defined in (2.6), and

τx(y) = e−φ(x−y), tx(y) = τx(y)− 1, (2.18)
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see, e.g., [6, 15]. Clearly, the action of L̂ on G ∈ Bbs(Γ0) is well-defined. Its
extension to wider classes of G will be done in a while.

For a measurable function k : Γ0 → R and G ∈ Bbs(Γ0), we define

〈〈G, k〉〉 =

∫
Γ0

G(η)k(η)λ(dη). (2.19)

This pairing can be extended to the corresponding classes of G and k. Then
(2.16) and (2.19) lead to the following (dual) Cauchy problem

dkt
dt

= L∆kt, kt|t=0 = k0. (2.20)

The action of L∆ is obtained by means of (2.13) from

〈〈L̂G, k〉〉 = 〈〈G,L∆k〉〉,

and from (2.19) and (2.17). It thus has the form (see, e.g., [6, 15])

(L∆k)(η) =− |η|k(η) (2.21)

+ κ
∑
x∈η

e(τx, η \ x)

∫
Γ0

e(tx, ξ)k(η \ x ∪ ξ)λ(dξ).

Of course, the case of a special interest in (2.20) is where k0 is the correlation
function of a certain µ0 ∈ M1

fm(Γ), see (2.12). However, the mere existence of
the solution kt does not guarantee that this kt is a correlation function.

In [13–15], the solution G0 7→ Gt of (2.16), for all t ≥ 0 and ‘small’ κ
and cφ, was obtained in a certain Banach space by means of the construction
of a C0-semigroup based on perturbation methods. Then the evolution of the
correlation functions k0 7→ kt was obtained in the weak sense, in which kt is
defined by k0 via the relation

〈〈G0, kt〉〉 = 〈〈Gt, k0〉〉. (2.22)

Regarding the problems (2.16) and (2.20), in the present article we realize the
following program:

• Show that (2.16) has a unique classical solution for all κ > 0 and cφ,
which we do in Theorem 3.1 for t belonging to a bounded interval.

• Show that the solution of (2.16) exists for all t ≥ 0 if κcφ < 1/e, which
we do in Theorem 3.2.

• Show that (2.20) has a unique classical solution kt for all κ > 0 and cφ,
being the correlation function of a certain µt ∈M1

fm(Γ), which yields the
evolution of states µ0 7→ µt. We do this in Theorem 3.6 for t belonging to
a bounded interval.

• Show that the solution of (2.16) exists for all t ≥ 0 if k0(η) ≤ κ|η|, which
we do in Theorem 3.9.

These results give the microscopic evolution of states corresponding to (1.6).
A similar program concerning the mesoscopic evolution is formulated and real-
ized in Section 4 below.
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3 The microscopic description

3.1 The evolution of quasi-observables

First we study the problem (2.16), (2.17). For α ∈ R, we consider the Banach
space

Gα = L1(Γ0, e
−α|·|dλ), (3.1)

that is, G ∈ Gα if

‖G‖α :=

∫
Γ0

exp(−α|η|) |G(η)|λ(dη) <∞. (3.2)

We will seek the solution of (2.16), (2.17) as the limit of {G(n)
t }n∈N0

⊂ Gα,

where G
(0)
t = G0 and

G
(n)
t = G0 +

∫ t

0

L̂G(n−1)
s ds, n ∈ N. (3.3)

The latter can be iterated to give

G
(n)
t = G0 +

n∑
m=1

1

m!
tmL̂mG0. (3.4)

We have τx(y) ≤ 1 since φ ≥ 0, see (2.18); hence, from (2.17)∣∣L̂G(η)
∣∣ ≤ |η||G(η)|+ κ

∑
ξ⊂η

∫
Rd
e(|tx|, η \ ξ)|G(ξ ∪ x)|dx

:= H1(η) +H2(η).

For any α′, α′′ such that α′ < α′′, we have

‖H1‖α′′ =

∫
Γ0

|η| exp (−(α′′ − α′)|η|) |G(η)| exp (−α′|η|)λ(dη) (3.5)

≤ ‖G‖α′
(α′′ − α′)e

,

where we have used the following obvious estimate

|ξ| exp(−(α′′ − α′)|ξ|) ≤ 1

(α′′ − α′)e
.
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Furthermore,

‖H2‖α′′ = κ
∫

Γ0

∑
ξ⊂η

∫
Rd
e(|tx|; η \ ξ) exp(−α′′|η \ ξ| − α′′|ξ|)|G(ξ ∪ x)|dxλ(dη)

= κ
∫

Γ0

∫
Γ0

∫
Rd
e(|tx|; η) exp(−α′′|η| − α′′|ξ|)|G(ξ ∪ x)|dxλ(dξ)λ(dη)

≤ κ
∫
Rd

∫
Γ0

exp(−α′′|ξ|)|G(ξ ∪ x)|dxλ(dξ)

× sup
y∈R

{∫
Γ0

e(|ty|; η) exp(−α′′|η|)λ(dη)

}
= κ exp

(
cφe
−α′′

)∫
Γ0

∑
x∈ξ

exp (−α′′|ξ \ x|) |G(ξ)|λ(dξ)

