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Abstract

Let Γ denote the space of all locally finite subsets (configurations) in
Rd. A stochastic dynamics of binary jumps in continuum is a Markov
process on Γ in which pairs of particles simultaneously hop over Rd. We
discuss a non-equilibrium dynamics of binary jumps. We prove the exis-
tence of an evolution of correlation functions on a finite time interval. We
also show that a Vlasov-type mesoscopic scaling for such a dynamics leads
to a generalized Boltzmann non-linear equation for the particle density.
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1 Introduction

Let Γ = Γ(Rd) denote the space of all locally finite subsets (configurations) in
Rd, d ∈ N. A stochastic dynamics of jumps in continuum is a Markov process
on Γ in which groups of particles simultaneously hop over Rd, i.e., at each jump
time several points of the configuration change their positions.

The simplest case corresponds to the so-called Kawasaki-type dynamics in
continuum. This dynamics is a Markov process on Γ in which particles hop over
Rd so that, at each jump time, only one particle changes its position. For a
study of an equilibrium Kawasaki dynamics in continuum, we refer the reader
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to the papers [11–13, 17, 18, 20, 21] and the references therein. Under the so-
called balance condition on the jump rate, a proper Gibbs distribution is an
invariant, and even symmetrizing measure for such a dynamics, see [13]. To
obtain a simpler measure, e.g. Poissonian, as a symmetrizing measure for a
Kawasaki-type dynamics, we should either suppose quite unnatural conditions
on the jump rate, or consider a free dynamics. In the free Kawasaki dynamics,
in the course of a random evolution, each particle of the configuration randomly
hops over Rd without any interaction with other particles (see [19] for details).

In the dynamics of binary jumps, at each jump time two points of the (in-
finite) configuration change their positions in Rd. A randomness for choosing
a pair of points provides a random interaction between particles of the system,
even in the case where the jump rate only depends on the hopping points (and
does not depend on the other points of the configuration). A Poisson measure
may be invariant, or even symmetrizing for such a dynamics. In the first part
of the present paper [10], we considered such a process with generator

(LF )(γ) =
∑

{x1, x2}⊂γ

∫
(Rd)2

Q(x1, x2, dh1 × dh2)

×
(
F (γ \ {x1, x2} ∪ {x1 + h1, x2 + h2})− F (γ)

)
. (1.1)

Here, the measure Q(x1, x2, dh1 × dh2) describes the rate at which two parti-
cles, x1 and x2, of configuration γ simultaneously hop to x1 + h1 and x2 + h2,
respectively. Under some additional conditions on the measure Q, we studied
a corresponding equilibrium dynamics for which a Poisson measure is a sym-
metrizing measure. We also considered two different scalings of the rate measure
Q, which led us to a diffusive dynamics and to a birth-and-death dynamics, re-
spectively.

In the present paper, we restrict our attention to the special case of the
generator (1.1). We denote the arrival points by yi = xi + hi, i = 1, 2. An
(informal) generator of a binary jump process of our interest is given by

(LF ) (γ) =
∑

{x1,x2}⊂γ

∫
Rd

∫
Rd
c (x1, x2, y1, y2)

×
(
F (γ \ {x1, x2} ∪ {y1, y2})− F (γ)

)
dy1dy2. (1.2)

Here
c(x1, x2, y1, y2) = c ({x1, x2} , {y1, y2}) (1.3)

is a non-negative measurable function. Our aim is to study a non-equilibrium
dynamics corresponding to (1.2). Note that the Poisson measure with any
positive constant intensity will be invariant for this dynamics. If, additionally,

c ({x1, x2} , {y1, y2}) = c ({y1, y2} , {x1, x2}) , (1.4)

then any such measure will even be symmetrizing.
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It should be noted that similar dynamics of finite particle systems were
studied in [2, 3, 14]. In particular, in [3], the authors studied a non-equilibrium
dynamics of velocities of particles, such that the law of conservation of momen-
tum is satisfied for this system. However, the methods applied to finite particle
systems seem not to be applicable to infinite systems of our interest.

Let us also note an essential difference between lattice and continuous sys-
tems. An important example of a Markov dynamics on lattice configurations
is the so-called exclusion process. In this process, particles randomly hop over
the lattice under the only restriction to have no more than one particle at each
site of the lattice. This process may have a Bernoulli measure as an invariant
(and even symmetrizing) measure, but a corresponding stochastic dynamics has
non-trivial properties and possesses an interesting and reach scaling limit behav-
ior. A straightforward generalization of the exclusion process to the continuum
gives a free Kawasaki dynamics, because the exclusion restriction (yielding an
interaction between particles) obviously disappears for configurations in contin-
uum. To introduce the simplest (in certain sense) interaction, we consider the
generator above.

The generator (1.2) informally provides a functional evolution via the (back-
ward) Kolmogorov equation

∂Ft
∂t

= LFt, Ft
∣∣
t=0

= F0. (1.5)

However, the problem of existence of a solution to (1.5) in some functional space
seems to be a very difficult problem. Fortunately, in applications, we usually
need only an information about a mean value of a function on Γ with respect to
some probability measure on Γ, rather than a full point-wise information about
this function. Therefore, we turn to a weak evolution of probability measures
(states) on Γ. This evolution of states is informally given as a solution to the
initial value problem:

d

dt

∫
Γ

F dµt =

∫
Γ

LF dµt, µt
∣∣
t=0

= µ0, (1.6)

provided, of course, that a solution exists. The problem (1.6) may be rewritten
in terms of correlation functionals kt of states µt:

d

dt

∫
Γ0

G · kt dλ =

∫
Γ0

L̂G · kt dλ, kt
∣∣
t=0

= k0. (1.7)

Here Γ0 is the space of all finite configurations in Rd and λ is the Lebesgue–
Poisson measure on Γ0. Functions G on Γ0 are called quasi-observables. Note
that every correlation functional kt can be considered as an infinite vector

(k
(n)
t )∞n=0, where k

(n)
t is a function on n-point configurations in Rd, called the

n-th correlation function.
The dynamics of correlation functions corresponding to (1.7) has a chain

structure which is similar to the BBGKY-hierarchy for Hamiltonian dynamics.
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The corresponding generator of this dynamics has an upper triangular, two-
diagonal structure in a Fock-type space. Note that the most important case
from the point of view of applications, being also the most interesting from the
mathematical point of view, is the case of bounded (non-integrable) correlation
functions. Because of (1.7), the dynamics of correlation functions should be
treated in a weak form. Therefore, we consider a pre-dual evolution of quasi-
observables, whose generator has a lower triangular, two-diagonal structure in
a Fock-type space of integrable functions.

The paper is organized as follows. In Section 2, we describe the model and
give some necessary preliminary information. Section 3 is devoted to the func-
tional evolution of both quasi-observables and correlation functions. We derive
some information about the structure and properties of the lower triangular,
two-diagonal generator of the dynamics of quasi-observables (Propositions 3.1
and 3.3). We further prove a general result for a lower triangular, two-diagonal
generator, which shows that the evolution may be obtained, for all times, recur-
sively in a scale of Banach spaces whose norms depend on time (Theorem 3.5).
Next, we construct a dual dynamics on a finite time interval (Theorem 3.6).
We show that this dynamics is indeed an evolution of correlation functions,
which in turn leads to an evolution of probability measures on Γ (Theorem 3.9).
In Section 4 we consider a Vlasov-type scaling for our dynamics. The limit-
ing evolution (which exists by Proposition 4.4) has a chaos preservation prop-
erty. This means that the corresponding dynamics of states transfers a Poisson
measure with a non-homogeneous intensity into a Poisson measure whose non-
homogeneous intensity satisfies a non-linear evolution (kinetic) equation. We
finally present sufficient conditions for the existence and uniqueness of a solution
to this equation (Proposition 4.6).

It is worth noting that we rigorously prove the convergence of the scaled
evolution of the infinite particle system to the limiting evolution (which in turn
leads to the kinetic equation). This seems to be a new step even for finite
particle systems.

2 Preliminaries

Let B(Rd) be the Borel σ-algebra on Rd, d ∈ N, and let Bb(Rd) denote the
system of all bounded sets from B(Rd). The configuration space over Rd is
defined as the set of all locally finite subsets of Rd:

Γ :=
{
γ ⊂ Rd

∣∣ |γΛ| <∞ for any Λ ∈ Bb(Rd)
}
.

Here | · | denotes the cardinality of a set and γΛ := γ ∩ Λ. One can iden-
tify any γ ∈ Γ with the positive Radon measure

∑
x∈γ δx ∈ M(Rd), where

δx is the Dirac measure with mass at x, and M(Rd) stands for the set of all
positive Radon measures on B(Rd). The space Γ can be endowed with the rel-
ative topology as a subset of the space M(Rd) with the vague topology, i.e.,
the weakest topology on Γ with respect to which all maps Γ 3 γ 7→ 〈f, γ〉 :=∫
Rd f(x) γ(dx) =

∑
x∈γ f(x), f ∈ C0(Rd), are continuous. Here, C0(Rd) is the
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space of all continuous functions on Rd with compact support. The correspond-
ing Borel σ-algebra B(Γ) coincides with the smallest σ-algebra on Γ for which
all mappings Γ 3 γ 7→ |γΛ| ∈ N0 := N∪{0} are measurable for any Λ ∈ Bb(Rd),
see e.g. [1]. It is worth noting that Γ is a Polish space (see e.g. [16]).

Let Fcyl(Γ) denote the set of all measurable cylinder functions on Γ. Each
F ∈ Fcyl(Γ) is characterized by the following property: F (γ) = F (γΛ) for some
Λ ∈ Bb(Rd) and for any γ ∈ Γ.

A stochastic dynamics of binary jumps in continuum is a Markov process
on Γ in which pairs of particles simultaneously hop over Rd, i.e., at each jump
time two points of the configuration change their positions. Thus, an (informal)
generator of such a process has the form (1.2), where c(x1, x2, y1, y2) is a non-
negative measurable function which satisfies (1.3) and

c(x1, x2, ·, ·) ∈ L1
loc(Rd × Rd) for a.a. x1, x2 ∈ Rd.

The function c describes the rate at which pairs of particles hop over Rd.
Remark 2.1. Note that, in general, the expression on the right hand side of (1.2)
is not necessarily well defined for all γ ∈ Γ, even if F ∈ Fcyl(Γ). Nevertheless,
for such F , (LF ) (γ) has sense at least for all γ ∈ Γ with |γ| <∞.

