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1 Introduction

The theory of stochastic lattice gases on the cubic lattice Zd, d ∈ N, is one of
the most well developed areas in the interacting particle systems theory. In the
lattice gas models with spin space S = {0, 1}, the configuration space is defined

as X = {0, 1}Z
d

. Given a configuration σ = {σ(x) : x ∈ Zd} ∈ X , we say that
a lattice site x ∈ Zd is free or occupied by a particle depending on σ(x) = 0 or
σ(x) = 1, respectively. The spin-flip dynamics of such a system means that, at
each site x of the lattice, a particle randomly appears (if the site x is free) or
disappears from that site. The generator of this dynamics is given by

(Lf)(σ) =
∑

x∈Zd

a(x, σ)(f(σx) − f(σ)),

where σx denotes the configuration σ in which a particle located at x has dis-
appeared or a new particle has appeared at x. Hence, this dynamics may be
interpreted as a birth-and-death process on Zd. An example of such a type of
process is given by the classical contact model, which describes the spread of an
infectious disease. In this model an individual at x ∈ Zd is infected if σ(x) = 1
and healthy if σ(x) = 0. Healthy individuals become infected at a rate which is
proportional to the number of infected neighbors (λ

∑

y:|y−x|=1 σ(y), for some

λ ≥ 0), while infected individuals recover at a rate identically equal to 1. An
additional example is the linear voter model, in which an individual located at
a x ∈ Zd has one of two possible positions on an issue. He reassesses his view
by the influence of surrounding people. Further examples of such a type may
be found e.g. in [27], [28].

In all these examples clearly there is no conservation on the number of par-
ticles involved. In contrast to them, in the spin-exchange dynamics there is
conservation on the number of particles. In this case, particles randomly hop
from one site in Zd to another one. The generator of such a dynamics is given
by

(Lf)(σ) =
∑

x∈Zd

∑

y∈Zd:|y−x|=1

c(x, y, σ)(f(σxy) − f(σ)),

where σxy denotes the configuration σ in which a particle located at x hops to
a site y.

In this work we consider continuous particle systems, i.e., systems of particles
which can be located at any site in the Euclidean space Rd, d ∈ N. In this case,
the configuration space of such systems is the space Γ of all locally finite subsets
of Rd. Thus, an analog of the above mentioned spin-flip dynamics should be a
process in which particles randomly appear or disappear from the space Rd, i.e.,
a spatial birth-and-death process. The generator of such a process is informally
given by

(LF )(γ) =
∑

x∈γ

d(x, γ \ {x}) (F (γ \ {x}) − F (γ))

+

∫

Rd

dx b(x, γ) (F (γ ∪ {x}) − F (γ)) ,
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where the coefficient d(x, γ) indicates the rate at which a particle located at x
in a configuration γ dies or disappears, while b(x, γ) indicates the rate at which,
given a configuration γ, a new particle is born or appears at a site x.

By analogy, one may also consider a continuous version of the contact and
voter models above presented. Both continuous versions yield a similar informal
expression for the corresponding generators.

Moreover, one may also consider the analog of the spin-exchange dynam-
ics. We consider a general case of hopping particle systems, in which particles
randomly hop over the space Rd. In terms of generators, this means that the
dynamics is informally given by

(LF )(γ) =
∑

x∈γ

∫

Rd

dy c(x, y, γ) (F (γ \ {x} ∪ {y}) − F (γ)) ,

where the coefficient c(x, y, γ) indicates the rate at which a particle located at
x in a configuration γ hops to a site y.

Spatial birth-and-death processes in the continuum were first discussed by
C. Preston in [33]. Under some conditions on the birth and death rates, b and
d, the author has proved the existence of such processes in a bounded volume
on Rd. In this case, although the number of particles can be arbitrarily large, at
each moment of time the total number of particles is always finite. Later on, the
problem of convergence of these processes to an equilibrium one was analyzed
in [29], [30]. Problems of existence, construction, and uniqueness of spatial
birth-and-death processes in an infinite volume were initiated by R. A. Holley
and D. W. Stroock in [9] for a special case of neighbor birth-and-death processes
on the real line. An extension of the uniqueness result stated therein may be
found in [3].

E. Glötzl analyzed in [7], [8] the birth-and-death and the hopping dynamics
of continuous particle systems for which a Gibbs measure µ is reversible. Al-
though he could not prove the existence of such processes, he has identified the
conditions on the coefficients, b, d and c under which the corresponding gen-
erators are symmetric operators on the space L2(µ). For the particular case
of the Glauber stochastic dynamics, such a process was effectively constructed
in [19]. The procedure used therein was extended in [20] to a general case of
birth-and-death dynamics and to the hopping dynamics. Recently, in [22] the
authors have proved the existence of a contact process.

In this work we propose an approach to the study of a dynamics based on
combinatorial harmonic analysis techniques on configuration spaces. This par-
ticular standpoint of configuration space analysis was introduced and developed
in [10], [23] (Subsection 2.1). For this purpose, we assume that the coefficients
b, d and c are of the type

a(x, γ) =
∑

η⊂γ
|η|<∞

Ax(η), a = b, d, c(x, y, γ) =
∑

η⊂γ
|η|<∞

Cx,y(η), (1.1)

respectively. This special form of the coefficients allows the use of harmonic
analysis techniques, namely, the specific ones yielding from the natural rela-
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tions between states, observables, correlation measures, and correlation func-
tions (Subsection 2.2). Usually, the starting point for the construction of a
dynamics is the Markov generator L related to the Kolmogorov equation

∂

∂t
Ft = LFt.

Given an initial distribution µ of the system (from a set of admissible initial
distributions on Γ), the generator L determines a Markov process on Γ with
initial distribution µ. In alternative to this approach, the natural relations be-
tween observables (i.e., functions defined on Γ), states, correlation measures,
and correlation functions yield a description of the underlying dynamics in
terms of those elements (Subsection 2.2), through corresponding Kolmogorov
equations. Such equations are presented under quite general assumptions, suf-
ficient to define these equations. However, let us observe that on each concrete
application the explicit form of the rates determines specific assumptions, which
only hold for that concrete application. Such an analysis is discussed separately.
In Subsection 2.3 we widen the dynamical description towards the Bogoliubov
functionals [2], cf. [14].

Let us pointing out that assumptions (1.1) are natural and quite general. As
a matter of fact, the birth and death rates on the Glauber, the contact model
and the linear and polynomial voter models dynamics, are both of this type
(Subsections 3.2.1–3.2.4), as well the coefficient c for the Kawasaki dynamics
(Subsection 4.2.1).

From the technical point of view, the approach that is presented here turns
out to be an effective method for the study of Markov evolution for infinite
particle systems in the continuum, see Subsection 2.2 for details. This has been
recently emphasized in the construction of a non-equilibrium Glauber dynamics
done in [18], cf. considerations at the end of Subsection 3.2.1 (see also [4], [16]).
In our forthcoming publication [6] we present an extension of this technique
towards multicomponent systems.

2 Markov evolutions in configuration spaces

2.1 Harmonic analysis on configuration spaces

The configuration space Γ := ΓRd over Rd, d ∈ N, is defined as the set of all
locally finite subsets of Rd,

Γ :=
{

γ ⊂ Rd : |γΛ| < ∞ for every compact Λ ⊂ Rd
}

,

where |·| denotes the cardinality of a set and γΛ := γ ∩ Λ. As usual we identify
each γ ∈ Γ with the non-negative Radon measure

∑

x∈γ δx ∈ M(Rd), where δx

is the Dirac measure with unit mass at x,
∑

x∈∅ δx is, by definition, the zero

measure, and M(Rd) denotes the space of all non-negative Radon measures
on the Borel σ-algebra B(Rd). This identification allows to endow Γ with the

4



topology induced by the vague topology on M(Rd), i.e., the weakest topology
on Γ with respect to which all mappings

Γ ∋ γ 7−→ 〈f, γ〉 :=

∫

Rd

dγ(x) f(x) =
∑

x∈γ

f(x), f ∈ Cc(R
d),

are continuous. Here Cc(Rd) denotes the set of all continuous functions on Rd

with compact support. We denote by B(Γ) the corresponding Borel σ-algebra
on Γ.

Let us now consider the space of finite configurations

Γ0 :=

∞
⊔

n=0

Γ(n),

where Γ(n) := Γ
(n)

Rd := {γ ∈ Γ : |γ| = n} for n ∈ N and Γ(0) := {∅}. For n ∈ N,

there is a natural bijection between the space Γ(n) and the symmetrization

(̃Rd)n�Sn of the set (̃Rd)n := {(x1, ..., xn) ∈ (Rd)n : xi 6= xj if i 6= j} under

the permutation group Sn over {1, ..., n} acting on (̃Rd)n by permuting the
coordinate indexes. This bijection induces a metrizable topology on Γ(n), and
we endow Γ0 with the topology of disjoint union of topological spaces (for more
details see [10]). By B(Γ(n)) and B(Γ0) we denote the corresponding Borel
σ-algebras on Γ(n) and Γ0, respectively.

We proceed to consider the K-transform [24], [25], [26], [10], that is, a map-
ping which maps functions defined on Γ0 into functions defined on the space
Γ. Let Bc(Rd) denote the set of all bounded Borel sets in Rd, and for any

Λ ∈ Bc(Rd) let ΓΛ := {η ∈ Γ : η ⊂ Λ}. Evidently ΓΛ =
⊔∞

n=0 Γ
(n)
Λ , where

Γ
(n)
Λ := ΓΛ ∩ Γ(n) for each n ∈ N0, leading to a situation similar to the one for

Γ0, described above. We endow ΓΛ with the topology of the disjoint union of
topological spaces and with the corresponding Borel σ-algebra B(ΓΛ).

Given a B(Γ0)-measurable function G with local support, that is, G↾Γ\ΓΛ
≡ 0

for some Λ ∈ Bc(Rd), the K-transform of G is a mapping KG : Γ → R defined
at each γ ∈ Γ by

(KG)(γ) :=
∑

η⊂γ
|η|<∞

G(η). (2.1)

Note that for every such function G the sum in (2.1) has only a finite number
of summands different from zero, and thus KG is a well-defined function on Γ.
Moreover, if G has support described as before, then the restriction (KG)↾ΓΛ

is
a B(ΓΛ)-measurable function and (KG)(γ) = (KG)↾ΓΛ

(γΛ) for all γ ∈ Γ, i.e.,
KG is a cylinder function.

Let now G be a bounded B(Γ0)-measurable function with bounded support,
that is, G↾

Γ0\
“

F

N
n=0 Γ

(n)
Λ

”≡ 0 for some N ∈ N0,Λ ∈ Bc(Rd). In this situation,

for each C ≥ |G| one finds |(KG)(γ)| ≤ C(1 + |γΛ|)
N for all γ ∈ Γ. As a

result, besides the cylindricity property, KG is also polynomially bounded. In
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the sequel we denote the space of all bounded B(Γ0)-measurable functions with
bounded support by Bbs(Γ0). It has been shown in [10] that the K-transform
is a linear isomorphism which inverse mapping is defined on cylinder functions
by

(

K−1F
)

(η) :=
∑

ξ⊂η

(−1)|η\ξ|F (ξ), η ∈ Γ0.