= κ exp
(
α′′ + cφe

−α′′
)∫

Γ0

|ξ| exp (−α′′|ξ \ x|) |G(ξ)|λ(dξ)

= κ exp
(
α′′ + cφe

−α′′
) ‖G‖α′

(α′′ − α′)e
,

where we have used also (2.7) and (2.13). By means of the latter estimate and
(3.5) we finally get

‖L̂G‖α′′ ≤
‖G‖α′

(α′′ − α′)e

[
1 + κ exp

(
α′′ + cφe

−α′′
)]
. (3.6)

From (3.6) we see that L̂ can be defined as a bounded linear operator L̂ : Gα′ →
Gα′′ with the norm

‖L̂‖α′α′′ ≤
1

(α′′ − α′)e

[
1 + κ exp

(
α′′ + cφe

−α′′
)]
. (3.7)

Given α0 ∈ R, α > α0, m ∈ N, and l = 0, . . . ,m, we take αl = α0 + lε,
ε = (α− α0)/m. Then by (3.7) we get

‖L̂m‖α0α ≤ ‖L̂‖α0α1 · · · ‖L̂‖αm−1α ≤ (mM)m, (3.8)

where

M =
1

(α− α0)e

[
1 + κ exp

(
α+ cφe

−α0
)]
.

Put

T (α, α0) =
α− α0

1 + κ exp (α+ cφe−α0)
. (3.9)

Note that

T (α, α0) <
1

κ
exp

(
log(α− α0)− (α− α0)− α0 − cφe−α0

)
(3.10)

≤ 1

κ
exp (−1− log cφ − 1) =

1

e2κcφ
.
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Hence, we can set
T∗:= sup

α∈R
sup
α0<α

T (α, α0) <∞. (3.11)

Our main result concerning the problem (2.16), (2.17) is the following statement.

Theorem 3.1. Let α0 and α be any real numbers such that α0 < α. Then the
problem (2.16), (2.17) with G0 ∈ Gα0

has a unique classical solution Gt ∈ Gα
on the time interval t ∈ [0, T (α, α0)).

Proof. Applying (3.8) in (3.4) we get that the sequence {G(n)
t }n∈N0 converges

in Gα uniformly on any [0, T ] ⊂ [0, T (α, α0)). In fact, one can show that for
any α1 ∈ (α0, α) this sequence converges in Gα1

to some G̃t uniformly on any
[0, T ] ⊂ [0, T (α1, α0)). Note that T (α, α0) continuously depend on α, therefore,
we may consider any [0, T ] ⊂ [0, T (α, α0)). Since ‖·‖α ≤ ‖·‖α′ , G̃t coincide with
Gt in Gα. Hence, Gt belongs to any Gα1 , in particular, Gt is in the domain of the

(unbounded) operator L̂ in the space Gα. By (3.8), the sequence { ddtG
(n)
t }n∈N0

also converges in Gα uniformly on any [0, T ] ⊂ [0, T (α, α0)). Therefore, Gt is
a solution of (2.16), (2.17). The uniqueness can be shown in the same way as
in [18, p. 16, 17].

The statement just proven describes systems with any κ and cφ. It is,
however, possible to get more if one imposes appropriate restrictions on these
parameters. Namely, the dynamics in this case is described by a C0-semigroup
S(t) : Gα → Gα, where the space is the same as in (3.1). Set

G+
α = {G ∈ Gα : G ≥ 0}, Hα = {G ∈ Gα : | · |G ∈ Gα}, (3.12)

and also
H+
α = Hα ∩ G+

α . (3.13)

Theorem 3.2. Assume that
κcφ < 1/e, (3.14)

and let αφ = log cφ. Then, for every G0 ∈ Hαφ , the problem (2.16), (2.17)
has a unique classical solution Gt ∈ Gαφ , t ≥ 0, given by Gt = S(t)G0, where
{S(t)}t≥0 is a C0-semigroup on Gαφ .

Remark 3.3. (a) The above theorem is true not only for α = αφ but also for
α ∈ (αφ − δ, αφ + δ) for some δ > 0, see the proof below. (b) The condition
(3.14) is well-known, see [16, Chapter 4]. It provides the convergence of cluster
expansions for the gas of classical particles with the pair-wise repulsion U(x, y) =
φ(x − y). (c) As a matter of fact, the condition (3.14), in fact, coincides with
the conditions obtained in [8] where the dynamics defined by a semigroup has
been constructed by the completely different method.

In the proof of Theorem 3.2 we use two statements. The first one is an
adaptation of [1, Corollary 5.16].
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Proposition 3.4. Given α ∈ R, assume that A is the generator of a positive
C0-semigroup in Gα and B = B1 − B2 be such that A + B1 + B2 is also the
generator of a positive C0-semigroup. Then A+B generates a C0-semigroup in
Gα.