In various applications, the evolution of states of the system (i.e., measures
on the configuration space Γ) helps one to understand the behavior of the process
and gives possible candidates for invariant states. In fact, various properties of
such an evolution form the main information needed in applications. Using the
duality between functions and measures, this evolution may be considered in a
weak form, given, as usual, by the expression

〈F, µ〉 =

∫
Γ

F (γ)dµ(γ). (2.1)

Therefore, the evolution of states is informally given as a solution to the initial
value problem:

d

dt
〈F, µt〉 = 〈LF, µt〉, µt

∣∣
t=0

= µ0, (2.2)

provided, of course, that a solution exists. For a wide class of probability mea-
sures on Γ, one can consider a corresponding evolution of their correlation func-
tionals, see below.

The space of n-point configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ(n)(Y ) :=
{
η ⊂ Y

∣∣∣ |η| = n
}
, n ∈ N.

We set Γ(0)(Y ) := {∅}. As a set, Γ(n)(Y ) may be identified with the quotient of›Y n :=
{

(x1, . . . , xn) ∈ Y n
∣∣ xk 6= xl if k 6= l

}
with respect to the natural action

of the permutation group Sn on›Y n. Hence, one can introduce the corresponding
Borel σ-algebra, which will be denoted by B

(
Γ(n)(Y )

)
. The space of finite

configurations in an arbitrary Y ∈ B(Rd) is defined by

Γ0(Y ) :=
⊔
n∈N0

Γ(n)(Y ).
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This space is equipped with the disjoint union topology. Therefore, we consider
the corresponding Borel σ-algebra B

(
Γ0(Y )

)
. In the case where Y = Rd, we

will omit Y in the notation, namely, Γ0 = Γ0(Rd), Γ(n) = Γ(n)(Rd).
The image of the Lebesgue product measure (dx)n under the mappingfl(Rd)n 3 (x1, . . . , xn) 7→ {x1, . . . , xn} ∈ Γ(n)

will be denoted by m(n). We set m(0) := δ{∅}. Let z > 0 be fixed. The
Lebesgue–Poisson measure λz on Γ0 is defined by

λz :=
∞∑
n=0

zn

n!
m(n). (2.3)

For any Λ ∈ Bb(Rd), the restriction of λz to Γ(Λ) := Γ0(Λ) will also be de-
noted by λz. The space

(
Γ,B(Γ)

)
is the projective limit of the family of spaces{(

Γ(Λ),B(Γ(Λ))
)}

Λ∈Bb(Rd)
. The Poisson measure πz on

(
Γ,B(Γ)

)
is given as the

projective limit of the family of measures {πΛ
z }Λ∈Bb(Rd), where πΛ

z := e−zm(Λ)λz
is a probability measure on

(
Γ(Λ),B(Γ(Λ))

)
and m(Λ) is the Lebesgue measure

of Λ ∈ Bb(Rd); for details see e.g. [1]. We will mostly use the measure λ := λ1.
A set M ∈ B(Γ0) is called bounded if there exist Λ ∈ Bb(Rd) and N ∈ N

such that M ⊂
⊔N
n=0 Γ(n)(Λ). The set of bounded measurable functions with

bounded support will be denoted by Bbs(Γ0), i.e., G ∈ Bbs(Γ0) if G �Γ0\M= 0
for some bounded M ∈ B(Γ0). We also consider the larger set L0

ls(Γ0) of all
measurable functions on Γ0 with local support, which means: G ∈ L0

ls(Γ0) if
G �Γ0\Γ(Λ)= 0 for some Λ ∈ Bb(Rd). Any B(Γ0)-measurable function G on

Γ0 is, in fact, defined by a sequence of functions
{
G(n)

}
n∈N0

, where G(n) is

a B(Γ(n))-measurable function on Γ(n). Functions on Γ and Γ0 will be called
observables and quasi-observables, respectively.

We consider the following mapping from L0
ls(Γ0) into Fcyl(Γ):

(KG)(γ) :=
∑
ηbγ

G(η), γ ∈ Γ, (2.4)

where G ∈ L0
ls(Γ0), see, e.g., [15,23,24]. The summation in (2.4) is taken over all

finite subconfigurations η ∈ Γ0 of the (infinite) configuration γ ∈ Γ; we denote
this by the symbol η b γ. The mapping K is linear, positivity preserving, and
invertible with

(K−1F )(η) =
∑
ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0. (2.5)

Remark 2.2. Note that, using formula (2.5), we can extend the mapping K−1

to functions F which are well-defined, at least, on Γ0.

LetM1
fm(Γ) denote the set of all probability measures µ on

(
Γ,B(Γ)

)
which

have finite local moments of all orders, i.e.,
∫

Γ
|γΛ|nµ(dγ) < +∞ for all Λ ∈

Bb(Rd) and n ∈ N0. A measure ρ on
(
Γ0,B(Γ0)

)
is called locally finite if
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ρ(A) < ∞ for all bounded sets A from B(Γ0). The set of all such measures is
denoted by Mlf(Γ0).

One can define a transform K∗ : M1
fm(Γ) →Mlf(Γ0), which is dual to the

K-transform, i.e., for every µ ∈M1
fm(Γ) and G ∈ Bbs(Γ0), we have∫

Γ

(KG)(γ)µ(dγ) =

∫
Γ0

G(η) (K∗µ)(dη).

The measure ρµ := K∗µ is called the correlation measure of µ.
As shown in [15], for any µ ∈ M1

fm(Γ) and G ∈ L1(Γ0, ρµ), the series (2.4)
is µ-a.s. absolutely convergent. Furthermore, KG ∈ L1(Γ, µ) and∫

Γ0

G(η) ρµ(dη) =

∫
Γ

(KG)(γ)µ(dγ). (2.6)

A measure µ ∈ M1
fm(Γ) is called locally absolutely continuous with respect

to π := π1 if µΛ := µ ◦ p−1
Λ is absolutely continuous with respect to πΛ := πΛ

1

for all Λ ∈ Bb(Rd). Here Γ 3 γ 7→ pΛ(γ) := γ ∩ Λ ∈ Γ(Λ). In this case,
the correlation measure ρµ is absolutely continuous with respect to λ = λ1. A
correlation functional of µ is then defined by

kµ(η) :=
dρµ
dλ

(η), η ∈ Γ0.

The functions k
(0)
µ := 1 and

k(n)
µ : (Rd)n −→ R+, n ∈ N, (2.7)

k(n)
µ (x1, . . . , xn) :=

{
kµ({x1, . . . , xn}), if (x1, . . . , xn) ∈fl(Rd)n
0, otherwise

are called correlation functions of µ, and they are well known in statistical
physics, see e.g [26], [27].

In view of Remark 2.1 and (2.5), the mapping

(L̂G)(η) := (K−1LKG)(η), η ∈ Γ0,

is well defined for any G ∈ Bbs(Γ0), where K−1 is understood in the sense of
Remark 2.2.

Let k be a measurable function on Γ0 such that
∫
B
k dλ <∞ for any bounded

B ∈ B(Γ0). Then, for any G ∈ Bbs(Γ0), we can consider an analog of pairing
(2.1),

〈〈G, k〉〉 :=

∫
Γ0

G · k dλ. (2.8)

Using this duality, we may consider a dual mapping L̂∗ of L̂. As a result, we
obtain two initial value problems:

∂Gt
∂t

= L̂Gt, Gt
∣∣
t=0

= G0, (2.9)

d

dt
〈〈G, kt〉〉 = 〈〈G, L̂∗kt〉〉 = 〈〈L̂G, kt〉〉, kt

∣∣
t=0

= k0. (2.10)
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We are going to solve the first problem in some functional space over Γ0. The
second problem, corresponding to (2.2), can be realized by means of (2.8), or
solved independently.

The next section is devoted to a (rigorous) solution of these two problems.

3 Functional evolution

We denote, for any n ∈ N,

Xn := L1
(
(Rd)n, dx(n)

)
, (3.1)

where we set dx(n) = dx1 · · · dxn and X0 := R. The symbol ‖ · ‖Xn stands for
the norm of the space (3.1).

For an arbitrary C > 0, we consider the functional Banach space

LC := L1
(
Γ0, C

|η|dλ(η)
)
. (3.2)

Throughout this paper, the symbol ‖·‖LC denotes for the norm of the space

(3.2). Then, for any G ∈ LC , we may identify G with the sequence (G(n))n≥0 ,
where G(n) is a symmetric function on (Rd)n (defined almost everywhere) such
that

‖G‖LC =
∞∑
n=0

1

n!

∫
(Rd)n

∣∣G(n)(x(n))
∣∣Cndx(n) =

∞∑
n=0

Cn

n!

∥∥G(n)
∥∥
Xn

<∞. (3.3)

In particular, G(n) ∈ Xn, n ∈ N0. Here and below we set x(n) = (x1, . . . , xn).
We consider the dual space (LC)′ of LC . It is evident that this space can be

realized as the Banach space

KC :=
{
k : Γ0 → R

∣∣ k · C−|·| ∈ L∞(Γ0, dλ)
}

with the norm ‖k‖KC := ‖k(·)C−|·|‖L∞(Γ0,λ), where the pairing between any
G ∈ LC and k ∈ KC is given by (2.8). In particular,

|〈〈G, k〉〉| ≤ ‖G‖C · ‖k‖KC .

Clearly, k ∈ KC implies

|k(η)| ≤ ‖k‖KC C |η| for λ-a.a. η ∈ Γ0. (3.4)

Proposition 3.1. Let for a.a. x1, x2, y1 ∈ Rd

c̃(x1, x2, y1) = c̃({x1, x2}, y1) :=

∫
Rd
c (x1, x2, y1, y2) dy2 <∞. (3.5)

Then, for any G ∈ Bbs(Γ0), the following formula holds

(L̂G) (η) = (L0G) (η) + (WG) (η) , (3.6)
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where

(L0G) (η) =
∑

{x1,x2}⊂η

∫
Rd

∫
Rd
c (x1, x2, y1, y2)

×
(
G (η \ {x1, x2} ∪ {y1, y2})−G (η)

)
dy1dy2, (3.7)

(WG) (η) =
∑
x2∈η

∑
x1∈η\x2

∫
Rd
c̃ (x1, x2, y1)

×
(
G ((η \ x2) \ x1 ∪ y1)−G (η \ x2)

)
dy1. (3.8)

Proof. We have, for F = KG,

(KG) (γ \ {x1, x2} ∪ {y1, y2})− (KG) (γ)

=
∑

ηbγ\{x1,x2}∪{y1,y2}

G (η)−
∑
ηbγ

G (η)

=
∑

ηbγ\{x1,x2}

G (η ∪ y1) +
∑

ηbγ\{x1,x2}

G (η ∪ y2)

+
∑

ηbγ\{x1,x2}

G (η ∪ y1 ∪ y2)−
∑

ηbγ\{x1,x2}

G (η ∪ x1)

−
∑

ηbγ\{x1,x2}

G (η ∪ x2)−
∑

ηbγ\{x1,x2}

G (η ∪ x1 ∪ x2)

= (K (G (· ∪ y1) +G (· ∪ y2) +G (· ∪ {y1, y2})
−G (· ∪ x1)−G (· ∪ x2)−G (· ∪ {x1, x2}))) (γ \ {x1, x2}) .