As a side remark, we observe that this property of the K-transform yields a full
complete description of the elements in FP(Γ) := K (Bbs(Γ0)) which may be
found in [10], [13]. However, throughout this work we shall only make use of
the above described cylindricity and polynomial boundedness properties of the
functions in FP(Γ).

Among the elements in the domain of the K-transform are also the so-called
Lebesgue–Poisson coherent states eλ(f) corresponding to B(Rd)-measurable
functions f . By definition, for any B(Rd)-measurable function f ,

eλ(f, η) :=
∏

x∈η

f(x), η ∈ Γ0\{∅}, eλ(f, ∅) := 1.

If f has compact support, then the image of eλ(f) under the K-transform is a
function on Γ given by

(Keλ(f)) (γ) =
∏

x∈γ

(1 + f(x)), γ ∈ Γ.

As well as the K-transform, its dual operator K∗ will also play an essential
role in our setting. Let M1

fm(Γ) denote the set of all probability measures µ on
(Γ,B(Γ)) with finite local moments of all orders, i.e.,

∫

Γ

dµ(γ) |γΛ|
n < ∞ for all n ∈ N and all Λ ∈ Bc(R

d). (2.2)

By the definition of a dual operator, given a µ ∈ M1
fm(Γ), the so-called correla-

tion measure ρµ := K∗µ corresponding to µ is a measure on (Γ0,B(Γ0)) defined
for each G ∈ Bbs(Γ0) by

∫

Γ0

dρµ(η)G(η) =

∫

Γ

dµ(γ) (KG) (γ). (2.3)

Observe that under the above conditions K|G| is µ-integrable. In terms of
correlation measures this means that Bbs(Γ0) ⊂ L1(Γ0, ρµ).

Actually, Bbs(Γ0) is dense in L1(Γ0, ρµ). Moreover, still by (2.3), on Bbs(Γ0)
the inequality ‖KG‖L1(µ) ≤ ‖G‖L1(ρµ) holds, allowing then an extension of the
K-transform to a bounded operator K : L1(Γ0, ρµ) → L1(Γ, µ) in such a way
that equality (2.3) still holds for any G ∈ L1(Γ0, ρµ). For the extended operator
the explicit form (2.1) still holds, now µ-a.e. This means, in particular,

(Keλ(f)) (γ) =
∏

x∈γ

(1 + f(x)), µ−a.a. γ ∈ Γ, (2.4)
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for all B(Rd)-measurable functions f such that eλ(f) ∈ L1(Γ0, ρµ), cf. e.g. [10].
We also note that in terms of correlation measures ρµ property (2.2) means

that ρµ is locally finite, that is, ρµ(Γ
(n)
Λ ) < ∞ for all n ∈ N0 and all Λ ∈ Bc(Rd).

By Mlf(Γ0) we denote the class of all locally finite measures on Γ0.

Example 2.1. Given a constant z > 0, let πz be the Poisson measure with in-
tensity zdx, that is, the probability measure on (Γ,B(Γ)) with Laplace transform
given by

∫

Γ

dπz(γ) exp

(

∑

x∈γ

ϕ(x)

)

= exp

(

z

∫

Rd

dx
(

eϕ(x) − 1
)

)

for all ϕ ∈ D. Here D denotes the Schwartz space of all infinitely differentiable
real-valued functions on Rd with compact support. The correlation measure
corresponding to πz is the so-called Lebesgue–Poisson measure

λz :=
∞
∑

n=0

zn

n!
m(n),

where each m(n), n ∈ N, is the image measure on Γ(n) of the product measure

dx1...dxn under the mapping (̃Rd)n ∋ (x1, ..., xn) 7→ {x1, ..., xn} ∈ Γ(n). For
n = 0 we set m(0)({∅}) := 1. This special case emphasizes the technical role
of the coherent states in our setting. First, eλ(f) ∈ Lp(Γ0, λz) whenever f ∈
Lp(Rd, dx) for some p ≥ 1, and, moreover, ‖eλ(f)‖p

Lp(λz) = exp(z‖f‖p
Lp(dx)).

Second, given a dense subspace L ⊂ L2(Rd, dx), the set {eλ(f) : f ∈ L} is total
in L2(Γ0, λz).

Given a probability measure µ on Γ, let µ◦p−1
Λ be the image measure on the

space ΓΛ, Λ ∈ Bc(Rd), under the mapping pΛ : Γ → ΓΛ defined by pΛ(γ) := γΛ,
γ ∈ Γ, i.e., the projection of µ onto ΓΛ. A measure µ ∈ M1

fm(Γ) is called locally
absolutely continuous with respect to π := π1 whenever for each Λ ∈ Bc(Rd)
the measure µ ◦ p−1

Λ is absolutely continuous with respect to π ◦ p−1
Λ . In this

case, the correlation measure ρµ is absolutely continuous with respect to the

Lebesgue–Poisson measure λ := λ1. The Radon-Nikodym derivative kµ :=
dρµ

dλ
is the so-called correlation function corresponding to µ. For more details see
e.g. [10].

2.2 Markov generators and related evolution equations

Before proceeding further, let us first summarize graphically all the above de-
scribed notions as well as their relations (see the diagram below). Having in
mind concrete applications, let us also mention the natural meaning of this
diagram in the context of a given infinite particle system.
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F oo
〈F, µ〉 =

∫

Γ

dµ(γ)F (γ)
// µ

K∗

��
G

K

OO

oo

〈G, ρµ〉 =

∫

Γ0

dρµ(η)G(η)

// ρµ

The state of such a system is described by a probability measure µ on Γ and
the functions F on Γ are considered as observables of the system. They represent
physical quantities which can be measured. The expected values of the measured
observables correspond to the expectation values 〈F, µ〉 :=

∫

Γ
dµ(γ)F (γ).

In this interpretation we call the functions G on Γ0 quasi-observables, be-
cause they are not observables themselves, but they can be used to construct
observables via the K-transform. In this way we obtain all observables which
are additive in the particles, namely, energy.

The description of the underlying dynamics of such a system is an essentially
interesting and often a difficult question. The number of particles involved,
which imposes a natural complexity to the study, on the one hand, and the
infinite dimensional analysis methods and tools available, once in a while either
limited or insufficient, on the other hand, are physical and mathematical rea-
sons for the difficulties, and failures, pointed out. However, it arises from the
previous diagram an alternative approach to the construction of the dynamics,
overcoming some of those difficulties.

As usual the starting point for this approach is the Markov generator of the
dynamics, in the sequel denoted by L, related to the Kolmogorov equation for
observables

∂

∂t
Ft = LFt. (KE)

Given an initial distribution µ of the system (from a set of admissible initial
distributions on Γ), the generator L determines a Markov process on Γ which
initial distribution is µ. Within the diagram context, the distribution µt of
the Markov process at each time t is then a solution of the dual Kolmogorov
equation

d

dt
µt = L∗µt, (KE)∗

L∗ being the dual operator of L.
The use of the K-transform allows us to proceed further. As a matter of fact,

if L is well-defined for instance on FP(Γ), then its image under the K-transform
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L̂ := K−1LK yields a Kolmogorov equation for quasi-observables

∂

∂t
Gt = L̂Gt. (QKE)

Through the dual relation between quasi-observables and correlation measures
this leads naturally to a time evolution description of the correlation function
kµ corresponding to the initial distribution µ given above. Of course, in order
to obtain such a description we must assume that at each time t the correla-
tion measure corresponding to the distribution µt is absolutely continuous with
respect to the Lebesgue–Poisson measure λ. Then, denoting by L̂∗ the dual
operator of L̂ in the sense

∫

Γ0

dλ(η) (L̂G)(η)k(η) =

∫

Γ0

dλ(η)G(η)(L̂∗k)(η),

one derives from (QKE) its dual equation,

∂

∂t
kt = L̂∗kt. (QKE)∗

Clearly, the correlation function kt corresponding to µt, t ≥ 0, is a solution of
(QKE)∗. At this point it is opportune to underline that a solution of (QKE)∗

does not have to be a correlation function (corresponding to some measure on
Γ), a fact which is frequently not taken into account in theoretical physics dis-
cussions. An additional analysis is needed in order to distinguish the correlation
functions from the set of solutions of the (QKE)∗ equation. Within our setting,
some criteria were developed in [1], [26], [10], [23].

In this way we have derived four equations related to the dynamics of an
infinite particle system in the continuum. Starting with (KE), one had de-
rived (QKE)∗, both equations being well-known in physics. Concerning the
latter equation, let us mention its Bogoliubov hierarchical structure, which in
the Hamiltonian dynamics case yields the well-known BBGKY-hierarchy (see
e.g. [2]). In our case, the hierarchical structure is given by a countable infinite
system of equations

∂

∂t
k

(n)
t = (L̂∗kt)

(n), k
(n)
t := kt↾Γ(n) , (L̂∗kt)

(n) := (L̂∗kt)↾Γ(n) , n ∈ N0. (2.5)

In contrast to (KE), note that each equation in (2.5) only depends on a finite
number of coordinates. This explains the technical efficacy of equation (QKE)∗

in concrete applications.
Although equations (QKE) and (KE)∗ being also known in physics, their

studied is not so developed and usually they are not exploit in concrete appli-
cations. However, in such applications those equations often turn out to be an
effective method.

Before proceeding to concrete applications, let us observe that for some con-
crete models it is possible to widen the dynamical description towards Bogoli-
ubov functionals [2].
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2.3 Generating functionals

Given a probability measure µ on (Γ,B(Γ)) the so-called Bogoliubov or gener-
ating functional Bµ corresponding to µ is the functional defined at each B(Rd)-
measurable function θ by

Bµ(θ) :=

∫

Γ

dµ(γ)
∏

x∈γ

(1 + θ(x)), (2.6)

provided the right-hand side exists for |θ|. In the same way one cannot define
the Laplace transform for all measures on Γ, it is clear from (2.6) that one
cannot define the Bogoliubov functional for all probability measures on Γ as
well. Actually, for each θ > −1 so that the right-hand side of (2.6) exists, one
may equivalently rewrite (2.6) as

Bµ(θ) :=

∫

Γ

dµ(γ) e〈ln(1+θ),γ)〉,

showing that Bµ is a modified Laplace transform.
If the Bogoliubov functional Bµ corresponding to a probability measure µ

exists, then clearly the domain of Bµ depends on the underlying measure. Con-
versely, the domain of a Bogoliubov functional Bµ reflects special properties
over the measure µ [14]. For instance, if µ has finite local exponential moments,
i.e.,

∫

Γ

dµ(γ) eα|γΛ| < ∞ for all α > 0 and all Λ ∈ Bc(R
d),

then Bµ is well-defined for instance on all bounded functions θ with compact
support. The converse is also true. In fact, for each α > 0 and each Λ ∈ Bc(Rd)
the latter integral is equal to Bµ((eα−1)11Λ). In this situation, to a such measure
µ one may associate the correlation measure ρµ, and equalities (2.3) and (2.4)
then yield a description of the functional Bµ in terms of either the measure ρµ:

Bµ(θ) =

∫

Γ

dµ(γ) (Keλ(θ)) (γ) =

∫

Γ0

dρµ(η) eλ(θ, η),

or the correlation function kµ, if ρµ is absolutely continuous with respect to the
Lebesgue–Poisson measure λ:

Bµ(θ) =

∫

Γ0

dλ(η) eλ(θ, η)kµ(η).