For η ∈ Γ0, we set Ξe(η) = {ξ ⊂ η : |η \ ξ| is even} and Ξo(η) = {ξ ⊂ η :
|η \ ξ| is odd}, and thereby

(B+G)(η) = κ
∑

ξ∈Ξe(η)

∫
Rd
e(τx, ξ)e(tx, η \ ξ)G(ξ ∪ x)dx, (3.15)

(B−G)(η) = −κ
∑

ξ∈Ξ0(η)

∫
Rd
e(τx, ξ)e(tx, η \ ξ)G(ξ ∪ x)dx. (3.16)

We also set
(AG)(η) = −|η|G(η), (3.17)

and

(L̂+G)(η) = ((A+B+ +B−)G)(η) (3.18)

= −|η|G(η) + κ
∑
ξ⊂η

∫
Rd
e(τx; ξ)e(|tx|; η \ ξ)G(ξ ∪ x)dx.

Clearly, for any α, A with Dom(A) = Hα generates a positive semigroup of
contractions in Gα. All the three operators −A, B± are positive. The second
statement we need to prove Theorem 3.2 is an adaptation to our case of [17,
Theorem 2.7].

Proposition 3.5. Let A and B± be as above. Suppose that there exist real α
and α′, α′ < α, such that

∀G ∈ H+
α :

∫
Γ0

(L̂+G)(η) exp(−α|η|)λ(dη) ≤ 0, (3.19)

∀G ∈ H+
α′ :

∫
Γ0

(L̂+G)(η) exp(−α′|η|)λ(dη) (3.20)

≤ C
∫

Γ0

G(η) exp(−α′|η|)λ(dη)− ε
∫

Γ0

|η|G(η) exp(−α|η|)λ(dη)

for some positive C and ε. Then the closure of L̂+ in Gα generates a positive
C0-semigroup in this space.

Proof of Theorem 3.2. Given α, for G ∈ H+
α , similarly as in (3.7) we get∫

Γ0

(L̂+G)(η) exp(−α|η|)λ(dη) (3.21)

≤−
(
1− κ exp(α+ cφe

−α)
) ∫

Γ0

|η|G(|η|) exp(−α|η|)λ(dη).

11



By (3.14), we have κ exp (αφ + cφe
−αφ) < 1; hence, one can pick small enough

δ > 0 such that κ exp (α+ cφe
−α) < 1 for any α ∈ (αφ− δ, αφ+ δ). Then we fix

such α and obtain (3.19) as the coefficient in the last line in (3.21) is negative.
Next we pick σ > 0 such that α′ := α − σ is also in (αφ − δ, αφ + δ). For this
α′, LHS(3.20) ≤ 0 for G ∈ H+

α′ . On the other hand,∫
Γ0

|η|G(|η|) exp(−α|η|)λ(dη) =

∫
Γ0

|η|e−σ|η|G(|η|) exp(−α′|η|)λ(dη)

≤ 1

eσ

∫
Γ0

G(|η|) exp(−α′|η|)λ(dη),

which yields that RHS(3.20) ≥ 0 for any C and sufficiently small ε. Hence, we
can apply Proposition 3.5, by which the closure of L̂+ in Gα generates a positive
C0-semigroup. But, under the condition (3.14), L̂+ is closed as A is closed.
Thus, we are able now to apply Proposition 3.4 and complete the proof.

3.2 The evolution of correlation functions and states

In this subsection, the problem (2.20), (2.21) will be studied in the Banach
space, cf. (3.1),

Kα = L∞(Γ0, e
α|·|dλ) (3.22)

which we equip with the norm

‖k‖α = ess sup {|k(η)| exp(α|η|) : η ∈ Γ0} . (3.23)

For the sake of convenience, here we use the same notation ‖ · ‖α as in (3.2),
which, however, should not cause any ambiguity as it will always be clear from
the context which norm is meant.

Recall thatM1
fm(Γ) stands for the set of probability measures on Γ obeying

(2.10). Given α ∈ R, by Mα we denote the set of all those µ ∈ M1
fm(Γ) whose

correlation functions, defined in (2.12), belong to Kα. The main result of this
section is contained in the following statement.

Theorem 3.6. Fix any α0 ∈ R and any α < α0, and let T (α0, α) be as in (3.9).
Then, for every t ∈

(
0, T (α0, α)

)
, there exists αt ∈ (α, α0) such that the problem

(2.20) with k0 ∈ Kα0
has a unique classical solution kt ∈ Kαt . This solution is

the correlation function of a certain (unique) µt ∈Mαt , which yields the evolu-
tion of states µ0 7→ µt of the considered model in the scale {Mαt}t∈[0,T (α0,α)).

Proof. First we prove the existence of the solution kt in the Banach space Kαt
and then show that it is a correlation function.

As in (3.3), we seek the solution of (2.20) as the limit of the sequence

{k(n)
t }n∈N0

, where

k
(n)
t = k0 +

∫ t

0

L∆k(n−1)
s ds, k

(0)
t = k0, (3.24)

12



which yields, cf. (3.4),

k
(n)
t = k0 +

n∑
m=1

1

m!
tm
(
L∆
)m

k0. (3.25)

By (3.23), we have
|k(η)| ≤ ‖k‖α exp(−α|η|).