Hence, for any measurable h on Γ× Rd × Rd,

K−1

Ñ ∑
{x1,x2}⊂·

h (· \ {x1, x2} , x1, x2)

é
(η)

=
∑
ξ⊂η

(−1)
|η\ξ| ∑

{x1,x2}⊂ξ

h (ξ \ {x1, x2} , x1, x2)

=
∑

{x1,x2}⊂η

∑
ξ⊂η\{x1,x2}

(−1)
|η\{x1,x2}\ξ| h (ξ, x1, x2)

=
∑

{x1,x2}⊂η

(
K−1h (·, x1, x2)

)
(η \ {x1, x2}) .

Therefore,

(L̂G) (η) =
(
K−1LKG

)
(η)

=
∑

{x1,x2}⊂η

∫
Rd

∫
Rd
c ({x1, x2} , {y1, y2})

(
G (η \ {x1, x2} ∪ y1)

+G (η \ {x1, x2} ∪ y2) +G (η \ {x1, x2} ∪ {y1, y2})
)
dy1dy2
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−
∑

{x1,x2}⊂η

∫
Rd

∫
Rd
c ({x1, x2} , {y1, y2})

(
G (η \ {x1, x2} ∪ x1)

+G (η \ {x1, x2} ∪ x2) +G (η \ {x1, x2} ∪ {x1, x2})
)
dy1dy2,

from where the statement follows.

As we noted before, any function G on Γ0 may be identified with the infi-
nite vector

(
G(n)

)
n≥0

of symmetric functions. Due to this identification, any

operator on functions on Γ0 may be considered as an infinite operator ma-
trix. By Proposition 3.1, the operator matrix L̂ has a two-diagonal structure.

More precisely, on the main diagonal, we have operators L
(n)
0 , n ∈ N0, where

L
(0)
0 = L

(1)
0 = 0 and for n ≥ 2

(
L

(n)
0 G(n)

)
(x(n)) =

n∑
i=1

n∑
j=i+1

∫
Rd

∫
Rd
c (xi, xj , y1, y2, )

×
(
G(n)

(
x1, . . . , y1

∧
i

, . . . , y2
∧
j

, . . . , xn
)
−G(n)

(
x(n)

))
dy1dy2. (3.9)

On the lower diagonal, we have operators W (n), n ∈ N, where W (1) = 0 and for
n ≥ 2(

W (n)G(n−1)
)(
x(n)

)
= 2

n∑
i=1

n∑
j=i+1

∫
Rd
c̃ (xi, xj , y1)

×
(
G(n−1)

(
x1, . . . , xi−1, xi+1, . . . , y1

∧
j

, . . . , xn
)

−G(n−1)
(
x1, . . . , xi−1, xi+1, . . . , xn

))
dy1. (3.10)

Let us formulate our main conditions on the rate c:

c1 : = ess sup
x1,x2∈Rd

∫
Rd

∫
Rd
c (x1, x2, y1, y2) dy1dy2 <∞, (3.11)

c2 : = ess sup
x1,x2∈Rd

∫
Rd

∫
Rd
c (y1, y2, x1, x2) dy1dy2 <∞, (3.12)

c3 : = ess sup
x1∈Rd

∫
Rd

∫
Rd

∫
Rd
c (x1, x2, y1, y2) dy1dy2dx2 <∞, (3.13)

c4 : = ess sup
x1∈Rd

∫
Rd

∫
Rd

∫
Rd
c (y1, y2, x1, x2) dy1dy2dx2 <∞. (3.14)

Under conditions (3.11)–(3.12), we define the following functions

a1(x1, x2) : =

∫
Rd

∫
Rd
c (x1, x2, y1, y2) dy1dy2 ∈ [0,∞), (3.15)

a2(x1, x2) : =

∫
Rd

∫
Rd
c (y1, y2, x1, x2) dy1dy2 ∈ [0,∞). (3.16)
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Remark 3.2. Note that, if the function c satisfies the symmetry condition (1.4),
then conditions (3.12), (3.14) follow from (3.11), (3.13), respectively, and

a1(x1, x2) = a2(x1, x2). (3.17)

In this case, the operator L
(n)
0 is symmetric in L2

(
(Rd)n, dx(n)

)
. Moreover, the

operator L given by (1.2) is (informally) symmetric in L2(Γ, πz) for any z > 0.

Proposition 3.3. (i) Let (3.11), (3.12) hold. Then, for any G(n) ∈ Xn,

‖L(n)
0 G(n)‖Xn ≤

n(n− 1)

2
(c1 + c2)‖G(n)‖Xn . (3.18)

Moreover, if additionally

a2(x1, x2) ≤ a1(x1, x2) for a.a. x1, x2 ∈ Rd, (3.19)

then L
(n)
0 is the generator of a contraction semigroup in Xn.

(ii) Let (3.13), (3.14) hold. Then, for any G(n−1) ∈ Xn−1,

‖W (n)G(n−1)‖Xn ≤ n(n− 1)(c3 + c4)‖G(n−1)‖Xn−1 . (3.20)

Proof. The estimates (3.18), (3.20) follow directly from (3.9), (3.10) and (3.11)–

(3.14). To prove that the bounded operator L
(n)
0 is the generator of a contraction

semigroup in Xn, it is enough to show that L
(n)
0 is dissipative (see e.g. [25]).

For any κ > 0 and G(n) ∈ Xn,

‖L(n)
0 G(n) − κG(n)‖Xn

=

∫
(Rd)n

∣∣∣∣∣ n∑
i=1

n∑
j=i+1

∫
Rd

∫
Rd
c (xi, xj , y1, y2, )G

(n)
(
x1, . . . , y1

∧
i

, . . . , y2
∧
j

, . . . , xn
)
dy1dy2

−
n∑
i=1

n∑
j=i+1

a1(xi, xj)G
(n)
(
x(n)

)
− κG(n)

(
x(n)

)∣∣∣∣∣dx(n),

and, using the obvious inequality ‖f − g‖Xn ≥
∣∣‖f‖Xn − ‖g‖Xn ∣∣, we continue

≥
∣∣∣∣∣
∫

(Rd)n

∣∣∣∣ n∑
i=1

n∑
j=i+1

∫
Rd

∫
Rd
c (xi, xj , y1, y2, )

×G(n)
(
x1, . . . , y1

∧
i

, . . . , y2
∧
j

, . . . , xn
)
dy1dy2

∣∣∣∣dx(n)

−
∫

(Rd)n

Å n∑
i=1

n∑
j=i+1

a1(xi, xj) + κ

ã∣∣∣G(n)
(
x(n)

)∣∣∣dx(n)

∣∣∣∣∣.
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Since G(n) is a symmetric function, we get∫
(Rd)n

∣∣∣∣ n∑
i=1

n∑
j=i+1

∫
Rd

∫
Rd
c (xi, xj , y1, y2, )

×G(n)
(
x1, . . . , y1

∧
i

, . . . , y2
∧
j

, . . . , xn
)
dy1dy2

∣∣∣∣dx(n)

≤ n(n− 1)

2

∫
(Rd)n

a2(y1, y2)
∣∣∣G(n)

(
y1, y2, x1, . . . , xn−2

)∣∣∣dy1dy2dx1 . . . dxn−2 .

Therefore, if (3.19) holds, then

‖L(n)
0 G(n) − κG(n)‖Xn ≥ κ‖G(n)‖Xn ,

which proves the dissipativity of L
(n)
0 , see e.g. [5, Proposition 3.23].

Remark 3.4. If the function c satisfies the symmetry condition (1.4), then (3.19)
trivially follows from (3.17).

In Theorems 3.5 and 3.6 below, we formulate general results which are ap-
plicable to our dynamics under assumptions (3.11)–(3.14), (3.19).

Theorem 3.5. Consider the initial value problem

∂

∂t
Gt (η) = (L0Gt) (η) + (WGt) (η) , t > 0, η ∈ Γ0,

Gt
∣∣
t=0

= G0.

(3.21)

Here, for any G =
(
G(n)

)
n≥0

,

(L0G)
(n)

= L
(n)
0 G(n), n ≥ 1;

(WG)
(n)

= W (n)G(n−1), n ≥ 2;

(L0G)(0) = (WG)(0) = (WG)(1) = 0.

Further suppose that L
(n)
0 is a bounded generator of a strongly continuous con-

traction semigroup etL
(n)
0 in Xn, while W (n) is a bounded operator from Xn−1

into Xn whose norm satisfies∥∥W (n)
∥∥
Xn−1→Xn

≤ Bn (n− 1) , n ≥ 1, (3.22)

for some B ≥ 1 which is independent of n.
Let C > 0 and G0 ∈ LC . Then the initial value problem (3.21) has a unique

solution Gt ∈ Lρ(t,C), where

ρ(t, C) :=
C

1 +BCt
. (3.23)

Furthermore,
‖Gt‖Lρ(t,C)

≤ ‖G0‖LC . (3.24)
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Proof. Let us rewrite the initial value problem (3.21) as an infinite system of
differential equations. Namely, for any n ≥ 1,

∂

∂t
G

(n)
t

(
x(n)

)
=
(
L

(n)
0 G

(n)
t

)(
x(n)

)
+
(
W (n)G

(n−1)
t

)(
x(n)

)
(3.25)

with G
(0)
t = G

(0)
0 . This system may be solved recurrently: for each n ≥ 1

G
(n)
t

(
x(n)

)
=
(
etL

(n)
0 G

(n)
0

) (
x(n)

)
+

∫ t

0

(
e(t−s)L(n)

0 W (n)G(n−1)
s

) (
x(n)

)
ds. (3.26)

Iterating (3.26), we obtain

G
(n)
t (x(n)) =

n∑
k=0

(
Vk,n(t)G

(n−k)
0

)
(x(n)),

where Vk,n(t) : Xn−k → Xn is given by

Vk,n(t) :=

∫ t

0

∫ s1

0

· · ·
∫ sk−1

0

e(t−s1)L
(n)
0 W (n)e(s1−s2)L

(n−1)
0 W (n−1) . . .

× e(sk−1−sk)L
(n−k+1)
0 W (n−k+1)eskL

(n−k)
0 dsk · · · ds1

for 2 ≤ k ≤ n− 1, and

V1,n(t)G(n−1) :=

∫ t

0

e(t−s1)L
(n)
0 W (n)es1L

(n−1)
0 G(n−1)ds1,

V0,n(t)G(n) := etL
(n)
0 G(n),

Vn,n(t)G(n) := χ{n=0}G
(0).