Within the framework of Subsection 2.2, this gives us a way to express the
dynamics of an infinite particle system in terms of the Bogoliubov functionals

Bt(θ) =

∫

Γ0

dλ(η) eλ(θ, η)kt(η)

corresponding to the states of the system at each time t ≥ 0, provided the
functionals exist. Informally,

∂

∂t
Bt(θ) =

∫

Γ0

dλ(η) eλ(θ, η)
∂

∂t
kt(η) =

∫

Γ0

dλ(η) (L̂eλ(θ))(η)kt(η). (2.7)
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In other words, given the operator L̃ defined at

B(θ) :=

∫

Γ0

dλ(η) eλ(θ, η)k(η) (k : Γ0 → R+
0 := [0,+∞))

by

(L̃B)(θ) :=

∫

Γ0

dλ(η) (L̂eλ(θ))(η)k(η),

heuristically (2.7) means that the Bogoliubov functionals Bt, t ≥ 0, are a solu-
tion of the equation

∂

∂t
Bt = L̃Bt. (2.8)

Besides the problem of the existence of the Bogoliubov functionals Bt, t ≥ 0,
let us also observe that if a solution of equation (2.8) exists, a priori it does
not have to be a Bogoliubov functional corresponding to some measure. The
verification requests an additional analysis, see e.g. [14], [23].

In applications below, in order to derive explicit formulas for L̃, the next
result turns out to be useful. Here and below, all Lp

C
-spaces, p ≥ 1, consist of

p-integrable complex-valued functions.

Proposition 2.2. Given a measure µ ∈ M1
fm(Γ) assume that the corresponding

Bogoliubov functional Bµ is entire on L1
C
(Rd, dx). Then each differential of n-th

order of Bµ, n ∈ N, at each θ0 ∈ L1
C
(Rd, dx) is defined by a symmetric kernel

in L∞
C

((Rd)n, dx1...dxn) denoted by
δnBµ(θ0)

δθ0(x1)...δθ0(xn) and called the variational

derivative of n-th order of Bµ at θ0. In other words,

∂n

∂z1...∂zn
Bµ

(

θ0 +

n
∑

i=1

ziθi

)

∣

∣

∣

z1=...=zn=0

=

∫

Rd

dx1 θ1(x1) · · ·

∫

Rd

dxn θn(xn)
δnBµ(θ0)

δθ0(x1)...δθ0(xn)
,

for all θ1, ..., θn ∈ L1
C
(Rd, dx). Furthermore, using the notation

(

D|η|Bµ

)

(θ0; η) :=
δnBµ(θ0)

δθ0(x1)...δθ0(xn)
for η = {x1, ..., xn} ∈ Γ(n), n ∈ N,

the Taylor expansion of Bµ at each θ0 ∈ L1
C
(Rd, dx) may be written in the form

Bµ(θ0 + θ) =

∫

Γ0

dλ(η) eλ(θ, η)
(

D|η|Bµ

)

(θ0; η), θ ∈ L1
C(Rd, dx).

In terms of the measure µ, the holomorphy asssumption in Proposition 2.2
implies that µ is locally absolutely continuous with respect to the measure π and
the correlation function kµ is given for λ-a.a η ∈ Γ0 by kµ(η) =

(

D|η|Bµ

)

(0; η).
Moreover, for all θ ∈ L1

C
(Rd, dx) the following relation holds

(

D|η|Bµ

)

(θ; η) =

∫

Γ0

dλ(ξ) kµ(η ∪ ξ)eλ(θ, ξ), λ − a.e., (2.9)

showing that the Bogoliubov functional Bµ is the generating functional for the
correlation functions kµ↾Γ(n) , n ∈ N0. For more details and proofs see e.g. [14].
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2.4 Algebraic properties

As discussed before, the description of the dynamics of a particle system is
closely related to the operators L, L̂, and L̂∗. To explicitly describe these
operators in the examples below, the following algebraic properties turn out to
be powerful tools for a simplification of calculations.

Given G1 and G2 two B(Γ0)-measurable functions, let us consider the ⋆-
convolution between G1 and G2,

(G1 ⋆ G2)(η) :=
∑

(η1,η2,η3)∈P3(η)

G1(η1 ∪ η2)G2(η2 ∪ η3)

=
∑

ξ⊂η

G1(ξ)
∑

ζ⊂ξ

G2((η \ ξ) ∪ ζ), η ∈ Γ0,

where P3(η) denotes the set of all partitions of η in three parts which may be
empty, [10]. It is straightforward to verify that the space of all B(Γ0)-measurable
functions endowed with this product has the structure of a commutative algebra
with unit element eλ(0). Furthermore, for every G1, G2 ∈ Bbs(Γ0) we have
G1 ⋆ G2 ∈ Bbs(Γ0), and

K (G1 ⋆ G2) = (KG1) · (KG2) (2.10)

cf. [10]. Concerning the action of the ⋆-convolution on coherent states one finds

eλ(f) ⋆ eλ(g) = eλ(f + g + fg) (2.11)

for all B(Rd)-measurable functions f and g. More generally, for all B(Γ0)-
measurable functions G and all B(Rd)-measurable functions f we have

(G ⋆ eλ (f)) (η) =
∑

ξ⊂η

G (ξ) eλ (f + 1, ξ) eλ (f, η \ ξ) . (2.12)

Technically the next result turns out to be very useful. We refer e.g. to [32]
for its proof. In particular, for n = 3, it yields an integration result for the
⋆-convolution.

Lemma 2.3. Let n ∈ N, n ≥ 2, be given. Then
∫

Γ0

dλ(η1)...

∫

Γ0

dλ(ηn)G(η1 ∪ ... ∪ ηn)H(η1, ..., ηn)

=

∫

Γ0

dλ(η)G(η)
∑

(η1,...,ηn)∈Pn(η)

H(η1, ..., ηn)

for all positive measurable functions G : Γ0 → R and H : Γ0 × ... × Γ0 → R.
Here Pn(η) denotes the set of all partitions of η in n parts, which may be empty.

Lemma 2.4. For all positive measurable functions H,G1, G2 : Γ0 → R one has
∫

Γ0

dλ(η)H(η)(G1 ⋆ G2)(η)

=

∫

Γ0

dλ(η1)

∫

Γ0

dλ(η2)

∫

Γ0

dλ(η3)H(η1 ∪ η2 ∪ η3)G1(η1 ∪ η2)G2(η2 ∪ η3).
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3 Markovian birth-and-death dynamics in con-

figuration spaces

In a birth-and-death dynamics, at each random moment of time and at each
site in Rd, a particle randomly appears or disappears according to birth and
death rates which depend on the configuration of the whole system at that
time. Informally, in terms of Markov generators, this behaviour is described
through the operators D−

x and D+
x defined at each F : Γ → R by1

(D−
x F )(γ) := F (γ \ x) − F (γ), (D+

x F )(γ) := F (γ ∪ x) − F (γ),

corresponding, respectively, to the annihilation and creation of a particle at a
site x. More precisely,

(LF )(γ) :=
∑

x∈γ

d(x, γ \ x)(D−
x F )(γ) +

∫

Rd

dx b(x, γ)(D+
x F )(γ), (3.1)

where the coefficient d(x, γ) ≥ 0 indicates the rate at which a particle located
at x in a configuration γ dies or disappears, while b(x, γ) ≥ 0 indicates the rate
at which, given a configuration γ, a new particle is born or appears at a site x.

3.1 Markovian birth-and-death generators

In order to give a meaning to (3.1) let us consider the class of measures µ ∈
M1

fm(Γ) such that d(x, ·), b(x, ·) ∈ L1(Γ, µ), x ∈ Rd, and for all n ∈ N0 and all
Λ ∈ Bc(Rd) the following integrability condition is fulfilled:

∫

Γ

dµ(γ) |γΛ|
n
∑

x∈γΛ

d(x, γ \ x) +

∫

Γ

dµ(γ) |γΛ|
n

∫

Λ

dx b(x, γ) < ∞. (3.2)

For F ∈ FP(Γ) = K(Bbs(Γ0)), this condition is sufficient to insure that LF is
µ-a.e. well-defined on Γ. This follows from the fact that for each G ∈ Bbs(Γ0)

there are Λ ∈ Bc(Rd), N ∈ N0 and a C ≥ 0 such that G has support in ∪N
n=0Γ

(n)
Λ

and |G| ≤ C, which leads to a cylinder function F = KG such that |F (γ)| =
|F (γΛ)| ≤ C(1 + |γΛ|)

N for all γ ∈ Γ (cf. Subsection 2.1). Hence (3.1) and (3.2)
imply that LF ∈ L1(Γ, µ).

Given a family of functions Bx,Dx : Γ0 → R, x ∈ Rd, such that KBx ≥ 0,
KDx ≥ 0, in the following we wish to consider KBx and KDx as birth and
death rates, i.e.,

b(x, γ) = (KBx) (γ), d(x, γ) = (KDx)(γ). (3.3)

We shall then restrict the previous class of measures in M1
fm(Γ) to the set of all

measures µ ∈ M1
fm(Γ) such that Bx,Dx ∈ L1(Γ0, ρµ), x ∈ Rd, and

∫

Γ

dµ(γ) |γΛ|
n

{

∑

x∈γΛ

(K|Dx|) (γ \ x) +

∫

Λ

dx (K|Bx|) (γ)

}

< ∞ (3.4)

1Here and below, for simplicity of notation, we have just written x instead of {x}.
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for all n ∈ N0 and all Λ ∈ Bc(Rd). Under these assumptions, the K-transform of
each Bx and each Dx, x ∈ Rd, is well-defined. Moreover, KBx,KDx ∈ L1(Γ, µ),
cf. Subsection 2.1. Of course, all previous considerations hold. In addition, we
have the following result for the operator L̂ on quasi-observables.

Proposition 3.1. The action of L̂ on functions G ∈ Bbs(Γ0) is given for ρµ-
almost all η ∈ Γ0 by

(L̂G)(η) = −
∑

x∈η

(Dx ⋆ G(· ∪ x)) (η \ x) +

∫

Rd

dx (Bx ⋆ G(· ∪ x)) (η). (3.5)

Moreover, L̂ (Bbs(Γ0)) ⊂ L1(Γ0, ρµ).

Proof. By the definition of the K-transform, for all G ∈ Bbs(Γ0) we find

(KG)(γ \ x) − (KG)(γ) = −(K(G(· ∪ x)))(γ \ x), x ∈ γ,

(KG)(γ ∪ x) − (KG)(γ) = (K(G(· ∪ x)))(γ), x /∈ γ.

Given a F ∈ FP(Γ) of the form F = KG, G ∈ Bbs(Γ0), these equalities
combined with the algebraic action (2.10) of the K-transform yield

(LF )(γ) = −
∑

x∈γ

d(x, γ \ x) (K (G(· ∪ x))) (γ \ x)

+

∫

{x:x/∈γ}

dx b(x, γ) (K (G(· ∪ x))) (γ)

= −
∑

x∈γ

(K (Dx ⋆ G(· ∪ x))) (γ \ x) +

∫

Rd

dx (K (Bx ⋆ G(· ∪ x))) (γ).