Thus, for α′ and α′′ as in (3.6), we get from (2.21)

∣∣(L∆k)(η)
∣∣ ≤‖k‖α′′ exp(−α′|η|)

{
|η| exp(−(α′′ − α′)|η|)

+ κ exp (α′′ − (α′′ − α′)|η|)
∑
x∈η

∫
Γ0

e(|tx|, ξ) exp(−α′′|ξ|)λ(dξ)

}
.

Similarly as in producing (3.6) we then get from the latter

‖L∆k‖α′ ≤
‖k‖α′′

(α′′ − α′)e

[
1 + κ exp

(
α′′ + cφe

−α′′
)]
. (3.26)

Hence, L∆ can be defined as a bounded linear operator L∆ : Kα′′ → Kα′ with
the norm

‖L∆‖α′′α′ ≤
1

(α′′ − α′)e
[
1 + κ exp

(
α0 + cφe

−α)] . (3.27)

Now we fix t ∈ (0, T (α0, α)), and for α̃ ∈ (α, α0) and a given m ∈ N, set
αl = α0 − lε, ε = (α0 − α̃)/m. Then, by (3.27),

‖
(
L∆
)m ‖α0α̃ ≤ mm

[
1 + κ exp (α0 + cφe

−α)

(α0 − α̃)e

]m
(3.28)

=
(m
e

)m(α0 − α
α0 − α̃

)m
1

[T (α0, α)]m
,

see (3.9). Pick δ > 0 such that t+ δ < T (α0, α). Then for

α < αt ≤ α0

(
1− t+ δ

T (α0, α)

)
+ α

t+ δ

T (α0, α)
, (3.29)

we have from (3.28)

‖
(
L∆
)m ‖α0αt ≤

(
m

(t+ δ)e

)m
.

Applying the last estimate in (3.24) we obtain the convergence of the sequence

{k(n)
t }n∈N0

in Kαt , which yields the existence and uniqueness of the solution kt
similarly to that in the proof of Theorem 3.1.

13



Now let us show that the solution just constructed is such that, for any
t ∈ (0, T (α0, α)), there exists µt ∈M1

fm(Γ) such that, cf. (2.12),

kt(η) =
d(K∗µt)

dλ
(η), (3.30)

if k0 ∈ Kα0 is the correlation function of the corresponding µ0 ∈ M1
fm(Γ).

Under the condition (2.14), there exists a proper S ⊂ Γ and an S-valued process
with sample paths in the Skorokhod space DS(R+) associated with L, see [3,
Theorem 2.13]. This yields the evolution µ0 7→ µt, where µt is the law of
the process, and hence the evolution of the corresponding correlation functions
kµ0
7→ kµt , which satisfy (2.20). By the uniqueness just established, kt = kµt

for all t ∈ [0, T (α0, α)), which yields (3.30) and hence completes the proof.

Remark 3.7. Theorem 3.6 establishes the evolution k0 7→ kt which takes places
in the scale of spaces Kαt . It is clear from the proof that all such spaces are
contained in Kα, that is, the mentioned theorem can be formulated similarly as
Theorem 3.1.

Another our remark addresses the regularity of the solutions kt. Instead of
(3.22) let us consider

K̃α = {k ∈ C(Γ0 → R) : ‖k‖α <∞}, (3.31)

where this time
‖k‖α = sup {|k(η)| exp(α|η|) : η ∈ Γ0} . (3.32)

Remark 3.8. Let α0, α, and T (α0, α) be as in Theorem 3.6. Suppose in addition

that the function φ is continuous. Then the problem (2.20) with k0 ∈ K̃α0
has

a unique classical solution kt ∈ K̃αt with t ∈ [0, T (α0, α)), where αt is the same
as in Theorem 3.6.

Now we show that the evolution of kt obtained in Theorems 3.1 and 3.6 can
be continued in time to the whole R+. Recall that the space Kα was defined in
(3.22) and κ > 0 is the birth activity parameter, see (1.6). Set

ακ = − logκ, Kκ := {k ∈ Kακ : ‖k‖ακ ≤ 1}. (3.33)

Theorem 3.9. The solution of the problem (2.20) with k0 ∈ Kκ can be con-
tinued to any positive t. Moreover, for every t ≥ 0, the solution kt is also in
Kκ .

Note that a correlation function k is in Kκ if and only if k(η) ≤ κ|η| for
λ-a.a. η. Thus, we state that k0(η) ≤ κ|η| implies kt(η) ≤ κ|η| for all t ≥ 0.

The proof of Theorem 3.9 is based on the following estimate.

Lemma 3.10. Suppose that k0 ∈ Kκ. For α < ακ, let kt be the solution
described by Theorem 3.6. Then, for all t ∈ [0, T (ακ , α)), we have that kt is
also in Kκ.
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Proof. For G ∈ Bbs(Γ0) and kt as in Theorem 3.6, we set

ϕ(t) = 〈〈G, kt〉〉 =

∫
Γ

(KG)(γ)µt(dγ), (3.34)

where µt is the corresponding state. According to (1.6), we have that

d

dt
ϕ(t) =

∫
Γ

(LKG)(γ)µt(dγ)

=

∫
Γ

∑
x∈γ

[(KG)(γ \ x)− (KG)(γ)]µt(dγ) (3.35)

+ κ
∫

Γ

∫
Rd

[(KG)(γ ∪ x)− (KG)(γ)] exp
(
−Eφ(x, γ)

)
µt(dγ).