Hence, since (3.22) holds and since each operator esL
(i)
0 , with s ≥ 0, is a con-

traction in Xi, we get, for 1 ≤ k ≤ n− 1, n ≥ 2,

∥∥Vk,n(t)G(n−k)
∥∥
Xn
≤ tk

k!
Bkn(n− 1)(n− 1)(n− 2) · · · (n− k + 1)(n− k)

= (tB)k
n!

k!(n− k)!

(n− 1)!

(n− k − 1)!

∥∥G(n−k)
∥∥
Xn−k

,

and
∥∥V0,n(t)G(n)

∥∥
Xn
≤ ‖G(n)‖Xn for n ≥ 1. Therefore, for n ≥ 1,

∥∥G(n)
t

∥∥
Xn
≤
n−1∑
k=0

(tB)k
n!

k!(n− k)!

(n− 1)!

(n− k − 1)!

∥∥G(n−k)
∥∥
Xn−k

=
n∑
k=1

(tB)(n−k) n!

(n− k)!k!

(n− 1)!

(k − 1)!

∥∥G(k)
0

∥∥
Xk
. (3.27)
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Then, for any q(t) > 0,∥∥Gt∥∥LCq(t)
=
∣∣G(0)

t

∣∣+
∞∑
n=1

Cnqn(t)

n!

∥∥G(n)
t

∥∥
Xn

≤
∣∣G(0)

0

∣∣+
∞∑
n=1

Cnqn(t)

n!

n∑
k=1

∥∥G(k)
0

∥∥
Xk

(tB)n−k
n!

k! (n− k)!

(n− 1)!

(k − 1)!

=
∣∣G(0)

0

∣∣+
∞∑
k=1

∥∥G(k)
0

∥∥
Xk

1

k!

∞∑
n=k

Cnqn(t)(tB)n−k
1

(n− k)!

(n− 1)!

(k − 1)!

=
∣∣G(0)

0

∣∣+
∞∑
k=1

∥∥G(k)
0

∥∥
Xk

Ckqk(t)

k!

∞∑
n=0

qn(t)(tBC)n
(n+ k − 1)!

n! (k − 1)!
.

Now, let q(t) =
1

1 +BCt
. For any x ∈ [0, 1) and m ∈ N,

( 1

1− x

)m+1

=
∞∑
n=0

xn
(n+m)!

n!m!
.

Applying this equality to x = q(t)BCt < 1 and m = k − 1, we obtain

qk(t)
∞∑
n=0

qn(t)(tBC)n
(n+ k − 1)!

n! (k − 1)!
=

Å
q(t)

1− q(t)BCt

ãk
= 1.

Therefore,

∥∥Gt∥∥LCq(t) ≤ ∣∣G(0)
0

∣∣+
∞∑
k=1

∥∥G(k)
0

∥∥
Xk

Ck

k!
= ‖G0‖LC ,

which proves the statement.

In fact, we have a linear evolution operator

V (t) : LC → Lρ(t,C),

satisfying Gt = V (t)G0 and

‖V (t)‖LC→Lρ(t,C)
≤ 1. (3.28)

Theorem 3.6. Let the conditions of Theorem 3.5 be satisfied. Further suppose

that there exists A > 0 such that ‖L(n)
0 ‖Xn→Xn ≤ An(n−1), n ≥ 1. Let C0 > 0,

k0 ∈ KC0 , T = 1
BC0

. Then for any t ∈ (0, T ), there exists kt ∈ KCt with

Ct =
C0

1−BC0t
, (3.29)
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such that, for any G ∈ Bbs(Γ0),

d

dt
〈〈G, kt〉〉 = 〈〈(L0 +W )G, kt〉〉, t ∈ (0, T ).

Moreover, for any t ∈ (0, T ),

‖kt‖KCt ≤ ‖k0‖KC0
. (3.30)

Proof. Let t ∈ (0, T ) be arbitrary. The function f(x) = ρ(t, x) = x
1+xBt , x ≥ 0,

increases to 1
tB as x → +∞. Since C0 < 1

tB , there exists a unique solution
to f(x) = C0, namely, x = Ct, given by (3.29). Take any G0 ∈ LCt . By
Theorem 3.5, there exists an evolution G0 7→ Gτ for any τ > 0 such that
Gτ ∈ Lρ(τ,Ct). Consider this evolution at the moment τ = t. Since

ρ(t, Ct) =
Ct

1 +BCtt
= C0, (3.31)

we have Gt ∈ LC0
. Therefore, 〈〈Gt, k0〉〉 is well-defined. Moreover, by (3.24),∣∣〈〈Gt, k0〉〉

∣∣ ≤ ‖Gt‖LC0
‖k0‖KC0

= ‖Gt‖Lρ(t,Ct)‖k0‖KC0

≤ ‖G0‖LCt‖k0‖KC0
. (3.32)

Therefore, the mapping G0 7→ 〈〈Gt, k0〉〉 is a linear continuous functional on the
space LCt . Hence, there exists kt ∈ KCt such that, for any G0 ∈ LCt ,

〈〈G0, kt〉〉 = 〈〈Gt, k0〉〉 = 〈〈V (t)G0, k0〉〉. (3.33)

We note that kt depends on k0 and does not depend on G0. Further, (3.32)
implies (3.30).

Let now G0 ∈ Bbs(Γ0). Consider a function g = gG0,k0
: [0, T ) → R,

g(t) := 〈〈Gt, k0〉〉 = 〈〈G0, kt〉〉. We have

g(t) = 〈〈Gt, k0〉〉 =
∞∑
n=0

1

n!

∫
(Rd)n

G
(n)
t

(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n). (3.34)

By (3.32), for any [0, T ′] ⊂ [0, T ),∣∣〈〈Gt, k0〉〉
∣∣ ≤ ‖G0‖LC

T ′
‖k0‖KC0

, t ∈ [0, T ′].

Hence, the series (3.34) converges on [0, T ′]. Using the well-known representa-
tion

etL
(n)
0 G0 = G0 +

∫ t

0

esL
(n)
0 L

(n)
0 G0ds (3.35)
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(see e.g. [5, Lemma 1.3 (iv)]), we derive from (3.26) and Fubini’s theorem:

gn(t) : =

∫
(Rd)n

G
(n)
t

(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)

=

∫
(Rd)n

(
etL

(n)
0 G

(n)
0

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)

+

∫ t

0

∫
(Rd)n

(
e(t−s)L(n)

0 W (n)G(n−1)
s

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds

=

∫
(Rd)n

G
(n)
0

(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)

+

∫ t

0

∫
(Rd)n

(
esL

(n)
0 L

(n)
0 G

(n)
0

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds

+

∫ t

0

∫
(Rd)n

(
e(t−s)L(n)

0 W (n)G(n−1)
s

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds. (3.36)

Since L
(n)
0 : Xn → Xn and W (n) : Xn−1 → Xn are bounded, the functions

inside the time integrals are continuous in s. Therefore, by (3.36) and (3.26),
gn(t) is differentiable on (0, T ) and

g′n(t) =

∫
(Rd)n

(
L

(n)
0 etL

(n)
0 G

(n)
0

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)

+

∫ t

0

∫
(Rd)n

(
L

(n)
0 e(t−s)L(n)

0 W (n)G(n−1)
s

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds

+

∫
(Rd)n

(
W (n)G

(n−1)
t

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds

=

∫
(Rd)n

(
L

(n)
0 G

(n)
t

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds

+

∫
(Rd)n

(
W (n)G

(n−1)
t

)(
x(n)

)
k

(n)
0

(
x(n)

)
dx(n)ds. (3.37)

Hence, for any n ≥ 2,

|g′n(t)| ≤ ‖k0‖KC0
Cn0 n(n− 1)

(
A‖Gt‖Xn +B‖Gt‖Xn−1

)
.

Analogously to the proof of Theorem 3.5, we obtain, for all t ∈ [0, T ′] ⊂ [0, T ),

∞∑
n=1

1

n!
|g′n(t)|

≤ const ·
∞∑
n=1

1

n!
Cn0 n(n− 1)

n∑
k=1

(tB)(n−k) n!

(n− k)!k!

(n− 1)!

(k − 1)!

∥∥G(k)
0

∥∥
Xk

≤ const ·
∞∑
k=1

1

k!

∥∥G(k)
0

∥∥
Xk

∞∑
n=k

Cn0 (T ′B)(n−k)n(n− 1)

(n− k)!

(n− 1)!

(k − 1)!
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= const ·
∞∑
k=1

Ck0
k!

∥∥G(k)
0

∥∥
Xk

∞∑
n=0

Cn0 (T ′B)n
(n+ k − 1)

n!

(n+ k)!

(k − 1)!
<∞, (3.38)

since G0 ∈ Bbs(Γ0) (and so there exists K ∈ N such that G
(k)
0 = 0 for all k ≥ K)

and the inner series converges as C0T
′B < 1.

Hence, g(t) is differentiable on any [0, T ′] ⊂ [0, T ). Next, (3.34), (3.37), and
(3.38) imply that

g′(t) =
d

dt
〈〈Gt, k0〉〉 = 〈〈(L0 +W )Gt, k0〉〉 (3.39)

and, moreover, (L0 + W )Gt ∈ LC0
. Therefore, using (3.33), (3.39) and the

obvious inclusion (L0 +W )G0 ∈ LCt , we obtain

d

dt
〈〈G0, kt〉〉 =

d

dt
〈〈Gt, k0〉〉 = 〈〈(L0 +W )Gt, k0〉〉 = 〈〈(L0 +W )V (t)G0, k0〉〉

= 〈〈V (t)(L0 +W )G0, k0〉〉 = 〈〈(L0 +W )G0, kt〉〉,

provided
(L0 +W )V (t)G0 = V (t)(L0 +W )G0. (3.40)

To prove (3.40), we consider, for each N ∈ N, the space XN :=
N⊕
n=0

Xn with

the norm ‖ · ‖XN :=
N∑
n=0
‖ · ‖Xn . For any G ∈ XN , G = (G(0), . . . ,G(N)), we

define the following function on Γ0:

ING := (G(0), . . . ,G(N), 0, 0, . . .).

For any function G on Γ0, G = (G(0), . . . , G(n), . . .), with G(n) ∈ Xn, we define
the following element of XN :

PNG := (G(0), . . . , G(n)).

The system of differential equations (3.25) for 1 ≤ n ≤ N can be considered as
one equation ∂

∂tGt = LNGt in XN with

LN := PN (L0 +W )IN .