Hence, for L̂G = K−1(LF ), we have

(L̂G)(η) = −
∑

ξ⊂η

(−1)|η\ξ|
∑

x∈ξ

(K (Dx ⋆ G(· ∪ x))) (ξ \ x) (3.6)

+

∫

Rd

dx K−1 (K (Bx ⋆ G(· ∪ x))) (η). (3.7)

A direct application of the definitions of the K-transform and K−1 yields for
the sum in (3.6)

∑

ξ⊂η

(−1)|η\ξ|
∑

x∈ξ

(K (Dx ⋆ G(· ∪ x))) (ξ \ x)

=
∑

x∈η

∑

ξ⊂η\x

(−1)|η\(ξ∪x)| (K (Dx ⋆ G(· ∪ x))) ((ξ ∪ x) \ x)

=
∑

x∈η

∑

ξ⊂η\x

(−1)|(η\x)\ξ| (K (Dx ⋆ G(· ∪ x))) (ξ)

=
∑

x∈η

K−1 (K (Dx ⋆ G(· ∪ x))) (η \ x)

=
∑

x∈η

(Dx ⋆ G(· ∪ x)) (η \ x),
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and for the integral (3.7)
∫

Rd

dx K−1 (K (Bx ⋆ G(· ∪ x))) (η) =

∫

Rd

dx (Bx ⋆ G(· ∪ x)) (η).

In order to prove the integrability of |L̂G| for G ∈ Bbs(Γ0), first we note that
each G ∈ Bbs(Γ0) can be majorized by |G| ≤ C11F

N
n=0 Γ

(n)
Λ

for some C ≥ 0 and for

the indicator function 11F

N
n=0 Γ

(n)
Λ

∈ Bbs(Γ0) of some disjoint union
⊔N

n=0 Γ
(n)
Λ ,

N ∈ N0,Λ ∈ Bc(Rd). Hence the proof amounts to show the integrability of
|L̂11F

N
n=0 Γ

(n)
Λ

| for all N ∈ N and all Λ ∈ Bc(Rd). This follows from

∫

Γ0

dρµ(η)
∑

x∈η

(

|Dx| ⋆ 11F

N
n=0 Γ

(n)
Λ

(· ∪ x)
)

(η \ x)

+

∫

Γ0

dρµ(η)

∫

Rd

dx
(

|Bx| ⋆ 11F

N
n=0 Γ

(n)
Λ

(· ∪ x)
)

(η)

≤

∫

Γ0

dρµ(η)
∑

x∈η

11Λ(x)
(

|Dx| ⋆ 11FN−1
n=0 Γ

(n)
Λ

)

(η \ x) (3.8)

+

∫

Λ

dx

∫

Γ0

dρµ(η)
(

|Bx| ⋆ 11FN−1
n=0 Γ

(n)
Λ

)

(η) (3.9)

=

∫

Γ

dµ(γ)K

(

∑

x∈·

11Λ(x)
(

|Dx| ⋆ 11FN−1
n=0 Γ

(n)
Λ

)

(· \ x)

)

(γ) (3.10)

+

∫

Λ

dx

∫

Γ

dµ(γ)K
(

|Bx| ⋆ 11FN−1
n=0 Γ

(n)
Λ

)

(γ), (3.11)

where a direct calculation using the definition of the K-transform gives for the
integral (3.10)

∫

Γ

dµ(γ)
∑

x∈γ

11Λ(x)K
(

|Dx| ⋆ 11FN−1
n=0 Γ

(n)
Λ

)

(γ \ x)

=

∫

Γ

dµ(γ)
∑

x∈γΛ

(K|Dx|) (γ \ x)
(

K11FN−1
n=0 Γ

(n)
Λ

)

(γ \ x),

cf. (2.10).
Taking into account that 11FN−1

n=0 Γ
(n)
Λ

∈ Bbs(Γ0), and thus

(

K11FN−1
n=0 Γ

(n)
Λ

)

(γ) ≤ (1 + |γΛ|)
N−1,

one may then bound the sum of the integrals (3.10) and (3.11) by
∫

Γ

dµ(γ) |γΛ|
N−1

∑

x∈γΛ

(K|Dx|) (γ\x)+

∫

Γ

dµ(γ) (1+|γΛ|)
N−1

∫

Λ

dx (K|Bx|) (γ),

which, by (3.4), shows the required integrability.
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Remark 3.2. Integrability condition (3.4) is presented for general measures
µ ∈ M1

fm(Γ) and generic birth and death rates of the type (3.3). From the
previous proof it is clear that (3.4) is the weakest possible integrability condition
to state Proposition 3.1. In addition, its proof also shows that for each measure
ρ ∈ Mlf(Γ0) such that Bx,Dx ∈ L1(Γ0, ρ) and such that for all n ∈ N0 and all
Λ ∈ Bc(Rd)

∫

Γ0

dρ(η)

{

∑

x∈ηΛ

(

|Dx| ⋆ 11
Γ

(n)
Λ

)

(η \ x) +

∫

Λ

dx
(

|Bx| ⋆ 11
Γ

(n)
Λ

)

(η)

}

< ∞,

one has L̂ (Bbs(Γ0)) ⊂ L1(Γ0, ρ). Moreover, this integrability condition on ρ ∈
Mlf(Γ0) is the weakest possible one to yield such an inclusion. This follows

from (3.8), (3.9) and the fact that 11F

N
n=0 Γ

(n)
Λ

=
∑N

n=0 11
Γ

(n)
Λ

.

Remark 3.3. Taking into account (2.12), we note that:
(1) if each Dx is of the type Dx = eλ(dx), then the sum in (3.5) is given by

∑

x∈η

∑

ξ⊂η\x

G(ξ ∪ x)eλ(dx + 1, ξ)eλ(dx, (η \ x) \ ξ);

(2) analogously, if Bx = eλ(bx), then the integral in (3.5) is equal to

∑

ξ⊂η

∫

Rd

dx G(ξ ∪ x)eλ(bx + 1, ξ)eλ(bx, η \ ξ).

Remark 3.4. For birth and death rates such that |Bx| ≤ eλ(bx), |Dx| ≤ eλ(dx),
for some 0 ≤ bx, dx ∈ L1(Rd, dx), and for measures µ ∈ M1

fm(Γ) that are locally
absolutely continuous with respect to π and the correlation function kµ fulfills
the so-called Ruelle bound, i.e., kµ ≤ eλ(C) for some constant C > 0, one may
replace (3.4) by the stronger integrability condition

∫

Λ

dx
(

exp
(

2C‖bx‖L1(Rd,dx)

)

+ exp
(

2C‖dx‖L1(Rd,dx)

))

< ∞ (3.12)

for any Λ ∈ Bc(Rd).

Corollary 3.5. Let k : Γ0 → R+
0 be such that

∫

Γ
(n)
Λ

dλ(η) k(η) < ∞ for all n ∈ N0 and all Λ ∈ Bc(R
d). (3.13)

If Bx,Dx ∈ L1(Γ0, kλ) and for all n ∈ N0 and all Λ ∈ Bc(Rd) we have

∫

Γ0

dλ(η) k(η)

{

∑

x∈ηΛ

(

|Dx| ⋆ 11
Γ

(n)
Λ

)

(η \ x) +

∫

Λ

dx
(

|Bx| ⋆ 11
Γ

(n)
Λ

)

(η)

}

< ∞,
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then

(L̂∗k)(η) = −

∫

Γ0

dλ(ζ) k(ζ ∪ η)
∑

x∈η

∑

ξ⊂η\x

Dx(ζ ∪ ξ) (3.14)

+

∫

Γ0

dλ(ζ)
∑

x∈η

k(ζ ∪ (η \ x))
∑

ξ⊂η\x

Bx(ζ ∪ ξ), (3.15)

for λ-almost all η ∈ Γ0.

Proof. According to the definition of the dual operator L̂∗, for all G ∈ Bbs(Γ0)
we have

∫

Γ0

dλ(η) (L̂∗k)(η)G(η) =

∫

Γ0

dλ(η) (L̂G)(η)k(η). (3.16)

Due to (3.13), we observe that the measure k(η)λ(dη) on Γ0 is in Mlf(Γ0).
Therefore, according to Remark 3.2, under the fixed assumptions the integral
on the right-hand side of (3.16) is always finite. The proof then follows by
successive applications of Lemmata 2.3 and 2.4 to this integral. This procedure
applied to the sum in (3.5) gives rise to

∫

Γ0

dλ(η) k(η)
∑

x∈η

(Dx ⋆ G(· ∪ x)) (η \ x)

=

∫

Rd

dx

∫

Γ0

dλ(η) (Dx ⋆ G(· ∪ x)) (η)k(η ∪ x)

=

∫

Rd

dx

∫

Γ0

dλ(η1)

∫

Γ0

dλ(η2)Dx(η1 ∪ η2)

×

∫

Γ0

dλ(η3)G(η2 ∪ η3 ∪ x)k(η1 ∪ η2 ∪ η3 ∪ x)

=

∫

Γ0

dλ(η1)

∫

Γ0

dλ(η)G(η)k(η1 ∪ η)
∑

x∈η

∑

ξ⊂η\x

Dx(η1 ∪ ξ).

Similarly, for the integral expression which appears in (3.5) we find

∫

Γ0

dλ(η) k(η)

∫

Rd

dx (Bx ⋆ G(· ∪ x)) (η)

=

∫

Rd

dx

∫

Γ0

dλ(η1)

∫

Γ0

dλ(η2)

∫

Γ0

dλ(η3)Bx(η1 ∪ η2)

× G(η2 ∪ η3 ∪ x)k(η1 ∪ η2 ∪ η3)

=

∫

Γ0

dλ(η1)

∫

Rd

dx

∫

Γ0

dλ(η2)

∫

Γ0

dλ(η3)G(η2 ∪ η3 ∪ x)

× Bx(η1 ∪ η2)k(η1 ∪ η2 ∪ η3)

=

∫

Γ0

dλ(η1)

∫

Γ0

dλ(η)G(η)
∑

x∈η

∑

ξ⊂η\x

Bx(η1 ∪ ξ)k(η1 ∪ (η \ x)).
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Taking into account the density of the space Bbs(Γ0) in L1(Γ0, λ), the required
explicit formula follows.

Remark 3.6. Concerning Corollary 3.5, observe that:
(1) if each Dx is of the type Dx = eλ(dx), then the integral in (3.14) is given by

∫

Γ0

dλ(ζ)k(η ∪ ζ)
∑

x∈η

eλ(dx + 1, η \ x)eλ(dx, ζ);

(2) analogously, if Bx = eλ(bx), then (3.15) is equal to

∫

Γ0

dλ(ζ)
∑

x∈η

k(ζ ∪ (η \ x))eλ(bx + 1, η \ x)eλ(bx, ζ).