By (2.9),

(KG)(γ \ x)− (KG)(γ) =
∑
ξbγ\x

G(ξ)−
∑
ξbγ\x

G(ξ)−
∑
ξbγ\x

G(ξ ∪ x)

= −
∑
ξbγ\x

G(ξ ∪ x),

and

(KG)(γ ∪ x)− (KG)(γ) =
∑
ξbγ

G(ξ ∪ x) +
∑
ξbγ

G(ξ)−
∑
ξbγ

G(ξ) =
∑
ξbγ

G(ξ ∪ x).

Here all sums are finite since G ∈ Bbs(Γ0).
Applying these equalities in (3.35) together with the following∑

x∈γ

∑
ξbγ\x

G(ξ ∪ x) =
∑
ξbγ

∑
x∈ξ

G(ξ) =
∑
ξbγ

|ξ|G(ξ),

we arrive at

d

dt
ϕ(t) =−

∫
Γ0

|η|G(η)kt(η)λ(dη) (3.36)

+ κ
∫

Γ

(∫
Rd

∑
ξbγ

G(ξ ∪ x)dx

)
exp

(
−Eφ(x, γ)

)
µt(dγ).

Assume now that G is a positive element of L1(Γ0, dλ). As φ in (2.15) is also
positive, the second line in (3.36) can be estimated

κ
∫

Γ

(∫
Rd

∑
ξbγ

G(ξ ∪ x)dx

)
exp

(
−Eφ(x, γ)

)
µt(dγ)

≤κ
∫
Rd

(∫
Γ

∑
ξbγ

G(ξ ∪ x)µt(dγ)

)
dx = κ

∫
Rd

(∫
Γ0

G(η ∪ x)kt(η)λ(dη)

)
dx

=κ
∫

Γ0

G(η)
∑
x∈η

kt(η \ x)λ(dη).
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In obtaining the latter equality we have used (2.13). Applying this estimate in
(3.36) we arrive at

d

dt
kt(η) ≤ −|η|kt(η) + κ

∑
x∈η

kt(η \ x), (3.37)

which holds for λ-almost all η ∈ Γ0. By standard methods we get from this

kt(η) ≤ k0(η)e−|η|t + κ
∫ t

0

e−(t−s)|η|
∑
x∈η

ks(η \ x)ds. (3.38)

As a correlation function, kt(η) ≥ 0 for λ-almost all η. For a fixed t and |η| = n,
assume that ks(ξ) ≤ κ|ξ| for all s ∈ [0, t] and all |ξ| = n− 1. As we also assume
k0(η) ≤ κ|η|, by (3.38) ks(η) ≤ κ|η|, also for all s ∈ [0, t]. Thus, kt ∈ Kκ .

Proof of Theorem 3.9. Take any α < ακ . Then the solution kt exists in Kα for
t ∈ [0, T (ακ , α)). If k0 is in Kκ , by Lemma 3.10 kt is also in Kκ . We take any
τ ∈ [0, T (ακ , α)) and consider the problem (2.20) for k̃t with the initial condition
k̃0 = kτ ∈ Kκ . This gives the continuation in question to [0, τ+T (ακ , α)). Then
we repeat the above arguments.

4 The mesoscopic description

The mesoscopic description of the dynamics of our model will be conducted
in the Vlasov scaling framework, see [5] where the detailed presentation of this
approach and the most updated related bibliography can be found. Our program
in this section is as follows:

• Derive the Vlasov hierarchy as the (Vlasov) scaling limit of (2.20) and
prove the existence of its solutions, see (4.12) and Proposition 4.1.

• Then derive the Vlasov equation from the Vlasov hierarchy and prove the
existence of its solutions, see (4.15) and Theorem 4.4.

• Prove the convergence of the rescaled correlation functions to the solutions
of the Vlasov hierarchy, see Theorem 4.5.

4.1 The Vlasov hierarchy

In the Vlasov scaling limit, which is achieved by letting ε → 0, the particle
density is supposed to diverge whereas the interaction gets weak and of long
range. Thus, we assume that the correlation function k(ε) of the particle system
we consider depends of the scaling parameter and diverges in such a way that
the renormalized function

k(ε)
ren(η) = ε|η|k(ε)(η), (4.1)
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has a finite limit, which we denote by r. The evolution of yet not rescaled
functions is described by the equation (2.20) in which the generator L∆

ε contains
εφ and ε−1κ in place of φ and κ, respectively. Thus, the evolution of the rescaled
functions (4.1) is described by the equation

d

dt
k

(ε)
t,ren = Lε,renk

(ε)
t,ren, k

(ε)
t,ren|t=0 = k

(ε)
0,ren, (4.2)

where
Lε,ren = RεL

∆
ε R
−1
ε , (Rεk) (η) := ε|η|k(η). (4.3)