Clearly, LN is a bounded operator in XN . Hence, there exists a unique vector-
valued solution of this equation, Gt = etLNG0. The n-th component of Gt, i.e.,

G(n)
t , coincides with the G

(n)
t obtained in Theorem 3.5, for each 0 ≤ n ≤ N ,

where G0 = ING0. More precisely, for 0 ≤ n ≤ N ,

(V (t)G0)(n) = (INetLNG0)(n) = (etLNG0)(n) = (etLNPNG0)(n). (3.41)

It is well known that a bounded operator LN commutes with its semigroup etLN .
Note also that, for 0 ≤ n ≤ N , G(n) = (PNG)(n). Therefore, for all N ≥ 1,
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0 ≤ n ≤ N , and for G0 = ING0, we obtain

((L0 +W )V (t)G0)(n) = (PN (L0 +W )V (t)G0)(n) = (LNetLNG0)(n)

= (etLNLNG0)(n) = (etLNPN (L0 +W )ING0)(n)

= (V (t)(L0 +W )G0)(n),

where in the last equality we applied (3.41) for (L0 + W )G0 instead of G0.
Hence, (3.40) holds.

Remark 3.7. Note that the initial value problem
∂

∂t
kt = L̂∗kt, kt

∣∣
t=t1

= kt1 ∈

KCt1 for some t1 < T =
1

BC0
, has a solution only on the time interval [t1, t1 +

T1) = [t1, T ), since T1 =
1

BCt1
=

1−BC0t1
BC0

= T − t1.

Remark 3.8. Using an estimate analogous to (3.38), one can show that
∂Gt
∂t
∈

Lρ(t,C) if G0 belongs to Bbs(Γ0) (or even to a larger subset of LC).

Thus, by Theorems 3.5 and 3.6, under conditions (3.11)–(3.14), (3.19) for
the binary jumps dynamics with generator (1.2) we have the evolution of quasi-
observables and the corresponding dual one. We will now show that the latter
evolution generates an evolution of probability measures on Γ.

Theorem 3.9. Let (3.11)–(3.14) and (3.19) hold. Fix a measure µ ∈ M1
fm(Γ)

which has a correlation functional kµ ∈ KC0
, C0 > 0. Consider the evolution

kµ 7→ kt ∈ KCt , t ∈ (0, T ), where T = 1/(c3 + c4)C0. Then, for any t ∈
(0, T ), there exists a unique measure µt ∈M1

fm(Γ) such that kt is the correlation
functional of µt.

Proof. We first recall the following definition. Let a measurable, non-negative
function k on Γ0 be such that

∫
M
k(η) dλ(η) <∞ for any bounded M ∈ B(Γ0).

The function k is said to be Lenard positive definite if 〈〈G, k〉〉 ≥ 0 for any
G ∈ Bbs(Γ0) such that KG ≥ 0. It was shown in [24] that any such k is the
correlation functional of some probability measure on Γ. If, additionally, k ∈ KC
for some C > 0, then this measure is uniquely defined (cf. [22]) and belongs to
M1

fm(Γ) (cf. [15]). Therefore, to prove the theorem, it is enough to show that
kt is Lenard positive definite for any t ∈ (0, T ).

Since the measure µ ∈M1
fm(Γ) has the correlation functional kµ, µ is locally

absolutely continuous with respect to π, and for any Λ ∈ Bbs(Γ0) and λ-a.a
η ∈ Γ(Λ)

dµΛ

dλ
(η) =

∫
Γ(Λ)

(−1)|ξ|kµ(η ∪ ξ)dλ(ξ), (3.42)

see [15, Proposition 4.3]. Since kµ ∈ KC0 , we have, by (3.42), (3.4), and (2.3),

dµΛ

dλ
(η) ≤ ‖kµ‖KC0

eC0m(Λ)C
|η|
0 (3.43)
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for λ-a.a η ∈ Γ(Λ).
We fix Λ0 ∈ Bb(Rd) and consider the projection µ0 := µΛ0 on Γ(Λ0). By

(3.43), for λ-a.a. η ∈ Γ(Λ0)

R0(η) :=
dµ0

dλ
(η) ≤ A0C

|η|
0 , (3.44)

where A0 := ‖kµ‖KC0
eC0m(Λ0). Clearly, µ0 may be considered as a measure on

the whole of Γ if we set R0 to be equal to 0 outside of Γ(Λ0). Hence,

µ0(A) =

∫
Γ(Λ0)∩A

R0(η)dλ(η), A ∈ B(Γ).

On the other hand, R0 being extended by zero outside of Γ(Λ0) can also be
regarded as a B(Γ0)-measurable function. Evidently, that in this case 0 ≤ R0 ∈
L1(Γ0, dλ) with

∫
Γ0
R0dλ = 1. Note that

k0 := 11Γ(Λ0)kµ ∈ KC0
(3.45)

is the correlation functional of µ0. Here and below, 11∆ stands for the indicator
function of a set ∆. By [15, Proposition 4.2], for λ-a.a. η ∈ Γ(Λ0)

k0(η) =

∫
Γ(Λ0)

R0(η ∪ ξ)dλ(ξ). (3.46)

There exists an N0 ∈ N such that
∫

(Rd)N0
R

(N0)
0 dx(N0) > 0 (otherwise R0 = 0

λ-a.e.). We set

r :=

∫⊔N0
n=0

Γ(n)

R0(η)dλ(η) ∈ (0, 1].

For each N ≥ N0, we define

R0,N (η) = 11{|η|≤N}(η)R0(η)

Å∫⊔N

n=0
Γ(n)

R0(η)dλ(η)

ã−1

. (3.47)

Then, clearly, 0 ≤ R0,N ∈ L1(Γ0, dλ), with
∫

Γ0
R0,N dλ = 1. Moreover, R0,N

has a bounded support on Γ0. By (3.47) and (3.44) we have

R0,N (η) ≤ r−1R0(η) ≤ r−1A0C
|η|
0 (3.48)

for λ-a.a. η ∈ Γ0.
We define a probability measure µ0,N ∈ M1

fm(Γ), concentrated on Γ0, by
dµ0,N = R0,Ndλ. By [15, Proposition 4.2], the correlation functional k0,N of
µ0,N has the following representation

k0,N (η) =

∫
Γ(Λ0)

R0,N (η ∪ ξ)dλ(ξ) (3.49)
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for λ-a.a. η ∈ Γ(Λ0). It is evident now that k0,N has a bounded support
on Γ0. Moreover, by (3.46), (3.49), and the first inequality in (3.48), we get
k0,N ≤ 1

rk0 ∈ KC0
and

‖k0,N‖KC0
≤ 1

r
‖k0‖KC0

. (3.50)

By the definition of a correlation functional, for any G ∈ Bbs(Γ0)

∣∣〈〈G, k0〉〉 − 〈〈G, k0,N 〉〉
∣∣ =

∣∣∣∣∫
Γ0

(KG)(η)
(
R0(η)−R0,N (η)

)
dλ(η)

∣∣∣∣
≤D

∫
Γ(Λ0)

(1 + |η|)M
∣∣R0(η)−R0,N (η)

∣∣dλ(η) (3.51)

for some D = D(G) > 0 and M = M(G) ∈ N (see [15, Proposition 3.1]). By
(3.47), R0,N (η) → R0(η) for λ-a.a. η ∈ Γ(Λ0). Furthermore, by (3.44) and
(3.48), ∣∣R0(η)−R0,N (η)

∣∣ ≤ A0(1 + r−1)C
|η|
0 .

By (2.3), ∫
Γ(Λ0)

(1 + |η|)MC |η|0 dλ(η) <∞.

Therefore, by the dominated convergence theorem, (3.51) yields

lim
N→∞

〈〈G, k0,N 〉〉 = 〈〈G, k0〉〉. (3.52)

As before, we identify a function F on Γ0 with a sequence of symmetric
functions F (n) on (Rd)n, n ∈ N0. Fix any G ∈ Bbs(Γ0) and let F be the
restriction of KG to Γ0. Then there exist Λ = ΛF ∈ Bb(Rd), M = MF ∈ N,
and D = DF > 0 such that for all η ∈ Γ0,

|F (η)| = |F (η ∩ Λ)| ≤ D
(
1 + |η ∩ Λ|)M

(see [15, Proposition 3.1]). In particular, F (n) is bounded on (Rd)n for each n.
We restrict the operator L given by (1.2) to functions on Γ0. This restriction,
L0, is given by (3.7).

We define, for any R ∈ L1(Γ0, λ), the function L∗0R on Γ0 by (L∗0R)(n) :=

(L
(n)
0 )∗R(n), where (L

(n)
0 )∗ is given by the right hand side of (3.9) in which

c(xi, xj , y1, y2) is replaced by c(y1, y2, xi, xj). Analogously to the proof of Propo-

sition 3.3, we conclude that (L
(n)
0 )∗ is a bounded generator of a strongly con-

tinuous semigroup on Xn = L1
(
(Rd)n, dx(n)

)
. In the dual space X∗n :=

L∞
(
(Rd)n, dx(n)

)
, we consider the dual operator to (L

(n)
0 )∗, which is just the

L
(n)
0 given by (3.9). It is easy to see that, under condition (3.11), L

(n)
0 is a

bounded operator on X∗n. Note that L
(n)
0 1 = 0 implies∫

(Rd)n
et(L

(n)
0 )∗R(n)dx(n) =

∫
(Rd)n

(
etL

(n)
0 1
)
R(n)dx(n) =

∫
(Rd)n

R(n)dx(n).
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To show that et(L
(n)
0 )∗ preserves the cone X+

n of all positive functions in Xn,

we write (L
(n)
0 )∗ = L1 + L2, where

(
L1R

(n)
)
(x(n)) =

n∑
i=1

n∑
j=i+1

∫
Rd

∫
Rd
c (y1, y2, xi, xj)

×R(n)
(
x1, . . . , y1

∧
i

, . . . , y2
∧
j

, . . . , xn
)
dy1dy2

and (
L2R

(n)
)
(x(n)) = −

(
n∑
i=1

n∑
j=i+1

a2(xi, xj)

)
R(n)(x(n)).

Clearly, L1 and L2 are bounded operators on Xn. Since c ≥ 0, L1 preserves the
cone X+

n , hence so does the semigroup etL1 . Since L2 is a bounded multiplica-
tion operator, the semigroup etL2 is a positive multiplication operator in Xn.

Therefore, et(L
(n)
0 )∗ preserves X+

n by the Lie–Trotter product formula.
Therefore, if we define functions Rt,N , N ≥ N0 (cf. (3.47)) on Γ0 by

R
(n)
t,N := et(L

(n)
0 )∗R

(n)
0,N ,

then 0 ≤ Rt,N ∈ L1(Γ0, dλ) with
∫

Γ0
Rt,Ndλ = 1. Note that R

(n)
t,N ≡ 0 for

n > N . Therefore, we can define a measure µ̃t,N ∈ M1
fm(Γ), concentrated on

Γ0, by dµ̃t,N = Rt,Ndλ (in fact, the measure µ̃t,N is concentrated on
⊔N
n=0 Γ(n)).