Under quite general assumptions we have derived an explicit form for the
operators L̂, L̂∗ related to the generator of a birth-and-death dynamics. Within
Subsection 2.2 framework, this means that we may describe the underlying
dynamics through the time evolution equations (KE), (QKE), and (QKE)

∗
,

respectively, for observables, quasi-observables, and correlation functions. The
next result concerns a dynamical description through Bogoliubov functionals.

Proposition 3.7. Let k : Γ0 → R+
0 be such that for all θ ∈ L1

C
(Rd, dx) one has

eλ(θ) ∈ L1
C
(Γ0, kλ), and the functional

B(θ) :=

∫

Γ0

dλ(η) eλ(θ, η)k(η)

is entire on the space L1
C
(Rd, dx). Suppose also that Bx,Dx ∈ L1(Γ0, kλ) and

L̂eλ(θ) ∈ L1
C
(Γ0, kλ) for all θ ∈ L1

C
(Rd, dx). Then

(L̃B)(θ) = −

∫

Γ0

dλ(η) eλ(θ + 1, η)

∫

Rd

dx θ(x)(D|η|+1B)(θ, η ∪ x)Dx(η)

+

∫

Γ0

dλ(η) (D|η|B)(θ, η)eλ(θ + 1, η)

∫

Rd

dx θ(x)Bx(η),

for all θ ∈ L1
C
(Rd, dx).

Proof. In order to calculate

(L̃B)(θ) =

∫

Γ0

dλ(η) (L̂eλ(θ))(η)k(η),

first we observe that the stated assumptions allow an extension of the operator
L̂ to coherent states eλ(θ) with θ ∈ L1

C
(Rd, dx):

(L̂eλ(θ)(η) = −
∑

x∈η

θ(x) (Dx ⋆ eλ(θ)) (η \ x) +

∫

Rd

dx θ(x) (Bx ⋆ eλ(θ)) (η).
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Using the special simple form (2.12) for the ⋆-convolution, a direct application
of Lemma 2.3 for n = 2 yields

∫

Γ0

dλ(η) k(η)
∑

x∈η

θ(x) (Dx ⋆ eλ(θ)) (η \ x)

=

∫

Rd

dx θ(x)

∫

Γ0

dλ(η)Dx(η)eλ(θ + 1, η)

∫

Γ0

dλ(ξ)k(η ∪ ξ ∪ x)eλ(θ, ξ).

Due to the holomorphicity of B on L1
C
(Rd, dx), the latter integral is equal to

(D|η∪x|B)(θ, η ∪ x) cf. equality (2.9). Similarly,

∫

Γ0

dλ(η) k(η)

∫

Rd

dx θ(x) (Bx ⋆ eλ(θ)) (η)

=

∫

Γ0

dλ(η) (D|η|B)(θ, η)eλ(θ + 1, η)

∫

Rd

dx θ(x)Bx(η).

Remark 3.8. For functions k : Γ0 → R+
0 such that k ≤ eλ(C) for some

constant C > 0, the functionals B defined as in Proposition 3.7 are well-defined
on the whole space L1

C
(Rd, dx), cf. Example 2.1. Moreover, they are entire

on L1
C
(Rd, dx), see e.g. [12], [14]. For such functions k, one may then state

Proposition 3.7 just under the assumptions Bx,Dx ∈ L1(Γ0, kλ) and L̂eλ(θ) ∈
L1

C
(Γ0, kλ) for all θ ∈ L1

C
(Rd, dx).

Remark 3.9. Proposition 3.7 is stated for generic birth and death rates of
the type (3.3). In applications, the concrete explicit form of such rates allows
a reformulation of Proposition 3.7, generally under much weaker analytical as-
sumptions. For instance, if Bx and Dx are of the type Bx = eλ(bx),Dx = eλ(d),
where d is independent of x, then the expression for L̃B given in Proposition
3.7 reduces to

(L̃B)(θ) =

∫

Rd

dx θ(x)

(

B(θ(bx + 1) + bx) −
δB(θ(d + 1) + d)

δ(θ(d + 1) + d)(x)

)

.

In contrast to the general formula, which depends of all variational derivatives of
B at θ, this closed formula only depends on B and its first variational derivative
on a shifted point. Further examples are presented in Subsection 3.2 below.
Although in all these examples Proposition 3.7 may clearly be stated under much
weaker analytical assumptions, the assumptions in Proposition 3.7 are sufficient
to state a general result.

3.2 Particular models

Special birth-and-death type models will be presented and discussed within
Subsection 3.1 framework. By analogy, all examples presented are a continuous
version of models already known for lattices systems, see e.g. [27], [28].
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3.2.1 Glauber dynamics

In this birth-and-death type model, particles appear and disappear according
to a death rate identically equal to 1 and to a birth rate depending on the
interaction between particles. More precisely, let φ : Rd → R∪ {+∞} be a pair
potential, that is, a Borel measurable function such that φ(−x) = φ(x) ∈ R for
all x ∈ Rd\{0}, which we assume to be bounded from below, namely, φ ≥ −2Bφ

on Rd for some Bφ ≥ 0, and which fulfills the standard integrability condition

∫

Rd

dx
∣

∣

∣
e−φ(x) − 1

∣

∣

∣
< ∞. (3.17)

Given a configuration γ, the birth rate of a new particle at a site x ∈ Rd \ γ
is then given by b(x, γ) = exp(−E(x, γ)), where E(x, γ) is a relative energy of
interaction between a particle located at x and the configuration γ defined by

E(x, γ) :=















∑

y∈γ

φ(x − y), if
∑

y∈γ

|φ(x − y)| < ∞

+∞, otherwise

. (3.18)

In this special example the required conditions (3.3) for the birth and death
rates are clearly verified:

d ≡ 1 = Keλ(0), b(x, γ) = e−E(x,γ) =
(

Keλ(e−φ(x−·) − 1)
)

(γ).

Comparing with the general case (Subsection 3.1), the conditions imposed to the
potential φ lead to a simpler situation. In fact, the integrability condition (3.17)
implies that for any C > 0 and any Λ ∈ Bc(Rd) the integral appearing in (3.12)
is always finite. According to Remark 3.4, this implies that for each measure
µ ∈ M1

fm(Γ), locally absolutely continuous with respect to π, for which the
correlation function fulfills the Ruelle bound we have L(FP(Γ)) ⊂ L1(Γ, µ).

The especially simple form of the functions Bx = eλ(e−φ(x−·) − 1) and Dx =
eλ(0) also allows a simplification of the expressions obtained in Subsection 3.1.
First, as Dx is the unit element of the ⋆-convolution, using (2.12) we obtain
for (3.5)

(L̂G)(η) = −|η|G(η) +

∫

Rd

dx
(

eλ(e−φ(x−·) − 1) ⋆ G(· ∪ x)
)

(η) (3.19)

= −|η|G(η) +
∑

ξ⊂η

∫

Rd

dx e−E(x,ξ)G(ξ ∪ x)eλ(e−φ(x−·) − 1, η \ ξ).

Due to the semi-boundedness of φ, we note that this expression is well-defined
on the whole space Γ0. This follows from the fact that any G ∈ Bbs(Γ0) may be
bounded by |G| ≤ Ceλ(11Λ), for some C ≥ 0 and some Λ ∈ Bc(Rd), and thus,
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by (2.11),

∫

Rd

dx
∣

∣

∣

(

eλ(e−φ(x−·) − 1) ⋆ G(· ∪ x)
)

(η)
∣

∣

∣

≤ C

∫

Rd

dx 11Λ(η)
(

eλ(|e−φ(x−·) − 1|) ⋆ eλ(11Λ)
)

(η) ≤ C |Λ| (3 + 2e2Bφ)|η|.

Here |Λ| denotes the volume of the set Λ. Second, by Remark 3.6, for λ-almost
all η ∈ Γ0 we find

(L̂∗k)(η) (3.20)

= −

∫

Γ0

dλ(ζ) k(η ∪ ζ)
∑

x∈η

eλ(1, η \ x)eλ(0, ζ)

+

∫

Γ0

dλ(ζ)
∑

x∈η

k(ζ ∪ (η \ x))eλ(e−φ(x−·), η \ x)eλ(e−φ(x−·) − 1, ζ)

= −|η|k(η) +
∑

x∈η

e−E(x,η\x)

∫

Γ0

dλ(ζ) eλ(e−φ(x−·) − 1, ζ)k((η\ x) ∪ ζ).

According to Remark 3.9, we also have a simpler form for L̃,

(L̃B)(θ) = −

∫

Rd

dx θ(x)

(

δB(θ)

δθ(x)
− B((1 + θ)(e−φ(x−·) − 1) + θ)

)

. (3.21)

The Glauber dynamics is the first example which emphasizes the technical
efficacy of our approach to dynamical problems. As a matter of fact, for a
quite general class of pair potentials one may apply standard Dirichlet forms
techniques to L to construct an equilibrium Glauber dynamics, that is, a Markov
process on Γ with initial distribution an equilibrium state. This scheme was
used in [19] for pair potentials either positive or superstable. Recently, in [20],
this construction was extended to a general case of equilibrium birth-and-death
dynamics. However, starting with a non-equilibrium state, the Dirichlet forms
techniques do not work. Such states can be so far from the equilibrium ones
that one cannot even use the equilibrium Glauber dynamics (obtained through
Dirichlet forms techniques) to construct the non-equilibrium ones. Within this
context, in a recent work [18] the authors have used the (QKE)∗ equation to
construct a non-equilibrium Glauber dynamics. That is, a Markov process on Γ
starting with a distribution from a wide class of non-equilibrium initial states,
also identified in [18]. The scheme used is the one described in Subsection 2.2.

3.2.2 Linear voter model

In contrast to the lattice case (see, e.g., [27], [28]) we may consider a voter
type model in the continuum for the non-symmetric situation when there is a
configuration of members of only one (political) organization. This configuration
may obtain a new member somewhere in the society due to an influence of the
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existing ones. At the same time, the configuration may lose an existing member
due to contradictions between its members. Mathematically, this means that,
given a population γ of possible voters, an individual x ∈ γ loses his willingness
to vote according to a rate

d(x, γ) =
∑

y∈γ

a−(x, y) = (Ka−(x, ·)) (γ),

for some symmetric function a− : Rd × Rd → R+
0 such that

sup
x∈Rd

∫

Rd

dy a−(x, y) < ∞;

while an individual x wins a perception of the importance of joining the popu-
lation γ according to a rate

b(x, γ) =
∑

y∈γ

a+(x, y) = (Ka+(x, ·)) (γ),

for some symmetric function a+ : Rd × Rd → R+
0 such that

sup
x∈Rd

∫

Rd

dy a+(x, y) < ∞.

Here a∓(x, ·) are understood as functions on Γ0, namely,

a∓(x, η) = 11{
η∈Γ(1),η={y}

}a∓(x, y).

Within Subsection 3.1 framework, one straightforwardly derives from the
general case corresponding expressions for this special case:

(L̂G)(η) = −
∑

x∈η

∑

y∈η\x

a−(x, y) (G(η \ y) + G(η)) (3.22)

+
∑

y∈η

∫

Rd

dx a+(x, y) (G(η ∪ x) + G((η \ y) ∪ x)) ,

and

(L̂∗k)(η) = −

∫

Rd

dy k(η ∪ y)
∑

x∈η

a−(x, y) − k(η)
∑

x∈η

∑

y∈η\x

a−(x, y) (3.23)

+

∫

Rd

dy
∑

x∈η

k((η \ x) ∪ y)a+(x, y) +
∑

x∈η

k(η \ x)
∑

y∈η\x

a+(x, y).