By (2.21), we thus have

(Lε,renk) (η) =− |η|k(η) (4.4)

+ κ
∑
x∈η

e(τ (ε)
x , η \ x)

∫
Γ0

e(ε−1t(ε)x , ξ)k(η \ x ∪ ξ)λ(dξ),

with
τ (ε)
x (y) := exp [−εφ(x− y)] , t(ε)x := τ (ε)

x − 1. (4.5)

Note that, for small enough ε, R−1
ε k might not be a correlation function, even

if k is, see (4.3).
For any α0, α′, α′′, and α such that α < α′ < α′′ < α0, as in (3.27) we get

‖Lε,ren‖α′′α′ ≤
1

(α′′ − α′)e

[
1 + κ exp

(
α0 + c

(ε)
φ e−α

)]
, (4.6)

where, cf. (2.14),

c
(ε)
φ = ε−1

∫
Rd

(
1− e−εφ(x)

)
dx. (4.7)

Suppose now that φ is in L1(Rd) and set

〈φ〉 =

∫
Rd
φ(x)dx. (4.8)

Recall that we still assume φ ≥ 0. Then

‖Lε,ren‖α′′α′ ≤ sup
ε>0
{RHS(4.6)} (4.9)

=
1

(α′′ − α′)e
[
1 + κ exp

(
α0 + 〈φ〉e−α

)]
.

Now let us informally pass in (4.4) to the limit ε → 0. We then obtain the
following operator

(LV k) (η) =− |η|k(η) (4.10)

+ κ
∑
x∈η

∫
Γ0

e(−φ(x− ·), ξ)k(η \ x ∪ ξ)λ(dξ).
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It certainly obeys

‖LV ‖α′′α′ ≤
1

(α′′ − α′)e
[
1 + κ exp

(
α0 + 〈φ〉e−α

)]
, (4.11)

and hence along with the problem (4.2) we can consider

d

dt
rt = LV rt, rt|t=0 = r0, (4.12)

which is called the Vlasov hierarchy for the Glauber dynamic we consider. Set,
cf. (3.9),

T̃ (α0, α) :=
α0 − α

1 + κ exp (α0 + 〈φ〉e−α)
≤ T (α0, α). (4.13)

The latter inequality holds since c
(ε)
φ ≤ 〈φ〉, see (4.7) and (4.8). Repeating the

arguments used in the proof of Theorem 3.6 we obtain the following

Proposition 4.1. Let φ, α0, α, be as in Theorem 3.6 and T̃ (α0, α) be as in

(4.13). Then the problem (4.2) (resp. (4.12)) with any ε > 0 and k
(ε)
0,ren ∈ Kα0

(resp. r0 ∈ Kα0
) has a unique classical solution k

(ε)
t,ren ∈ Kα (resp. rt ∈ Kα)

with t ∈
[
0, T̃ (α0, α)

)
.

Note that the passage from (4.4) to (4.10) was only ‘informal’, so we have

no information how ‘close’ is rt to k
(ε)
t,ren. Another observation is that (4.12) has

a very special solution, which we obtain now.

4.2 The Vlasov equation

For the potential φ and an appropriate function g, we write

(φ ∗ g)(x) =

∫
Rd
φ(x− y)g(y)dy. (4.14)

Let us consider in L∞(Rd) the following problem, cf. [5, Example 8],

d

dt
%t(x) = −%t(x) + κ exp (−(φ ∗ %t)(x)) , %t|t=0 = %0. (4.15)

Given α ∈ R, we denote

∆α =
{
% ∈ L∞(Rd) : ‖%‖L∞(Rd) ≤ e−α

}
, (4.16)

∆+
α =

{
% ∈ ∆α : %(x) ≥ 0 a. e.

}
.

Lemma 4.2. Suppose that, for some α0 ∈ R and T > 0, the problem (4.15) with
%0 ∈ ∆+

α0
has a unique classical solution %t ∈ ∆+

α0
on the time interval [0, T ).

Then the solution rt ∈ Kα, α < α0, of the problem (4.12), as in Proposition 4.1,
with r0(η) = e(%0, η) ∈ Kα0 has the form

rt(η) = e(%t, η) =
∏
x∈η

%t(x), (4.17)

and hence remains in Kα0
.
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Proof. First of all we note that e(%, ·) ∈ Kα0
if and only if % ∈ ∆α0

, see (3.23).
Now set r̃t = e(%t, ·) with %t solving (4.15). This r̃t solves (4.12), which can
easily be checked by computing d/dt and employing (4.15). In view of the
uniqueness as in Proposition 4.1, we then have r̃t = rt on the time interval
where both solutions exist.

Remark 4.3. As (4.17) is the correlation function for the Poisson measure π%t ,
see (2.4) and (2.5), the property established by the above lemma can be called
the chaos preservation. Indeed, the most chaotic state of the system is the free
state described by a Poisson measure.