We denote by k̃t,N the correlation functional of µ̃t,N .
For each function G on Γ0 we define K0G := (KG)�Γ0

. Take any G0 ∈
Bbs(Γ0) such that KG0 ≥ 0 on Γ. We denote F0 := K0G0 ≥ 0 on Γ0. We have,
by the definition of a correlation functional,

〈〈G0, kt,N 〉〉 = 〈K0G0, Rt,N 〉 ≥ 0. (3.53)

On the other hand, if we define a function U(t)F0 on Γ0 by (U(t)F0)(n) =

etL
(n)
0 F

(n)
0 , we obtain

〈F0, Rt,N 〉 =
N∑
n=0

1

n!
〈F (n)

0 , R
(n)
t,N 〉 =

N∑
n=0

1

n!
〈F (n)

0 , et(L
(n)
0 )∗R

(n)
0,N 〉

=
N∑
n=0

1

n!
〈etL

(n)
0 F

(n)
0 , R

(n)
0,N 〉 = 〈U(t)F0, R0,N 〉

= 〈〈K−1
0 U(t)K0G0, k0,N 〉〉. (3.54)

It is evident, by Proposition 3.1, that

(K−1
0 U(t)K0G0)(n) = et(L

(n)
0 +W (n))G

(n)
0 = (V (t)G0)(n), (3.55)

where V (t) is as in (3.28).
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As a result, from (3.53)–(3.55), we get

〈〈G0, kt,N 〉〉 = 〈〈Gt, k0,N 〉〉, (3.56)

where Gt = V (t)G0. By (3.45), k0 ∈ KC0 . Hence, by Theorem 3.6, for any
t ∈ (0, T ), there exists k̃t ∈ KCt such that

〈〈G0, k̃t〉〉 = 〈〈Gt, k0〉〉. (3.57)

Note that here, for a given t ∈ (0, T ), we may consider G0 ∈ Bbs(Γ0) ⊂ LCt ,
where Ct is given by (3.29). Then, by the proof of Theorem 3.6, Gt = V (t)G0 ∈
LC0 . By (3.56) and (3.57), to prove that

〈〈G0, k̃t〉〉 = lim
N→∞

〈〈G0, kt,N 〉〉, (3.58)

we only need to show that

lim
N→∞

〈〈Gt, k0,N 〉〉 = 〈〈Gt, k0〉〉. (3.59)

The latter fact is a direct consequence of (3.52) if we take into account that
Gt ∈ LC0

and that the set Bbs(Γ0) is dense in LC0
. Indeed, let us consider,

for a fixed t ∈ (0, T ) and for any ε > 0, a function G ∈ Bbs(Γ0) such that
‖G−Gt‖LC0

< ε. Then, by (3.52), there exists an N1 ≥ N0, such that, for any
N ≥ N1 ∣∣〈〈G, k0,N 〉〉 − 〈〈G, k0〉〉

∣∣ < ε.

Therefore, by (3.50), for any N ≥ N1∣∣〈〈Gt, k0,N 〉〉 − 〈〈Gt, k0〉〉
∣∣

≤‖G−Gt‖LC0
‖k0,N‖KC0

+
∣∣〈〈G, k0,N 〉〉 − 〈〈G, k0〉〉

∣∣+ ‖G−Gt‖LC0
‖k0‖KC0

<ε(r−1 + 1)‖k0‖KC0
+ ε,

which proves (3.59). Therefore, (3.58) holds. Hence, by (3.53), k̃t =: k̃Λ0
t is

Lenard positive definite for any t ∈ (0, T ).
As a result, for each Λ ∈ Bb(Rd), the evolution kµΛ 7→ k̃Λ

t , t ∈ (0, T ),

preserves positive-definiteness and 〈〈G0, k̃
Λ
t 〉〉 = 〈〈Gt, kµΛ〉〉. On the other hand,

by Theorem 3.6, we have the evolution kµ 7→ kt, t ∈ (0, T ) satisfying 〈〈G0, kt〉〉 =
〈〈Gt, kµ〉〉.

Since kµΛ = 11Γ(Λ)kµ, it is evident that, for any t ∈ (0, T ), 〈〈Gt, kµΛ〉〉 →
〈〈Gt, kµ〉〉 as Λ↗ Rd. Therefore,

〈〈G0, kt〉〉 = lim
Λ↗Rd

〈〈G0, k̃
Λ
t 〉〉 ≥ 0.

Hence, for each t ∈ (0, T ), there exists a unique measure µt ∈ M1
fm(Γ) whose

correlation functional is kt.
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4 Vlasov-type scaling

For the reader’s convenience, we start with explaining the idea of the Vlasov-
type scaling. A general scheme for both birth-and-death and conservative dy-
namics may be found in [7]. Certain realizations of this approach were studied
in [4, 6, 8, 9].

We would like to construct a scaling of the generator L, say Lε, ε > 0, such
that the following requirements are satisfied. Assume we have an evolution Vε(t)

corresponding to the equation ∂
∂tGt,ε = L̂εGt,ε. Assume that, in some functional

space, we have the dual evolution V ∗ε (t) with respect to the duality (2.8). Let
us choose an initial function for this dual evolution with a big singularity in ε,

namely, k
(ε)
0 (η) ∼ ε−|η|r0(η) as ε → 0 (η ∈ Γ0), with some function r0, being

independent of ε. Our first requirement on the scaling L 7→ Lε is that the
evolution V ∗ε (t) preserves the order of the singularity:(

V ∗ε (t)k
(ε)
0

)
(η) ∼ ε−|η|rt(η) as ε→ 0, η ∈ Γ0, (4.1)

where rt is such that the dynamics r0 7→ rt preserves the so-called Lebesgue–
Poisson exponents. Namely, if r0(η) = eλ(p0, η) :=

∏
x∈η p0(x), then rt(η) =

eλ(pt, η) =
∏
x∈η pt(x). (Here,

∏
x∈∅ := 1.) Furthermore, we require that the

pt’s satisfy a (nonlinear, in general) differential equation

∂

∂t
pt(x) = υ(pt)(x), (4.2)

which will be called a Vlasov-type equation.
For any c > 0, we set (RcG) (η) = c|η|G (η). Roughly speaking, (4.1) means

that
RεV

∗
ε (t)Rε−1r0 ∼ rt.

This gives us a hint to consider the map RεL̂
∗
εRε−1 , which is dual to

L̂ε,ren = Rε−1L̂εRε.

Remark 4.1. We expect that the limiting dynamics for RεV
∗
ε (t)Rε−1 will pre-

serve the Lebesgue–Poisson exponents. Note that the Lebesgue–Poisson expo-
nent eλ(pt), t ≥ 0, is the correlation functional of the Poisson measure πpt on
Γ with the non-constant intensity pt (for a rigorous definition of such a Poisson
measure, see e.g. [1]). Therefore, at least heuristically, we expect to have the
limiting dynamics: πp0

7→ πpt , where pt satisfies the equation (4.2).

Below we will realize this scheme in the case of the generator L given by (1.2).
We will consider, for any ε > 0, the scaled operator Lε = εL. Then, obviously,
L̂εG = εL̂G = εL0G+ εWG, where L0 and W are given by Proposition 3.1.

Proposition 4.2. For any ε > 0

L̂ε,ren = εL0 +W. (4.3)
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Moreover, let (3.11)–(3.14), (3.19) hold. Then, for any C > 0, the initial value
problem

∂

∂t
Gt,ε (η) =

(
L̂ε,renGt,ε

)
(η) ,

Gt,ε
∣∣
t=0

= G0,ε ∈ LC
(4.4)

has a unique solution Gt,ε ∈ Lρ(t,C), where ρ(t, C) is given by (3.23).

Proof. By Proposition 3.1, L0Rε = RεL0 and WRε = ε−1RεW . Therefore,

L̂ε,ren = Rε−1εL0Rε +Rε−1εWRε

= εRε−1RεL0 + ε−1εRε−1RεW = εL0 +W.

By Proposition 3.3, (εL0)
(n)

is a generator of a contraction semigroup in Xn for
any n ≥ 1. Hence, the statement is a direct consequence of Theorem 3.5. Note
that the solution of (4.4) can be found recursively:

G
(n)
t,ε

(
x(n)

)
=
(
eεtL

(n)
0 G

(n)
0,ε

) (
x(n)

)
+

∫ t

0

(
eε(t−s)L

(n)
0 W (n)G(n−1)

s,ε

) (
x(n)

)
ds, n ≥ 1, (4.5)

and G
(0)
t,ε = G

(0)
0,ε.

By (4.3), L̂ε,renG(η) → WG(η) as ε → 0 (η ∈ Γ0). Let (3.13)–(3.14) hold.
By Theorem 3.5, for any C > 0, the initial value problem

∂

∂t
Gt,V (η) = (WGt,V ) (η) ,

Gt,V |t=0 = G0,V ∈ LC
(4.6)

has a unique solution Gt,V ∈ Lρ(t,C) , with ρ (t, C) given by (3.23). This solution

can be constructed recursively, namely, G
(0)
t,V = G

(0)
0,V and

G
(n)
t,V

(
x(n)

)
= G

(n)
0,V

(
x(n)

)
+

∫ t

0

Ä
W (n)G

(n−1)
s,V

ä (
x(n)

)
ds, n ≥ 1. (4.7)

Theorem 4.3. Suppose that conditions (3.11)–(3.14) and (3.19) hold. Let C >
0 and let {G0,V , G0,ε, ε > 0} ⊂ LC be such that∥∥G0,ε −G0,V

∥∥
LC
→ 0 as ε→ 0. (4.8)

Then, for any T > 0 and any r < ρ(T,C),

sup
t∈[0,T ]

∥∥Gt,ε −Gt,V ∥∥Lr → 0 as ε→ 0. (4.9)
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Proof. By (4.5) and (4.7), we have∥∥G(n)
t,ε −G

(n)
t,V

∥∥
Xn

≤
∥∥eεtL(n)

0 G
(n)
0,ε −G

(n)
0,V

∥∥
Xn

+

∫ t

0

∥∥eε(t−s)L(n)
0 W (n)G(n−1)

s,ε −W (n)G
(n−1)
s,V

∥∥
Xn
ds

≤
∥∥∥eεtL(n)

0

(
G

(n)
0,ε −G

(n)
0,V

)∥∥∥
Xn

+
∥∥∥(eεtL(n)

0 − 1
)
G

(n)
0,V

∥∥∥
Xn

+

∫ t

0

∥∥∥eε(t−s)L(n)
0 W (n)

(
G(n−1)
s,ε −G(n−1)

s,V

)∥∥∥
Xn
ds

+

∫ t

0

∥∥∥(eε(t−s)L(n)
0 − 1

)
W (n)G

(n−1)
s,V

∥∥∥
Xn
ds

By Proposition 3.3, L
(n)
0 is the generator of a contraction semigroup in Xn,

hence we continue

≤
∥∥G(n)

0,ε −G
(n)
0,V

∥∥
Xn

+
∥∥∥(eεtL(n)

0 − 1
)
G

(n)
0,V

∥∥∥
Xn

+

∫ t

0

∥∥∥W (n)
(
G(n−1)
s,ε −G(n−1)

s,V

)∥∥∥
Xn
ds

+

∫ t

0

∥∥∥(eε(t−s)L(n)
0 − 1

)
W (n)G

(n−1)
s,V

∥∥∥
Xn
ds. (4.10)

By (3.3), for any n ∈ N0

Cn

n!