In addition,

(L̃B)(θ) =

∫

Rd

dx

∫

Rd

dy a+(x, y)(1 + θ(y))θ(x)
δB(θ)

δθ(y)
(3.24)

−

∫

Rd

dx

∫

Rd

dy a−(x, y)(1 + θ(y))θ(x)
δ2B(θ)

δθ(x)δθ(y)
.
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3.2.3 Polynomial voter model

More generally, one may consider rates of polynomial type, that is, the birth
and the death rates are of the type

d(x, γ) =
∑

{x1,...,xq}⊂γ

a(q)
x (x1, ..., xq), b(x, γ) =

∑

{x1,...,xp}⊂γ

a(p)
x (x1, ..., xp),

= (Kã(q)
x )(γ) = (Kã(p)

x )(γ)

for some symmetric functions 0 ≤ a
(q)
x ∈ L1((Rd)q, dx1...dxq), 0 ≤ a

(p)
x ∈

L1((Rd)p, dx1...dxp), x ∈ Rd, p, q ∈ N, where

ã(i)
x (η) :=







a
(i)
x (x1, ..., xi), if η = {x1, ..., xi} ∈ Γ(i)

0, otherwise

, i = p, q.

A straightforward application of the general results obtained in Subsection
3.1 yields for this case the expressions

(L̂G)(η) = −
∑

x∈η

(

ã(q)
x ⋆ G(· ∪ x)

)

(η \ x) +

∫

Rd

dx
(

ã(p)
x ⋆ G(· ∪ x)

)

(η)

= −
∑

x∈η

∑

ξ⊂η\x
|ξ|=q

ã(q)
x (ξ)

∑

ζ⊂ξ

G(ζ ∪ (η \ x) \ ξ)

+
∑

ξ⊂η
|ξ|=p

∑

ζ⊂ξ

∫

Rd

dx ã(p)
x (ξ)G(ζ ∪ (η \ ξ) ∪ x) (3.25)

and

(L̂∗k)(η) = −

q
∑

i=0

1

i!

∫

Γ(i)

dm(i)(ζ) k(ζ ∪ η)
∑

x∈η

∑

ξ⊂η\x
|ξ|=q−i

ã(q)
x (ζ ∪ ξ) (3.26)

+

p
∑

i=0

1

i!

∫

Γ(i)

dm(i)(ζ)
∑

x∈η

k(ζ ∪ (η \ x))
∑

ξ⊂η\x
|ξ|=p−i

ã(p)
x (ζ ∪ ξ),

where m(i) is the measure on Γ(i) defined in Example 2.1 (Subsection 2.1).
Moreover,

(L̃B)(θ)

= −
1

q!

∫

Γ(q)

dm(q)(η) eλ(θ + 1, η)

∫

Rd

dx θ(x)(Dq+1B)(θ, η ∪ x)ã(q)
x (η)

+
1

p!

∫

Γ(p)

dm(p)(η) (DpB)(θ, η)eλ(θ + 1, η)

∫

Rd

dx θ(x)ã(p)
x (η). (3.27)
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3.2.4 Contact model

The dynamics of a contact model describes the spread of an infectious disease
in a population. Given the set γ of infected individuals, an individual x ∈ γ
recovers at a constant rate d(x, γ) = 1 = eλ(0), while an healthy individual
x ∈ Rd \ γ becomes infected according to an infection spreading rate which
depends on the presence of infected neighbors,

b(x, γ) = λ
∑

y∈γ

a(x − y) = (K(λa(x − ·))) (γ)

for some function 0 ≤ a ∈ L1(Rd, dx) and some coupling constant λ ≥ 0.
For this particular model, the application of the general results then yields the
following expressions

(L̂G)(η) = −|η|G(η)+λ
∑

y∈η

∫

Rd

dx a(x−y) (G(η ∪ x) + G((η \ y) ∪ x)) , (3.28)

and

(L̂∗k)(η) = −|η|k(η) + λ

∫

Rd

dy
∑

x∈η

k((η \ x) ∪ y)a(x − y)

+ λ
∑

x∈η

k(η \ x)
∑

y∈η\x

a(x − y). (3.29)

In addition,

(L̃B)(θ) = −

∫

Rd

dx θ(x)
δB(θ)

δθ(x)
+ λ

∫

Rd

dy

∫

Rd

dx a(x − y)(1 + θ(y))θ(x)
δB(θ)

δθ(y)
.

Concerning the corresponding time evolution equation (2.8), the contact model
gives a meaning to the considerations done in Subsection 2.3. As a matter of
fact, one can show that there is a solution of equation (2.8) only for each finite
interval of time. Such a solution has a radius of analyticity which depends on t.
For λ ≥ 1 the radius of analyticity decreases when t increases [17]. Therefore,
for λ ≥ 1 equation (2.8) cannot have a global solution on time.

For finite range functions 0 ≤ a ∈ L1(Rd, dx), ‖a‖L1(Rd,dx) = 1, being ei-

ther a ∈ L∞(Rd, dx) or a ∈ L1+δ(Rd, dx) for some δ > 0, the authors in [22]
have proved the existence of a contact process, i.e., a Markov process on Γ,
starting with an initial configuration of infected individuals from a wide set of
possible initial configurations. Having in mind that the contact model under
consideration is a continuous version of the well-known contact model for lattice
systems [27], [28], the assumptions in [22] are natural. In particular the finite
range assumption, meaning that the infection spreading process only depends
on the influence of infected neighbors on healthy ones. Concerning the infection
spreading rate itself, its additive character implies that each individual recovers,
independently of the others, after a random exponentially distributed time [22].
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Within Subsection 2.2 framework, in a recent work [17] the authors have used
the (QKE)∗ equation to extend the previous existence result to Markov pro-
cesses on Γ starting with an initial distribution. Besides the construction of
the processes, the scheme used allows to identify all invariant measures for such
contact processes.

4 Conservative dynamics

In contrast to the birth-and-death dynamics, in the following dynamics there is
conservation on the number of particles involved.

4.1 Hopping particles: the general case

Dynamically, in a hopping particles system, at each random moment of time
particles randomly hop from one site to another according to a rate depending
on the configuration of the whole system at that time. In terms of generators
this behaviour is informally described by

(LF )(γ) =
∑

x∈γ

∫

Rd

dy c(x, y, γ) (F (γ \ x ∪ y) − F (γ)) , (4.1)

where the coefficient c(x, y, γ) ≥ 0 indicates the rate at which a particle located
at x in a configuration γ hops to a site y.

To give a rigorous meaning to the right-hand side of (4.1), we shall consider
measures µ ∈ M1

fm(Γ) such that c(x, y, ·) ∈ L1(Γ, µ), x, y ∈ Rd and which fulfil,
for all n ∈ N0 and all Λ ∈ Bc(Rd), the integrability condition

∫

Γ

dµ(γ) |γΛ|
n
∑

x∈γ

∫

Rd

dy c(x, y, γ) (11Λ(x) + 11Λ(y)) < ∞. (4.2)

In this way, given a cylinder function F ∈ FP(Γ), |F (γ)| = |F (γΛ)| ≤ C(1 +
|γΛ|)

N for some Λ ∈ Bc(Rd), N ∈ N0, C ≥ 0, for all γ ∈ Γ one finds

|F (γ \ x ∪ y) − F (γ)| ≤ 2C(2 + |γΛ|)
N (11Λ(x) + 11Λ(y)).

By (4.2), this implies that µ-a.e. the right-hand side of (4.1) is well-defined and
finite and, moreover, it defines an element in L1(Γ, µ).

Given a family of functions Cx,y : Γ0 → R, x, y ∈ Rd, such that KCx,y ≥ 0,
in the following we wish to consider the case

c(x, y, γ) = (KCx,y)(γ \ x). (4.3)

Therefore, we shall restrict the previous class of measures in M1
fm(Γ) to all

measures µ ∈ M1
fm(Γ) such that Cx,y ∈ L1(Γ0, ρµ), x, y ∈ Rd, and

∫

Γ

dµ(γ) |γΛ|
n
∑

x∈γ

∫

Rd

dy (K|Cx,y|) (γ\x) (11Λ(x) + 11Λ(y)) < ∞ (4.4)
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for all n ∈ N0 and all Λ ∈ Bc(Rd). In this way, the K-transform of each Cx,y,
x, y ∈ Rd, is well-defined, KCx,y ∈ L1(Γ, µ), and L(FP(Γ)) ⊂ L1(Γ, µ).

Proposition 4.1. The action of the operator L̂ on functions G ∈ Bbs(Γ0) is
given by

(L̂G)(η) =
∑

x∈η

∫

Rd

dy (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x))) (η \ x),

for ρµ-almost all η ∈ Γ0. We have L̂ (Bbs(Γ0)) ⊂ L1(Γ0, ρµ).

Proof. By the definition of the space FP(Γ), any element F ∈ FP(Γ) is of
the form F = KG for some G ∈ Bbs(Γ0). The properties of the K-transform,
namely, its algebraic action (2.10), then allow to rewrite LF as

(LF )(γ) =
∑

x∈γ

∫

{y:y/∈γ\x}

dy c(x, y, γ) (K (G(· ∪ y) − G(· ∪ x))) (γ\x)

=
∑

x∈γ

∫

Rd

dy (K (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x)))) (γ\x).

Hence

(L̂G)(η) = K−1

(

∑

x∈·

∫

Rd

dy (K (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x)))) (· \ x)

)

(η)

=
∑

ξ⊂η

(−1)|η\ξ|
∑

x∈ξ

∫

Rd

dy (K (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x)))) (ξ\x)

=

∫

Rd

dy
∑

ξ⊂η

(−1)|η\ξ|
∑

x∈ξ

(K (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x)))) (ξ\x)

=

∫

Rd

dy
∑

x∈η

∑

ξ⊂η\x

(−1)|(η\x)\ξ| (K (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x)))) (ξ)

=
∑

x∈η

∫

Rd

dy (Cx,y ⋆ (G(· ∪ y) − G(· ∪ x))) (η\x).

As in the proof of Proposition 3.1, to check the required inclusion amounts to
prove that for all N ∈ N and all Λ ∈ Bc(Rd) one has L̂11F

N
n=0 Γ

(n)
Λ

∈ L1(Γ0, ρµ).

Similar arguments then yield
∫

Γ0

dρµ(η)
∣

∣

∣

(

L̂11F

N
n=0 Γ

(n)
Λ

)

(η)
∣

∣

∣

≤

∫

Γ0

dρµ(η)
∑

x∈η

∫

Rd

dy
(

|Cx,y| ⋆ 11F

N
n=0 Γ

(n)
Λ

(· ∪ y)
)

(η\x)

+

∫

Γ0

dρµ(η)
∑

x∈η

∫

Rd

dy
(

|Cx,y| ⋆ 11F

N
n=0 Γ

(n)
Λ

(· ∪ x)
)

(η\x)
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≤

∫

Λ

dy

∫

Γ

dµ(γ) (1 + |γΛ|)
N−1

∑

x∈γ

(K|Cx,y|) (γ\x)

+

∫

Rd

dy

∫

Γ

dµ(γ) |γΛ|
N−1

∑

x∈γΛ

(K|Cx,y|) (γ\x),

which, by (4.4), complete the proof.