Let us show now that the problem (4.15) does have the solution we need
(cf. [7, Theorem 3.3]). In a standard way, this problem can be transformed into
the following integral equation

%t(x) = %0(x)e−t + κ
∫ t

0

e−(t−s) exp (−(φ ∗ %s)(x)) ds. (4.18)

Following classical Picard’s scheme we seek the solution as the limit of the

iterative sequence {%(n)
t }n∈N0 , defined as

%
(n)
t (x) = %0(x)e−t + κ

∫ t

0

e−(t−s) exp
(
−(φ ∗ %(n−1)

s )(x)
)
ds, n ∈ N, (4.19)

and %
(0)
t = %0. Clearly %

(n)
t ≥ 0 for all n ∈ N0. Thus, we have to show that

%
(n)
t (x) ≤ e−α0 , at least for some t > 0. By the induction over n, we see that

this holds, for all t > 0, if
κ ≤ e−α0 . (4.20)

Now let us show that {%(n)
t }n∈N0 is a Cauchy sequence in L∞(Rd), assuming

%
(n)
s ∈ ∆α0

, for all n ∈ N0 and s ≤ t. From (4.19), using an elementary
inequality

|e−a − e−b| ≤ |a− b|, a, b ≥ 0,

we get

‖%(n)
t − %(n−1)

t ‖L∞(Rd) ≤ q(t) sup
s∈[0,t]

‖%(n−1)
s − %(n−2)

s ‖L∞(Rd),

where

q(t) := κ〈φ〉
(
1− e−t

)
.

Now we take T > 0 such that q(T ) < 1. Then the latter estimate yields

sup
t∈[0,T ]

‖%(n)
t − %(n−1)

t ‖L∞(Rd) ≤ q(T ) sup
t∈[0,T ]

‖%(n−1)
t − %(n−2)

t ‖L∞(Rd) (4.21)

Therefore, the sequence {%(n)
t }n∈N0

converges in L∞(Rd), uniformly on [0, T ].
Thus, its limit is the unique classical solution of (4.15). Since this limit is still in
∆+
α0

, the evolution can be continued. Taking into account Lemma 4.2 we come
to the following conclusion.
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Theorem 4.4. Given κ > 0, let α0 be as in (4.20). Then the unique classical
solution of (4.12) with r0 = e(%0, ·), %0 ∈ ∆+

α0
, exists for all t > 0 and is given

by (4.17) with %t ∈ ∆+
α0

being the solution of (4.15).

4.3 The scaling limit ε→ 0

Our final task in this work is to show that the solution of (4.2) k
(ε)
t converges

in Kα0 uniformly on [0, T ], T < T (α0, α), to the solution of (4.12), see Propo-
sition 4.1. Here we should impose an additional condition on the potential φ,
which, however, seems to be quite natural. Recall that in this section we suppose
φ ∈ L1(Rd).

Theorem 4.5. Let φ, α0, α, and T̃ (α0, α) be as in Proposition 4.1. Assume
also that φ ∈ L1(Rd)∩L∞(Rd) and consider the problems (4.2) and (4.12) with

k
(ε)
0,ren = r0 ∈ Kα0

. For their solutions k
(ε)
t,ren and rt, it follows that k

(ε)
t,ren → rt

in Kα, as ε→ 0, uniformly on every [0, T ], T < T̃ (α0, α).

Proof. Given n ∈ N, let k
(ε)
t,n and rt,n be defined as in (3.24) with Lε,ren and LV ,

respectively. Like in the proof of Theorem 3.6, one can show that the sequences

of k
(ε)
t,n and rt,n converge in Kα to k

(ε)
t and rt, respectively, uniformly on every

[0, T ], T < T (α0, α). Then, for δ > 0, one finds n ∈ N such that, for all t ∈ [0, T ],

‖k(ε)
t,n − k

(ε)
t,ren‖α + ‖rt,n − rt‖α < δ/2. (4.22)

In view of (3.24),

‖k(ε)
t,ren − rt‖α ≤

∥∥∥∥ n∑
m=1

1

m!
tm
(
Lmε,ren − LmV

)
r0

∥∥∥∥
α

+
δ

2
(4.23)

≤ ‖Lε,ren − LV ‖α0α‖r0‖α0
T exp (Tb(α0, α)) +

δ

2
,

where, see (3.27),

b(α0, α) :=
1

(α0 − α)e

[
1 + κ exp

(
α0 + 〈φ〉e−α

)]
.

Here we used the following representation

Lmε,ren − LmV = (Lε,ren − LV )Lm−1
ε,ren + LV (Lε,ren − LV )Lm−2

ε,ren (4.24)

+ · · ·+ Lm−2
V (Lε,ren − LV )Lε,ren + Lm−1

V (Lε,ren − LV ) .

Thus, we have to show that

‖Lε,ren − LV ‖α0α → 0, as ε→ 0, (4.25)

which will allow us to make the first summand in the right-hand side of (4.23)
also smaller than δ/2 and thereby to complete the proof.
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Subtracting (4.10) from (4.4) we get

(Lε,ren − LV ) k(η) = κ
∑
x∈η

∫
Γ0

Qε(x, η \ x, ξ)k(η \ x ∪ ξ)λ(dξ) (4.26)

where

Qε(x, η \ x, ξ) : = e(τ (ε)
x , η \ x)e(ε−1t(ε)x , ξ)− e(−φ(x− ·), ξ) (4.27)

= e(ε−1t(ε)x , ξ)− e(−φ(x− ·)−
[
1− e(τ (ε)

x , η \ x)
]
e(ε−1t(ε)x , ξ).