∥∥G(n)
0,ε −G

(n)
0,V

∥∥
Xn
≤
∥∥G0,ε −G0,V

∥∥
LC
. (4.11)

Hence, condition (4.8) implies that
∥∥G(n)

0,ε −G
(n)
0,V

∥∥
Xn
→ 0 as ε→ 0. Since L

(n)
0

is a bounded generator of a strongly continuous contraction semigroup on Xn

and since G
(n)
0,V ∈ Xn, we get from (3.35):

sup
t∈[0,T ]

∥∥∥(eεtL(n)
0 − 1

)
G

(n)
0,V

∥∥∥
Xn
≤ εT

∥∥L(n)
0 G

(n)
0,V

∥∥
Xn
→ 0 as ε→ 0.

Next, by the inclusion W (n)G
(n−1)
s,V ∈ Xn, formula (3.35) also yields that, for

any fixed t > 0 and any s ∈ [0, t],∥∥∥(eε(t−s)L(n)
0 − 1

)
W (n)G

(n−1)
s,V

∥∥∥
Xn
≤
∫ ε(t−s)

0

∥∥L(n)
0 W (n)G

(n)
τ,V

∥∥
Xn
dτ

By Proposition 3.3, we continue with A :=
c1 + c2

2
and B := c3 + c4:

≤ABn2 (n− 1)
2
∫ ε(t−s)

0

∥∥G(n−1)
τ,V

∥∥
Xn−1

dτ
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By (3.3), similarly to (4.11), we estimate:

≤ABn2 (n− 1)
2
∫ ε(t−s)

0

(ρ(τ, C))−(n−1) (n− 1)!‖Gτ,V ‖Lρ(τ,C)
dτ

For 0 ≤ s ≤ t ≤ T and 0 < ε < 1, by (3.23) and (3.24), we continue:

≤ εTABn2 (n− 1)
2

(ρ(T,C))−(n−1) (n− 1)!‖G0,V ‖LC .

Therefore,

sup
t∈[0,T ]

∫ t

0

∥∥(eε(t−s)L(n)
0 − 1

)
W (n)G

(n−1)
s,V

∥∥
Xn
ds→ 0 as ε→ 0.

Suppose now that

sup
t∈[0,T ]

∥∥G(n−1)
t,ε −G(n−1)

t,V

∥∥
Xn−1

→ 0 as ε→ 0. (4.12)

Then, by (3.20),

sup
t∈[0,T ]

∫ t

0

∥∥∥W (n)
(
G(n−1)
s,ε −G(n−1)

s,V

)∥∥∥
Xn
ds

≤Bn(n− 1)T sup
t∈[0,T ]

∥∥G(n−1)
t,ε −G(n−1)

t,V

∥∥
Xn−1

→ 0 as ε→ 0.

Note that, for any t ∈ [0, T ], using (4.11), we obtain∣∣G(0)
t,ε −G

(0)
t,V

∣∣ =
∣∣G(0)

0,ε −G
(0)
0,V

∣∣→ 0 as ε→ 0.

As a result, by the induction principle, we conclude from (4.10) that, for any
n ∈ N0,

sup
t∈[0,T ]

∥∥G(n)
t,ε −G

(n)
t,V

∥∥
Xn
→ 0 as ε→ 0. (4.13)

Let now 0 < r < ρ(T,C). Then

sup
t∈[0,T ]

∥∥Gt,ε −Gt,V ∥∥Lr ≤ ∞∑
n=0

rn

n!
sup
t∈[0,T ]

∥∥G(n)
t,ε −G

(n)
t,V

∥∥
Xn
. (4.14)

Hence, by (4.13) and (4.14), to prove the theorem it suffices to show that the
series (4.14) converges uniformly in ε. But the latter series may be estimated,
similarly to the considerations above:

∞∑
n=0

rn

n!
sup
t∈[0,T ]

(∥∥G(n)
t,ε

∥∥
Xn

+
∥∥G(n)

t,V

∥∥
Xn

)
≤
∞∑
n=0

rn

n!
sup
t∈[0,T ]

(
(ρ(t, C))−nn!

∥∥Gt,ε∥∥Lρ(t,C)
+ (ρ(t, C))−nn!

∥∥Gt,V ∥∥Lρ(t,C)

)
≤
(
‖G0,V ‖LC + sup

ε>0
‖G0,ε‖LC

) ∞∑
n=0

Å
r

ρ(T,C)

ãn
<∞,

since G0,ε → G0,V in LC yields supε>0 ‖G0,ε‖LC <∞.
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Proposition 4.4. Let the conditions of Theorem 3.6 hold. Let C0 > 0, T =
1

BC0
, and

{
k0,V , k0,ε, ε > 0

}
⊂ KC0

. Then, for any t ∈ (0, T ), there exist

functions
{
kt,V , kt,ε, ε > 0

}
⊂ KCt , with Ct given by (3.29), such that, for any

G ∈ Bbs(Γ0),

∂

∂t
〈〈G, kt,ε〉〉 = 〈〈(εL0 +W )G, kt,ε〉〉,

∂

∂t
〈〈G, kt,V 〉〉 = 〈〈WG, kt,V 〉〉.

Moreover, ‖kt,ε‖KCt ≤ ‖k0,ε‖KC0
, ‖kt,V ‖KCt ≤ ‖k0,V ‖KC0

. If, additionally,

lim
ε→0
‖k0,ε − k0,V ‖KC0

= 0, (4.15)

then for any T ′ ∈ (0, T ), r0 > CT ′ , and G0 ∈ Lr0 ,

sup
t∈[0,T ′]

∣∣〈〈G0, kt,ε − kt,V 〉〉
∣∣→ 0 as ε→ 0. (4.16)

Proof. The first part of the statement follows from Theorem 3.6. Since the
function [0, T ′] 3 t 7→ Ct is (strictly) increasing, we have

{
kt,V , kt,ε, ε > 0

}
⊂

KCT ′ ⊂ Kr0 . Moreover, by the proof of Theorem 3.6, for any G0 ∈ Lr0 ⊂ LCt ,

〈〈G0, kt,ε〉〉 = 〈〈Gt,ε, k0,ε〉〉, 〈〈G0, kt,V 〉〉 = 〈〈Gt,V , k0,V 〉〉, (4.17)

where Gt,ε and Gt,V are solutions to (4.4) and (4.6), respectively. Therefore, by
Theorem 3.5,

{
Gt,ε, Gt,V

}
⊂ Lρ(t,r0), where the function ρ is given by (3.23).

Since ρ is (strictly) increasing in the second variable and since r0 > CT ′ , we
have

ρ(T ′, r0) > ρ(T ′, CT ′) = C0.

Applying Theorem 4.3 with C = r0, r = C0, T = T ′, and G0,ε = G0,V = G0 we
obtain

sup
t∈[0,T ′]

∥∥Gt,ε −Gt,V ∥∥LC0

→ 0 as ε→ 0. (4.18)

Then, by (4.17),

sup
t∈[0,T ′]

∣∣〈〈G0, kt,ε − kt,V 〉〉
∣∣ = sup

t∈[0,T ′]

∣∣〈〈Gt,ε, k0,ε〉〉 − 〈〈Gt,V , k0,V 〉〉
∣∣

≤ sup
t∈[0,T ′]

∣∣〈〈Gt,ε −Gt,V , k0,ε〉〉
∣∣+ sup

t∈[0,T ′]

∣∣〈〈Gt,V , k0,ε − k0,V 〉〉
∣∣

≤ sup
t∈[0,T ′]

‖Gt,ε −Gt,V ‖LC0
‖k0,ε‖KC0

+ sup
t∈[0,T ′]

‖Gt,V ‖LC0
‖k0,ε − k0,V ‖KC0

. (4.19)

Since k0,ε → k0,V in KC0 , we get supε>0 ‖k0,ε‖KC0
< ∞. Then, by (4.18), the

first summand in (4.19) converges to 0 as ε→ 0. Next, by (3.24),

‖Gt,V ‖LC0
= ‖Gt,V ‖Lρ(t,Ct) ≤ ‖G0‖LCt ≤ ‖G0‖LC

T ′
≤ ‖G0‖Lr0 .

Hence, by (4.15), the second summand in (4.19) also converges to 0 as ε → 0,
which proves the second part of the statement.
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We will now show that the evolution k0,V 7→ kt,V satisfies our second re-
quirement on the initial scaling L 7→ Lε, namely, eλ(p0, η) 7→ eλ(pt, η).

Proposition 4.5. Let the conditions of Theorem 3.6 hold. Then for any G ∈
Bbs(Γ0) and any k ∈ KC with C > 0,∫

Γ0

(WG) (η) k (η) dλ (η) =

∫
Γ0

G (η) (W ∗k) (η) dλ (η) , (4.20)

where

(W ∗k)(η) =
∑
y1∈η

∫
Rd

∫
Rd
c̃ (x1, x2, y1) k (η ∪ x2 ∪ x1 \ y1) dx2dx1

−
∑
x1∈η

∫
Rd
a1(x1, x2)k (η ∪ x2) dx2. (4.21)

Here the functions c̃ and a1 are defined by (3.5) and (3.15), respectively.

Proof. First, we note that, under conditions (3.11)–(3.14), for G ∈ Bbs(Γ0)
and k ∈ KC , both integrals in (4.20) are well defined. Then, using (3.8) and
e.g. [7, Lemma 1], we have∫

Γ0

(WG) (η) k (η) dλ (η)

=

∫
Γ0

∫
Rd

∑
x1∈η

∫
Rd
c̃ (x1, x2, y1)G (η \ x1 ∪ y1) dy1k (η ∪ x2) dx2dλ (η)

−
∫

Γ0

∫
Rd

∑
x1∈η

∫
Rd
c̃ (x1, x2, y1)G (η) dy1k (η ∪ x2) dx2dλ (η)

=

∫
Γ0

∫
Rd

∫
Rd

∑
y1∈η

c̃ (x1, x2, y1)G (η) k (η ∪ x2 ∪ x1 \ y1) dx2dx1dλ (η)

−
∫

Γ0

∫
Rd

∑
x1∈η

∫
Rd
c̃ (x1, x2, y1)G (η) dy1k (η ∪ x2) dx2dλ (η) ,

which proves the statement.