Remark 4.2. Similarly to the proof of Proposition 3.1, the proof of Proposi-
tion 4.1 shows that (4.4) is the weakest possible integrability condition to state
Proposition 4.1 for generic measures µ ∈ M1

fm(Γ) and generic rates c of the
type (4.3). Its proof also shows that for each measure ρ ∈ Mlf(Γ0) such that
Cx,y ∈ L1(Γ0, ρ) and such that for all n ∈ N0 and all Λ ∈ Bc(Rd)

∫

Γ0

dρ(η)
∑

x∈η

∫

Rd

dy
(

|Cx,y| ⋆ 11
Γ

(n)
Λ

)

(η\x) (11Λ(x) + 11Λ(y)) < ∞,

we have L̂ (Bbs(Γ0)) ⊂ L1(Γ0, ρ). This integrability condition for measures ρ ∈
Mlf(Γ0) is the weakest possible one to yield this inclusion.

Remark 4.3. Concerning Proposition 4.1 we note that if each Cx,y is of the
type Cx,y = eλ(cx,y), then

(L̂G)(η) =
∑

x∈η

∑

ξ⊂η\x

∫

Rd

dy (G(ξ∪y)−G(ξ∪x))eλ(cx,y +1, ξ)eλ(cx,y, (η \x)\ξ),

cf. equality (2.12).

Remark 4.4. For rates Cx,y such that |Cx,y| ≤ eλ(cx,y) for some 0 ≤ cx,y ∈
L1(Rd, dx), and for measures µ ∈ M1

fm(Γ) that are locally absolutely continu-
ous with respect to π and the correlation function kµ fulfills the Ruelle bound
for some constant C > 0, one may replace (4.4) by the stronger integrability
condition
∫

Rd

dx

∫

Rd

dy exp(2C‖cx,y‖L1(Rd,dx)) (11Λ(x) + 11Λ(y)) < ∞, ∀Λ ∈ Bc(R
d).

Similarly to the proof of Corollary 3.5, successive applications of Lemmata
2.3 and 2.4 lead to the next result.

Proposition 4.5. Let k : Γ0 → R+
0 be such that

∫

Γ
(n)
Λ

dλ(η) k(η) < ∞ for all n ∈ N0 and all Λ ∈ Bc(R
d).

If Cx,y ∈ L1(Γ0, kλ) and for all n ∈ N0 and all Λ ∈ Bc(Rd) we have

∫

Γ0

dλ(η) k(η)
∑

x∈η

∫

Rd

dy
(

|Cx,y| ⋆ 11
Γ

(n)
Λ

)

(η\x) (11Λ(x) + 11Λ(y)) < ∞,
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then the action of the operator L̂∗ on k is given by

(L̂∗k)(η) =
∑

y∈η

∫

Rd

dx

∫

Γ0

dλ(ξ) k(ξ ∪ (η\y) ∪ x)
∑

ζ⊂η\y

Cx,y(ξ ∪ ζ)

−

∫

Γ0

dλ(ξ) k(ξ ∪ η)
∑

x∈η

∑

ζ⊂η\x

∫

Rd

dy Cx,y(ξ ∪ ζ),

for λ-almost all η ∈ Γ0.

Remark 4.6. Under the conditions of Proposition 4.5, if each Cx,y is of the
type Cx,y = eλ(cx,y), then

(L̂∗k)(η) =
∑

y∈η

∫

Rd

dx eλ(cx,y + 1, η\y)

∫

Γ0

dλ(ξ) k(ξ ∪ (η\y) ∪ x)eλ(cx,y, ξ)

−

∫

Γ0

dλ(ξ) k(ξ ∪ η)
∑

x∈η

∫

Rd

dy eλ(cx,y + 1, η\x)eλ(cx,y, ξ).

Proposition 4.7. Let k : Γ0 → R+
0 be such that eλ(θ) ∈ L1

C
(Γ0, kλ) for all

θ ∈ L1
C
(Rd, dx), and the functional

B(θ) :=

∫

Γ0

dλ(η) eλ(θ, η)k(η)

is entire on the space L1
C
(Rd, dx). If Cx,y ∈ L1(Γ0, kλ) and L̂eλ(θ) ∈ L1

C
(Γ0, kλ)

for all θ ∈ L1
C
(Rd, dx), then for all θ ∈ L1

C
(Rd, dx) we have

(L̃B)(θ) =

∫

Γ0

dλ(η)eλ(θ + 1, η)

∫

Rd

dx (D|η|+1B)(θ, η ∪ x)

×

∫

Rd

dy (θ(y) − θ(x))Cx,y(η).

Proof. This proof follows similarly to the proof of Proposition 3.7. In this case
we obtain

(L̂eλ(θ))(η)

=
∑

x∈η

∫

Rd

dy (θ(y) − θ(x))(Cx,y ⋆ eλ(θ))(η\x)

=
∑

x∈η

∫

Rd

dy (θ(y) − θ(x))
∑

ξ⊂η\x

Cx,y(ξ)eλ (θ + 1, ξ) eλ(θ, (η \ x) \ ξ),

where we have used the expression (2.12) concerning the ⋆-convolution. Argu-
ments similar to those used in the proof of Proposition 3.7 lead then to
∫

Γ0

dλ(η) k(η) (L̂eλ(θ))(η)

=

∫

Rd

dx

∫

Γ0

dλ(η) (D|η∪x|B)(θ, η ∪ x)eλ(θ + 1, η)

∫

Rd

dy (θ(y) − θ(x))Cx,y(η).
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Remark 4.8. According to Remark 3.8, for functions k : Γ0 → R+
0 such

that k ≤ eλ(C) for some constant C > 0, one may state Proposition 4.7
just under the assumptions Cx,y ∈ L1(Γ0, kλ) and L̂eλ(θ) ∈ L1

C
(Γ0, kλ) for

all θ ∈ L1
C
(Rd, dx).

Remark 4.9. As before, in applications, the concrete explicit form of the rate
Cx,y allows a reformulation of Proposition 4.7, in general under much weaker
analytical assumptions. For instance, if Cx,y = eλ(cy) for some function cy

which is independent of x, then the expression for L̃B given in Proposition 4.7
reduces to

(L̃B)(θ) =

∫

Rd

dx

∫

Rd

dy (θ(y) − θ(x))
δB(θ(cy + 1) + cy)

δ(θ(cy + 1) + cy)(x)
.

In contrast to the general formula, which depends of all variational derivatives of
B at θ, this closed formula only depends on the first variational derivative of B
on a shifted point. Further examples are presented in Subsection 4.2. Although
in all such examples Proposition 4.7 may clearly be stated under much weaker
analytical assumptions, the assumptions in Proposition 4.7 are sufficient to state
a general result.

4.2 Particular models

Special hopping particles models will be presented and discussed within Sub-
section 4.1 framework. By analogy, such examples are a continuous version of
models already known for lattice systems.

4.2.1 Kawasaki dynamics

In such a dynamics particles hop over the space Rd according to a rate which
depends on the interaction between particles. This means that given a pair
potential φ : Rd → R ∪ {+∞}, the rate c is of the form

c(x, y, γ)=cs(x, y, γ) = a(x − y)esE(x,γ\x)−(1−s)E(y,γ)

=K
(

a(x − y)e(s−1)φ(x−y)eλ(esφ(x−·)−(1−s)φ(y−·) − 1)
)

(γ\x) (4.5)

for some s ∈ [0, 1]. Here a : Rd → R+
0 and E is a relative energy defined as

in (3.18).
For a ∈ L1(Rd, dx) and for φ bounded from below and fulfilling the integra-

bility condition (3.17), the condition (4.4) is always fulfilled, for instance, by
any Gibbs measure µ ∈ M1

fm(Γ) corresponding to φ for which the correlation
function fulfills the Ruelle bound. We recall that a probability measure µ on
(Γ,B(Γ)) is called a Gibbs or an equilibrium measure if it fulfills the integral
equation

∫

Γ

dµ(γ)
∑

x∈γ

H(x, γ\x) =

∫

Γ

dµ(γ)

∫

Rd

dx H(x, γ)e−E(x,γ) (4.6)
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for all positive measurable functions H : Rd × Γ → R ([31, Theorem 2], see
also [11, Theorem 3.12], [23, Appendix A.1]). Correlation measures correspond-
ing to such a class of measures are always absolutely continuous with respect
to the Lebesgue–Poisson measure λ. For Gibbs measures described as before,
the integrability condition (4.4) follows as a consequence of (4.6), applying the
assumptions on φ and the Ruelle boundedness. For such Gibbs measures µ and
for a being, in addition, an even function, it is shown in [20] the existence of an
equilibrium Kawasaki dynamics, i.e., a Markov process on Γ which generator is
given by (4.1) for c defined as in (4.5). Such a process has µ as an invariant
measure.

The general results obtained in Subsection 4.1 yield for the Kawasaki dy-
namics the expressions

(L̂G)(η) =
∑

x∈η

∑

ξ⊂η\x

esE(x,ξ)

∫

Rd

dy a(x − y)e(s−1)E(y,ξ∪x) (4.7)

× eλ(esφ(x−·)−(1−s)φ(y−·) − 1, (η \ x) \ ξ)(G(ξ ∪ y) − G(ξ ∪ x)),

and

(L̂∗k)(η) =
∑

y∈η

∫

Rd

dx a(x − y)esE(x,η\y)−(1−s)E(y,η\y∪x) (4.8)

×

∫

Γ0

dλ(ξ) k(ξ ∪ (η\y) ∪ x)eλ(esφ(x−·)−(1−s)φ(y−·) − 1, ξ)

−

∫

Γ0

dλ(ξ) k(ξ ∪ η)
∑

x∈η

∫

Rd

dy a(x − y)

× esE(x,η\x)−(1−s)E(y,η)eλ(esφ(x−·)−(1−s)φ(y−·) − 1, ξ),

where we have taken into account Remark 4.6. In terms of Bogoliubov func-
tionals, Proposition 4.7 leads to

(L̃B)(θ) =

∫

Γ0

dλ(η)eλ(θ + 1, η)

∫

Rd

dx(D|η|+1B)(θ, η ∪ x)

∫

Rd

dya(x − y) (4.9)

× e(s−1)φ(x−y)(θ(y) − θ(x))eλ(esφ(x−·)−(1−s)φ(y−·) − 1, η).

In particular, for s = 0, one obtains

(L̃B)(θ) =

∫

Rd

dx

∫

Rd

dy a(x − y)e−φ(x−y)(θ(y) − θ(x)) (4.10)

×
δB((1 + θ)(e−φ(y−·) − 1) + θ)

δ((1 + θ)(e−φ(y−·) − 1) + θ)(x)
,

cf. Remark 4.9.