For t > 0, the function e−t − 1 + t takes positive values only; hence,

Ψ(t) := (e−t − 1 + t)/t2, t > 0,

is positive and bounded, say by C > 0. Then by means of the following elemen-
tary analog of (4.24)

b1 · · · bn − a1 · · · an ≤
n∑
i=1

(bi − ai)b1 · · · bi−1bi+1 · · · bn, bi ≥ ai > 0,

we obtain∣∣∣e(ε−1t(ε)x , ξ)− e(−φ(x− ·)
∣∣∣ ≤∑

y∈ξ

ε[φ(x− y)]2Ψ (εφ(x− y))
∏
z∈ξ\y

φ(x− z)

≤ εC
∑
y∈ξ

[φ(x− y)]2e(φ(x− ·), ξ \ y),

and ∣∣∣[1− e(τ (ε)
x , η \ x)

]
e(ε−1t(ε)x , ξ)

∣∣∣ ≤ ε ∑
y∈η\x

φ(x− y)e(φ(x− ·), ξ).

Then from (4.26) for λ-almost all η we have, see (3.23),

|(Lε,ren − LV )k(η)|

≤κ‖k‖α0
e−α0|η|

∑
x∈η

∫
Γ0

exp(−α0|ξ|+ α0)

×
{
εC
∑
y∈ξ

[φ(x− y)]2e(φ(x− ·), ξ \ y) + ε
∑
y∈η\x

φ(x− y)e(φ(x− ·), ξ)
}
λ(dξ)

≤κε‖k‖α0
e−α0|η|

∑
x∈η

∫
Γ0

e−α0|ξ|e(φ(x− ·), ξ)

×
{
C

∫
Rd

[φ(x− y)]2dy + eα0

∑
y∈η\x

φ(x− y)

}
λ(dξ)

≤κε‖k‖α0‖φ‖L∞(Rd) exp
(
〈φ〉e−α0

)
[C〈φ〉|η|+ eα0 |η|(|η| − 1)] e−α0|η|.
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This yields

‖Lε,ren − LV ‖α0α ≤ εκ‖φ‖L∞(Rd) exp
(
〈φ〉e−α0

)
(4.28)

×
[

C〈φ〉
(α0 − α)e

+
4eα0

((α0 − α)e)2

]
,

and thereby (4.25).

5 Concluding remarks

Regarding the evolution of quasi-observables, in Theorem 3.1 we have proven
its existence in Gα if G0 ∈ Gα0 , for any α0 and any α > α0, and for all values
of the model parameters cφ and κ, however, on a bounded time interval. Note
that the bound T (α, α0) is small for big cφκ, see (3.10). Note also that there
exists the scale of spaces Gαt ⊂ Gα such that Gt ∈ Gαt for t ∈ [0, T (α, α0)),
similarly to Theorem 3.6. For cφκ < 1/e, the evolution G0 7→ Gt is described
by a C0-semigroup, and hence has no time bounds, see Theorem 3.2.

Let us turn now to the evolution of states and correlation functions. The
main peculiarity of Theorem 3.6 is that, in contrast to the results of [13–15],
here we (a) impose no restrictions on cφ and κ; (b) describe the evolution
directly, not as a weak evolution via (2.22). The price is the time restriction,
similar as in Theorem 3.1. Again, we can start in Kα0 with any α0 ∈ R, and
obtain that kt ∈ Kαt ⊂ Kα, also for any α < α0. The time bound T (α0, α)
depends on the choice of α0 and α. If the initial states is dominated by the
Poisson measure with intensity κ, that is, if k0(η) ≤ κ|η|, then the solution
described by Theorem 3.6 has also the property kt(η) ≤ κ|η|, and hence can
be continued in time ad infinitum, see Theorem 3.9. Of course, in this case
α0 should obey (4.20). The main aim of using the Vlasov hierarchy (4.12) is

obtaining the scaling limit of the rescaled correlation functions k
(ε)
t,ren. For any

α0 ∈ R and r0 ∈ Kα0
, this hierarchy has a unique classical solution rt in any

Kα, α < α0, with t ∈ [0, T̃ (α0, α)), see Proposition 4.1. Here, however, for
general r0 we have no tools for continuing rt, like we did in Theorem 3.9 where
we used the connection of L∆ with L given by (1.6), since neither Markov
operator corresponds to LV . But if r0 is Poissonian, i.e., r0 = e(%0, ·), then
(4.12) has the solution rt = e(%t, ·) with infinite time lives in ‘sufficiently large’
Kα0 , see Theorem 4.4. The latter means that the Poissonian correlation function
k(η) = κ|η| belongs to this Kα0 , see (4.20).

Note also that in the recent paper [7] it was shown the existence and strong
convergence in the Vlasov scaling for the classical solution in one space Kα but
again under the condition cφκ < 1/e.
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