Thus, for any pt ∈ L∞(Rd),

(W ∗eλ(pt))(η) =
∑
y∈η

eλ(pt, η \ y)

∫
Rd

∫
Rd
c̃ (x1, x2, y) pt(x1)pt(x2)dx2dx1

−
∑
y∈η

eλ(pt, η \ y)pt(y)

∫
Rd
a1(y, x2)pt(x2)dx2.

On the other hand, if d
dtpt exists, then

∂

∂t
eλ(pt, η) =

∑
y∈η

eλ(pt, η \ y)
∂

∂t
pt(y).
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Therefore, there exists a (point-wise) solution kt = eλ(pt, η) of the initial value
problem

∂kt
∂t

= W ∗kt, kt
∣∣
t=0

= eλ(p0, η), (4.22)

provided pt satisfies the non-linear Vlasov-type equation

∂

∂t
pt (x) =

∫
Rd

∫
Rd
c̃(y1, y2, x)pt (y1) pt (y2) dy1dy2

− pt (x)

∫
Rd
a1(x, x2)pt (x2) dx2. (4.23)

If the symmetry condition (1.4) holds, then we may rewrite (4.23) in the Boltzmann-
type form

∂

∂t
pt (x) =

∫
Rd

∫
Rd

∫
Rd
c (x, x2, y1, y2)

× [pt (y1) pt (y2)− pt (x) pt (x2)] dy1dy2dx2. (4.24)

We are interested in positive bounded solutions of (4.23).

Proposition 4.6. Let C > 0 and let 0 ≤ p0 ∈ L∞(Rd) with ‖p0‖L∞(Rd) ≤ C.
Assume that (3.11) and (3.14) hold and, moreover,∫

Rd

∫
Rd
c(y, u1, x, u2)du1du2 ≤

∫
Rd

∫
Rd
c(x, y, u1, u2)du1du2. (4.25)

Then, for any T > 0, there exists a function 0 ≤ pt ∈ L∞(Rd), t ∈ [0, T ], which
solves (4.23) and, moreover,

max
t∈[0,T ]

‖pt‖L∞(Rd) ≤ C. (4.26)

This functions is a unique non-negative solution to (4.23) which satisfies (4.26).

Proof. Let us fix an arbitrary T > 0 and define the Banach space XT :=
C([0, T ], L∞(Rd)) of all continuous functions on [0, T ] with values in L∞(Rd);
the norm on XT is given by

‖u‖T := max
t∈[0,T ]

‖ut‖L∞(Rd).

We denote by X+
T the cone of all nonnegative functions from XT . For a given

C > 0, denote by B+
T,C the set of all functions u from X+

T with ‖u‖T ≤ C.
Let Φ be a mapping which assigns to any v ∈ XT the solution ut of the

linear Cauchy problem

∂

∂t
ut (x) =− ut (x)

∫
Rd
a1(x, y)vt (y) dy

+

∫
Rd

∫
Rd
c̃(y1, y2, x)vt (y1) vt (y2) dy1dy2,

ut(x)
∣∣∣
t=0

= p0(x),

(4.27)
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namely,

(Φv)t(x) = exp

ß
−
∫ t

0

∫
Rd
a1(x, y)vs (y) dyds

™
p0(x)

+

∫ t

0

exp

ß
−
∫ t

s

∫
Rd
a1(x, y)vτ (y) dydτ

™
×
∫
Rd

∫
Rd
c̃(y1, y2, x)vs (y1) vs (y2) dy1dy2ds. (4.28)

Clearly, vt ≥ 0 implies (Φv)t ≥ 0. Moreover, v ∈ X+
T yields∣∣(Φvt)(x)

∣∣ ≤ |p0(x)|+ c4T‖v‖2T .

Therefore, Φ : X+
T → X+

T . Obviously, ut solves (4.23) if and only if u is a fixed
point of the map Φ.

Since 0 ≤ p0(x) ≤ C for a.a. x ∈ Rd, we get from (4.28) and (4.25), for any
v ∈ B+

T,C ,

0 ≤ (Φv)t(x) ≤ C exp

ß
−
∫ t

0

∫
Rd
a1(x, y)vs (y) dyds

™
+ C

∫ t

0

exp

ß
−
∫ t

s

∫
Rd
a1(x, y)vτ (y) dydτ

™ ∫
Rd
a1(x, y)vs (y) dyds

≤ C exp

ß
−
∫ t

0

∫
Rd
a1(x, y)vs (y) dyds

™
+ C

∫ t

0

∂

∂s
exp

ß
−
∫ t

s

∫
Rd
a1(x, y)vτ (y) dydτ

™
ds = C.

Therefore, Φ : B+
T,C → B+

T,C .

Let us choose any Υ ∈ (0, T ) such that 2C(c3 + c4)Υ < 1. Clearly, v ∈ B+
T,C

implies v ∈ B+
Υ,C . By what we have shown above, Φ : B+

Υ,C → B+
Υ,C . Note the

elementary inequalities |e−a − e−b| ≤ |a− b| and

|pe−a − qe−b| ≤ e−a|p− q|+ qe−b|e−(a−b) − 1| ≤ e−a|p− q|+ qe−b|a− b|,

which hold for any a, b, p, q ≥ 0. Hence, for any v, w ∈ B+
Υ,C , t ∈ [0,Υ], we get∣∣(Φv)t(x)− (Φw)t(x)

∣∣
≤
∣∣∣∣∫ t

0

∫
Rd
a1(x, y)vs (y) dyds−

∫ t

0

∫
Rd
a1(x, y)ws (y) dyds

∣∣∣∣p0(x)

+

∫ t

0

exp

ß
−
∫ t

s

∫
Rd
a1(x, y)vτ (y) dydτ

™
×
∣∣∣∣∫

Rd

∫
Rd
c̃(y1, y2, x)vs (y1) vs (y2) dy1dy2
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−
∫
Rd

∫
Rd
c̃(y1, y2, x)ws (y1)ws (y2) dy1dy2

∣∣∣∣ds
+

∫ t

0

exp

ß
−
∫ t

s

∫
Rd
a1(x, y)wτ (y) dydτ

™
×
∫
Rd

∫
Rd
c̃(y1, y2, x)ws (y1)ws (y2) dy1dy2

×
∣∣∣∣∫ t

s

∫
Rd
a1(x, y)vτ (y) dydτ −

∫ t

s

∫
Rd
a1(x, y)wτ (y) dydτ

∣∣∣∣ds
=: I1 + I2 + I3.

By (3.11), (3.14), and (4.25), we have

I1 ≤ Cc3‖v − w‖ΥΥ,

I3 ≤ Cc3‖v − w‖Υt
∫ t

0

∂

∂s
exp

ß
−
∫ t

s

∫
Rd
a1(x, y)wτ (y) dydτ

™
ds

≤ Cc3‖v − w‖ΥΥ,

I2 ≤ 2Cc4‖v − w‖ΥΥ.

Therefore,
‖Φv − Φw‖Υ ≤ 2C(c3 + c4)Υ‖v − w‖Υ

for any v, w ∈ B+
Υ,C . Since B+

Υ,C is a metric space (with the metric induced
by the norm ‖ · ‖Υ) and since 2C(c3 + c4)Υ < 1, there exists a unique u∗ ∈
B+

Υ,C such that u∗ = Φ(u∗). Hence, u∗t solves (4.23) for t ∈ [0,Υ]. Since

0 ≤ u∗Υ(x) ≤ C for a.a. x ∈ Rd, we can consider the equation (4.23) with the
initial value pt(x)

∣∣
t=Υ

= u∗Υ(x). Then we obtain a unique non-negative solution
which satisfies maxt∈[Υ,2Υ] ‖ut‖L∞(Rd) ≤ C, and so on. As a result, we obtain

a solution of (4.23) on [0, T ]. The uniqueness among all solutions from B+
T,C is

now obvious.

Remark 4.7. Note that, in the proof of Proposition 4.6, we did not use the
property (1.3). On the other hand, all considerations remain true if, instead of
(4.25), we assume that∫

Rd

∫
Rd
c(u1, y, x, u2)du1du2 ≤

∫
Rd

∫
Rd
c(x, y, u1, u2)du1du2. (4.29)

Suppose we have an expansion

c({x1, x2}, {y1, y2}) = c′(x1, x2, y1, y2) + c′′(x1, x2, y1, y2) (4.30)

where c′, c′′ are functions which satisfy conditions (4.25) and (4.29), respectively,
as well as conditions (3.11) and (3.14) (but do not necessarily satisfy (1.3)). It
is easy to see that all considerations in the proof of Proposition 4.6 remain true
for this c. Let us give a quite natural example of functions c′, c′′.
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Example 4.8 (cf. [10]). Let c be given by (4.30) with

c′(x1, x2, y1, y2) = κa(x1 − y1)a(x2 − y2)
[
b(x1 − x2) + b(y1 − y2)

]
.

and
c′′(x1, x2, y1, y2) = c′(x2, x1, y1, y2).

Here κ > 0, 0 ≤ a, b ∈ L1(Rd) ∩ L∞(Rd), ‖a‖L1(Rd) = ‖b‖L1(Rd) = 1 and b is
an even function. Then the condition (4.29) for c′′ coincides with the condition
(4.25) for c′. Note also that (3.11)–(3.14) are satisfied for c. For example,
c4 = 4κ and

c1 ≤ 2κ‖b‖L∞(Rd) + 2κ‖a‖L∞(Rd)‖b‖L∞(Rd) <∞.

Next, let us check whether (4.25) holds for c′. We have

κ
∫
Rd

∫
Rd
c′(y, u1, x, u2)du1du2

= κ
∫
Rd

∫
Rd
a(y − x)a(u1 − u2)

(
b(y − u1) + b(x− u2)

)
du1du2 = 2κa(y − x)

and

κ
∫
Rd

∫
Rd
c′(x, y, u1, u2)du1du2

= κ
∫
Rd

∫
Rd
a(x− u1)a(y − u2)

(
b(x− y) + b(u1 − u2)

)
du1du2

= κb(x− y) + κ
∫
Rd

∫
Rd
a(x− u1)a(y − u2)b(u1 − u2)du1du2.

Since b is even, (4.25) holds if, for example, 2a(x) ≤ b(x), x ∈ Rd.
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