Remark 4.10. In the case s = 0, in a recent work [5] the authors have shown
that in the high-temperature-low activity regime the scaling limit (of a Kac type)
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of an equilibrium Kawasaki dynamics yields in the limit an equilibrium Glauber
dynamics. More precisely, given an even function 0 ≤ a ∈ L1(Rd, dx) and a
stable pair potential φ, i.e.,

∃Bφ ≥ 0 :
∑

{x,y}⊂η

φ(x − y) ≥ −Bφ|η|, ∀ η ∈ Γ0,

such that
∫

Rd

dx
∣

∣

∣
e−φ(x) − 1

∣

∣

∣
<
(

2e1+2Bφ
)−1

(high temperature-high temperature regime), the authors have considered an
equilibrium Kawasaki dynamics which generator Lε is given by (4.1) for c de-
fined as in (4.5) for s = 0 and a replaced by the function εda(ε·). We observe
that such a dynamics exists due to [20]. Then it has been shown that the gener-
ators Lε converge to

−α
∑

x∈γ

(F (γ \ x) − F (γ)) − α

∫

Rd

dx e−E(x,γ) (F (γ ∪ x) − F (γ)) ,

which is the generator of an equilibrium Glauber dynamics. Here the constant

α is defined by α := k
(1)
µ

∫

Rd dx a(x) for k
(1)
µ := kµ↾Γ(1) being the first correlation

function of the initial distribution µ.

4.2.2 Free hopping particles

In the free Kawasaki dynamics case one has φ ≡ 0, meaning that particles hop
freely over the space Rd. Therefore, all previous considerations hold for this
special case. In particular, for every even function 0 ≤ a ∈ L1(Rd, dx) the
construction done in [20] yields the existence of an equilibrium free Kawasaki
dynamics. Actually, in this case the generator L is a second quantization op-
erator which leads to a simpler situation. The existence result extends to the
non-equilibrium case [21] for a wide class of initial configurations also identi-
fied in [21]. This allows the study done in [15] of the large time asymptotic
behaviours and hydrodynamical limits.

4.2.3 Polynomial rates

In applications one may also consider rates of polynomial type, i.e.,

c(x, y, γ) =
∑

{x1,...,xp}⊂γ\x

c(p)
x,y(x1, ..., xp) = (Kc̃(p)

x,y)(γ \ x)

for some symmetric function 0 ≤ c
(p)
x,y ∈ L1((Rd)p, dx1...dxp), x ∈ Rd, p ∈ N,

where

(c̃(p)
x,y)(η) :=







c
(p)
x,y(x1, ..., xp), if η = {x1, ..., xp} ∈ Γ(p)

0, otherwise

.
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A straightforward application of the general results obtained in Subsection 4.1
yields for this case the expressions

(L̂G)(η) =
∑

x∈η

∫

Rd

dy
(

c̃(p)
x,y ⋆ (G(· ∪ y) − G(· ∪ x))

)

(η \ x), (4.11)

and

(L̂∗k)(η) (4.12)

=
∑

y∈η

p
∑

i=0

1

i!

∫

Γ(i)

dm(i)(ξ)

∫

Rd

dx k(ξ ∪ (η\y) ∪ x)
∑

ζ⊂η\y
|ζ|=p−i

c̃(p)
x,y(ξ ∪ ζ)

−

p
∑

i=0

1

i!

∫

Γ(i)

dm(i)(ξ) k(ξ ∪ η)
∑

x∈η

∑

ζ⊂η\x
|ζ|=p−i

∫

Rd

dy c̃(p)
x,y(ξ ∪ ζ), (4.13)

where m(i) is the measure on Γ(i) defined in Example 2.1 (Subsection 2.1). In
terms of Bogoliubov functionals, the statement of Proposition 4.7 leads now to

(L̃B)(θ) =
1

p!

∫

Γ(p)

dm(p)(η) eλ(θ + 1, η)

∫

Rd

dx (Dp+1B)(θ, η ∪ x)

×

∫

Rd

dy c̃(p)
x,y(η)(θ(y) − θ(x)). (4.14)

As a particular realization, one may consider

c(x, y, γ) = b(x, y) +
∑

x1∈γ\x

c(1)
x,y(x1) = K

(

b(x, y)eλ(0) + c̃(1)
x,y

)

(γ \ x),

where b is a function independent of γ. From the previous considerations we
obtain

(L̂G)(η) =
∑

x∈η

∫

Rd

dy b(x, y)(G((η \ x) ∪ y) − G(η)) (4.15)

+
∑

x∈η

∑

x1∈η\x

∫

Rd

dy c(1)
x,y(x1)(G((η \ {x, x1}) ∪ y) − G(η \ x1))

+
∑

x∈η

∫

Rd

dy (G((η \ x) ∪ y) − G(η))
∑

x1∈η\x

c(1)
x,y(x1),

and

(L̂∗k)(η) =
∑

y∈η

∫

Rd

dx1

∫

Rd

dx k(x1 ∪ (η \ y) ∪ x)c(1)
x,y(x1) (4.16)

−

∫

Rd

dx1 k(η ∪ x1)
∑

x∈η

∫

Rd

dy c(1)
x,y(x1)
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+
∑

y∈η

∫

Rd

dx k((η \ y) ∪ x)
(

b(x, y) +
∑

x1∈η\y

c(1)
x,y(x1)

)

− k(η)
∑

x∈η

∫

Rd

dy
(

b(x, y) +
∑

x1∈η\x

c(1)
x,y(x1)

)

.

In addition,

(L̃B)(θ) =

∫

Rd

dx
δB(θ)

δθ(x)

∫

Rd

dy b(x, y)(θ(y) − θ(x)) (4.17)

+

∫

Rd

dx1 (θ(x1) + 1)

∫

Rd

dx
δ2B(θ)

δθ(x1)δθ(x)

×

∫

Rd

dy c(1)
x,y(x1)(θ(y) − θ(x)).

4.3 Other conservative jump processes

Before we have analyzed individual hops of particles. We may also analyze hops
of groups of n ≥ 2 particles. Dynamically this means that at each random mo-
ment of time a group of n particles randomly hops over the space Rd according
to a rate which depends on the configuration of the whole system at that time.
In terms of generators this behaviour is described by

(LF )(γ) =
∑

{x1,...,xn}⊂γ

∫

Rd

dy1 . . .

∫

Rd

dyn c({x1, . . . , xn}, {y1, . . . , yn}, γ)

× (F (γ \ {x1, . . . , xn} ∪ {y1, . . . , yn}) − F (γ)) , (4.18)

where c({x1, . . . , xn}, {y1, . . . , yn}, γ) ≥ 0 indicates the rate at which a group of
n particles located at x1, . . . , xn (xi 6= xj , i 6= j) in a configuration γ hops to
the sites y1, . . . , yn (yi 6= yj , i 6= j). As before, we consider the case

c({x1, ..., xn}, {y1, ..., yn}, γ) = (KC{xi},{yi})(γ \ {x1, ..., xn}) ≥ 0,

where C{xi},{yi} := C{x1,...,xn},{y1,...,yn}. Similar calculations lead then to the
expressions

(L̂G)(η) = 11F

∞

k=n Γ(k)(η)
∑

{x1,...,xn}⊂η

∫

Rd

dy1...

∫

Rd

dyn (4.19)

×
∑

ξ⊂{y1,...,yn}

(

C{xi},{yi} ⋆ G(· ∪ ξ)
)

(η \ {x1, ..., xn})

− 11F

∞

k=n Γ(k)(η)
∑

{x1,...,xn}⊂η

∫

Rd

dy1...

∫

Rd

dyn

×
∑

ξ⊂{x1,...,xn}

(

C{xi},{yi} ⋆ G(· ∪ ξ)
)

(η \ {x1, ..., xn}),
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and

(L̂∗k)(η) =

∫

Γ0

dλ(ζ)

∫

Γ(n)

dm(n)(ξ)
∑

η1⊂η

k(ζ ∪ (η \ η1) ∪ ξ) (4.20)

×

∫

Γ0

dλ(τ)11Γ(n)(η1 ∪ τ)
∑

η2⊂η\η1

Cξ,η1∪τ (ζ ∪ η2)

−

∫

Γ0

dλ(ζ)

∫

Γ0

dλ(ξ) k(ζ ∪ η ∪ ξ)
∑

η1⊂η

11Γ(n)(η1 ∪ ξ)

×

∫

Γ(n)

dm(n)(τ)
∑

η2⊂η\η1

Cη1∪ξ,τ (ζ ∪ η2).

Moreover

(L̃B)(θ) =
1

n!

∫

Γ0

dλ(η) eλ(θ + 1, η)

∫

Γ(n)

dm(n)(ξ) (D|η|+nB)(θ, η ∪ ξ)

×

∫

Γ(n)

dm(n)(ζ)Cξ,ζ(η)
(

eλ(θ + 1, ζ) − eλ(θ + 1, ξ)
)

. (4.21)

Remark 4.11. If the rate c does not depend on the configuration,

c({x1, . . . , xn}, {y1, . . . , yn}, γ) = c({x1, . . . , xn}, {y1, . . . , yn}),

one can show that each Poisson measure πz, z > 0, is invariant. If, in addition,
the rate c({x1, . . . , xn}, {y1, . . . , yn}) is symmetric in x1, . . . , xn, y1, . . . , yn, then
these Poisson measures are symmetrizing.

In particular, the conditions of the previous remark hold for n = 2 and

C{x1,x2},{y1,y2} = p(x1 − y1)p(x1 − y2)p(x2 − y1)p(x2 − y2)eλ(0),

where p : Rd → R+
0 is either an even or an odd function. In this case, denoting

by c(x1, x2, y1, y2) = p(x1 − y1)p(x1 − y2)p(x2 − y1)p(x2 − y2), one obtains the
following explicit formulas

(L̂G) (η) (4.22)

= 11|η|≥2

∑

{x,y}⊂η

∫

Rd

dx′

∫

Rd

dy′c (x, y, x′, y′) [G (η ∪ {x′, y′} \ {x, y}) − G (η)]

+ 2 · 11|η|≥2

∑

{x,y}⊂η

∫

Rd

dx′ G (η ∪ x′ \ {x, y})

∫

Rd

dy′c (x, y, x′, y′)

− 11|η|≥2

∑

{x,y}⊂η

(G (η \ x) + G (η \ y))

∫

Rd

dx′

∫

Rd

dy′c (x, y, x′, y′) ,
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and

(L̂∗k)(η) (4.23)

= 11|η|≥2

∑

{x,y}⊂η

∫

Rd

dx′

∫

Rd

dy′c (x, y, x′, y′) [k (η ∪ {x′, y′} \ {x, y}) − k (η)]

+
∑

x∈η

∫

Rd

dx′

∫

Rd

dy′

∫

Rd

dy c (x, y, x′, y′) [k(η ∪ {x′, y′} \ x) − k(η ∪ y)] .

Additionally,

(L̃B)(θ) =
1

2

∫

Rd

dx

∫

Rd

dy
δ2B(θ)

δθ(x)δθ(y)

∫

Rd

dx′

∫

Rd

dy′ c(x, y, x′, y′) (4.24)

× [(θ(x′) + 1)(θ(y′) + 1) − (θ(x) + 1)(θ(y) + 1)] .
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